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ON THE CONSTRUCTION OF NEARLY TIME OPTIMAL CONTINUOUS

FEEDBACK LAWS AROUND SWITCHING MANIFOLDS ∗, ∗∗

Fabio Ancona1 and Cristopher Hermosilla2

Abstract. In this paper we address the question of the construction of a nearly time optimal feedback
law for a minimum time optimal control problem, which is robust with respect to internal and external
perturbations. For this purpose we take as starting point an optimal synthesis, which is a suitable
collection of optimal trajectories. The construction we exhibit depends exclusively on the initial data
obtained from the optimal feedback which is assumed to be known.

Résumé. Cet article porte sur la construction des commandes en boucle fermée continues mais sous-
optimales pour le problème de Temps Minimal, nous nous intéressons à la robustesse par rapport
aux perturbations internes et externes des équations définies par des rétro-actions. L’étude que nous
proposons se base sur l’idée de synthèse optimale, qui est une collection des trajectoires optimales.
La construction que nous proposons dépend des données initiales et de l’information fournie par les
contrôles optimaux qui sont supposés connus.
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Introduction

This paper is concerned with state constrained minimum time problems, that is, we consider the problem of
finding the smallest T ≥ 0 such that a trajectory of a given control-affine system

ẏ = f0(y) +

m∑
i=1

uifi(y), u(t) ∈ [−1, 1]m, for a.e. t ≥ 0,

reaches at time t = T a given closed set Θ ⊆ RN (the target) from a given initial state x ∈ K at time t = 0,
while satisfying the path constraint y(t) ∈ K on [0, T ] for a prescribed closed set K ⊆ RN (the state constraint).
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We are mainly interested in optimal solutions in feedback form, that is, mappings U : K → [−1, 1]m that satisfy
u∗x(t) = U(y∗x(t)) for a suitable collection of optimal trajectory-control pairs {(y∗x, u∗x)}x∈Ω, where Ω ⊆ K.

It is well-known that the ordinary differential equation (ODE) induced by the closed-loop system

ẏ = f0(y) +

m∑
i=1

Ui(y)fi(y) (1)

may not be well-posed and solutions in the Carathéodory sense may not even exist. This is because time
optimal feedback laws are in general discontinuous functions on the state; see for instance the discussion in [14].
Actually, simple examples, such as the double integrator, show that even for linear systems, without state
constraints, it is likely that optimal feedbacks are discontinuous. There are indeed topological obstructions
that block the existence of continuous feedbacks such as the Brockett’s condition introduced in [9]; see also the
discussion in [14]. The latter was firstly conceived for stabilization problems (to reach the target asymptotically
on time), but it can be applied to some classes of optimal problems as well. Topological obstructions, such as
the Brockett’s condition, are so significant that they may even preclude the existence of continuous nearly time
optimal strategies. One possible way to deal with this issue is to consider weaker notions of solutions such as
Filippov or Krasovskii solutions, by using a regularizing procedure on the vector field of the right handside;
see for instance [5, Chapter 1]. Let us point out that, in this case, the regularized vector field may not have
a correlation with the original ODE, because it could be introducing new velocities that are not part of the
original dynamical system.

Other techniques well-suited for the closed loops system (1) have been investigated in the literature. These
methodologies avoid the possible lost of information caused by the regularizing schemes. Depending on the
purpose at hand, we can classify these methods into two types: (i) generalized notions of solutions and (ii)
sufficiently regular discontinuities on the feedback control. In the first case we find the sample-and-hold solutions
(see [14] and the references therein) and in the second one the Patchy feedbacks (see for example [1–3]).

In this paper we follow similar ideas as in [3], that is, we focus on feedback controls that are regular enough
such that the notion of Carathéodory solution can still be well-defined even though the feedback is discontinuous.

Our starting point are the so-called regular syntheses. The notion of regular synthesis was introduced in [7]
and subsequently generalized to broader settings by many authors; see for instance [10,25,28,29]. The main idea
is that instead of working with optimal feedback directly and facing trajectories that may not be optimal, we
only deal with a collection of extremals that cover the whole state space and fit together in an appropriate way.
Any extremal is associated with a piecewise continuous feedback, but a trajectory of the closed-loop system (1)
doesn’t necessarily belong to an optimal synthesis.

The purpose of this paper is to point out that by slightly modifying a time optimal feedback law around some
of its singularities we can obtain a nearly time optimal feedback that is locally Lipschitz continuous around the
corresponding singularity; the time optimal feedback law is the one provided by an optimal synthesis. The type
of discontinuities we have in mind are those that occur in presence of a switching manifold (also called switching
locus sometimes). This kind of singular sets are in many cases trajectories of the system, and so, they can also
be seen as integral manifolds.

Let us point out that, in the case that no state constraints are considered, some authors have shown that
it is possible to construct nearly time optimal strategies that enjoy robustness properties without further re-
quirements; see for example [3, 6, 35]. In the presence of state constraints, the issue has also been addressed
but imposing beforehand an inward pointing condition (IPC); see for instance [16, 22, 30]. To the best of our
knowledge, there are no works that, taking advantage of optimal syntheses, propose a construction of nearly
time optimal strategies consistent in the sense we have described earlier.

The construction we propose does not require any type of IPC, and, as a matter of fact, it is based on a rather
natural idea that uses convex combinations between smooth closed-loop controls. Details of the construction
are given later on (see Theorem 2.1) and demonstrated on the double integrator problem (see (6) in §1.2 )

Finally, let us emphasize that the construction we propose focuses on closed-loop controls, which differs
in nature from other regularization methods concerned with auxiliary approximated problems designed for
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constructing smooth open-loop (nearly time optimal) controls. For example, in [4] a modification on the cost
is considered whereas in [24, 36, 38] a perturbation on the dynamics is investigated. The underlying idea of
these works is that, by modifying the Hamiltonian of the problem, one can obtain nearly time optimal smooth
approximations of an open-loop optimal control by means of the Pontryagin maximum principle.

Notation and mathematical definitions

Throughout this paper, R denotes the set Real numbers, N and m are given Natural numbers which remain
fixed all along the exposition. We use | · | for the Euclidean norm and 〈·, ·〉 for the Euclidean inner product on
RN . The unit open ball {x ∈ RN | |x| < 1} is indicated by B and with a slight abuse of notation we write
B(x, r) = x + rB. For a set S ⊆ RN , int(S) and S denote its interior and closure, respectively. The distance
function to S is distS(x) = inf{|x− y| | y ∈ S}.

For a given locally closed set S ⊆ RN we write T BS (x) and T CS (x) for the Bouligand and generalized tangent
cones to S at x ∈ S, which are defined via

T BS (x) =

{
v ∈ RN

∣∣∣∣ lim inf
t→0+

distS(x+ tv)

t
≤ 0

}
and T CS (x) =

{
v ∈ RN

∣∣∣∣∣ lim sup
x̃→x, t→0+

distS(x̃+ tv)

t
≤ 0

}
.

A setM⊆ RN is a d-dimensional embedded manifold of RN if for any x ∈M there is an open set O so that

M∩O = {x̃ ∈ O | h1(x̃) = . . . = hN−d(x̃) = 0},

where h : RN → RN−d is a smooth function whose derivative Dh(x̃) is surjective at any x̃ ∈ O. The function h
is called a local defining map forM around x. Furthermore, the tangent space toM at x, which we denote by
TM(x), can be identified with the set

{v ∈ RN | 〈∇h1(x), v〉 = . . . = 〈∇hN−d(x), v〉 = 0}.

1. Setting of the problem

Consider the control-affine system with input constraints

ẏ(t) = f(y(t), u(t)) := f0(y(t)) +

m∑
i=1

ui(t)fi(y(t)), u(t) ∈ [−1, 1]m, for a.e. t ≥ 0, (2)

where f0, . . . , fm : RN → RN are locally Lipschitz continuous vector fields that satisfy

∃cf > 0 such that |fi(x)| ≤ cf (1 + |x|), ∀i ∈ {0, . . . ,m}, ∀x ∈ RN (Hf )

It is well-known that under these conditions for any measurable function (control) u : [0,+∞)→ [−1, 1]m and
x ∈ RN , there is a unique absolutely continuous curve yux : [0,+∞)→ RN that satisfies (2) and yux(0) = x.

In order to take into account physical or economical constraints that may appear in mathematical modeling,
consider a nonempty closed sets K ⊆ RN (the state constraint), and define, for any τ > 0 given, the set of
admissible controls on [0, τ ] as follows

UτK(x) := {u : [0,+∞)→ [−1, 1]m measurable such that yux(t) ∈ K, ∀t ∈ [0, τ ]} .

Given a nonempty closed set Θ ⊆ RN such that Θ ∩ K 6= ∅, we are concerned with the minimum time
problem to reach the target Θ while being feasible on K, that is, the problem of finding the smallest T ≥ 0 and
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an admissible control u ∈ UTK(x) such that yux(T ) ∈ Θ. The optimal value of this problem is called the minimum
time function and is given by

TΘ(x) := inf
{
T ≥ 0 | u ∈ UTK(x), yux(T ) ∈ Θ

}
, ∀x ∈ K. (3)

Under the assumptions we have done so far, it follows that TΘ is lower semicontinuous (cf. [13, Proposition
2.1]). Furthermore, by [13, Theorem 7.2], it is the smallest positive lower semicontinuous viscosity supersolution
of the Hamilton-Jacobi-Bellman (HJB) Equation

−1 +H(x,∇ϕ(x)) = 0, x ∈ K ∩ dom(ϕ).

Also, it is a viscosity bilateral subsolution of the HJB Equation on int
(
dom

(
TΘ
))

; cf. [21, Theorem 4.2].
Since Θ and K are closed sets, thanks to (Hf ), the set of admissible trajectories starting at x ∈ K fixed

is compact (possibly empty) in the space of continuous functions and so, whenever x ∈ dom(TΘ), that is,
TΘ(x) < +∞ we can find a control ux ∈ UTK(x) which realizes the infimum in (3); the proof is essentially the
same as in [20, Proposition 3.2]. Hence, a time optimal synthesis is a function U : dom(TΘ) → [−1, 1]m that
satisfies

U(yuxx (t)) = ux(t), whenever TΘ(x) ∈ R and for a.e. t ∈ [0,TΘ(x)].

For practical purposes, in many cases it is enough to find a synthesis that is almost optimal in the sense that
for any ε > 0 given, there is a set Kε ⊆ dom(TΘ) and a mapping Uε : Kε → [−1, 1]m such that trajectories of
the closed-loop system (1) with U = Uε are well defined, reach the target Θε := Θ + B(0, ε) and satisfy

τε(x) := min{T ≥ 0 | yεx(T ) ∈ Θε} ≤ TΘ(x) + ε, ∀x ∈ Kε,

where yεx is any curve that solves (1) with U = Uε, which remains in Kε (i.e. yεx(t) ∈ Kε for any t ∈ [0, τε(x)])
and verifies yεx(0) = x. A feedback control such as Uε will be called in the sequel nearly time optimal.

Notwithstanding the fact that feedback laws are usually discontinuous functions on the state, they are likely
to have rather regular singularities, in the sense that in some regions of the state-space, the feedback is smooth
and the notion of Carathéodory solutions can still be defined; we refer for example to [8, 10, 11, 18, 27, 39]. The
set of points where an optimal strategy behaves like that is often an embedded manifold. The latter motivates
the following definition.

Definition 1.1. We say that M, an embedded manifold of RN , is a cell related to a feedback control law
strategy U : RN → [−1, 1]m provided that

x 7→ U |M(x) is locally Lipschitz continuous on M and f(x, U(x)) ∈ TM(x), ∀x ∈M. (4)

Remark 1.2. Notice that for any initial condition in a cell, there exist τmax > 0 and a unique smooth curve
y : [0, τmax) →M that verifies (1). This is a consequence of Nagumo Theorem and the Lipschitz character of
the vector fields; see for instance [19].

1.1. Framework and assumptions

The purpose of this paper is to point out that by slightly modifying a time optimal feedback law around some
of its singularities we can obtain a nearly time optimal feedback that is locally Lipschitz continuous around
the corresponding singularity, and thus robust with respect to external and internal perturbations. We are
interested in the circumstances where there exist Mini and Mend, both being cells associated with an optimal
feedback and verifying some structural conditions. Hence, from this point onwards, we assume that

(i) U0 : K → [−1, 1]m is a given optimal feedback control law.

(ii) Mini and Mend are cells related to U0.

(iii) Θ ∩Mend 6= ∅, Mend ⊆Mini and Mini ∪Mend ⊆ dom(TΘ).

(H0)
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Θ
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yux
x (τ)

yεx(·)yεx(τε)

Mini

Mend

Figure 1. An illustration of the construction of a nearly time optimal feedback

In this setting, we are concerned with the cases in which the minimum time function to reach Θ starting from
Mini can be decomposed in the following fashion:

TΘ(x) = min
τ>0

{
TΘ(yuxx (τ)) + τ

∣∣∣∣ yuxx (t) ∈Mini, ∀t ∈ [0, τ)
yuxx (t) ∈Mend, ∀t ∈ [τ,TΘ(x))

}
, ∀x ∈Mini. (5)

In other words, the optimal strategy is the concatenation of two smooth feedbacks so that the path followed
by a time-minimizing curve is contained in the corresponding cell; it starts at Mini, then reaches Mend, and
afterwards, it hits the target. This class of singularities is exactly the one described in [18] for a synthesis
around the origin for normal linear models and it also agrees with some of the generic singularities of a 2D
system exhibited in [8]. In this context, we refer to Mend as a switching manifold.

In Figure 1 we show an illustration in order to give an idea of what is expected to happen; the optimal curve
yuxx (·) (drawn in black) hits Θ whereas the nearly time optimal trajectory yεx(·) (the blue arc) does not reach
the target but a neighborhood of it.

The basic tool we use in our analysis is the Value Function itself, which we assume fulfills the following
conditions: {

i) ∃ Q ⊆ RN open with Mini ∪Mend ⊆ Q.
ii) ∃ ω : Q → R of class C2 so that ω|Mini

= TΘ|Mini
on Mini.

(H0)

Remark 1.3. Note that the assumption (H0) is only a local property of the value function aroundMini∪Mend,
which is rather natural in the framework of optimal syntheses we are considering in this paper. In that setting
value functions are assumed to be piecewise smooth; cf. [10, 28, 29]. Let us point out that this hypothesis is
independent of global properties of the minimum time function, such as continuity. For this reason, assumptions
such as the Petrov’s condition or small-time controllability, are not considered in this manuscript.

Since we are interested in the circumstances when the flows from Mini are transversal to Mend we suppose
in addition that, if U0(·) is an optimal synthesis given by (H0), then{

∃Uini :Mini → [−1, 1]m locally Lipschitz continuous so that

Uini = U0|Mini
on Mini and f(x, Uini(x)) /∈ TMend

(x), ∀x ∈Mend.
(H1)
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R

U ε(x) = 1

U ε(x) = −1

U ε(x) =??

U ε(x) =??

ε

Figure 2. double integrator example

In the foregoing hypothesis, the existence of an extension of the feedback is immediately verified if the feedback
is uniformly continuous on Mini, which can be provided using density arguments.

1.2. An example: the double integrator problem

Before presenting the theoretical development, we exhibit first an explicit example to enlighten the technique
to be used in the rest of the paper. We consider the double integrator problem:

minT s.t.

(
ẏ1

ẏ2

)
=

(
y2

u

)
, u(t) ∈ [−1, 1] a.e. on [0, T ], y(0) = (x1, x2), y(T ) = (0, 0).

In this example, the target is Θ = {(0, 0)} and the switching manifolds are contained in the curve given by

2x1 + sign(x2)x2
2 = 0.

In Figure 2, this set is represented by the black curve and the red ball is the ε-neighborhood of the origin we
want to reach. Note that outside the gray zone the optimal policy is already locally Lipschitz continuous, so a
nearly time optimal continuous feedback Uε only needs to differ from the optimal one in the gray zone.

We recall that in this situation, the minimum time function to reach the origin can be computed explicitly
and it is given by

TΘ(x) =


−x2 +

√
2x2

2 − 4x1 2x1 + sign(x2)x2
2 < 0,

x2 +
√

2x2
2 + 4x1 2x1 + sign(x2)x2

2 > 0,

|x2| 2x1 + sign(x2)x2
2 = 0.

Let us focus on the construction around the manifolds

Mini = {x ∈ R2 | 2x1 + sign(x2)x2
2 > 0} and Mend = {x ∈ (0,+∞)× (−∞, 0) | h(x) = 0},
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Mend

Mδ
ini

R
R

U ε(x) = 1

U ε(x) = −1

U ε(x) =??

Figure 3. Zone of interest

where

h(x) := 2x1 − x2
2, ∀x = (x1, x2) ∈ R2.

We check that (H0) is verified with Q = {2x1 + x2
2 > 0} and ω(x) = x2 +

√
2x2

2 + 4x1.
Let ε > 0 given and take δ ∈ (0, ε) to be fixed. Consider the curve

Mδ
end = {x ∈ R2 | 0 < x1, x2 < 0, h(x) = 2δ}.

The region of interest, where the optimal control is going to be modified is depicted in Figure 3. It tallies with
the area between the curvesMend andMδ

end. Outside of this zone, there is no real need to alter it, because, as
aforementioned, the feedback is continuous outside of the switching curve. Therefore, we can set

Kε = {x ∈ R2 | 2x1 + sign(x2)x2
2 ≥ 0}.

Let Ωδ be the zone where it is desired to modify the feedback, that is,

Ωδ = {x ∈ O : 0 ≤ h(x) ≤ 2δ}, where O := R× (−∞, 0).

We consider as well the locally Lipschitz continuous function λ : Ωδ → [0, 1] defined via

λ(x) =

(
1− 1

2δ
h(x)

)
, x ∈ Ωδ.

Notice that λ(x) = 1 if and only if x ∈Mend. Hence the prototype nearly time optimal strategy is

U δ(x) =


1 x ∈ O, h(x) = 0,

−1 + 2λ(x) x ∈ int(Ωδ),

−1 otherwise,

, x ∈ Kε \ B(0, ε). (6)
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Clearly, U δ is continuous and therefore the next ordinary differential equation always admits solutions in the
classical sense for any initial condition on Kε \ B(0, ε):(

ẏ1

ẏ2

)
=

(
y2

Uδ(y)

)
. (7)

Remark 1.4. Note that U δ is actually locally Lipschitz continuous. Indeed, we have

|Uδ(x)− U δ(y)| = 2λ(x) = 2− 1

δ
h(x) ≤ 1

δ
(h(y)− h(x)), ∀x ∈ int(Ωδ), y ∈ O \ int(Ωδ),

where the last inequality comes from the fact that h(y) > 2δ. This shows that the Lipschitz constant of the
feedback depends on h, but more importantly, it is inversely proportional to δ, and so, blows up as δ → 0.

Let y be a solution to (7) lying on Ωδ with initial condition x ∈ int (Ωδ). Let [0, τ) be the maximal interval
of time for which y belongs to int (Ωδ), that is

τ = inf{t > 0 | y(t) ∈ int(Ωδ)}.

Define ρ(t) := h(y(t)) for any t ∈ [0, τ) and note that this function is differentiable on (0, τ). Whereupon,
setting u = U δ(y) on (0, τ) we get:

ρ̇(t) = 2y2(t)(1− u(t)), ∀t ∈ (0, τ). (8)

Therefore, as y2(t) < 0 for any t ∈ (0, τ), the sign of ρ̇ is negative on (0, τ), which means that the function
ρ(·) is strictly decreasing on (0, τ). Using an argument of density, this affirmation can be extended to any arc
solution to (7) that starts from Mδ

end.

Remark 1.5. Let us point out that τ is finite. Actually, if it is not the case, we can assume that there
is α ∈ (0, 1) so that u(t) ≤ 1 − α for any t ≥ 0. Otherwise, since ρ(·) is decreasing we would have that
ẏ2(t) = u(t) > 1− α, which implies that τ is finite.

We might also assume that y2(t) ≤ −α for any t > 0, and therefore ρ̇(t) ≤ −2α2. This inequality yields to a
contradiction because for some t > 0, ρ(t) = 0 but u(t) < 1.

A simple computation shows that, since ρ is strictly decreasing on (0, τ), if τε(x) stands for the time required
to hit the target Θε starting from x, the following estimate holds true

y2(t) ≤ −αε(δ), ∀x ∈ Ωδ, t ∈ [0, τε(x)],

where αε(δ) :=
√

2
√√

1 + ε2 + 2δ − (1 + δ); the bound is obtained by finding the intersection point between

Mδ
end and the circle of radius ε.
Note also that τ > τε(x) is due to δ < ε. Accordingly, thanks to Remark 1.5, τε(x) is a finite number likewise

τ . Furthermore, it is not difficult to see that

ρ̇(t) =
2

δ
y2(t)ρ(t) =

2

δ
ẏ1(t)ρ(t), ∀t ∈ (0, τ),

which implies that

ρ(t) = h(x) exp

(
2

δ
(y1(t)− x1)

)
∀t ∈ [0, τ).

In particular, ρ(t) > 0 and x2(t) > 0 for any t ∈ [0, τ ], and so y2(τ) = 0. Indeed, any trajectory of the modified
feedback that begins at x ∈ Ωδ, belongs to the manifold Mx that has been portrayed in Figure 4 and whose
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x

R
R

Mend
Mδ

end

Mx

U = 1

U = −1

Figure 4. Manifold associated with the perturbed feedback.

analytic expression is

Mx =

{
x̃ ∈ O | h(x̃) = h(x) exp

(
2

δ
(x̃1 − x1)

)}
, x ∈ Ωδ.

On the other hand, on the interval (0, τε(x)) the next inequality holds:

ρ̇(t) ≤ −2αε(δ)

δ
ρ(t), ∀t ∈ (0, τε).

So, ρ(t) ≤ h(x) exp
(
− 2αε(δ)

δ t
)

for any t ∈ [0, τε(x)]. Whereupon,

ẏ2(t) = 1− 1

δ
ρ(t) ≥ 1− h(x)

δ
exp

(
−2αε(δ)

δ
t

)
.

This yields, integrating the inequality between t = 0 and t = τε(x), to

y2(t)− x2 ≥ τε(x)− h(x)

δ

∫ τε(x)

0

exp

(
−2αε(δ)

δ
t

)
dt ≥ τε(x)− h(x)

2αε(δ)
.

Remark that TΘ(x) = x2 +
√

4x2
2 + 2h(x), and so,

y2(t)− x2 ≤ −αε(δ) + TΘ(x), t ∈ [0, τε(x)].

Consequently, we have found out that

h(x)

2αε(δ)
− αε(δ) + TΘ(x) ≥ τε(x), ∀x ∈ Ωδ.
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Figure 5. The zeros of the χε.

Besides, due to h(x) ≤ 2δ we get

h(x)

2αε(δ)
− αε(δ) ≤

δ − αε(δ)2

αε(δ)
≤ 3δ
√

2
√√

1 + ε2 + 2δ − (1 + δ)
.

We readily see that the righthand side can be as close of zero as wanted, so we can find δ > 0 small enough
which makes the bound in the preceding inequality not greater than ε. In particular, we obtain the next result.

Proposition 1.6. For any ε > 0, there exists δ0 ∈ (0, ε) which makes, for any δ ∈ (0, δ0], the feedback U δ given
by (6) nearly time optimal on Kε = {x ∈ R2 | 2x1 + sign(x2)x2

2 ≥ 0}, that is,

TΘ(x) ≤ τε(x) ≤ TΘ(x) + ε, ∀x ∈ Kε \ B(0, ε).

1.2.1. A numerical test

From the analysis recently exposed we can see that, given ε > 0 if we pick δ0 > 0 to be a zero of the function
χε : [0, ε]→ [0,+∞) defined via

χε(δ) = 9δ2 − 2ε2
(√

1 + ε2 + 2δ − (1 + δ)
)
, ∀δ ∈ [0, ε],

then the feedback Uδ is nearly time optimal. In Figure 5 we have represented in blue the curve of zeros of the
function ε 7→ χε for ε ∈ [0, 1]. We empirically observe that this function is of order o(ε2); in the same figure,
the red curve portrays the function δ = 1

4ε
2.

Using the above-described fashion to choose δ0 we have tested the feedback for the values ε ∈ {0.1, 0.05, 0.01}
from 100 random initial conditions lying on

{x ∈ [0, 55]× [−10, 0] | h(x) ≥ 0}.

Using the solver ode45 in Matlab we have obtained the following results for TΘ(x)− τε(x)



TITLE WILL BE SET BY THE PUBLISHER 11

ε=0.1 ε=0.05 ε=0.01
TΘ(x)− τε(x) δ0=0.027 δ0=0.0016 δ0=0.0013

worst case 0.0960 0.0463 0.0070
best case 0.0999 0.0495 0.0099
average 0.0978 0.0476 0.0082

The last table provides an empirical support to the procedure we have exposed. Indeed, in any case, we have
a much stronger result, that is, TΘ(x) ≥ τε(x). This fact can be explained by noticing that the optimal time
to reach the target, from the circle of radius ε is of order ε as well. We also mention that, as it can also be
inferred from the exposition, the choice of δ0 is not at all sharp, which makes suitable to continue looking for
better bounds related to the closed-loop control.

1.2.2. Further extensions

Instead of considering the particular choice of function λ(x) =
(
1− 1

2δh(x)
)

we might consider any other the
continuous functions verifying λ : Ωδ → [0, 1] and

λ|Mend
≡ 1 and λ|Mini

(x) = 0, as long as h(x) = δ. (9)

Under these circumstances, we are able to prove the existence of a δ > 0 which makes the strategy given by
(6) nearly time optimal on compacts sets of Kε.
Proposition 1.7. For any ε > 0 and r > 0, there exists δ0 ∈ (0, ε) such that for any continuous functions
λ : Ωδ → [0, 1] that verifies (9) with δ ∈ (0, δ0), the feedback U δ given by (6) is nearly time optimal on

Krε := {x ∈ R2 | 2x1 + sign(x2)x2
2 ≥ 0} ∩ B(0, r).

Proof. Notice that since ρ(t) := h(yεx(t)) > 0 for any t ∈ (0, τ), then TΘ is differentiable along the arc
t 7→ y(t) := yεx(t) and so, for any t ∈ (0, τ)

d

dt
TΘ(y(t)) = −1 + 2λ(yεx(t))

(
1 +

2y2(t)√
4y2

2(t) + 2ρ(t)

)

≤ −1 + 2λ(yεx(t))

(
ρ(t)

4y2
2(t) + 2ρ(t)

)
≤ −1 +

δ

αε(δ)2

Thereby, integrating between t = 0 and t = τε(x) we get

−TΘ(x) ≤ TΘ(y(τε(x)))−TΘ(x) ≤ −
(

1− δ

αε(δ)2

)
τε(x). (10)

Since x 7→ TΘ(x) is continuous on Krε, the foregoing inequality implies that τε(x) is uniformly bounded from
above on Krε. Let tr be its minimal upper bound and take δ0 ∈ (0, ε) so that

δ0
αε(δ0)2

=
δ0

2(
√

1 + ε2 + 2δ0 − (1 + δ0))
≤ ε

tr
.

The choice of δ0 is possible inasmuch as δ 7→ δ
αε(δ)2

ranges between 0 and +∞ on (0, ε). Finally, we get the

desired result from (10). �
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2. Control-affine systems

One of the goal of the previous section was to show an explicit example in which the construction of a
continuous nearly time optimal feedback was plausible. Now, we look for similar constructions for a broader
class of problems, that is, we focus on the control-affine system (1) under the assumption that (Hf ) holds.

Under these circumstances we assume thatMini is an open set andMend is a smooth surface of codimension
1 (at least of class C2). Since, the analysis we propose is merely local (on bounded sets), we can always find
a local defining map for Mend whose domain is a neighborhood of Mend \ Θε; this can be achieved by using
a partition of the unity. Accordingly, for sake of simplicity we may rather assume that there is a continuous
function ρ : Mend → (0,+∞) that makes O ⊆ RN a tubular neighborhood of Mend; see [23, Theorem 6.24]
for further details. Therefore, the map πMend

: O →Mend, the projection over Mend is well defined on K and
locally Lipschitz continuous. In addition, we also suppose that we can find h : RN → R continuous which is a
Ck submersion on O so that

Mend = {x ∈ O | h(x) = 0} and Mini ∩ O ⊆ {x ∈ O | h(x) > 0}. (11)

With a slight abuse of notation, let us write ∂Mend for Mend \Mend, and for any r > 0 and δ > 0 we set

Σr,σ = {x ∈ O | |x| ≤ r, dist∂Mend
(πMend

(x)) ≥ σ} .

These subsets of Mend are introduced in order to localize the area where the feedback is going to be modified.
This plays the same role as the ball of radius r used in Section 1.2.2 but well-suited for the case Mend is
bounded.

Let Uini be the extension of U0|Mini
up to Mini given by (H1) and consider as well

Uend(x) = U0|Mend
(πMend

(x)), ∀x ∈ O.

The main result of this paper is described below.

Theorem 2.1. Assume (Hf ), (H0) and (H1) hold along with

x ∈ ∂Mend ⇒ Either x ∈ Θ or ∃µ > 0 f(x, Uini(x)) = µf(x, Uend(x)). (12)

Let ε > 0, r > 0, then, there exists δ0 > 0 such that for any δ ∈ (0, δ0) and any function λ : h−1([0, δ])→ [0, 1]
locally Lipschitz continuous that satisfies λ(x) = 0 if h(x) = δ and λ(x) = 1 if h(x) = 0, the feedback control
U δ :Mini ∪Mend → [−1, 1]m defined as

U δ(x) =


Uini(x) h(x) ≥ δ
Uini(x) + λ(x)(Uend(x)− Uini(x)) 0 < h(x) < δ

Uend(x) h(x) = 0

, ∀x ∈Mini ∪Mend,

is continuous on an arbitrary large neighborhood of (Mini ∪Mend) ∩ B(0, r) \ (∂Mend + εB) and nearly time
optimal on (Mini ∪Mend) ∩ B(0, r).

Remark 2.2. Similarly as done for the double integrator, suppose that λ(x) = 1− 1
δh(x). Note then that

|U δ(x)−Uδ(y)| = λ(x)|Uend(x)−Uini(x)| ≤ 2m

δ
|h(x)−h(y)|, ∀x, y ∈Mini ∪Mend with 0 ≤ h(x) ≤ δ < h(y).

As in Remark 1.4, we get that U δ is locally Lipschitz continuous, and its Lipschitz constant is inversely propor-
tional to δ, and so, blows up as ε→ 0 (because in practice δ0 → 0 as ε→ 0). This is an expected result of the
trade-off between precision (ε ≈ 0) and regularization (continuity of the nearly time optimal feedback).
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R

R

(0,0)(-1,0)(-2,0)

U(x) = −1

U(x) = 1

UT (x) = ∅

Figure 6. The optimal strategy for the problem of Example [29, Example 5.3] with state constraints.

Before proving Theorem 2.1 let us illustrate it with an example of a minimum time problem with state
constraints. Let us consider the minimum time problem exhibited in [29, Example 5.3]: Find the minimum
T ≥ 0 such that

(
ẏ1

ẏ2

)
=


1− y2

u+ 1

2

(y1 + 1)
u+ 1

2

 , u(t) ∈ [−1, 1] a.e. on [0, T ] y(0) =

(
x1

x2

)
, y(T ) =

(
0
0

)
.

Consider the state constraint K = {x ∈ R2 | x2 ≤ 0}. Notice that under these circumstances, the IPC is not
verified. Furthermore, it is not difficult to see that the optimal feedback for this problem is given by Figure 6.

Let us recall that the construction we propose does not require any type of IPC, and it is based on convex
combinations between the feedback laws of one stratum Mini and another stratum Mend ⊆Mini \Mini.

The framework of the present paper allows us to treat the singularity of the feedback at the points on the
x-axis. The construction for this case might be focused on the strata

Mini = B((−1, 1),
√

2) ∩ int(K) and Mend = {(x, 0) | −1 < x < 0}.

The procedure consists in modifying the feedback around Mend in such a way it changes in a continuous way.
Actually, in this case we can take h(x, y) = −y and for some δ > 0 small λ(x, y) = 1+ y

δ . Note as well that (H0)
and (12) are satisfied, and so Theorem 2.1 can be applied. By doing such modification the time required to hit
a neighborhood of the target is almost optimal. In Figure 7 we show an illustration of the modified nearly time
optimal feedback for δ = 0.2. The vectors in red correspond to the modified feedback, while the ones in blue
are the provided by the optimal synthesis.

2.1. Technical lemmas

The proof of the Theorem 2.1 is the outcome of several lemmas which we proceed to state from this point
on. We set

Ωr,σδ := h−1([0, δ]) ∩ Σr,σ, ∀r, σ, δ > 0.

Lemma 2.3. Let r, σ, ε > 0, if (Hf ) and (H1) are satisfied, then we can find δ, β > 0 so that

〈∇h(x), f(x, Uini(x))〉 ≤ −β, ∀x ∈ Ωr,σδ \Θε.
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Figure 7. A nearly time optimal feedback for the problem of Example [29, Example 5.3] with
state constraints. In this picture the parameter is δ = 0.2.

Proof. If the statement is not true, we can construct a sequence xn ∈ Ωr,σδ \ Θε which converges to some
x ∈Mend ∩ Σr,σ \Θε that verifies

〈∇h(x), f(x, Uini(x))〉 ≥ 0.

Let ỹ stand for the arc associated with Uini which starts from some x̃ ∈ Mini and reaches x at time τ(x̃) =
inf{t > 0 | ỹ(t) ∈Mend}; ỹ is the backward curve emerging from x and by virtue of (5), it is well-defined. The
Mean Value Theorem implies that ∃t ∈ [0, τ(x̃)] for which:

0 > −h(x̃)

τ(x̃)
= 〈∇h(ỹ(t)), f(ỹ(t), Uini(ỹ(t)))〉.

The lefthand side is strictly negative and remains bounded as long as x̃→ x, this is because of the Gronwall’s
Lemma and the Mean Value Theorem imply

h(x̃) ≤ sup
s∈[0,1]

|∇h(x+ s(x̃− x))|
∫ τ(x̃)

0

|̇̃y(s)|ds

≤(1 + |x̃|)(ecfτ(x̃) − 1) sup
s∈[0,1]

|∇h(x+ s(x̃− x))|.

Hence, lim supx̃→x
h(x̃)
τ(x̃) ≤ cf (1 + |x|)|∇h(x)|. In view of the initial supposition, the former inequality yields to

〈∇h(x), f(x, Uini(x))〉 = 0.

However, this final equation leads to a contradiction with (H1). So, the conclusion follows. �

Lemma 2.4. For any r > 0 and σ > 0, there are ∆ > 0 and % > 0 so that

distMend
(x) ≤ ∆|h(x)|, ∀x ∈ Σr,σ ∩ (Mend + %B).

Furthermore, ∆ inf{|∇h(x)| | Σr,σ ∩Mend} ≥ 1.
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Proof. By virtue of the Grave-Lyusternik Theorem (cf. [15, Theorem 5.32]), for any x ∈ Mend there exist
∆x > 0 and %x ∈ (0, ρ(x)) so that

distMend
(x̃) ≤ ∆x|h(x̃)|, ∀x̃ ∈ B(x, %x).

Evaluating at x̃ = x+ t∇h(x) with t > 0 we get

t|∇h(x)| ≤ ∆x|h(x+ t∇h(x))− h(x)|.

Whereupon, dividing by t and letting t→ 0 we obtain that |∇h(x)|∆x ≥ 1.
Since Σr,σ ∩Mend is compact and can be covered by {B(x, %x)}x∈Mend

, we can take x1, . . . , xp ∈ Mend so
that {B(xi, %xi)}pi=1 covers Σr,σ ∩Mend. Consequently, setting % = mini=1...,p %xi and ∆ = maxi=1...,p ∆xi we
get the conclusion. �

Lemma 2.5. Suppose that (Hf ), (H0) and (H1) are verified, and let r, σ > 0. Then, there exist C > 0 and
% > 0 (the same as in Lemma 2.4) so that

|〈∇TΘ(x), f(x, Uend(x))− f(x, Uini(x))〉| ≤ C|h(x)|, ∀x ∈ Σr,σ ∩ (Mend + %B).

Proof. Let ω be given by (H0). Note that the minimum time function is a classical solution of the HJB equation
on Mini (because of (H0)), and so

−1 +H(x,∇ω(x)) = 0, x ∈Mini.

Due to the optimality of Uini on Mini we have, for any x ∈Mini ∩ O

〈∇ω(x), f(x, Uini(x))〉 = −H(x,∇ω(x)) ≤ 〈∇ω(x), f(x, Uend(x))〉.

Thus, by density we find out that

α(x) := 〈∇ω(x), f(x, Uend(x))− f(x, Uini(x))〉 ≥ 0, ∀x ∈Mend.

On the other hand, by (5) we have that

TΘ(x) = TΘ
Mini

(x), x ∈Mini ∪Mend,

where TΘ
Mini

is the minimum time function to reach the target Θ while being feasible on Mini. Using the

standard theory of HJB with state constraints (see for instance [12,37], [13, Theorem 7.2] or [21, Theorem 4.2]),
we can easily see that TΘ

Mini
is a supersolution of the equation

−1 +H(x,∇ϕ(x)) = 0, ∀x ∈Mini.

In particular, by the optimality of the feedback Uend and due to ω is an admissible test function (ω ≡ TΘ

on Mini ∪Mend) we have

−1− 〈∇ω(x), f(x, Uend(x))〉 = −1 +H(x,∇ω(x)) ≥ 0, ∀x ∈Mend.

By the same argument used earlier, we can show that α(x) ≤ 0 for any x ∈Mend. Hence, we find out that

α(x) = 0, ∀x ∈Mend.
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Therefore, if L > 0 indicates the Lipschitz modulus of α on Σr,σ we have that

|α(x)| ≤ LdistMend
(x), ∀x ∈ Σr,σ.

By Lemma 2.4, the conclusion follows easily. �

2.2. Proof of Theorem 2.1

We are now in position to proof the main result of the paper.

Proof of Theorem 2.1. For sake of clarity, we split the proof in several steps. Let σ = ε
2 and r̃ ≥ r, consider

δ̃ > 0 and % > 0 given by Lemma 2.3 and 2.5 associated with ε, σ and r̃, respectively. Let ρ0 ∈ (0, %) be a lower

bound for ρ(·) on Σr̃,σ and ∆ > 0 given by Lemma 2.4. We set δ0 = min{δ̃, ε
2∆ ,

ρ0
∆ } and take δ ∈ (0, δ0) fixed

but arbitrary.
Continuity of Uδ: First of all notice that by construction, the feedback law is locally Lipschitz continuous on
Ωr̃,σδ for any r̃ > 0. Moreover, due to ρ0 ≥ ∆δ0, we have that for any x ∈Mend we can find σx ∈ (0, ρ0) so that
h(x+σx∇h(x)) = δ. By the Implicit Function Theorem we can also see that the function x 7→ σx is continuously
differentiable on Mend. Now, since U δ(x) = Uini(x) whenever h(x) ≥ δ we have that σ 7→ Uε(x + σ∇h(x)) is

continuous on [0, ρ0). Therefore, Uδ is continuous on Ωr̃,σδ ∪ h−1([δ,+∞))∩Mini. As a matter of fact, since U δ

is separately locally Lipschitz continuous in Ωr̃,σδ and in h−1([δ,+∞)) ∩Mini, it is necessarily locally Lipschitz
continuous on the union of both sets.

Let x ∈Mend with dist∂Mend
(x) < ε

2 , then for any s > 0

dist∂Mend
(x+ s∇h(x)) ≤ dist∂Mend

(x) + distMend
(x+ s∇h(x)).

By Lemma 2.4 and the choice of δ0, if h(x+s∇h(x)) ≤ δ0 then we necessarily have that dist∂Mend
(x+ s∇h(x)) <

ε. In particular, since σ = ε
2 we obtain

(Mini ∪Mend) ∩ B(0, r) \ (∂Mend + εB) ⊆ Ωr̃,σδ ∪
[
h−1([δ,+∞)) ∩Mini

]
.

Invariance of Ωr̃,σδ : Let β > 0 given by Lemma 2.3 and let y be the solution associated with the feedback U δ

given in the statement and whose initial condition is x ∈ int Ωr,σδ . Let τ > 0 be the escape time of y from Ωr̃,σδ .
Thereby, setting ρ := h ◦ y we get for any t ∈ (0, τ)

ρ̇(t) = (1− λ(y))〈∇h(y), f(y, Uini(y))〉+ λ(y)〈∇h(y), f(y, Uend(y))〉.

Recall that 〈∇h(x), f(x, Uend(x))〉 = 0 on Mend, so by (Hf ) and Lemma 2.4 there exists a constant C̃ > 0 so
that

〈∇h(x), f(x, Uend(x))〉 ≤ C̃|h(x)|, ∀x ∈ Σr̃,σ ∩ (Mend + %B).

Hence, by reducing δ0 if necessary, we may assume that

〈∇h(x), f(x, Uend(x))〉 ≤ β

2
, ∀x ∈ Σr̃,σ,

which leads to ρ̇(t) ≤ −β2 on (0, τ). Furthermore, since the feedback is locally Lipschitz continuous on Ωr̃,σδ ,
ρ(t) > 0 for any t ∈ (0, τ); otherwise for some x ∈Mend there are two backward solution, one reachingMend and
another remaining there. Consequently, by taking r̃ larger, we can assume that dist∂Mend

(πMend
(y(τ))) = σ.

Reachability of the target: We claim that y(τ) ∈ Θε. Indeed, let z = πMend
(y(τ)) and suppose that

distΘ(z) > σ = ε
2 , otherwise the affirmation does hold because, Lemma 2.4 leads to

distΘ(y(τ)) ≤ distΘ(z) + |z − y(τ)| ≤ ε

2
+ ∆δ < ε.
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Remark that, since the optimal trajectory that starts from z reach the target without leavingMend, we have
that

f(z, Uend(z)) ∈ int
(
T CΣr̃,σ (z)

)
.

Accordingly, by reducing δ0 once again if necessary and using the continuity of f(·, Uend(·)) on O, we can assume
that f(y(τ), Uend(y(τ))) ∈ int(T CΣr̃,σ (y(τ))) as well.

By (12), we can find x̄ ∈ ∂Mend and µ > 0 so that |x̄ − z| = σ with f(x̄, Uini(x̄)) = µf(x̄, Uend(x̄)). In
particular, due to the continuity of the vector fields and to the fact that f(y(τ), Uend(y(τ))) ∈ int(T CΣr̃,σ (y(τ)))
we can conclude that

f(y(τ), Uini(y(τ))) ∈ T CΣr̃,σ (y(τ)).

Therefore, by the control-affine structure of the dynamics, the convexity of the Clarke tangent cone and
the Accessibility Lemma of Convex Analysis (see for instance [34, Theorem 6.1]) we get f(y(τ), Uδ(y(τ))) ∈
int(T CΣr̃,σ (y(τ))) which is no possible because, since τ is an escaping time, we should have −ẏ(τ) ∈ T BΣr̃,σ (y(τ)) =

T CΣr̃,σ (y(τ)). Thus, in particular, τ > τε(x).
Moreover, by a density argument, since the dynamics is locally bounded, the same deduction is valid if the

initial condition belongs to Ωr,σδ .
Nearly time optimality of the feedback: Notice that TΘ is differentiable along the arc t 7→ y(t) and so, in
view of the control-affine structure of the dynamics, for any t ∈ (0, τ)

d

dt
TΘ(y) = 〈∇TΘ(y), f(y, U δ(y))〉

= 〈∇TΘ(y), f(y, Uini(y))〉
+ 〈∇TΘ(y), f(y, U δ(y))− f(y, Uini(y))〉
= −1 + λ(y)〈∇TΘ(y), f(y, Uend(y))− f(y, Uini(y))〉
≤ −1 + 2C(ε, r̃)δ

The last inequality and C(ε, r̃) are due to Lemma 2.5. Additionally, by the same argument employed in
Proposition 1.7, we can prove that τε(x) is finite and bounded from above on any set Ωr,σδ . Therefore, reducing
δ0 a last time if require, we might assume that τε(x)C(ε, r̃)δ0 ≤ ε so that

τε(x) ≤ TΘ(x) + ε, ∀x ∈ Ωr,σδ .

Finally, since outside Ωr,σδ the optimal control has not been changed, by (5) any trajectory starting at
x ∈ Mini ∪Mend \ Ωr,σδ reaches Ωr,σδ within finite time, τ̃ε(x). Consequently, if yx stands for the trajectory
associated with the nearly time optimal feedback, we have

TΘ(x) = τ̃ε(x) + TΘ(yx(τ̃ε(x))) ≥ τ̃ε(x) + τε(yx(τ̃ε(x)))− ε

So, since τ̃ε(x) + τε(yx(τ̃ε(x))) ≥ τε(x) the conclusion follows. �

3. Discussion and perspectives

We finish the present paper by discussing the contribution of the development exhibited and by indicating
some possible extensions regarding the type of singularities that could be treated in future works.

Before going further, let us mention that in the literature there are papers dealing with the construction of
almost everywhere continuous stabilizing feedbacks, that is, for the case in which there is no criterion to be
minimized by the control system; we refer mainly to the works of Rifford [31–33].
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3.1. Contributions of the paper

In this paper we have investigated the relation between optimal feedbacks with a stratified set of discon-
tinuities and nearly time optimal continuous feedback. As reported in the introduction, this connection can
be avoided if the optimal process at hand has no state constraints involved in its formulation. However, for
problems with restricted state-space, it seems to be a good strategy to proceed as we have done here. This
is because, as it has drawn to attention in [20], in many optimal control problems the boundary of the state
constraint is relevant and the pointing-like condition are not always satisfied.

Furthermore, we believe that the construction we have proposed is rather simple to be implemented once
the optimal synthesis have been known. Also, it yields automatically to full robustness around the area where
the modification has taken place, which allows to eschew possible issues coming from inaccuracies in its im-
plementation. For example, if the manifold Mend belongs to the boundary of the state constraint, the nearly
time optimal feedback we have given is such that none of its Carathéodory solutions will hit Mend but will
remain close to it in order to reach finally a neighborhood of the target. Consequently, a discrete scheme with
step-size sufficiently small will produce curves that track the nearly time optimal one and that stay inMini. In
contrast, if the optimal strategy is used directly, once close to the boundary, any discrete scheme will produce
iterations that may lie outside the state constraint, forcing the algorithm to project back over K and therefore
producing the undesirable Zeno effect that could deteriorate the optimality of the curves associated with the
discrete scheme.

In conclusion, the main contribution of this paper is that we have pointed out that around some types of
singularities the feedback can be modified in such a way it becomes considerably more regular than it was
initially, in particular, robust with respect to internal and external perturbations.

3.2. Further extensions

In this paper we are dealing with minimum time problems, however the technique we propose can be used
for any other type of problem provided that a proper notion of near optimality is considered. In particular,
it can cover problems that present optimal trajectories with one switch; bang-singular for instance. Among
these problems, a natural class are the ones with the exact turnpike property (cf. [17, 26]). Roughly speaking,
this property occurs when optimal trajectories approach to an equilibrium point that minimizes the problem
at steady state, and remain in a neighborhood of it for a large period of time. The construction we propose
could in principle be adapted to this case in order to avoid chattering around the turnpike when reconstructing
numerically an optimal trajectory. In this case, the role of Mini would be played by a neighborhood of the
turnpike and Mend by the turnpike. This as a suitable extension that needs to be investigated in more details.

On the other hand, in the analysis we have exposed, it is important that the singularity of the feedback
occurs at a switching manifold. However, it is not difficult to envisage other types of singularities that can be
considered. For instance, if instead of reaching the manifold Mend we are allowed to leave at any point in a
transversal way, then a similar analysis can be applied by using the backwards dynamics instead of the forwards.

We finally remark that in Theorem 2.1 the result was stated for an open set and a smooth surface of
codimension 1, but a similar result can be stated if the dimension of both manifolds are smaller. Nevertheless,
in that case, further hypotheses may be needed in order to make the nearly time optimal trajectories feasible
on K. This is because the following condition can not be automatically taken as granted:

f(x, Uini(x) + λ(x)(Uend(x)− Uini(x))) ∈ TMini
(x), ∀x ∈Mini near Mend.
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tions. Springer, 2004.
[9] R. Brockett. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, 181–191. Birkhäuser
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