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Review Article

Hidden in plain sight: unlocking the full potential of
cyclic voltammetry with the thin-film rotating (ring)
disk electrode studies for the investigation of oxygen
reduction reaction electrocatalystsQ7

Q6 Vito Di Noto1,2, Enrico Negro1,3, Angeloclaudio Nale1,
Gioele Pagot1,3, Keti Vezzù1,2 and Plamen Atanassov4

Abstract
Cyclic voltammetry conducted with a thin-film rotating disk
electrode, or ring-disk electrode (CV-TF-R(R)DE) is a very
popular ‘ex situ’ tool for the rapid screening of
electrocatalysts for their activity in oxygen reduction reaction.
Despite its popularity and broad use, in most instances only a
small part of the information that could be accessed by CV-TF-
R(R)DE is actually used by scientists in their research. This
work outlines both innovative and more traditional (but half-
forgotten) ways of using CV-TF-R(R)DE to its optimal or full
potential in the ongoing quest to study the most relevant fea-
tures of oxygen reduction reaction electrocatalysts and quickly
identify the most promising candidates for their applications in
fuel cells or other electrochemical devices.

Addresses
1 Section of Chemistry for the Technology (ChemTech), Department of
Industrial Engineering, University of Padova, Via Marzolo 9, I-35131
Padova (PD), Italy
2 Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia
Dei Materiali - INSTM, Via Marzolo 1, I-35131 Padova (PD), Italy
3 Centro Studi di Economia e Tecnica Dell’Energia Giorgio Levi Cases,
Via Marzolo 9, I-35131 Padova (PD), Italy
4 Chemical and Biomolecular Engineering, National Fuel Cell
Research Center, University of California Irvine, CA 92697, United
States

Corresponding authors: Di Noto, Vito (vito.dinoto@unipd.it);
Atanassov, Plamen (plamen.atanassov@uci.edu)

Current Opinion in Electrochemistry xxxx, xxx:xxx

This review comes from a themed issue on Innovative Methods in
Electrochemistry (2021)

Edited by Katherine Wolfgang Schumann and Plamen Atanassov

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.coelec.2020.08.008

2451-9103/© 2020 Elsevier B.V. All rights reserved.

Keywords
Oxygen reduction reaction (ORR), Mechanism, Cyclic voltammetry
(CV), Rotating disc electrode (RDE), Rotating ring-disc electrode
(RRDE).

Introduction
The oxygen reduction reaction (ORR) is a key process
for electrochemical energy conversion and storage de-
vices such as fuel cells (FCs) and metaleair batteries
[1e3]. In particular, the ORR bottlenecks the operation
of low-temperature FCs such as proton-exchange
membrane FCs and anion-exchange membrane FCs
because of the substantial overvoltage associated with it
[4e6]. Suitable ORR electrocatalysts (ECs) are needed

to ensure that the performance level of the devices
complies with the requirements set by the applications
[7]. The development of high-performing, durable and
inexpensive ORR ECs is a major goal of applied elec-
trochemistry research, that is currently exploring several
widely different approaches, such as: Pt-alloy ECs, ECs
possibly exhibiting exotic morphologies [8,9]; develop-
ment of platinum group metal-free ECs [10e13], among
many others [14]. Even though it would be best to test
each new developmental ORR ECs in a full-cell mem-
brane electrode assembly as close as possible to a pro-

totype device, the associated substantial investment in
terms of time and efforts makes this approach not
feasible [15,16]. To address this issue and quickly screen
several types of very different ORR ECs at early
developmental stages, ‘ex situ’ approaches are commonly
adopted [17]. The most popular of such approaches is
cyclic voltammetry with a thin-film rotating disk (or
ring-disk) electrode, abbreviated here as ‘CV-TF-R(R)
DE’ [18e21].

CV-TF-R(R)DE for the determination of the
catalysts’ intrinsic kinetic performance
CV-TF-R(R)DE is widely used in the literature to
determine the intrinsic ORR kinetic performance of an
EC [19,22e24]. In the ‘conventional’ approach
commonly adopted for data analysis, the first step covers

the correction of iR drops from the measured currents
[25]. Subsequently, the ORR faradic current (iORR) is
determined by subtracting the capacitive current icap
from the total iR-corrected current itot (refer Eq. (1))
[21,26]:
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iORR ¼ itot � icap [1]

icap is typically measured collecting CV profiles on the same

electrode where itot is determined, but under an inert at-

mosphere. In a second step, the contributions arising from

the mass transport of oxygen from the bulk electrolyte to the

active sites are removed as follows (refer Eq. (2)) [19,27]:

1

iORR
¼ 1

ik;ORR
þ 1

id
/ik;ORR ¼ iORR , id

id � iORR
[2]

where ik,ORR is the kinetic current in the ORR and id is the

diffusion-limited current as determined on the current

plateau at low electrode potentials. It is pointed out that

Eq. (2) is valid only on the assumption that the partial order

g of the ORR on the EC/electrolyte interface in respect to

the concentration of the oxygen reactant is equal to 1. This

was verified by experiments on conventional Pt/C ECs

[28]; accordingly, Eq. (2) is almost universally adopted in

the literature [19]. However, in principle g might be

different from 1, and this could be revealed by distortions

in the mixed kinetic/diffusion-controlled region close to

the diffusion-limited plateau [29]. In this case, to obtain

ik,ORR from iORR and id it is necessary to determine

experimentally g as described elsewhere [28] and subse-

quently remove the contributions arising from the mass

transport of oxygen by means of the following Eq. (3) [30].

ik;ORR ¼ iORR�
1� iORR

id

�g [3]

In the case of conventional platinum-based ECs, the
plateau is detected at E < 0.6 V vs. RHEQ1 . The perfor-
mance of an ORR EC is then gauged by evaluating ik,ORR

at a certain potential (typically, 0.9 V vs. RHE) against a
benchmark [21,23]. Very often, ik,ORR(0.9 V) is normal-
ized on other properties of the EC such as: (i) the mass
of precious metals on the electrode tip (mass activity,
im,ORR(0.9V)); and/or (ii) the surface area of the active
sites found on the electrode tip (surface activity,
is,ORR(0.9V)) [21e23]. The latter is typically evaluated by
other independent approaches such as the integration of
the charge associated with the stripping of a ‘probe’

specie (e.g., CO, H2, NO2
- ) [31e33] that adsorbs selec-

tively on the active sites of the EC.

This ‘conventional’ approach suffers from shortcomings
that arise from the steps involved in the removal of the
various spurious contributions of itot in the evaluation of
ik,ORR. The removal of the capacitive currents may yield
distorted results as iORR < 0.1$icap. Indeed, icap of the
electrode may change slightly depending on the gas the
electrode tip is exposed to. Typically, icap,O2 is slightly
larger than icap,inert gas because O2 facilitates the formation

of charged oxygenated species on the surface of the elec-
trode tip, that raise its capacitance. Another issue is that in

Eq. (2) and Eq. (3), the precise value of id only slightly
affects ik,ORR but only on the condition that the overall
correction is ‘small’ (i.e., ik,ORR < 1.5 iORR). On the other
hand, because ik,ORR increases dramatically as the hORR is
raised, very small errors in the determination of id may
affect significantly ik,ORR, jeopardizing the accuracy of the
obtained figures at large ORR overpotentials. The afore-
mentioned shortcomings become highly relevant when, at

the potential of interest (typically, 0.9 V vs.RHE) ik,ORR is
either: (i) very small (ik,ORR w iORR < 0.1 icap); or (ii)
much larger than iORR (ik,ORR> 1.5 iORR). In the first case
(typical of ‘Pt-free’ ORR ECs operating in an acid envi-
ronment and exhibiting large capacitive currents due to a
large specific surface area), the values of ik,ORR(0.9 V) are too
small to bemeaningful [34]. In the second case (typical of
high-performing ORR ECs exhibiting exotic Pt morphol-
ogies), the values of ik,ORR(0.9 V) become stellar but quite
meaningless [35].

One way to address the shortcomings of the conventional
approach to analyse kinetic ORR data is to take into
consideration only ik,ORR values, where the corrections
due to capacitive and mass-transport phenomena are
small. These data are plotted in the semilogarithmic scale
(‘Tafel plots’) and extrapolated to the thermodynamic
potential of theORR, thus allowing to gauge the exchange
current of the EC in theORR (i0,ORR,EC) [36,37]. Figure 1
displays how i0,ORR is determined both for an EC and for a
conventional ORR benchmark (i.e., Pt/C ref.).

Figure 1 assumes that all the ECs exhibit the same Tafel
slope (ca. 70 mV$dec�1). This assumption is validated
from experimental data displayed in the literature and
considering that, for most ORR ECs (both based on
platinum group metal-free and ‘Pt-free’), at the lowest
hORR the kinetics are bottlenecked by the same process
(i.e., the first electron transfer from a surface blocked by
oxygen adsorbates to the incoming O2 molecule) [38e
40]. With respect to the ‘conventional’ approach, the
advantage of the proposed analysis approach that takes
into consideration i0,ORR,EC is that it is possible to
compare simultaneously, and at the same level of accu-

racy that is ensured by the small corrections to account
for nonfaradic processes, the performance of several
different ECs that exhibit widely disparate values of
hORR. Since i0,ORR,EC can easily vary over several orders
of magnitude, a more handy figure of merit to gauge the
intrinsic ORR kinetics of an EC in comparison with that
exhibited by an ORR benchmark Pt/C ref. i Q2s the
following (refer Eq. (4)) [41]:

I ¼ log 10

�
i0;ORR;EC
i0;ORR;Pt

�
[4]

In summary, I allows for the comparison in the same
‘ideal’ conditions (i.e., at the thermodynamic ORR

2 Innovative Methods in Electrochemistry (2021)
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potential) of the kinetic features of the electrochemical
interface between ECs, electrolyte, reactants, and
products in widely different ECs, irrespectively of all

other additional ‘parallel’ phenomena that could take
place in practice as the ORR overpotential is reduced
(e.g., side reactions, formation of passivating oxide
layers).

CV-TF-R(R)DE to gauge the morphology/
transport features of ORR ECs
At large hORR (E < 0.6 V vs. RHE for typical Pt-based
ECs) the oxygen reduction currents registered in CV-
TF-R(R)DE measurements are bottlenecked by the
transport of O2 from the bulk electrolyte to the active
sites of the EC deposited on the R(R)DE disk [19,42].
A ‘diffusion-limited plateau’ is formed at the current id.
In conventional CV-TF-R(R)DE measurements, the
values of id can be determined by means of the Levich
equation (refer Eq. (5)) [27]:

id ¼ 0:62nORR;ECFAD
2=3n�1=6C0u

2 ¼ bECu
2 [5]

where: nORR is the overall number of electrons exchanged

during the ORR by the EC; F is the Faraday constant; A is

the geometric area of the disk electrode; D and C0 are,

respectively, the diffusion coefficient and the bulk con-

centration of O2 in the support electrolyte; n is the kine-

matic viscosity of the support electrolyte; and u is the

rotation rate of the R(R)DE tip [27]. It is pointed out that

Eq. (5) can be applied indly check the de toin Q3‘ideal’ CV-

TF-R(R)DE experiments after assumptions are expected

to be true: (i) the layer containing the EC under scrutiny

covers uniformly the disk on the R(R)DE tip; (ii) the area

of the active sites in the EC layer is comparable or larger

than that of the disk; (iii) the thickness of the EC layer is

much lower than the oxygen-depletion layer facing the disk

of the R(R)DE tip; and (iv) the R(R)DE tip is spun quickly

enough to allow for the formation of a laminar oxygen-

depletion layer [19,27]. Under these assumptions, the

amount of information that can be extracted using the

Levich equation is quite limited. In the literature, the

‘conventional’ approach for data analysis consists the

following steps: (i) a certain potential is selected on the

diffusion-limited plateau on the CV-TF-R(R)DE trace; (ii)

u2 is varied, and the corresponding id values at the selected

potential are determined; and (iii) the resulting datapoints

are fitted with a line, whose slope bEC is compared with

that obtained on a R(R)DE covered by a Pt/C benchmark,

indicated as bPt [43]. In Eq. (5), if both the EC under

scrutiny and the Pt/C benchmark are measured on the

same R(R)DE tip and in the same conditions in terms of

temperature, chemical composition of the support elec-

trolyte and partial pressure of O2 in the system, the only

variable term is nORR,EC, i.e., the number of electrons

exchanged during the ORR at the potential selected to

determine id. Since in first approximation at E < 0.6 V vs.
RHE the nORR,Pt of a Pt/C benchmark is 4 [44,45], the

following holds true (refer Eq. (6)):

Figure 1

Determination of the exchange current for both an EC and an ORR benchmark Pt/C ref. EC, electrocatalysts.

Investigation of oxygen reduction reaction electrocatalysts Di Noto et al. 3
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nORR;EC ¼ nORR;Pt$
bEC
bPt

¼ 4$
bEC
bPt

[6]

In summary, the entire Levich analysis is typically car-
ried out exclusively to measure nORR,EC of an EC at the

potential selected to read id. In recent times, nORR,EC is
most often determined directly and much more quickly
through CV-TF-RRDE measurements [46,47]. Hence,
the Levich analysis has somewhat fallen out of common
use. This is unfortunate, as the potential of the Levich
approach for the study of ORR ECs could be significant.

It is pointed out that in several instances, and in
particular when CV-TF-R(R)DE studies are carried out
on ‘Pt-free’ ECs, the thickness of the EC layer on the
R(R)DE disk becomes comparable with that of the

oxygen-depletion layer facing the disk of the R(R)DE
tip (ca. 10 microns at u < 3600 rpm) [48]. It was also
shown that, in some instances, the bEC of a nominally
‘thin’ EC layer (d z 2 microns) can be larger than bPt
detected in the same experimental conditions [41].
Both these results can be interpreted relaxing some of
the assumptions on the basis of the Levich equation, as
follows: (i) D becomes a function of the morphology and
mass transport features of the EC layer, is relabelled
DEC(M) and accounts for the transport of O2 through
both the oxygen-depletion layer facing the disk of the

R(R)DE tip and the EC layer itself; this latter could
either inhibit or promote O2 transport; (ii) A is rela-
belled AEC(M) and is no longer the geometric area of the
R(R)DE disk, but becomes a function of the
morphology of the EC layer. A is typically lower than
AEC(M) as the latter can also account for the roughness
of the EC layer. It is highlighted that the literature
already reports instances where the ORR currents of
R(R)DE set ups are much higher than those predicted
on the basis of the Levich theory [49,50]. However,
these results are obtained with highly porous electrode

layers, whose thickness is much larger than the 1e10
microns assumed here [51,52]. On the basis of these
considerations, it is possible to define the following
figure of merit, ‘B’, that allows us to use CV-TF-R(R)DE
measurements to achieve a first, qualitative estimate of
the transport features of EC layers including the EC
under scrutiny (refer Eq. (7)):

B ¼ bEC
bPt

¼ 0:62nORR;ECFAECðMÞDECðMÞ2=3n�1=6C0

0:62nORR;PtFAPtðMÞDPtðMÞ2=3n�1=6C0

¼ nORR;ECAECðMÞDECðMÞ2=3
nORR;PtAPtðMÞDPtðMÞ2=3

[7]

It is pointed out that in principle the ratio nORR,EC/
nORR,Pt can be determined directly by CV-TF-RRDE

measurements, thus allowing to isolate the contribu-
tions due to Ax(M) and Dx(M) (x = EC, Pt) in the
figure of merit B’, as follows (refer Eq. (8)):

B0 ¼ B
nORR;Pt
nORR

¼ AECðMÞDECðMÞ2=3
APtðMÞDPtðMÞ2=3

[8]

If B’> 1, the morphology/transport properties of the EC
layers including the EC under scrutiny are improved in
comparison with those of a Pt/C benchmark. However, it
is possible to obtain important qualitative information
directly from B (refer Eq. (7)) only on the basis of
simple physicochemical considerations even without
having to determine explicitly B’ by measuring the

nORR,EC/nORR,Pt ratio through CV-TF-RRDE
experiments.

It is well known that at E < 0.6 V vs. RHE, on the
diffusion-limited plateau of the CV-TF-R(R)DE traces,
nORR,Pt z 4 [26,44,45,53]; even in the cases when the
selectivity of a given EC should be improved in com-
parison with a Pt/C benchmark, such an improvement
would be very small in absolute terms. Consequently,
the following relation holds true (refer Eq. (9)):

Slightly more than 1 > nORR,EC/nORR,Pt > 0.5 [9]

nORR,EC/nORR,Pt = 0.5 for an ORR ECs only able to
reduce O2 to H2O2 by exchanging 2 electrons [44]. By
considering Eq. (7) and Eq. (9) together, it is clear that
B can be lower than 1 owing both to a low number of
electrons exchanged during the ORR, or to a poor
morphology/porosity of the EC layer, inhibiting O2

transport. However, B > 1 can only be obtained if the
transport features of the EC layers including the EC
under scrutiny are improved in comparison with those of

a Pt/C benchmark, more specifically, when the
morphology of the EC allows for a better use of the
concentration of the metal sites.

Conclusions and outlook
In this work, it is shown that CV-TF-R(R)DE studies

can be used for the following two purposes:

� To study in detail the ORR kinetic features of vastly
different ECs. The determination of i0,ORR,EC allows
us to carry out quantitative performance comparisons
at the same high level of accuracy for all the ECs,
without risking serious distortions due to the exces-
sive impact of corrections during data analysis. A

simple figure of merit I ¼ log 10

�
i0;ORR;EC
i0;ORR;Pt

�
is defined,

that allows us to gauge in a very straightforward way

how well a given EC is able to carry out the ORR. If
I > 0, the EC performs better than a Pt/C reference.
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� To achieve a quantitative understanding whether a
given EC exhibits improved morphology/mass trans-
port features in comparison with a Pt/C benchmark. A
simple figure of merit is defined, B ¼ bEC

bPt
, starting

from the slopes of KouteckyeLevich plots bx
(x = EC, Pt) and without the need of a RRDE set up.
When B > 1, the morphology/mass transport features
of a given EC are improved in comparison with the Pt/
C reference.

It can then be proposed an I vs. B morphokinetic (MK)
correlation map where to report the CV-TF-R(R)DE
results of even widely different ECs. The position of
the results on such map allows for the clear identifica-
tion of which ECs are the most promising in comparison

with a Pt/C benchmark considering both ORR kinetics
and morphology/mass transport. For the sake of illus-
tration, we consider a broad family of ORR ECs exhib-
iting the following features: (i) one ‘active metal’
providing the most of the performance: either Pt, Ir, Rh,
or Au; (ii) one or more ‘cocatalyst’ boosting the ORR
performance of the ‘active metal’: Fe, Co, Ni, Au; (iii) a
carbon nitride matrix (CNx) supporting the active sites
and comprising a concentration of N either lower than
5% (x = l) or higher than 5% (x = h); and (iv) a pyrolysis
temperature Tf ranging between 400 and 900 �C
[41,54]. Measurements were carried out with a CV-TF-
RDE set up. The location of CV-TF-RDE results for the
ORR performance of these ECs is displayed in Figure 2.

In the MK map shown in Figure 2, it is possible to
identify both: (i) an area A1 where the ORR kinetics of
an EC is better than the Pt/C benchmark; and (ii) an
area A2 where the morphology/mass transport features
of an EC are better than the Pt/C benchmark. A1 and A2
overlap in a ‘golden area’. If an EC should fall here, it
would exhibit improved kinetics and morphology/mass

transport features in comparison with the Pt/C bench-
mark and would be highly promising for implementation
in a single proton-exchange membrane FCs to test its
features in more realistic conditions. For the specific
ECs displayed in Figure 2, some exhibit improved
morphology/mass transport features than the Pt/C
benchmark (e.g., PdCo1.9-CNl 900), although their pure
kinetics still needs to be optimized.

In conclusion, a careful design of CV-TF-R(R)DE ex-
periments and a suitable data analysis allows us to

compare at the same level of accuracy even widely
different EC taking into consideration both kinetic and
morphology/mass transport features. This allows us to:
(i) expand significantly the scope of the CV-TF-R(R)DE
studies in comparison with the state of the art; and (ii)
better identify promising ORR ECs for application in
low-temperature FCs by using a simple MK correlation
map.

Declaration of competing interest
Nothing declared.

Figure 2

I vs. B morphokinetic (MK) correlation map. CV-TF-RDE measurements are carried out at the following experimental conditions: loading of ‘active metal’
on the electrode: 15 mg cm−2; PO2 = 1 atm; u = 1600 rpm; scan speed 5 mV s−1. The dashed lines are meant as a guide for the eye.
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