
DOLBEAULT–MASSEY TRIPLE PRODUCTS OF LOW DEGREE

ANDREA CATTANEO AND ADRIANO TOMASSINI

Abstract. Let A = (A•,•, ∂A) be a differential bigraded algebra. We characterize non-vanishing
Dolbeault–Massey triple products of low degree (see Theorems 3.1 and 3.2). We give some ap-

plications for the Dolbeault complex on a compact complex manifold.

Introduction

In their celebrated paper [6] Deligne, Griffiths, Morgan and Sullivan obtained cohomological
obstructions to the existence of a Kähler structure on a compact manifold. In particular, they
showed that if a compact manifold has a Kähler structure, then it satisfies the ∂∂-Lemma. Fur-
thermore, see [10], the de Rham complex of compact Kähler manifolds is formal as differential
graded algebra.
In the category of complex manifolds, it is natural to consider the Dolbeault groups in order to
obtain informations on the complex structure of the manifold. In this context, Neisendorfer and
Taylor ([9]) developed a formality theory for complex manifolds, adapting Sullivan’s theory of for-
mality for manifolds. More precisely, they introduced a notion of formality for differential bigraded
algebras (A•,•, ∂A). In analogy with the real case, a complex manifold is Dolbeault formal if its
Dolbeault complex is equivalent as differential bigraded algebra to a differential bigraded algebra
with trivial ∂-operator (or in other words to its cohomology algebra (H•,•(A), 0)). It is worthwhile
to recall that ([9]) compact complex manifolds satisfying the ∂∂-Lemma are Dolbeault formal. We
refer to [7] for geometric formality in the context of de Rham cohomology, and to [11] and [2] for
Dolbeault and Bott–Chern cohomologies.
One of the principal obstructions to formality is the existence of non-vanishing Massey triple prod-
ucts, which are (equivalence classes of) cohomology classes that can be defined as an adapted
version of Massey triple products to the differential bigraded setting (see e.g. [11, §3]). Conse-
quently, a useful tool to show that a given complex manifold has no Kähler metrics is to construct
a non-vanishing Dolbeault–Massey triple product. In many cases (see e.g. [4], [5]) this can be done
by taking Dolbeault cohomology classes of low total degree.

The aim of this paper is to study the existence of non-trivial Dolbeault–Massey triple products
of low degree on an arbitrary differential bigraded algebra. Our main result gives a characterization
of their existence:
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supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by the Project

FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni”, and by GNSAGA of INdAM. The second
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Theorem (see Thm. 3.2). Let A = (A•,•, ∂) be a homologically connected differential bigraded
algebra. Let [X] ∈ H1,0(A) r {0} and [Y ] ∈ H0,1(A) r {0} be such that [X][Y ] = 0. Then the
following are equivalent:

(1) 〈[X], [X], [Y ]〉 defines a non-vanishing Dolbeault–Massey triple product in H2,0(A)
[X]·H1,0(A) ;

(2) XY = ∂W with W ∈ A1,0 r Z1,0(A) such that XW 6= 0.

As a corollary we get the following theorem concerning the multiplication in formal differential
bigraded algebras:

Theorem (see Cor. 3.3). Let A = (A•,•, ∂) be a homologically connected differential bigraded
algebra, and let [X] ∈ H1,0(A) r {0}. If A is formal, then one (and only one) of the following
holds:

(1) [X][Y ] 6= 0 for all [Y ] ∈ H0,1(A) r {0};
(2) for any [Y ] ∈ H0,1(A) r {0} such that [X][Y ] = 0 we have that there exists Z ∈ A1,0 such

that XY = ∂Z with XZ = 0.

The outline of the paper is as follows. In Section 1 we recall some preliminary definitions on
differential bigraded algebras and their minimal models and set the notation we will use through-
out the paper. In Section 2 we recall the definition of formal differential bigraded algebras, the
construction of Dolbeault–Massey triple products, and we prove a number of technical lemmas
which are useful for the proof of our main results. Finally in Section 3 we prove our main results
(Theorem 3.1, Theorem 3.2 and Corollary 3.3) and in Section 4 we use them to show how to apply
the results of Section 3 to the case of complex manifolds and their deformations.
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1. Differential bigraded algebras

The objects encoding the algebraic structure of the Dolbeault complex of a complex manifold
are the differential bigraded algebras. In this section, we will briefly recall the main definitions
and properties of differential bigraded algebras, and in particular of their minimal models (Section
1.1).
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Recall that a differential bigraded K-algebra (or DBA for short) A = (A•,•, ∂) is a K-vector
space A with a direct sum decomposition

A•,• =
⊕
p,q∈Z

Ap,q,

endowed with

(DBA1) a product · : A×A −→ A which is K-bilinear and satisfies
(DBA1.a) Ap,q · Ar,s ⊆ Ap+r,q+s,
(DBA1.b) x · y = (−1)(p+q)(r+s)y · x for any x ∈ Ap,q, y ∈ Ar,s;

(DBA2) a K-linear map ∂ : A −→ A, called the differential, such that
(DBA2.a) ∂(Ap,q) ⊆ Ap,q+1,

(DBA2.b) ∂
2

= 0,
(DBA2.c) ∂(x · y) = ∂(x) · y + (−1)p+qx · ∂(y) for any x ∈ Ap,q, y ∈ Ar,s.
A morphism of differential bigraded algebras f : (A, ∂) −→ (A′, ∂′) is a K-linear morphism of

vector spaces such that:

(Mor1) f respects the bigraduation, i.e. f(Ap,q) ⊆ A′p,q;
(Mor2) f respects the product, i.e. f(xy) = f(x)f(y) for all x, y ∈ A;

(Mor3) f commutes with the differential, i.e. ∂
′ ◦ f = f ◦ ∂.

An element x ∈ Ap,q is said to have bidegree (p, q), and total degree (or simply degree) p+ q:

bideg x = (p, q), deg x = p+ q.

The kernel and the image of the operator ∂ define the differential subalgebras of the cycles and
the boundaries of A = (A•,•, ∂) respectively:

Z(A) = (Z•,•(A), 0) = ker ∂, B(A) = (B•,•(A), 0) = im ∂.

We have then B(A) ⊆ Z(A), and their quotient is the cohomology of (A, ∂):

H(A) =
Z(A)

B(A)
.

Remark 1.1. The cohomology H(A) is in a natural way a differential bigraded algebra, with trivial
differential.

A morphism of differential bigraded algebras f : A → A′ induces a morphism in cohomology

f∗ : H(A) −→ H(A′)
[x] 7−→ [f(x)]

which is a morphism of differential bigraded algebras.
A quasi-isomorphism of differential bigraded algebras is a morphism f : A → A′ such that f∗

is an isomorphism.

1.1. The minimal model of a differential bigraded algebra. A useful tool for dealing with
a differential bigraded algebra is its minimal model. Since we do not need the actual (technical)
definition of minimal differential bigraded algebra, we omit it and address the interested reader to
[3, Ch. 7]. In this section we will briefly recall the properties of the minimal model of a differential
bigraded algebra that we will use in the sequel.

Convention. In the following, we will consider differential bigraded algebras A = (A•,•, ∂) such
that:

(1) the bigraduation (p, q) has p, q ≥ 0;
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(2) A is homologically connected, i.e. the canonical morphism of DBA’s η : K −→ A induces
an isomorphism η∗ : K −→ H0,0(A).

The only exception to this convention on the bigraduation is provided by the minimal model of A,
as explained in (M1).

Under the assumption that A is homologically connected, it admits a (unique up to non-natural
isomorphisms) minimal model

f :M = (M•,•, ∂) −→ A,
which have the following properties:

(M1) M is a free algebra which is bigraduated by (p, q) with p+ q ≥ 0, but we can have p < 0
or q < 0 (actually, from the construction we can have q < 0, but not p < 0);

(M2) M is connected, i.e. in total degree 0, M is concentrated in bidegree (0, 0);
(M3) f∗ : H(M) −→ H(A) is an isomorphism. In particular, Hp,q(M) = 0 if p < 0 or q < 0,

since we are assuming that the same holds for A.

2. Formality and Dolbeault–Massey triple products

2.1. Formal differential bigraded algebras. Two differential bigraded algebras, A and A′,
are equivalent if there exists a chain of differential bigraded algebras Ci = (C•,•i , ∂i) and quasi-
isomorphisms of the form

C0

�� ��

. . .

~~   

Cn

~~
  

A C1 . . . A′.

Definition 2.1. A differential bigraded algebra A is said to be formal if it is equivalent to a

differential bigraded algebra (A′•,•, ∂′) with ∂
′

= 0.

Let M be a complex manifold. We say that M is Dolbeault formal if its Dolbeault complex
ΛM = (Λ•,•M,∂) is a formal differential bigraded algebra.

2.2. Dolbeault–Massey triple products. Let A be a differential bigraded algebra, and assume
that [X] ∈ Hp,q(A), [Y ] ∈ Hr,s(A), [Z] ∈ Hu,v(A) satisfy [X][Y ] = [Y ][Z] = 0. So there exist
A ∈ Ap+r,q+s−1 and B ∈ Ar+u,s+v−1 such that XY = ∂A, Y Z = ∂B.

Definition 2.2. With these notations, the Dolbeault–Massey triple product of [X], [Y ] and [Z] is
defined as

(2.1) 〈[X], [Y ], [Z]〉 = [AZ + (−1)p+q+1XB] ∈ Hp+r+u,q+s+v−1(A)

[X] ·Hr+u,s+v−1(A) +Hp+r,q+s−1(A) · [Z]
.

Remark 2.3. If A is a formal differential bigraded algebra, then all the Dolbeault–Massey triple
products vanish (see [11, Prop. 3.2]).

2.2.1. Special Dolbeault–Massey products. When we want to construct a Dolbeault–Massey triple
product we need at least two cohomology classes, say [X] and [Y ], such that [X][Y ] = 0. In
this case, the easiest Dolbeault–Massey product we can define corresponds to [X] ∈ H1,0(A),
[Y ] ∈ H0,1(A), and it is

(2.2) 〈[X], [X], [Y ]〉 ∈ H2,0(A)

[X] ·H1,0(A)
.

Definition 2.4. We call a Dolbeault–Massey triple product as in (2.2) a special Dolbeault–Massey
triple product.
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In Section 3 we will give a necessary and sufficient condition for the existence of non-vanishing
special Dolbeault–Massey products.

Let A = (A•,•, ∂A) be a homologically connected differential bigraded K-algebra, and consider
its minimal model

f : M = (M•,•, ∂) −→ A
x 7−→ f(x) = X.

Let [X] ∈ H1,0(A) be any class: we want to find a class [Y ] ∈ H0,1(A) which defines a non-vanishing
Dolbeault–Massey product as in (2.2), but since H(A) and H(M) are naturally isomorphic, we
can consider the corresponding class [x] ∈ H1,0(M), solve the problem in H(M) and then push
the result down to H(A).
In the following we will define a “good” basis for M1,0 in order to study the homomorphism
H1,0(M) −→ H2,0(M) given by the multiplication with the class [x] ∈ H1,0(M).

Remark 2.5. This is the motivation why we will follow this plan: as we can see in (2.2), the
indetermination [x] ·H1,0(M) corresponds exactly with the image og the multiplication map.

Let x ∈ Z1,0(M) r {0}. Then the maps

(2.3)
mx : M1,0 −→ M2,0

y 7−→ xy
and

m[x] : H1,0(M) −→ H2,0(M)
[y] 7−→ [x][y]

are well defined homomorphisms of vector spaces. Observe that even though they are not maps of
differential bigraded algebras, their kernel is a two-sided ideal closed under the differential.

It is not difficult to describe kermx and kerm[x].

Lemma 2.6. ker(mx :M1,0 −→M2,0) = 〈x〉.

Proof. Since x2 = 0, it is obvious that 〈x〉 ⊆ kermx.
For the other inclusion, consider a basis {x, xα}α∈I for M1,0. Let y = λx+

∑n
i=1 λixαi ∈ kermx,

then

xy =

n∑
i=1

λixxαi = 0.

SinceM is free, the elements {xxα1}ni=1 are linearly independent inM2,0, and so all the coefficients
in the previous expression must vanish. This means that y = λx ∈ 〈x〉. �

Remark 2.7. The proof of the previous Lemma works in general, i.e. ker(mx :M−→M) = 〈x〉.

Lemma 2.8. [y] ∈ kerm[x] if and only if y ∈ mx|Z1,0(M)
−1(im ∂).

Proof. y ∈ mx|Z1,0(M)
−1(im ∂) is equivalent to xy = ∂τ for some τ ∈ M2,−1, which in turn is

equivalent to [x][y] = 0. �

Corollary 2.9. kerm[x] = 〈[x]〉 if and only if mx(Z1,0(M)) ∩ im ∂ = {0}.

2.3. A “good” basis for M1,0. In this Section, we define the basis forM1,0 we will use to show
the existence of special Dolbeault–Massey products.
Let x ∈ Z1,0(M) r {0} be fixed. We can then consider a basis

{αn, βm, γr}, n ∈ Ix,m ∈ Iz, r ∈ Iγ
for M2,−1, where

(1) {∂αn}n∈Ix gives a basis for mx(Z1,0(M)) ∩ im ∂;
(2) {∂βm}m∈Iz completes the previous set to a basis for immx ∩ im ∂;
(3) {γr}r∈Iγ completes {αn, βm} to a basis for M2,−1.
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By their definitions, there exist xn ∈ Z1,0(M) and zm ∈M1,0 r Z1,0(M) such that

∂αn = xxn, ∂βm = xzm.

Remark 2.10. The elements xn are cycles, while no element in Span{zm} is a cycle. In particular,
∂zm 6= 0 for all m ∈ Iz.

We complete the set of linearly independent elements {x, xn, zm} to the following basis:

(2.4) {x, xn, yk, zm, wp, aq}, n ∈ Ix, k ∈ Iy,m ∈ Iz, p ∈ Iw, q ∈ Ia
where

(1) {x, xn} is a basis for mx|Z1,0(M)
−1(im ∂);

(2) {x, xn, yk} is a basis for Z0,1(M);
(3) {x, xn, zm} is a basis for mx

−1(im ∂);
(4) {x, xn, yk, zm, wp} is a basis for mx

−1(Z2,0(M));
(5) {aq} completes to a basis for M1,0.

Definition 2.11. We call any basis constructed as described in (2.4) a “good” basis for M1,0

associated to x ∈ Z1,0 r {0}.

Remark 2.12. Observe that the elements of a “good” basis associated to x are not uniquely deter-
mined by x, while the cardinality of the sets Ix, Iz, Iy and Iw are.

Notation. In the following, we will use the following convention on the indices. The letter i will
be reserved to variable indices, and we will use it as the only letter for any index : the range where
i varies is determined to the object where i is attached. In this spirit, we will write the generic
cycle in M1,0 as

λx+
∑

λixi +
∑

µiyi,

instead of the extended notation

λx+

h∑
i=1

λixni +

l∑
j=1

µjykj .

Remark 2.13. By Lemma 2.8, in H1,0(M) we have that {[x], [xn]} is a basis for kerm[x], and that
the images of {[yk]} via m[x] form a basis for imm[x], i.e.

imm[x] = [x] ·H1,0(M) = Span{[xyk]} ⊆ H2,0(M).

2.3.1. Relation with A1,0. To understand why the basis (2.4) is “good”, we take a little digression
and see how to link it to (A, ∂A) through the morphism f : (M, ∂) −→ (A, ∂A).

Lemma 2.14. Span{x, xn, zm} = f−1(kermf(x)) ∩mx
−1(Z2,0(M)).

Proof. In fact, the following statements are easily seen to be equivalent:

(1) v ∈ Span{x, xn, zm};
(2) xv = ∂τ for some τ ∈M2,−1;
(3) ∂(xv) = 0 and [xv] = 0 in H2,0(M);
(4) ∂(xv) = 0 and f∗[xv] = 0 in H2,0(A);
(5) ∂(xv) = 0 and f(x)f(w) = 0 in A2,0.

Observe that in the last equivalence we use the fact that B2,0(A) = 0 since we are assuming that
A has non-negative bigraduation. �

Corollary 2.15. Let v ∈ Span{x, xn, yk, zm, wp}. Then

v ∈ Span{x, xn, zm} ⇐⇒ v ∈ f−1(kermf(x)).
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Corollary 2.16. ker f ∩mx
−1(Z2,0(M)) ⊆ Span{x, xn, zm}.

Proof. Let v ∈ ker f ∩ mx
−1(Z2,0(M)). Since v ∈ ker f we have that f(x)f(v) = 0, i.e. v ∈

f−1(kermf(x)). But then v ∈ Span{x, xn, zm}. �

Lemma 2.17. ker f ∩ Span{x, xn, yk} = 0.

Proof. From the construction of the minimal model (cfr. [3, Ch. 7]) and the fact that B1,0(A) = 0,
it is clear that f induces an isomorphism

f|Z1,0(M) : Z1,0(M) −→ Z1,0(A).

�

Remark 2.18. We have the estimate

dim(ker f ∩mx
−1(Z2,0(M))) ≤ |Iz|.

Remark 2.19. Consider a “good” basis associated to x ∈ Z1,0(M). Then the vectors f(x), f(xn),
f(yk) and f(wp) are non-zero in A1,0. The vectors f(zm) may be zero or not.

Lemma 2.20. The vectors {f(yk), f(wp)} are linearly independent in A1,0.

Proof. Since ker f ∩mx
−1(Z2,0(M)) ⊆ Span{x, xn, zm}, we deduce that f| Span{yk,wp} is injective,

so it sends linearly independent vectors to linearly independent vectors. �

We then look for a way of distinguish f(yk) from f(wp).

Lemma 2.21. f(Span{ym}) ⊆ Z1,0(A), while f(Span{w1, . . . , wp〉) ∩ Z1,0(A) = {0}.

Proof. The first statement is clear, since f is a morphism of differential bigraded algebras. For the
second one, let

∑
ρif(wi) be a cycle. Then

f
(∑

ρiwi

)
=
∑

ρif(wi) = λf(x) +
∑

λif(xi) +
∑

µif(yi) = f
(
λx+

∑
λixi +

∑
µiyi

)
,

and so
∑
ρiwi = λx+

∑
λixi +

∑
µiyi + v for a suitable v ∈ ker f . Multiplying this last relation

by x, we find that ∂(xv) = 0. So v ∈ ker f ∩mx
−1(Z2,0(M)) ⊆ Span{x, xn, zm}. Hence

∑
ρiwi ∈

Span{x, xn, yk, zm}, which is possible if and only if
∑
ρiwi = 0. �

2.3.2. Some properties of a “good” basis. In this Section, we prove some properties of a “good”
basis associated to x.

As observed in Remark 2.12, once we fix x ∈ Z1,0(M)r {0} we can have different “good” basis
associated to x. However, the cardinality of any piece composing it is uniquely determined by x.
We can then define the integral valued (or possibly ∞) and non-negative functions N(x), K(x),
M(x), P (x) as:

(2.5)

N(x) = dim(mx(Z1,0(M)) ∩ im ∂);
K(x) = dim(Z1,0(M))−N(x)− 1

M(x) = dim(immx ∩ im ∂)−N(x)
P (x) = dim(immx ∩ Z2,0(M))−N(x)−K(x)−M(x).

Remark 2.22. We have then the following relations, for any x ∈ Z1,0(M) r {0}:
(2.6) h1,0(M) = 1 +N(x) +K(x), h2,0(M) ≥ K(x) + P (x).

Our purpose is to try to give a characterization of the vanishing of these functions, in terms of
some properties of A or of H(A).

As a direct consequence of Remark 2.13, we can easily describe what N(x) = 0 and K(x)00
mean.
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Lemma 2.23. Let x ∈ Z1,0(M) r {0}. Then N(x) = 0 if and only if kerm[x] = 〈[x]〉.

Lemma 2.24. Let x ∈ Z1,0(M) r {0}. Then K(x) = 0 if and only if m[x] = 0.

To deal with M(x) and P (x) is more subtle, and we need some preparation.

Lemma 2.25. Let x ∈ Z1,0 r {0} and t ∈ M1,0 be such that ∂t = xy for some y ∈ M0,1. Then
y ∈ Z0,1(M).

Proof. Applying ∂ to both sides of ∂t = xy and since ∂x = 0 we find that x∂y = 0, i.e. ∂y ∈ kermx.
Since ∂y ∈M0,2 and M is free with M−1,2 = 0, we have that ∂y = 0. �

Lemma 2.26. Let v ∈ mx
−1(Z2,0(M)). Then ∂v ∈ xM0,1 ⊆M1,1.

Proof. Since xv ∈ Z2,0(M), applying ∂ to this element we have

x∂v = 0.

By Remark 2.7, ker(mx : M −→ M) = 〈x〉: from x∂v = 0 we deduce that ∂v ∈ kermx, and so
∂v = xω for a suitable ω ∈M0,1. �

Corollary 2.27. ∂zm, ∂wp ∈ xM0,1 ⊆M1,1, i.e.

∂zm = xω(zm), ∂wp = xω(wp)

for suitable ω(zm), ω(wp) ∈M0,1.

Lemma 2.28. The elements {ω(zm), ω(wp)} are linearly independent in Z0,1(M) and they are
uniquely determined by zm, wp.

Proof. Since {zm} and {wp}’s are linearly independent in M1,0 and their span meets Z1,0 only

in 0, the elements ∂zm and ∂wp are linearly independent in M1,1. Each of them is of the form

∂zm = xω(zm) or ∂wp = xω(wp) and since the multiplication map from M0,1 to M1,1 is injective,
the result follows. �

Remark 2.29. As a consequence of Lemma 2.28, we have that

(2.7) h0,1(M) ≥M(x) + P (x)

for any x ∈ Z1,0(M) r {0}.

Proposition 2.30. Let x ∈ Z1,0(M) r {0}. The following are equivalent:

(1) M(x) + P (x) 6= 0;
(2) there exists w ∈M1,0 such that ∂w 6= 0, ∂(xw) = 0;
(3) there exists w ∈M1,0 such that ∂w = xy with y ∈M0,1 r {0};
(4) there exists w ∈M1,0 such that ∂w = xy with y ∈ Z0,1(M) r {0};
(5) there exists [y] ∈ H0,1(M) r {0} such that [x][y] = 0.

Proof. The first and the last equivalences are trivial.
One implication of the second equivalence is Lemma 2.26, the other is trivial.
One implication of the third equivalence is Lemma 2.25, the other is trivial. �

We then need a way to distinguish between the zm’s and the wp’s.

Proposition 2.31. Let f : M = (M•,•, ∂) −→ A = (A•,•, ∂A) be the minimal model of A, and
x ∈ Z1,0(M) r {0}. Denote X = f(x). Then the following are equivalent:

(1) P (x) 6= 0;
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(2) there exist Y ∈ Z0,1(A) and W ∈ A1,0 r {0} such that

XW 6= 0, ∂AW = XY.

Proof. Consider a vector wp̄ in the “good” basis associated to x (this is possible since P (x) 6= 0)

and let W = f(wp̄) ∈ A1,0 r Z1,0(A). We know by Lemma 2.26 that ∂wp̄ = xy for a suitable
y ∈ Z0,1(M), so we put Y = f(y) ∈ Z0,1(A). Then W and Y have the desired properties.
For the converse, consider the following basis for A1,0 and A0,1:

A1,0 = Span{X,Xi︸ ︷︷ ︸
cycles

,W, . . .}, i ∈ I;

A1,0 = Span{Y, Yj︸ ︷︷ ︸
cycles

, . . .}, j ∈ J.

In the first step of the construction of M we have

F (x, xi, y, yj) −→ A
x 7−→ X
xi 7−→ Xi

y 7−→ Y
yj 7−→ Yj ,

(if W is a cycle, we have another generator, say ω, mapping to W ). In bidegree (1, 1) the morphism
induced in cohomology is

H1,1(F (x, xi, y, yi)) −→ H1,1(A)

[xy] 7−→ [XY ] = [∂AW ] = 0
[xyj ] 7−→ [XYj ]
[xiy] 7−→ [XiY ]
[xiyj ] 7−→ [XiYj ].

So between the new generators we have to add, there is w of bidegree (1, 0) such that

∂w = xy, w 7−→W.

But then

(1) ∂w 6= 0, since xy 6= 0,
(2) ∂(xw) = −x∂w = −x2y = 0,
(3) f(x)f(w) = XW 6= 0;

hence P (x) 6= 0. �

Remark 2.32. It follows from Lemma 2.21 that the element W ∈ A1,0 in Proposition 2.31 is not a
cycle.

The following Proposition gives a characterization of M(x) = 0. Its proof is similar to that of
Proposition 2.31, so we omit it.

Proposition 2.33. Let f : M = (M•,•, ∂) −→ A = (A•,•, ∂A) be the minimal model of A, and
x ∈ Z1,0(M) r {0}. Denote X = f(x). Then the following are equivalent:

(1) M(x) 6= 0;
(2) there exist Y ∈ Z0,1(A) and Z ∈ A1,0 r {0} such that

XZ 6= 0, ∂AZ = XY.
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3. Existence of non-vanishing special Dolbeault–Massey products

We come back now to our original purpose: find some condition to define non-vanishing special
Dolbeault–Massey products in H(A). By Proposition 2.30, we know that we need at least to
require that M(x) + P (x) 6= 0 for some non-zero cycle x in M1,0. As we will see in Theorem 3.1,
the right condition is that P (x) 6= 0.
Let f :M = (M•,•, ∂) −→ A = (A•,•, ∂A) be the minimal model of A. Observe that the functions
defined in (2.5), which are defined on M1,0 r {0}, are well defined also on H1,0(M) r {0}, hence
also on H1,0(A) r {0} and consequently on Z1,0(A) r {0}.

We are now ready to state end prove our main result on the existence of non-vanishing special
Dolbeault–Massey products.

Theorem 3.1. Let A = (A•,•, ∂A) be a homologically connected differential bigraded algebra, and
let [X] ∈ H1,0(A) r {0}. Then the following are equivalent:

(1) there exists [Y ] ∈ H0,1(A) r {0} such that [X][Y ] = 0 and 〈[X], [X], [Y ]〉 defines a non-

vanishing special Dolbeault–Massey triple product in H2,0(A)
[x]·H1,0(A) ;

(2) P (X) 6= 0;
(3) there exist Y ∈ Z0,1(A) and W ∈ A1,0 r Z1,0(A) such that

XW 6= 0, ∂AW = XY.

Proof. The second equivalence is Proposition 2.31, so we only need to prove the first one.
As observed before, it is enough to prove the existence of non-vanishing Dolbeault–Massey triple
products in the minimal model M = (M•,•, ∂) of A. Assume that P (x) 6= 0, consider a “good”
basis (2.4) for M1,0 and focus on an element wp̄ of such basis. By Corollary 2.27, ∂wp̄ = xy for a
suitable cycle y ∈ Z0,1(M). Then

〈[x], [x], [y], 〉 = [xwp̄] ∈
H2,0(M)

[x] ·H1,0(M)

is non-vanishing since [xwp̄] /∈ imm[x] by Remark 2.13.

For the converse, we have xy = ∂t for a suitable t ∈M1,0 and the Dolbeault–Massey triple product
〈[x], [x], [y]〉 is then represented by [xt]. In terms of a “good” basis we can write t as

(3.1) t = λx+
∑

λixi +
∑

µiyi +
∑

νizi +
∑

ρiwi +
∑

σiai.

Since xt is a cycle, we deduce that in (3.1) all the coefficients σi vanish. Moreover, in cohomology

[xt] =
[∑

µixyi

]
︸ ︷︷ ︸
∈imm[x]

+
[∑

ρixwi

]
︸ ︷︷ ︸
/∈imm[x]

and since we are assuming that [xt] is non-zero modulo [x] ·H1,0(M), there is some non-vanishing
ρi, which means that P (x) 6= 0. �

Theorem 3.2. Let A = (A•,•, ∂) be a homologically connected differential bigraded algebra. Let
[X] ∈ H1,0(A) r {0} and [Y ] ∈ H0,1(A) r {0} be such that [X][Y ] = 0. Then the following are
equivalent:

(1) 〈[X], [X], [Y ]〉 defines a non-vanishing special Dolbeault–Massey triple product in H2,0(A)
[X]·H1,0(A) ;

(2) XY = ∂W with W ∈ A1,0 r Z1,0(A) such that XW 6= 0.

Corollary 3.3. Let A = (A•,•, ∂) be a homologically connected differential bigraded algebra, and
let [X] ∈ H1,0(A) r {0}. If A is formal, then one (and only one) of the following holds:

(1) [X][Y ] 6= 0 for all [Y ] ∈ H0,1(A) r {0};
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(2) for any [Y ] ∈ H0,1(A) r {0} such that [X][Y ] = 0 we have that there exists Z ∈ A1,0 such
that XY = ∂Z with XZ = 0.

4. Geometric applications

Let M be a complex manifold, and consider its Dolbeault complex ΛM = (Λ•,•M,∂). We can
then apply Theorem 3.1 to this case, to find a condition for the existence of Dolbeault–Massey
triple products.

Theorem 4.1. Let M be a connected complex manifold, and [ω] ∈ H1,0

∂
(M) r {0}. Then the

following are equivalent:

(1) there exists [ψ] ∈ H0,1

∂
(M) r {0} such that [ω] ∪ [ψ] = 0 and 〈[ω], [ω], [ψ]〉 defines a non-

vanishing Dolbeault–Massey triple product in
H2,0

∂
(M

[ω]·H1,0

∂
(M)

;

(2) there exist a closed (0, 1)-form ψ and a non-closed (1, 0)-form η on M such that

ω ∧ η 6= 0, ∂η = ω ∧ ψ.

In a particular case, namely the case when the Dolbeault algebra is free, we can get a sharper
result.

Corollary 4.2. Let M be a complex manifold, whose Dolbeault algebra ΛM admits a model freely
generated in positive degree. If there exist non-zero classes [ω] ∈ H1,0

∂
(M) and [ψ] ∈ H0,1

∂
(M) such

that [ω] ∪ [ψ] = 0, then there is a non-vanishing Dolbeault–Massey triple product.

Proof. By hypothesis, ω ∧ ψ = ∂η for a suitable (1, 0)-form η. By Theorem 3.2, we only need to
check that ω∧η 6= 0. Assume the contrary: by Remark 2.7 we have that η = λω, so ω∧ψ = ∂η = 0,
which contradicts the assumption that ΛM is free. �

A well known and established framework where we can apply Corollary 4.2 is provided by the
class of compact nilmanifolds. In fact, by [4, Prop. 4.8, Thm. 4.9], if we let M = Γ\G be a
compact quotient of a nilpotent Lie group G by a lattice Γ and G admits an invariant complex
structure J , then a model for ΛM is given by (Λ•,•(g ⊗R C), ∂), where g denotes the Lie algebra
of G.

Example 4.3 (Kodaira surface). Let G be the Lie group defined by the structure equations

(4.1) dω1 = 0, dω2 = ω1 ∧ ω̄1.

We can then identify G with the group of matrices of the form 1 z̄1 z2

0 1 z1

0 0 1

 ,

and let Γ be the subgroup of matrices with entries in Z[
√
−1]. The Kodaira surface is then the

quotient Γ\G, and in terms of the natural complex coordinates z1 and z2 we can express ω1 and
ω2 as

(4.2) ω1 = dz1, ω2 = dz2 − z̄1dz1.

These forms are of type (1, 0) and the minimal model of the Dolbeault algebra of Γ\G is the free
algebra generated by elements x1, x2, y1, y2 corresponding to ω1, ω2, ω̄1, ω̄2 respectively, and with
the differential

(4.3) ∂x1 = ∂y1 = ∂y2 = 0, ∂x2 = x1y1,
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By Corollary 4.2, we immediatly have that 〈[ω1], [ω1], [ω̄1]〉 is a non-vanishing Dolbeault–Massey
triple product.

4.1. Special Dolbeault–Massey products and small deformations.

Example 4.4 (Iwasawa threefold). Consider the complex nilpotent group H(3,C) of complex
matrices of the form

(4.4)

 1 z1 z3

0 1 z2

0 0 1

 , z1, z2, z3 ∈ C,

and the lattice Γ ' H(3,Z[
√
−1]) of matrices with entries in Z[

√
−1]. The Iwasawa threefold

is the complex nilmanifold I = Γ\G. In terms of the natural coordinates z1, z2, z3 we have the
left-invariant (1, 0) forms

(4.5) ω1 = dz1, ω2 = dz2, ω3 = dz3 − z1dz2,

from which we can read the structure equations

(4.6) dω1 = dω2 = 0, dω3 = −ω1 ∧ ω2.

The minimal model of the Dolbeault algebra is freely generated by x1, x2, x3 and y1, y2, y3 (corre-
sponding to ω1, ω2, ω3 and ω̄1, ω̄3, ω̄3 respectively), with differential

(4.7) ∂x1 = ∂x2 = ∂y1 = ∂y2 = 0, ∂x3 = 0, ∂y3 = −y1y2.

Observe that this manifold is complex parallelisable since ∂ = 0 on (1, 0) forms, and so we can
not apply our Theorems. Nevertheless we do have non-vanishing Dolbeault–Massey products, for
example

〈[ω̄1], [ω̄1], [ω̄2]〉.
Denote by

Aw1,w2,w3 =

 1 w1 w3

0 1 w2

0 0 1


an arbitrary matrix in Γ. For any t ∈ C we define the action

ϕt : H(3,Z[
√
−1]) −→ Aut(C3)

where ϕt(Aw1,w2,w3
) is the affine transformation defined by

(4.8)


1 0 0 w1

0 1 0 w2 + tw̄1

tw̄1 w1 1 w3 + tw1w̄1

0 0 0 1

 .

Observe that C3/ϕ0 is the Iwasawa threefold I, and that the quotient It = C3/ϕt is a deformation
of I. We can compute its invariant (1, 0)-forms

(4.9) ω1(t) = dz1, ω2(t) = dz2, ω3(t) = dz3 − z1dz2 − tz̄1dz1

and the structure equations of It

(4.10) dω1(t) = dω2(t) = 0, dω3(t) = −ω1(t) ∧ ω2(t) + t ω1(t) ∧ ω̄1(t).

The minimal model of the Dolbeault algebra of It is freely generated by x1(t), x2(t), x3(t) and
y1(t), y2(t), y3(t), and the differential is
(4.11)
∂tx1(t) = ∂tx2(t) = ∂ty1(t) = ∂ty2(t) = 0, ∂tx3(t) = t x1(t)y1(t), ∂ty3(t) = −y1(t)y2(t).
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So we see that 〈[ω1(t)], [ω1(t)], [ω̄1(t)]〉 is a non-vanishing special Dolbeault–Massey product on It
with t 6= 0, which vanishes for t = 0.

Example 4.5 (Nakamura threefold). Consider the group G = CnϕC2 with coordinates (z1, z2, z3),
where the action of C on C2 is given by

ϕ(z1) =

(
ez1 0
0 e−z1

)
∈ SL(2,C).

Fix a+
√
−1b, c+

√
−1d ∈ C such that

(1) they are linearly independent over the reals;
(2) ϕ(a+

√
−1b), ϕ(c+

√
−1d) as elements in SL(2,C) ⊆ SL(4,R) are conjugates with elements

in SL(4,Z);
(3) b, d ∈ Z · π.

Define the lattice Γ = Γ′ nϕ Γ′′, where Γ′ = Z · 〈a+
√
−1b, c+

√
−1d〉 is a lattice in C and Γ′′ is a

lattice in C2. The Nakamura threefold is the quotient N = Γ\G (see [8]).
As explained in [1, 11], the inclusion of the subcomplex

(4.12) A =

•,•∧
(dz1, e

−z1dz2, e
z1dz3︸ ︷︷ ︸

type (1,0)

; dz̄1, e
−z1dz̄2, e

z1dz̄3︸ ︷︷ ︸
type (0,1)

)

in ΛN is a quasi-isomorphism.
Observe that the generators of bidegree (0, 1) of A are not the complex conjugates of the generators
of bidegree (1, 0).
Finally, observe that letting

x1 = dz1, y1 = dz̄1,
x2 = e−z1dz2, y2 = e−z1dz̄2,
x3 = ez1dz3, y3 = ez1dz̄3,

we have

∂x1 = 0, ∂y1 = 0,

∂x2 = 0, ∂y2 = 0,

∂x3 = 0, ∂y3 = 0,

which shows that the Nakamura threefold is Dolbeault-formal.
We consider now the deformation of N associated to the (0, 1)-form with coefficients in the holo-
morphic tangent bundle

(4.13) ϕt = t ez1dz̄1 ⊗
∂

∂z2
.

Also in this case the Dolbeault cohomology of the deformed variety Nt is computed by a suitable
subcomplex of ΛNt. This subcomplex is

(4.14) At =

•,•∧
(dz1, e

−z1dz2 − tdz̄1, e
z1dz3︸ ︷︷ ︸

type (1,0)

; dz̄1, e
−z1dz̄2 − t̄ez̄1−z1dz1, e

z1dz̄3︸ ︷︷ ︸
type (0,1)

),

and if we let
x1(t) = dz1, y1(t) = dz̄1,
x2(t) = e−z1dz2 − tdz̄1, y2(t) = e−z1dz̄2 − t̄ez̄1−z1dz1,
x3(t) = ez1dz3, y3(t) = ez1dz̄3,
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then the differential is
∂tx1(t) = 0, ∂ty1(t) = 0,

∂tx2(t) = −t x1(t)y1(t), ∂ty2(t) = 0,

∂tx3(t) = 0, ∂ty3(t) = 0.

By Corollary 4.2 we immediately see that 〈[x1(t)], [x1(t)], [y1(t)]〉 defines a non-vanishing Dolbeault–
Massey product on Nt for any t 6= 0, which vanishes for t = 0 (see [11, Thm.3.1]).
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