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ABSTRACT

The objective of this study was to evaluate the abil-
ity of milk infrared spectra to predict cow lameness 
score (LMS) for use as an indicator of cow health on 
Australian dairy farms, or as an indicator trait for 
genetic evaluation purposes. The study involved 3,771 
cows from 10 farms in Australia. Milk infrared spectra 
collected during the monthly herd testing were avail-
able in all the farms involved in the study. Lameness 
score was measured once in each herd, within 72 h from 
a test day, and merged to the closest spectra records. 
Lameness score was expressed on a scale from 0 to 3, 
where 0 is assigned to sound cows and scores 1 to 3 
are assigned to cows with increased lameness severity. 
Partial least squares discriminant analysis was used 
to develop prediction models for classifying sound 
(score 0) and not-sound cows (i.e., cows walking un-
evenly, score greater than 0). Discriminant models were 
tested in a 10-fold random cross-validation process. 
Milk infrared spectra correctly classified only 57% of 
the cows walking unevenly and only 59% of the sound 
cows. When additional predictors (parity, age at calv-
ing, days in milk, and milk yield) were included in the 
prediction model, the model correctly classified 57% of 
the cows walking unevenly and 62% of the sound cows. 
The same model applied only to the cows in the first 
third of lactation correctly classified 66% of the cows 
walking unevenly and 57% of the sound cows. When 
the prediction model was used to identify lame cows 
(scores 2 and 3), only 49% of them were classified as 
such. These results are considered to be too poor to 
envisage a practical application of these models in the 
near future as on-farm tools to provide an indication of 
LMS. To investigate whether, at this stage, predictions 
of the LMS could be useful as large-scale phenotypes 
for animal breeding purposes, we estimated (co)vari-
ance components for actual and predicted LMS using 

2,670 and 24,560 records, respectively. As the genetic 
correlation between actual and predicted LMS was not 
significantly different from zero, predictions of lame-
ness from milk spectra and additional on-farm variables 
cannot be used, at this stage, as an indicator trait for 
actual LMS. More research is needed to find better 
strategies to predict lameness.
Key words: milk spectra, lameness, cow health, 
discriminant model

INTRODUCTION

Lameness is ranked as the third most important 
cause of economic loss on dairy farms, after mastitis 
and reproduction disorders, with a cost per animal av-
eraging $75 per year (Bruijnis et al., 2010). Lame cows 
are more frequently affected by mastitis, metabolic 
disorders, and reduced fertility and milk yield (MY; 
Heringstad et al., 2018). Mean frequencies of lameness 
in dairy herds in Europe and North America range 
between 23 and 70% (Heringstad et al., 2018). In Aus-
tralia, where most of the dairy farms are pasture based 
and cows may walk several kilometers and stand for 
hours in a crowded concrete yard while waiting to be 
milked, lameness is an ongoing concern. Unfortunately, 
farmers are able to identify only approximately 25% of 
the lame cows (Beggs et al., 2019).

Reducing the prevalence of lameness requires im-
provements in on-farm management, but selective 
breeding has also been explored as a long-term op-
tion (Chesnais et al., 2016; Heringstad et al., 2018). 
In Australia this is important, as Martin-Collado et 
al. (2015) indicated that lameness is one of the most 
important traits in future breeding objectives in a sur-
vey of Australian farmers. However, claw health traits 
have a low heritability and a large number of records is 
needed to achieve an acceptable reliability (Heringstad 
et al., 2018). Information related to claw health might 
be difficult to obtain on a large scale [e.g., computer 
images of claws, BCS and BW, occurrence of trimming 
events, housing system, diet composition, type traits; 
see reviews of Solano et al. (2015) and Heringstad et al. 

Usefulness of milk mid-infrared spectroscopy  
for predicting lameness score in dairy cows
V. Bonfatti,1*  P. N. Ho,2  and J. E. Pryce2,3
1Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
2Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
3School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia

 

J. Dairy Sci. 103:2534–2544
https://doi.org/10.3168/jds.2019-17551
© 2020, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Received September 6, 2019.
Accepted November 10, 2019.
*Corresponding author: valentina.bonfatti@​unipd​.it

mailto:valentina.bonfatti@unipd.it


2535

Journal of Dairy Science Vol. 103 No. 3, 2020

(2018)]. For genomic selection, increasing the size of the 
genomic reference population is often recommended, 
but it is expensive and time consuming; therefore, the 
use of indicator traits together with actual observa-
tions could help improve the reliability (Chesnais et 
al., 2016).

Besides mechanical injuries or infections, lameness 
can be associated with physiological changes that 
may have a repercussion on milk composition: ketosis 
(Suthar et al., 2013), SARA (Oetzel, 2007), and milk 
fever (Sogstad et al., 2006). Hence, milk mid-infrared 
(MIR) spectra, which are routinely used to predict 
milk composition, have the potential to bear useful 
information for lameness detection, at least when lame-
ness is directly a consequence of metabolic changes. 
Because MIR data are already routinely available (i.e., 
monthly) through herd testing, no extra costs would be 
incurred to obtain the data. Depending on the accuracy 
of infrared prediction models, they might be used as a 
tool to provide on-farm indicators of the trait at the 
individual level, or to define best practices and adjust 
feeding and management at the herd level, or as indica-
tor traits in genetic and genomic evaluations (Bonfatti 
et al., 2017).

The first objective of this study was to evaluate the 
ability of milk MIR, together with readily available vari-
ables, including milk production, DIM, parity, and age 
at calving, for predicting cow lameness score (LMS). 
The second objective was to explore the potential of 
the resulting predictions as indicator traits for future 
genetic evaluation by estimating genetic parameters of 
the predicted LMS (P-LMS) and its genetic correla-
tion with the actual score.

MATERIALS AND METHODS

Animal Data

Records of 3,771 lactating dairy cows that calved 
between September and October 2018 were available 
(data set A). Cows were from 10 commercial dairy 
herds located in Victoria, Tasmania, and New South 
Wales (Australia). Cows were predominantly Holstein-
Friesian (69%), but the data set also included purebred 
Jersey cows (1%), Holstein-Friesian × Jersey crossbreds 
(14%), and other crossbred animals (16%).

Cows on each farm were scored once, after morning 
milking, for LMS. Scoring was performed by 2 trained 
classifiers and coincided with a herd-test visit (within 
72 h). Lameness was scored from 0 to 3 as per guide-
lines of Dairy Australia (2015). According to Beggs et 
al. (2019), cows with scores of 0 are assigned to walking 
evenly (no action is required), a score of 1 means the 

cow walks unevenly (it is recommended to regularly 
observe the cow), while 2 and 3 are classified as lame, 
with 3 being severe lameness and requiring immediate 
attention. Similar lameness scoring systems have been 
shown to be robust in terms of inter- and intra-observer 
agreement in several studies in which researchers used 
each other for calibration (Barker et al., 2010; Main et 
al., 2010).

Available data also included parity, age at calving, 
DIM, MY, fat, protein, and lactose percentages, and 
SCS, calculated as log2(SCC + 3). Estimated breeding 
values of several production and conformation traits 
were also available for 2,592 cows. The EBV were ob-
tained from DataGene (Bundoora, Victoria, Australia, 
https:​/​/​www​.datagene​.com​.au/​). The EBV for produc-
tion traits included the balanced performance index, 
which is the Australian national selection index encom-
passing traits important for farmer profit, as described 
by Byrne et al. (2016), in addition to daily MY, fat 
yield, fat percentage, protein yield, protein percentage, 
and SCC. The EBV for type traits included overall 
type, bone quality, foot angle, rear leg rear view, rear 
set of leg, and live weight and are estimated using data 
on linear type scores as evaluated by trained operators 
from Holstein Australia and Jersey Australia (both 
located in Bundoora, Australia). Cows included in this 
study were part of the genomic information nucleus 
of females with a broad range of recorded phenotypes 
known as Ginfo and 70% of the cows with EBV also 
had their own phenotypic records for type traits. Con-
sequently, the reliability of the estimates is expected to 
be relatively high.

Spectral Data

All cows were milked twice daily, which is the stan-
dard commercial practice in Australia. Milk samples 
collected at herd testing, which was monthly, were 
analyzed by TasHerd Pty Ltd. (Hadspen, Tasmania, 
Australia) for fat, protein, and lactose concentrations 
and SCC, using an infrared spectrometer (Bentley 
Instruments NexGen Series FTS Combi), and the cor-
responding spectra were stored for this study. Each 
recorded spectrum includes 899 data points in the 649 
to 3,999 cm−1 region. Spectral regions characterized by 
low signal to noise ratio (2,998 to 3,998, 1,615 to 1,652, 
and 649 to 925 cm−1) were removed (Hewavitharana 
and van Brakel, 1997).

Discriminant Models

For the discriminant analysis, records were coded 
binarily into sound (LMS = 0) and not-sound (i.e., 
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walking unevenly, LMS >0) cows. Discriminant models 
aiming to differentiate cows walking unevenly (posi-
tive) from sound (negative) cows were developed with 
partial least squares discriminant analysis (Lê Cao et 
al., 2011), implemented in the R package mixOmics 
(Rohart et al., 2017). The predictors were scaled by 
dividing each variable by its standard deviation using 
a built-in option in the package. All analyses in the 
present study were performed with R statistical soft-
ware version 3.4.4 (R Development Core Team, 2018). 
The number of latent variables used in the prediction 
models was chosen based on the break of slope of the 
sum between sensitivity and specificity. The break of 
slope is the point where adding another latent variable 
does not further significantly reduce the sum between 
sensitivity and specificity.

Several models including different explanatory vari-
ables were tested for their capability in classifying sound 
and lame cows. The explanatory variables included in 
each model are reported in Table 1. Model 1 included 
features that are readily available on farm (parity, 
age at calving, DIM, and MY). Model 2 included the 
variables in model 1 and milk composition (milk fat, 
protein, and lactose percentages and SCC). Model 3 
included the variables in model 1 and the spectrum col-
lected within 72 h from the lameness scoring. We also 
investigated whether the use of EBV for production 
and type traits would increase the accuracy of predic-
tion models. Hence, EBV were included in model 4, 
besides the predictors used in model 3. In addition to 
these variables, model 5 also included the full spectrum 
collected on the previous herd-test day (approximately 
1 mo earlier). Information on EBV and the previous 
spectrum were not available for all animals, but only 
for 2,592 and 1,202 cows, respectively. Therefore, for 
a fair model comparison, model 3 was also applied to 
the same training-validation partitions used for testing 

models 4 and 5. In addition, model 3 was also tested 
only on cows in the first third of lactation (DIM ≤120; 
n = 2,670; data set B).

Following the approach used by Ho et al. (2019), in 
order for the models to have statistically fair compari-
sons, a random noise matrix with dimensions of N × 
p, where N is the number of wavenumbers in model 3 
and 4 (n = 515), and p is the number of records of the 
validation set, was generated from a uniform distribu-
tion in the interval 0.0 to 1.0 and multiplied by a very 
small constant of 10−10. Such a matrix was then used in 
model 1 and 2 to obtain several predictors comparable 
to the number of predictors in model 3 and 4, but con-
taining only random noise. The matrix was also used 
when model 3 was applied to the same data set used for 
testing model 5 (n = 1,202).

In preliminary analyses, the breed was also included 
among the possible predictors of LMS, but it did not 
affect model accuracy and was removed.

The performance of each model tested was evalu-
ated using a 10-fold random cross-validation. The data 
set was randomly split into 10 subsets with an equal 
ratio of sound cows to cows walking unevenly using 
the groupdata2 R package (Olsen, 2017). Then, one 
subset at a time was reserved for validation, whereas 
the remaining data were used for model training. This 
process was repeated 10 times until each subset was 
used as a validation set (i.e., 10 repeats).

Discriminant Models for Severe Lameness

Variables included in model 3 were also used to de-
velop a model aiming at discriminating cows with LMS 
≤1 from more severely lame cows (LMS ≥2). For this 
purpose, given the low number of positive cases, the 
performance of the model was evaluated by splitting 
the data set in 5 subsets with an equal ratio between 
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Table 1. Predictors included in each tested model for classification of sound and lame cows

Model
Cows 
(no.)1

Parity, age at 
calving, DIM, 

milk yield
Milk  

composition2
Spectrum 

(same day of LMS)3

EBV for 
production and 

type traits4
Spectrum  

(test day before LMS)5

1 3,765 X
2 3,765 X X
3 3,765 X X
4 2,592 X X X
5 1,202 X X X
1Number of cows after outlier elimination.
2Milk composition included the percentage of fat, protein, lactose, and SCS.
3Milk mid-infrared spectrum (515 variables) obtained on the same day of lameness scoring (LMS). 
4The EBV for production traits included balanced performance index, Australian selection index, milk yield, fat yield, fat percentage, protein 
yield, protein percentage, and SCC. The EBV for type traits included overall type, bone quality, foot angle, rear leg rear view, rear set of leg, 
and live weight.
5Milk mid-infrared spectrum (515 variables) obtained on the test day before the one of LMS.
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cows scored as LMS ≤1 and cows scored as LMS ≥2 
and by testing the predictive ability of the model in a 
5-fold random cross-validation. This model was devel-
oped on data set A and B.

Evaluation of Model Performance

The accuracy of the discriminant models was assessed 
for every training-validation partition by producing 
and calculating the area under the receiver operating 
characteristic curve. The optimal cut-off value for each 
test variable was defined as the point where the sum 
between sensitivity and specificity was at a maximum 
(i.e., equal weighing of false-positive and false-negative 
test results).

The statistics of the discriminant models were ex-
pressed in terms of sensitivity (the proportion of lame 
cows that are correctly classified as lame), specificity 
(the proportion of sound cows that are correctly classi-
fied as sound), and global accuracy (proportion of cor-
rect classifications on the total number of cows). A high 
specificity can still result in numerous false positive 
tests when most of the cows tested are actually sound. 
For this reason, the results were also expressed in terms 
of positive and negative predictive values (PPV and 
NPV, respectively). Positive predictive value is the 
proportion of records predicted as positive (lame) that 
are true positives and is calculated as

	 PPV = number of true positives/	  

(number of true positives + number of false positives).

Negative predictive value is the proportion of records 
predicted as negative (sound) that are true negatives, 
calculated as follows:

	 NPV = number of true negatives/(number of true 	  

negatives + number of false negatives).

Spectral Data Preprocessing

Spectra with a global standardized Mahalanobis dis-
tance (Shenk and Westerhaus, 1995) from the popula-
tion centroid greater than 4 (n = 6) were considered 
outliers and eliminated. After the outlier elimination, 
3,765 spectral records and associated LMS were avail-
able for development of prediction models.

Several mathematical treatments were applied to the 
spectra and compared before chemometric analysis. 
The goal of data pretreatment is to eliminate or mini-
mize variability unrelated to the property of interest, so 
that pertinent changes can be more effectively modeled 

(Kohler et al., 2009). Spectra were transformed using 
first- and second-order derivatives, followed, or not, by 
extended multiplicative scatter correction. The gaps 
over which derivatives were calculated ranged from 1 to 
5 data points and the smooth ranged from 1 to 3.

Large-Scale Predictions of Lameness Score

As most of the predictors used in this study were 
related to milk composition, it is reasonable to hy-
pothesize that the resulting prediction model may 
benefit from the exclusion of lameness cases that are 
not caused by metabolic disorders, and therefore in this 
analysis we targeted only cows in the first 120 DIM 
(as in data set B). To obtain P-LMS, model 3, which 
was developed using data set B, was chosen and ap-
plied on a larger data set of 17,913 cows that calved 
from 2015 to 2018, in 35 commercial farms. The data 
included records of parity, age at calving, DIM, MY, 
and infrared spectra. The data set included 55,828 re-
cords. After editing to remove records taken after 120 
DIM, eliminate potential spectra outliers as described 
previously, and discard cows with only 1 record, 24,560 
records from 8,535 cows were retained for the genetic 
analysis (data set C).

Genetic Parameter Estimates for Measured  
and Predicted Lameness Score

Estimation of (co)variance components for LMS and 
P-LMS were investigated in a bivariate animal model 
analysis performed using the TM software (available 
on request from the author at andres.legarra@​toulouse​
.inra​.fr). The bivariate analysis was performed on 2,670 
LMS records (data set B) and 24,560 P-LMS records 
(data set C). Of these, 1,872 records had both a value 
for LMS and P-LMS. The pedigree file was obtained 
from DataGene. The file was pruned to include only 
relatives of cows that had phenotypic records. After 
editing, the pedigree contained 30,797 animals from 
4,068 sires and 19,332 dams.

In matrix notation, the model for LMS was

	 y = Xb + Hq + Yu + Za + e,	

where y is the vector of phenotypic records for LMS (0 
for sound cows or 1 for cows walking unevenly); b is 
a vector including the following effects: age at calving 
(from 20 to 208 mo, fitted as a covariate), and DIM 
(from 1 to 120, divided in 4 classes of 30 d each); q is 
a vector of herd-test day effects, assumed to follow a 
multivariate normal distribution; u is a vector of ef-
fects of herd of calving, year of calving, season [which 
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is month of calving divided into 2 groups: 1 = January 
to July (autumn calving) and 2 = August to December 
(spring calving)], all combined into a contemporary 
group (HYS), assumed to follow a multivariate normal 
distribution; a is a vector of additive genetic effects of 
animals assumed to follow a multivariate normal distri-
bution; e is a vector of random residual effects; and X, 
H, Y, and Z are design matrices relating records to the 
corresponding effects.

For P-LMS, the model was

	 y = Xb + Hq + Yu + Spe + Za + e,	

where y is the vector of P-LMS phenotypic records (0 
for sound cows or 1 for cows walking unevenly); pe is 
a vector of the random permanent environmental effect 
of the cow, to account for repeated records, assumed 
to be normally distributed; and S is a design matrix 
relating records to the corresponding effect. The effect 
of the breed was tested in preliminary analyses, but it 
was not significant and it was removed from the final 
models.

Prior distributions for effects in b were assumed to 
be uniform, whereas those in q, u, pe, and a were 
inverted Wishart distributions.

The threshold (or probit) models consider one or sev-
eral thresholds and a liability that, over a given thresh-
old, produces an observed phenotype. At each iteration, 
for each record (0 or 1), a liability is generated below 
or over the threshold such that the observed value is 0 
or 1. For dichotomous traits, for the parameters to be 
identifiable, a restriction is set so that residual variance 
is set to 1 and threshold is set to 0. As for binary traits 
the residual variance is set to 1; it is not a standard in-
verted Wishart distribution, but a conditional inverted 
Wishart distribution. In multivariate analyses with 
several binary traits, the algorithm assumes that they 
are uncorrelated at the residual level.

Marginal posterior distributions of parameters of 
concern (i.e., covariance components, heritabilities, and 
correlations) were estimated by performing numerical 
integration through the Gibbs sampler, as implemented 
in the TM program. A unique Gibbs chain of 5,000,000 
iterations was run. Samples were saved every 1,000 
iterations, with a burn-in of 1,000,000. The posterior 
median was used as a point estimate of parameters 
of concern. Lower and upper bounds of the highest 
posterior density interval with 95% probability for the 
heritability, and correlations were obtained from the 
estimated marginal densities.

Estimated heritability (h2) was defined as

	 h  2
2

2 2
=

+

σ

σ σ
a

a e

,	

where σa
2 is the additive genetic variance, and σe

2 corre-
sponds to the residual variance, which is set to 1 by the 
algorithm.

RESULTS AND DISCUSSION

Descriptive Statistics

The frequency of the LMS in our sample and by farm 
is summarized in Table 2. In total, 11.9% of the cows 
had a LMS >0. Across farms, the proportion of cows 
walking unevenly varied from 3.9 to 18.7%. The inci-
dence of lameness varies with the time of year and stage 
of lactation in Australia, being more of a problem in 
the wetter months and during early lactation (Ranjbar, 
2017); thus, prevalence reported by different studies 
may not be directly comparable. Prevalence of lame-
ness was reported to be 18.9% across 63 pasture-based 
dairy herds in New South Wales visited throughout a 
12-mo period (Ranjbar et al., 2016). In Victoria, the 
percentage of cows that had a LMS of 2 or 3 ranged 
from 0 to 11.4% across 50 farms with an average of 
3.8% (Beggs et al., 2019). In our sample, that percent-
age ranged from 0.6 to 8.8% across farms and was on 
average 3.8%, in line with the results of the previous 
study. Around 70% of the cows were in the first third of 
lactation. On average, cows produced 28.2 ± 8.5 kg of 
milk per day, containing 3.74 ± 0.90% of fat and 3.47 
± 0.37% of protein.

Accuracy of Prediction Models

Finding true positives is much more important than 
finding true negative cows because it is imperative to 
detect lame animals to treat them. A model with a high 
sensitivity is therefore preferred to a model with a high 
specificity. As reported in Appendix Table A1, in the 
preliminary analyses, the best performances were ob-
tained using the spectra without the noise regions and 
a 2nd derivative calculated over a window of 3 points, 
with a smooth of 1 (no smoothing). Consequently, 
this was the treatment of choice, leaving 515 spectral 
variables for final model development. In contrast with 
our results, Mineur et al. (2017) observed that the 2nd 
derivative had a tendency to lower the sensitivity in 
favor of the specificity compared with the 1st derivative 
treatment.

Performances of predictions models are summarized 
in Table 3. The model including on-farm information 
and the spectrum (model 3) had a much higher sensitiv-
ity than the model including only on-farm information 
(model 1). If compared with the model that included 
milk composition, but not the full spectrum (model 2), 
model 3 provided additional information and improved 
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prediction performances. Neither the use of the EBV 
(model 4), nor the use of the spectra collected on the 
test day before the one of lameness scoring (model 5), 
improved the prediction accuracy of LMS.

The model with the highest accuracy (model 3) cor-
rectly classified 62% of the records, with 57% sensitiv-
ity and 62% specificity, when all cows were included in 
the analysis. When the same predictors were applied 
only to cows in the first 120 DIM (data set B), the 
model provided a slightly better result, reaching 66% 
sensitivity, even though with a lower specificity (56%). 
However, as the proportion of sound cows was much 
larger than the one of cows walking unevenly, the per-
centage of global correct classifications was lower than 
in data set A.

Mineur et al. (2017) obtained very similar results in 
terms of sensitivity and specificity in cows in any stage 
of lactation and cows in the first third of lactation, with 
a comparable prevalence of lameness, but with a larger 

sample size and without including any predictors other 
than the spectral variables. The same study also dem-
onstrated that using a more detailed definition of lame, 
by selecting the animals affected by a specific cause 
of lameness, improves the prediction up to a sensitiv-
ity of 85% and specificity of 91%. However, the model 
will then predict only that given type of lameness. As 
Mineur et al. (2017) did not report the PPV, it is not 
possible to know how many of the cows predicted as 
lame were truly lame. In our study, only 16% (data set 
A) or 14% (data set B) of the positive predictions were 
actually positive. A higher proportion of false positives 
does not necessarily result in animals that are treated 
for no reason (e.g., the model could be used as a screen-
ing tool, identifying cows that need further attention), 
but the proportion of false positives, at this stage, is too 
high to propose a practical application of the models.

According to the value of sensitivity, on average, in 
the best scenario (data set B, model 3) only 66% of the 
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Table 2. Frequency of lameness (sound cows are defined as those with lameness score = 0; lameness score >0 indicates increased lameness 
severity) in the totality of data and by farm

Group
Cows 
(no.)

Cows walking 
unevenly (no.)

Lameness score frequency (%)
Proportion of cows 

walking unevenly (%)0 1 2 3

All samples 3,771 450 88.1 8.2 3.2 0.6 11.9
Farm              
  1 225 42 81.3 12.9 5.3 0.4 18.7
  2 176 22 87.5 8.0 4.0 0.6 12.5
  3 639 102 84.0 12.1 3.8 0.2 16.0
  4 324 59 81.8 9.3 7.1 1.9 18.2
  5 339 28 91.7 6.2 2.1 0.0 8.3
  6 520 69 86.7 8.5 3.8 1.0 13.3
  7 304 12 96.1 2.6 1.0 0.3 3.9
  8 479 57 88.1 9.0 2.5 0.4 11.9
  9 425 45 89.4 7.3 2.4 0.9 10.6
  10 340 14 95.9 3.5 0.6 0.0 4.1

Table 3. Performance of prediction models obtained in a 10-fold random cross-validation, for the discrimination of sound cows (negative) and 
cows walking unevenly (positive)1

Model 
(no. of cows)2

Optimal number 
of components

Sensitivity 
(%)

Specificity 
(%)

Global 
accuracy (%)

PPV 
(%)

NPV 
(%)

AUC 
(%)

1 (3,765) 2.1 ± 2.4 33.3 ± 6.0 67.9 ± 3.4 63.8 ± 2.9 12.2 ± 2.0 88.3 ± 2.0 52.3 ± 3.8
2 (3,765) 2.6 ± 2.4 34.8 ± 6.5 68.1 ± 3.6 64.1 ± 3.1 12.9 ± 2.4 88.5 ± 1.1 52.4 ± 3.4
3 (3,765) 7.6 ± 1.7 56.9 ± 7.0 62.2 ± 2.0 61.5 ± 1.9 16.9 ± 1.9 91.5 ± 1.3 62.1 ± 4.0
3 (2,670) 2.9 ± 0.9 65.7 ± 11.1 56.1 ± 4.1 57.1 ± 3.4 14.0 ± 1.8 93.8 ± 3.8 63.4 ± 5.5
3 (2,592) 7.2 ± 2.3 53.7 ± 10.8 61.7 ± 2.8 60.7 ± 2.5 18.0 ± 3.1 89.5 ± 2.1 60.0 ± 6.2
3 (1,202) 2.9 ± 1.2 36.3 ± 8.6 66.6 ± 7.1 62.0 ± 5.2 16.3 ± 2.3 85.4 ± 1.5 51.3 ± 4.3
4 (2,592) 7.0 ± 2.2 53.4 ± 12.6 61.8 ± 4.0 60.7 ± 3.4 17.9 ± 3.7 89.5 ± 2.3 60.5 ± 7.5
5 (1,202) 2.9 ± 0.9 41.7 ± 6.4 58.7 ± 8.0 56.2 ± 6.9 15.6 ± 3.4 84.8 ± 2.4 51.5 ± 5.0
1Values correspond to the average ± SD in validation obtained for 10 training-validation partitions. Sensitivity is the proportion of positive cows 
classified as such; specificity is the proportion of negative cows classified as such; global accuracy is the total proportion of correctly classified 
records; PPV = positive predicted value (proportion of records predicted as positive that are truly positive); NPV = negative predicted value 
(proportion of records predicted as negative that are truly negative); AUC = area under the receiver operating characteristic curve.
2Models 4 and 5 were tested on a portion of the data (2,592 and 1,202 records, respectively) because of missing records for their predictors. To 
guarantee fair comparisons, model 3 was applied to the same data sets used for models 4 and 5. Model 3 was also applied only to the cows in 
the first third of lactation (DIM ≤120; n = 2,670).
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cows walking unevenly were identified as such. Beer et 
al. (2016) found that models using two 3-dimensional 
accelerometer variables (walking speed and standing 
bouts) identified slightly lame cows with sensitivity and 
specificity both exceeding 90%. Compared with those 
findings, the predictive ability of the models exploiting 
spectral information seems to be very poor. In addition, 
it has to be considered that (1) there are only 2 options 
(sound vs. not sound), so that the random chance of 
classifying an animal correctly is 50%, and (2) the set-
tings used for model validation (random splitting of the 
data set maintaining an equal ratio between sound and 
not-sound cows in each subset) represents a very con-
servative approach. While the random cross-validation 
allows for a direct comparison of our results with the 
literature, a herd-by-herd validation would allow to 
evaluate model performance across farms, represent-
ing a more realistic scenario of the model performance 
for consideration for a routine application, because it 
prevents records from the same farm to end up in both 
the training and validation sets and because its perfor-
mance is evaluated taking into account variation in the 
prevalence of lameness across farms.

Accuracy of Prediction Models for Severe Lameness

For the discriminant analysis, cows were first clas-
sified as sound (LMS = 0) or walking unevenly (LMS 
>0), as this is the condition that requires either moni-
toring or action. However, a score of 1 corresponds to 
very mild lameness and this is very likely to be the class 
where most errors of classification occur. Moreover, 
some cows normally walk unevenly. An alternative was 
grouping the cows with LMS ≤1 as not lame and LMS 
≥2 as lame (Table 4).

Given the limited number of scores of 2 and 3 in our 
data, testing this option was only possible by reducing 
the number of cross-validation folds. The model had 
a higher accuracy (global accuracy = 71%) compared 
with the other discriminant models. However, the high 
proportion of correct classifications may be attributable 
to the very low prevalence of lameness (only 3.7%). The 

model classified the majority of records as not lame, 
therefore reaching a relatively high global accuracy, but 
it was able to identify only 44% of lame cows. The 
model worked slightly better when applied to cows that 
were in the first 120 DIM, but only 49% of the lame 
cows could be identified correctly. In addition, less than 
5% of the cows classified as lame were actually lame.

It must be stressed that Australian farmers could 
correctly identify only 24% of lame cows (Beggs et 
al., 2019) in a study comparing expert diagnosis to 
farmers’ diagnosis. This corresponds to a sensitivity 
of just 24%. So, despite having a lower global accu-
racy, prediction models have a higher sensitivity than 
farmers in classifying sound and lame cows. Farmers 
tend to underestimate the presence of lameness in their 
herds, estimating its prevalence to be roughly 30% of 
the actual prevalence (Beggs et al., 2019). However, 
even though prediction models have a better sensitivity 
when compared with farmers in identifying lame cows, 
the high proportion of false positives and low global 
accuracy indicate that the use of infrared spectroscopy 
alone is not an effective technique to predict lameness.

Infrared Predictions as a Large-Scale Phenotyping 
Tool for Lameness

Variance components and genetic parameters esti-
mates obtained for LMS and P-LMS are reported in 
Table 5. The genetic analysis of LMS revealed that its 
estimated heritability was 0.022 (ranging from 0.008 
to 0.059 with 95% probability), in line with a previous 
study on the same trait performed in Australia (Abdel-
sayed et al., 2017) and other literature estimates, which 
ranged from 0.02 and 0.10 (Heringstad et al., 2018). 
The heritability of P-LMS was higher than that of the 
actual trait (0.167; ranging from 0.139 to 0.191 with 
95% probability).

Several different sources of claw health data are now 
available, with the information recorded by claw trim-
mers showing particular promise for breeding purposes 
(Heringstad et al., 2018). However, due to the low heri-
tability of these traits, many observations are needed to 
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Table 4. Performance of prediction models obtained in a 5-fold random cross-validation, for the discrimination of cows scored as 0 or 1 
(negative) and cows scored as 2 or 3 (positive)1

Model 
(no. of cows)2

Optimal number 
of components

Sensitivity 
(%)

Specificity 
(%)

Global 
accuracy (%)

PPV 
(%)

NPV 
(%)

AUC 
(%)

3 (3,765) 7.0 ± 2.4 44.3 ± 11.7 72.0 ± 1.5 71.0 ± 1.3 5.8 ± 1.3 97.1 ± 0.6 62.3 ± 6.5
3 (2,670) 6.8 ± 4.3 48.7 ± 17.3 74.1 ± 9.6 73.3 ± 9.1 5.7 ± 2.0 98.0 ± 0.6 68.4 ± 8.9
1Values correspond to the average ± SD in validation obtained for 5 training-validation partitions. Sensitivity is the proportion of positive cows 
classified as such; specificity is the proportion of negative cows classified as such; global accuracy is the total proportion of correctly classified 
records; PPV = positive predicted value (proportion of records predicted as positive that are truly positive); NPV = negative predicted value 
(proportion of records predicted as negative that are truly negative); AUC = area under the receiver operating characteristic curve.
2The model was applied to the entire data set (n = 3,765) or only to the cows in the first third of lactation (DIM ≤120; n = 2,670).
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produce genetic evaluations with a high reliability, so 
the use of indicator traits that are genetically correlated 
with direct measures of claw health is desirable. In this 
scenario, P-LMS might be used as an indicator trait to 
improve resistance to lameness by selective breeding. 
This is especially true considering that even poorly pre-
dicted traits may exhibit a positive genetic correlation 
with the breeding goal (Bonfatti et al., 2017). However, 
the estimated genetic correlation between LMS and P-
LMS was not different from zero (−0.052, ranging from 
−0.633 to 0.563 with 95% probability). This result was 
obtained despite the very conservative approach used 
(the records with both LMS and P-LMS information 
were the same records used for the development of pre-
diction model), meaning that the accuracy of predic-
tion models is too poor to result in a positive genetic 
correlation between LMS and P-LMS. The lack of a 
positive genetic relationship between the actual trait 
and the prediction precludes, at this stage, the use of 
the infrared predictions as an indicator trait of LMS.

Obstacles Limiting Infrared Spectroscopy  
Model Performance

Possible reasons for the inefficacy of spectral vari-
ables to predict lameness are listed below.

	 (1) 	Only part of the lameness events are related 
to metabolic changes. There are 3 main causes 
of lameness: (1) injury, (2) infectious diseases, 
and (3) metabolic disorders. Infectious and 
noninfectious lameness can be possibly detected 
by changes in milk composition. While some 
metabolic changes affecting the onset of lame-
ness are known to affect milk composition and 
hence the spectra, it is reasonable to hypothesize 

that unknown changes in milk spectra might 
occur as a consequence of lameness. Only lame-
ness events related to metabolic changes can be 
(theoretically) predicted through infrared spec-
tra. Models need to define precisely the target to 
be predicted, suggesting that the spectrum has 
the potential to be used only for very specific 
situations, as also suggested by Mineur et al. 
(2017). In addition, the metabolic changes caus-
ing lameness must be large enough to determine 
changes in milk composition.

	 (2)	 Changes in milk composition must be relevant to 
be captured by spectral changes. Infrared spec-
tra are not expected to detect small differences 
in milk composition, or differences in compounds 
present in milk in low concentrations (Eskildsen 
et al., 2014). For example, claw keratin formation 
might be correlated with the content of minerals 
in milk (Heringstad et al., 2018), which is not 
predicted accurately by infrared spectroscopy 
compared with the content of other compounds 
(Bonfatti et al., 2016).

	 (3)	 Metabolic changes have to occur at the right mo-
ment to be detectable. Spectra collection occurs 
usually monthly, and in order for the model to 
be accurate, the interval between the occurrence 
of a change in milk composition and the onset 
of lameness should be relatively constant. Serum 
fatty acids show elevated proportions in milk 2 
wk before ketosis (Van Haelst et al., 2008), but 
it is not clear how long it can take to result in 
lameness. When a case of lameness is a conse-
quence of SARA, hoof lesions appear only weeks 
after the SARA episode (Tajik and Nazifi, 2011). 
In addition, the metabolic changes do not always 
result in lameness.
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Table 5. Median and lower and upper bound of the 95% highest posterior density interval (HPD95%) of the 
marginal posterior density of variance components and h2 estimated for actual lameness score (LMS) and 
predicted lameness score (P-LMS)

Parameter1

LMS

 

P-LMS

Median HPD95% Median HPD95%

σa
2 0.023 0.008–0.062   0.201 0.162–0.237

σhtd
2 0.371 0.224–0.531   0.579 0.400–0.839

σhys
2 0.139 0.015–0.399   1.228 0.612–2.037

σpe
2 — —   0.041 0.012–0.071

h2 0.022 0.008–0.059   0.167 0.139–0.191
ra — —   −0.052 −0.633–0.563
1σa
2 = additive genetic variance; σhtd

2  = variance of the effect of herd-test day; σhys
2  = variance of the effect of 

herd-year-season of calving; σpe
2  = permanent environmental variance; ra = additive genetic correlation with 

LMS. The residual variance for LMS and P-LMS was set to 1 by the algorithm.
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	 (4)	 Lameness can derive from metabolic changes 
occurring in opposite directions. Fat can be posi-
tively or negatively associated with lameness, 
when lameness derives from ketosis or SARA, 
respectively (Plaizier et al., 2008; Loker et al., 
2012). Fat mobilization (i.e., low BCS) was nega-
tively associated with digital cushion thickness 
(Newsome et al., 2017) and hence reduction of 
the efficiency of the digital cushion as a shock 
absorber (Espejo et al., 2006), but high BCS was 
also associated with increased risk of lameness 
(Rouha-Mülleder et al., 2009).

	 (5)	 Spectroscopy is an indirect technique and needs 
a precise reference analysis. Lameness scoring 
can be subject to errors, especially if cows are 
not completely free to show their behavior or 
many cows are scored simultaneously. In addi-
tion, some cows normally walk unevenly.

	 (6)	 Not all cows that show lesions, infections, or 
metabolic changes show lameness. Lameness is 
determined through the display of a deviation 
from normal behavior (i.e., it is primarily deter-
mined by the amount of pain a cow experiences, 
not directly from the severity of a lesion, infec-
tion, or metabolic disorder).

	 (7)	 Lameness events have a relatively low prevalence. 
The unbalanced data set in model training is 
generally a source for poor model performance, 
which also applies to other traits (e.g., BHB; 
Bonfatti et al., 2019).

	 (8)	 Lameness events are greatly determined by on-
farm management. The different sources of vari-
ation that exist in the field (e.g., farm, housing 
system, flooring type, and so on) are not taken 
into account when using infrared spectra as the 
sole predictor of LMS.

Considering these limitations, prediction of specific 
claw disorders may work better than a prediction of the 
more general LMS. Moreover, a better option could be 
to also use data from activity sensors, which have been 
found to be good indicators of lameness (Beer et al., 
2016), to include more information on farming/housing 
conditions, and to expand the database to include a 
higher number of severe lameness cases.

CONCLUSIONS

The accuracy of prediction models for LMS exploiting 
milk infrared spectral variables and additional readily 
available on-farm predictors was considered too poor 
to envisage a practical application of these models in 
the near future as on-farm tools to provide an indica-

tion of cow lameness status. In addition, the genetic 
correlation between the actual LMS and the P-LMS 
was not significantly different from zero. Therefore, at 
this stage, predictions of the LMS cannot be used as 
large-scale phenotypes for animal breeding purposes, 
as an indicator trait for actual lameness. The results 
showed that the large-scale prediction of lameness in 
cows still needs additional research. The incorporation 
in the prediction models of data from activity sensors 
(e.g., accelerometers) and other farming/housing infor-
mation, or the prediction of the occurrence of specific 
claw disorders as an alternative to the LMS, should be 
investigated.
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APPENDIX

Table A1. Validation accuracy (mean ± SD) of the partial least squares discriminant analysis models for 
classifying cow lameness score when spectral data were transformed according to different mathematical 
treatments1

Mathematical treatment2

10-fold random cross-validation

Sensitivity3 Specificity4
Global 

accuracy5

Raw spectra 52.9 ± 7.2 61.3 ± 2.5 60.3 ± 2.0
1st derivative, 321 53.3 ± 6.2 62.8 ± 3.0 61.6 ± 2.5
2nd derivative, 111 54.2 ± 5.8 58.8 ± 3.4 58.3 ± 2.8
2nd derivative, 532 55.3 ± 6.3 59.7 ± 1.9 59.2 ± 1.9
2nd derivative, 321 57.4 ± 6.2 62.0 ± 2.1 61.5 ± 2.1
2nd derivative, 321 + EMSC 57.4 ± 5.2 61.1 ± 2.1 60.6 ± 1.8
3rd derivative, 321 55.8 ± 8.8 60.5 ± 4.4 59.9 ± 3.1
1All models included milk yield, age at calving, parity, days in lactation, and the infrared spectrum taken 
within 72 h of the scoring for lameness.
2The sequence of numbers represents, respectively, the order of the derivative, the gap over which the derivative 
was calculated, and the data points used for smoothing; EMSC = extended multiplicative scatter correction.
3Sensitivity = proportion of positive cows that were correctly classified.
4Specificity = proportion of negative cows that were correctly classified.
5Global accuracy is the total proportion of correctly classified records. 
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