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Abstra
t In this work a stabilized mixed formulation for the solution of

non-linear solid me
hani
s problems in nearly-in
ompressible 
onditions is

presented. In order to deal with high material deformation, an impli
it Ma-

terial Point Method (MPM) is 
hosen. Su
h 
hoi
e allows avoiding the 
las-

si
al limitations of the Finite Element Method (FEM), e.g., element tan-

gling and extreme mesh distortion. The proposed mixed formulation, with

displa
ement and pressure as primary variables, is tested through 
lassi
al

ben
hmarks in solid and geo-me
hani
s where a Neo-Hookean, a J2 and

a Mohr-Coulomb plasti
 law are employed. Further, the stabilized mixed

formulation is 
ompared with a displa
ement-based formulation to demon-

strate how the proposed approa
h gets better results in terms of a

ura
y,

not only when in
ompressible materials are simulated, but also in the 
ase

of 
ompressible ones.

Key words Parti
le Methods Nonlinear Finite Element Method impli
it

MPM mixed formulation

1 Introdu
tion

The solution of solid me
hani
s problems in large displa
ement and large

deformation regime, dealing with in
ompressible or nearly in
ompressible
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materials, is a topi
 of paramount importan
e in the 
omputational me
han-

i
s 
ommunity sin
e many engineering problems present su
h 
onditions. It

is well known that overly sti� numeri
al solutions appear when Poisson's

ratio ν tends to 0.5 or when plasti
 �ow is 
onstrained by the volume 
on-

servation 
ondition. In these 
ases, a standard Galerkin displa
ement-based

formulation (u formulation) fails [1, 2℄ due to the inability to evaluate the


orre
t strain �eld. In the literature, many possible solutions 
an be found.

For instan
e, Simo and Rifai introdu
ed the Mixed Enhan
ed Element for

small deformation problems [3℄. This is a spe
ial three-�eld mixed �nite

element method in whi
h the spa
e of dis
rete strains is augmented with

lo
al fun
tions. It is worth mentioning that also the 
lass of B-bar meth-

ods [4℄ and the 
lassi
al in
ompatible modes formulation [5℄ fall under this

theory. For general purposes, some variants of this pro
edure are analysed

in [6℄. Alternative pro
edures suitable for geometri
ally non-linear regimes,

are given by the F-BAR method [7℄, a te
hnique based on the 
on
ept of

multipli
ative deviatori
/volumetri
 split in 
onjun
tion with the repla
e-

ment of the 
ompatible deformation gradient �eld, the non-linear B-bar

method [8℄ and the family of enhan
ed elements [9℄, whi
h represents an

extension to the non-linear regime of the pro
edures exposed in [4℄ and [5℄,

respe
tively. Though the good performan
e of all the aforementioned meth-

ods, none of su
h te
hniques is, however, suitable for appli
ation on sim-

pli
ial meshes [2, 10, 11℄ . In this regards, among the su

essful strategies

for the ful�llment of the in
ompressibility 
onstrain, it is worth mentioning

the group of the Mixed Variational Methods. Di�erent resear
hers worked

on mixed �nite element formulations with displa
ement and mean stress as

primary variables [12�16℄; Cervera and 
oworkers, for instan
e, proposed a

strain/displa
ement mixed formulation in the 
ontext of 
ompressible and

in
ompressible plasti
ity [17, 18℄; Simo et al. introdu
ed a non linear ver-

sion of a three-�eld Hu-Washizu Variational prin
iple, where displa
ement,

pressure and the Ja
obian of the deformation gradient are independent �eld

variables [19℄. The use of Mixed Variational Methods and the di�
ulties en-


ountered when applying them with di�erent elements have been largely

dis
ussed in the 1970s. In [20�23℄ the need to satisfy the stability 
ondition,

the so-
alled inf-sup 
ondition, is demonstrated and the instability and in-

e�e
tiveness of elements with equal-order interpolations for all the primary

variables is proved. This has motivated the development of a series of sta-

bilization te
hniques, whi
h allow the employment of low order Galerkin

�nite elements in 
omputational �uid dynami
s and solid me
hani
s prob-

lems [24�31℄.

The treatment of the in
ompressibility 
onstraint is relatively new in the


ontext of the Material Point Method (MPM). Most MPM formulations deal

with 
ompressible materials, avoiding the issues arising from the imposition

of the in
ompressibility 
onstraint. However, some pro
edures for the treat-

ment of lo
king issues 
an be found in the literature. For instan
e, in [32℄ an

approa
h for the solution of kinemati
 (shearing and volumetri
) lo
king is

proposed. The authors identi�ed the employment of linear shape fun
tions
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in 
onjun
tion with a regular, re
tangular grid, as 
ause of the lo
king. The

mixed formulation, employed in su
h work, is derived from the de�nition

of a three-�eld Hu-Washizu potential, with stress, strain and displa
ement


onsidered as primary variables. In [33℄ the formulation presented makes

use of the Chorin's proje
tion [34℄, a popular fra
tional step formulation

solved impli
itly for �uid me
hani
s problems and in [35℄ a similar strategy,

based on a splitting operator te
hnique for solving the momentum equation,

is proposed for the treatment of the in
ompressibility 
onstrain.

In this paper the 
omputational strategy proposed in [36℄ for the solu-

tion of solid me
hani
s problems 
hara
terized by plasti
 in
ompressibility

in large displa
ement and large deformation regime, is des
ribed in detail

and applied to a wide range of test examples. A mixed u-p formulation,

where the displa
ement and mean stress are 
onsidered as primary variables,

is implemented within the framework of an impli
it Material Point Method


ode, developed in the Kratos Multiphysi
s open sour
e platform [37,38℄ fol-

lowing the algorithm presented by the authors in [39℄. A monolithi
 solution

strategy is used, whi
h allows not to impose "spurious" pressure boundary


onditions on the Neumann boundary, as done in [33, 35℄. In the 
urrent

work only simpli
ial elements are 
onsidered and a stabilization te
hnique

is adopted for the satisfa
tion of the inf-sup 
ondition. The stabilization,

based on the Polynomial Pressure Proje
tion (PPP), presented in [40℄, is


hosen for its ease of implementation and good performan
e demonstrated

in previous works [41, 42℄. The proposed approa
h is validated through a

series of ben
hmark examples, where an elasti
 Neo-Hookean, a J2 and a

Mohr-Coulomb plasti
 material are employed. Further, for ea
h test, the re-

sults obtained through a displa
ement-based (u) and the stabilized mixed

(u-p) formulation are 
ompared.

The paper is organized as follow: in Se
tion 2 the u and u-p formula-

tions are derived in their matrix form and the 
onstitutive laws employed

for the solution of the examples are brie�y introdu
ed. In Se
tion 3 the

Material Point Method is presented. In Se
tion 4 the numeri
al examples

are illustrated and the results are dis
ussed. Finally, Se
tion 5 presents the


on
lusions.

2 The irredu
ible and mixed formulation

In this se
tion the displa
ement-based (u) and mixed (u-p) formulations

are brie�y introdu
ed and derived in matrix form.

2.1 Governing equations in strong form

Let us 
onsider the body B whi
h o

upies a regionΩ of the three-dimensional

Eu
lidean spa
e E with a regular boundary ∂Ω in its referen
e 
on�guration.

A deformation of B is de�ned by a one-to-one mapping

ϕ : Ω → E (1)
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that maps ea
h point p of the body B into a spatial point x

x = ϕ (p) (2)

whi
h represents the lo
ation of p in the deformed 
on�guration of B. The
region of E o

upied by B in its deformed 
on�guration is denoted as ϕ (Ω).

The boundary value problem of �nite elastostati
s 
onsists in �nding a

displa
ement �eld u : ϕ (Ω) → E su
h that the equilibrium equations and

the kinemati
 
onditions are satis�ed







−∇ · σ = f in ϕ (Ω)
σ · n = t on ϕ(∂ΩN )

u = u on ϕ(∂ΩD)
(3)

where σ is the Cau
hy stress tensor, f denotes the body for
es and ϕ(∂ΩN )
and ϕ(∂ΩD) the boundaries of ϕ (Ω), where both the normal tension (t)

(being n the outer normal) and the displa
ements (u) are pres
ribed.

As des
ribed in [1℄, the mixed formulation 
an be obtained expressing

the system of Equations (3) in fun
tion of two primary variables: the dis-

pla
ement u and the mean stress p by splitting the stress tensor in its

volumetri
 and deviatori
 part σdev
. Thus, the system 
an be rewritten as















−∇ ·
(

σdev + p1
)

= f in ϕ (Ω)
p−

(

1
31 : σ

)

= 0 in ϕ (Ω)
(

σdev + p1
)

· n = t on ϕ(∂ΩN )
u = u on ϕ(∂ΩD)

(4)

being 1 the se
ond order identity tensor. We 
an observe that if u is a

solution of Equation (3), then (u, p), satisfying also p −
(

1
31 : σ

)

= 0, is a
solution of Equation (4).

2.2 Weak form and linearisation of the weak form in spatial form

Following the standard FEM pro
edure, the weak forms of Equations (3)

and (4) are obtained by employing the Galerkin method and are written in

spatial 
on�guration, adopting an Updated Lagrangian framework.

For the displa
ement formulation, the �rst equation of (3) is multiplied

by a test fun
tion w, whi
h is lying in the spa
e V of kinemati
ally admissi-

ble displa
ements, su
h thatw = {w ∈ V | w = 0 onϕ(∂ΩD)}. By using the
divergen
e theorem the weak form of momentum balan
e 
an be obtained

as

G(u)(w) =

∫

ϕ(Ω)

σ : [∇sw] dv−

∫

ϕ(Ω)

f ·w dv−

∫

ϕ(∂ΩN )

t·w da = 0, ∀w ∈ V

(5)

using the notation A
s = 1

2

(

A+A
T
)

. In this work a Newton-Raphson's

iterative pro
edure is employed for the solution of problems 
hara
terized

by material and geometri
al non-linearities. The non-linear weak form of
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Equation (5) has to be linearized through an expansion in Taylor's series,

evaluated at the last known equilibrium 
on�guration u∗
, expressed as

L(δu,w) ≃ G(u∗)(w) +DuG(u∗)(w)[δu] = 0, ∀w ∈ V (6)

where L is the linearised virtual work andDuG(u∗)(w)[δu] is the dire
tional
derivative of G at u∗

in the dire
tion of δu. Assuming that only internal

for
e 
ontributions are dependent on the displa
ement primary variable, the

dire
tional derivative 
an be written as

DuG(u∗)(w)[δu] =
d

dγ

∣

∣

∣

∣

γ=0

(

∫

ϕ(Ω)

[σ(ǫ(γ)) : (∇sw)] dv

)

(7)

where γ is a s
alar parameter and the following expression is used

ǫ(γ) = ∇s (u∗ + γδu) = ǫ∗ + γ∇s (δu) . (8)

with ǫ∗ = ∇s (u∗) the strain �eld at u∗
. The �nal matrix form 
an be

obtained as

K
tanδu = −R (9)

where δu is the ve
tor of unknowns, R is the ve
tor of residuals, expressed

as

R = G(u∗)(w) (10)

and K
tan = DuG(u)(w) is the tangent matrix, evaluated as the sum of the

material sti�ness matrix

K
M :=

∫

ϕ(Ω)

[∇sw]D [∇sδu] dv (11)

and the geometri
 sti�ness matrix

K
G :=

∫

ϕ(Ω)

[∇w]σ [∇δu] dv (12)

where D is the spatial algorithmi
 tangent moduli. The detailed pro
edure

to derive the �nal expression of the system of linearised equations in integral

and dis
rete form 
an be found in [39℄ and [43℄.

Con
erning the mixed formulation, linear interpolation �nite elements

both for displa
ement and pressure (u-p) are 
onsidered. In this regard, the

weak form of the balan
e of the linear momentum (Equation (5)) 
an be

rewritten as

G(u,p)(w) =

∫

ϕ(Ω)

(

σdev + p1
)

: [∇sw] dv −

∫

ϕ(Ω)

f ·w dv−

∫

ϕ(∂ΩN )

t ·w da = 0, ∀w ∈ V

(13)



6 I. Ia
oneta et al.

where the Cau
hy stress tensor σ is de
omposed in its deviatori
 and vol-

umetri
 
omponent, denoted as σdev
and p, respe
tively. The weak form

of the pressure 
ontinuity equation is obtained by performing a L2 inner

produ
t of the se
ond equation of (4) with an arbitrary test fun
tion q ∈ Q,

where Q is the spa
e of virtual pressure. Finally the weak form of the pres-

sure 
ontinuity equation is expressed as

G(u,p)(q) =

∫

ϕ(Ω)

q

[(

1

3
1 : σ

)

− p

]

dv = 0, ∀q ∈ Q (14)

By performing a linearization of Equations (13) and (14), similarly to

what explained for Equation (6), the solution system of linearized equations


an be derived and expressed in matrix form as

[

m
K

tan
B

B
∗ −M

] [

δu
δp

]

= −

[

Ru

Rp

]

(15)

where Ru = G(u,p)(w) and Rp = G(u,p)(q) are the 
omponents of the

residual ve
tor, δu and δp are the ve
tor of unknown displa
ements and

unknown mean stresses, respe
tively. The 
omponents of the matrix on the

left hand side (lhs) of Equation (15) are given by the tangent sti�ness ma-

trix

m
K

tan = DuG(u,p)(w), whi
h 
an be seen as the sum of the material

sti�ness matrix

m
K

M :=

∫

ϕ(Ω)

[∇sw]
(

D
dev + p(1⊗ 1− 2I)

)

[∇sδu] dv (16)

being I the fourth order identity tensor, and the geometri
 sti�ness matrix

m
K

G :=

∫

ϕ(Ω)

[∇w]
(

σdev + p1
)

[∇δu] dv (17)

Furthermore, M = DpG(u,p)(q) is

M =

∫

ϕ(Ω)

q δp dv (18)

and the mixed terms B = DpG(u,p)(w) and B
∗ = DuG(u,p)(q), are de�ned,

respe
tively, as

B =

∫

ϕ(Ω)

(∇ ·w) δp dv (19)

B
∗ =

∫

ϕ(Ω)

Du

(

1

3
1 : σ

)

(∇ · δu) q dv (20)

where Du

(

1
31 : σ

)


an be derived on
e determined the volumetri
 stress as

fun
tion of the strain �eld.

One 
an observe that

m
K

M
and

m
K

G
are distinguished from K

M
and

K
G
, de�ned for the irredu
ible formulation (Equations (11) and (12)). In the

mixed 
ase, the deviatori
 part of D and σ is separated by the volumetri
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one and an evaluation of the latter is done, not using the material response

of the 
onstitutive law, but the interpolation of the nodal pressure �eld on

the material points, i.e., the integration points.

For the treatment of the in
ompressibility 
onstraint, the Polynomial

Pressure Proje
tion (PPP), introdu
ed by Dohrmann and Bo
hev [40℄, is

used. This stabilization pro
edure is obtained by modifying the mixed vari-

ational equation by using a L2
polynomial pressure proje
tion. If k is the

order of the 
ontinuous polynomial shape fun
tions used to approximate

p, the pressure proje
tion is performed into a polynomial spa
e with order

of k − 1. As in the 
urrent work linear shape fun
tions are used for the

pressure, the L2
polynomial pressure proje
tion is made in a dis
ontinuous

spa
e and, 
onsequently, it 
an be performed at the element level as

∫

ϕ(Ω)

q̃ (p− p̃) dv = 0, ∀q̃ ∈ Q0
(21)

being p̃ the best approximation of p in (Q0) and q̃ ∈ Q0
an arbitrary test

fun
tion, where Q0
is the spa
e of polynomial fun
tions with zero degree in

ea
h 
oordinate dire
tion. Unlike other stabilization te
hniques, the pres-

sure stabilization is a

omplished without the use of the residual of the

momentum equation; thus the 
al
ulation of higher-order derivatives and

the spe
i�
ation of a mesh-dependent stabilization parameter are avoided.

Moreover, it is demonstrated that symmetry of the mixed formulation is

retained.

In the 
ase of simpli
ial elements, as in the 
urrent work, the stabilization

of the unstable mixed formulation requires only the addition of the bilinear

form

∫

ϕ(Ω)e
(q − q̃)

α

G
(p− p̃) dv = 0 (22)

to Equation (14), where α is a parameter to be sele
ted for stability and

G the shear modulus. The weak form of the pressure 
ontinuity equation

(Equation (14)) 
an be rewritten as

G(u,p)(q) =

∫

ϕ(Ω)

q

[(

1

3
1 : σ

)

− p

]

−
α

G
[q p− q̃ p̃] dv = 0 (23)

and the matrix system (Equation (15)) be
omes

[

K
tan

B

B
∗ −M−M

stab

] [

δu
δp

]

= −

[

Ru

Rp +Rstab
p

]

(24)

where

M
stab =

∫

ϕ(Ω)

α

G
(q δp− q̃ δp̃) dv (25)

and

Rstab
p =

∫

ϕ(Ω)

α

G
[q p− q̃ p̃] dv (26)
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2.3 Constitutive models

In this se
tion the 
onstitutive laws, employed in the 
urrent work, are

brie�y dis
ussed. In Se
tion 4, a hyperelasti
 Neo-Hookean law, a hyperelasti
-

plasti
 J2 and Mohr-Coulomb plasti
 laws in �nite strains are employed.

2.3.1 Hyperelasti
 law The hyperelasti
 law, used in Se
tion 4.1, is a Neo-

Hookean model with a stored energy fun
tion W written as the sum of its

volumetri
 U(J) and deviatori
 W̃ (b̄) 
omponent

W (J, b̄) := K U(J) + W̃ (b̄) =
1

2
K(J − 1)2 +

1

2
G (tr(b̄)− 3) (27)

with K representing the bulk modulus, J = det(F ) the determinant of

the total deformation gradient and b̄ the volume preserving part of the left

Cau
hy-Green tensor b = FF T
, de�ned as

b̄ := J−
2

3 b (28)

The Kir
hho� stress τ 
an be de�ned as

τ := K J(J − 1) +Gdev(b̄) (29)

and in the 
ase of the mixed formulation, Equation (29) is reformulated as

τ = pp J1+Gdev(b̄) (30)

where pp is the pressure value on the material point.

2.3.2 Hyperelasti
 - J2 plasti
 law Regarding the hyperelasti
-plasti
 J2

law employed in Se
tion 4.2, the approa
h presented in [44℄, based on the

multipli
ative de
omposition of F , is adopted. Following this approa
h, F

is split into a plasti
 and elasti
 
ontribution as

F = F eF p
(31)

For the evaluation of the material response in the elasti
 regime, the reader

has to refer to the stored energy fun
tion (Equation (27)), while for the

plasti
 regime, the system of equations, represented by the yield surfa
e

f(τ , q), the plasti
 �ow rule

(

˙
Cp
)

−1

dedu
ed by [45℄ for asso
iative J2-

plasti
ity, with the Kuhn-Tu
ker 
onditions, has to be 
onsidered:







f(τ , q) = |dev(τ )|−
√

2
3 σY ≤ 0

(

˙
Cp
)

−1

= − 2
3 λ̇ tr(b

e)F−1nF−T
(32)

where

˙
Cp

is the inverse of the volume preserving part of the plasti
 right

Cau
hy-Green deformation tensor Cp = F pTF p
, λ is the plasti
 multiplier,

n is the unit ve
tor of dev(τ ) and σY is the yield stress. As a perfe
tly

plasti
 law is used, the hardening law is negle
ted.
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2.3.3 Hyperelasti
 - Mohr-Coulomb plasti
 law In Se
tion 4.3 a Mohr-

Coulomb plasti
 law is 
onsidered. For its implementation the impli
it in-

tegration s
heme in prin
ipal stress spa
e, presented in [46℄, is followed.

Also in this 
ase no hardening law is used and in the formulation it will

be negle
ted. For the evaluation of the elasto-plasti
 response the system

of equations, represented by the yield surfa
e f(σ), the plasti
 �ow rule ǫ̇p,

with the Kuhn-Tu
ker 
onditions, is

{

f(σ1, σ2, σ3) = (σ1 − σ3) + (σ1 + σ3) sinφ− 2c cosφ ≤ 0

ǫ̇p = λ̇
∂g(σ)

∂σ

(33)

where σ1 > σ2 > σ3 are the major and minor prin
ipal stresses, φ is the

angle of internal fri
tion and c the 
ohesion. As in the 
urrent work an

asso
iative �ow rule is 
onsidered, the plasti
 potential g(σ) 
oin
ides with
the yield surfa
e fun
tion f(σ) , i.e., g(σ) = f(σ).

A

ording to [47,48℄, it is possible to rede�ne the s
heme of the algorithm

presented in [46℄ for a �nite strain regime, 
onsidering the Hen
ky strain

measure, evaluated in prin
ipal spa
e as

ǫ =
1

2
ln(β) (34)

where β is the eigenvalue ve
tor of the elasti
 left Cau
hy-Green deformation

tensor be, whose trial value is given by

be, trial = ∆F · be, n ·∆F T
(35)

where be, n is the 
onverged value relative to the last known 
on�guration

at time tn and ∆F :=
∂ϕ
(

X, tn+1
)

∂ϕ (X, tn)
is the in
rement of the total deforma-

tion gradient between tn and tn+1
. The free energy fun
tion is a quadrati


fun
tion of the prin
ipal elasti
 Hen
ky strains (ǫe1, ǫ
e
2, ǫ

e
3) [47℄

ψ(ǫeA) =
1

2
λ [ǫe1 + ǫe2 + ǫe3]

2 + µ
[

(ǫe1)
2 + (ǫe2)

2 + (ǫe3)
2
]

(36)

with λ and µ denoting the Lamé 
onstants and ǫeA the elasti
 Hen
ky strains

along the three prin
ipal dire
tions.

3 The Material Point Method

The Material Point Method (MPM) is a parti
le-based method, whose ori-

gin goes ba
k to the work of Harlow [49℄, who proposed the parti
le-in-
ell

method (PIC), as a te
hnique for the solution of �uid �ow problems. Some

de
ades after, in the works of Sulsky and 
oworkers [50,51℄, the PIC method

was rede�ned within the solid me
hani
s framework, adopting the name of

Material Point Method. MPM 
ombines the use of a Lagrangian des
ription

of the 
ontinuum, represented by the material points, with a dis
retization
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of the 
omputational domain, given, in this 
ase, by an Eulerian grid, as


an be observed in Figure 1. This distin
tive feature allows to tra
k the

deformation of the body and retrieve the history-dependent material infor-

mation at ea
h time instant of the simulation, without 
ommitting the state

variables mapping errors, typi
al of methods, whi
h make use of remeshing

te
hniques. This makes the method parti
ularly attra
tive for the solution

of problems, 
hara
terized by very large deformations and by the use of


omplex 
onstitutive laws [52, 53℄.

Figure 1 MPM: Overlapping of material points and Eulerian grid (sour
e: [39℄).

Sin
e the works published in [50,51℄, many improvements have been pro-

vided for a more e�
ient and algorithmi
ally straightforward evaluation of

grid node integrals in the weak formulation, su
h as, the generalized inter-

polation material point method (GIMP) [54℄, the 
onve
ted parti
le domain

interpolation te
hnique (CPDI) [55℄ or the se
ond-order 
onve
ted parti
le

domain interpolation (CPDI2) [56℄. In these versions, unlike the original

MPM, the parti
le mass is smeared over a parti
le domain (area or volume)

de�ned by an undeformable or a deformable parallelogram or a deformable

quadrilateral, in GIMP, CPDI and CPDI2, respe
tively. Alternative te
h-

niques, whi
h attempt to improve the nodal shape fun
tions base, make use

of higher order interpolation fun
tions [57�59℄.

The MPM formulation, in the 
urrent work, uses the 
lassi
al interpola-

tion pro
edure with linear shape fun
tions and an impli
it Newmark time

integration s
heme. Su
h approa
h has been developed for taking into a
-


ount of both geometri
 and material non-linearities; for this reason the

non-linear governing equations have to be linearized and solved through an

iterative Newton-Raphson s
heme. Extension to GIMP, CPDI or CPDI2

versions 
an also be 
onsidered, but goes out of the s
ope of the present

work, where a mixed MPM formulation is presented.

As in the 
lassi
 MPM, the algorithm 
onsists of three main steps (Figure

2):

(a) Initialization phase: at the beginning of the 
al
ulation step, the initial

nodal 
onditions are evaluated through a mapping of the material point

information on the nodes of the 
omputational grid (Figure 2(a));
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(b) UL FEM phase: on
e the initial 
onditions on the nodes are 
reated, it

is possible to evaluate the nodal unknowns in terms of displa
ement and

pressure (Figure 2(b));

(
) Conve
tive phase: as last step, the material point information are up-

dated throughout an interpolation of the nodal data. Before 
on
luding

the 
urrent time step, the material points are moved to a new position

and the nodal information are deleted (Figure 2(
)).

For further details, the algorithm, followed for the implementation of the

MPM 
ode, 
an be found in [39℄.

(a) Initialization phase (b) Updated Lagrangian FEM phase

(
) Conve
tive phase

Figure 2 MPM phases (sour
e: [39℄).

If a mixed (u-p) formulation is used in the framework of the MPM, it

is important to highlight that some 
hanges have to be 
onsidered in the

initialization and 
onve
tive phase, des
ribed in [39℄. In the initialization

phase, initial nodal pressure values pnI , related to the previous time tn, have
to be evaluated, in addition to the mass, velo
ity and a

eleration ones,

using the following expression:

pnI =

∑

pNImpp
n
p

∑

pNImp

(37)

where NI is the shape fun
tion of node I evaluated at the position of the

p− th material point, and mp and pnp are the mass and the pressure of the

material point, respe
tively. On
e the solution is iteratively 
omputed using
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the linearized system of Equations (24), the 
onve
tive phase is performed,

as explained in detail in [39℄. The pressure on the material points is updated

in addition to the material point displa
ement, velo
ity and a

eleration,

through an interpolation of the 
urrent nodal pressure values pn+1
I on the

material point position

pn+1
p =

∑

I

NIp
n+1
I . (38)

4 Numeri
al Examples

In this se
tion, three numeri
al examples are presented for the validation of

the mixed formulation. Firstly, the well-known ben
hmark test of a Cook's

elasti
 membrane is 
onsidered and a mesh 
onvergen
e study is performed.

The stability of the mixed formulation is assessed in a quasi-in
ompressible

elasti
 
ase. Se
ondly, a plane strain tension test of a J2-plasti
 plate in


ompressible and in
ompressible state is analysed. In this example, the per-

forman
es of the irredu
ible u and the mixed u-p formulations are 
ompared

in the 
ase of in
ompressible plasti
 �ow. Finally, a plain strain rigid strip

footing is studied. The reason for 
hoosing su
h example is twofold: on one

hand it represents a 
ase of saturated porous solid in undrained 
onditions

whi
h is known to su�er from volumetri
 lo
king. On the other hand, the

MPM formulation 
an be validated in large displa
ement and large defor-

mation regimes. The results obtained with the u and u-p formulations are


ompared and used to demonstrate that a mixed MPM formulation 
an

provide more a

urate and reliable results, not only under the assumption

of elasti
 and plasti
 in
ompressibility, but even in 
ompressible situations.

In this work a stabilization parameter (α) with value of 1 has been used

and for the solution of the system of linearized equations, both in the 
ase

of u and u-p formulations, the dire
t solver SuperLU is employed.

4.1 Cook's membrane problem

As a �rst numeri
al example, we 
onsider the well known Cook's membrane

test, proposed for the �rst time by Cook [60℄. This test is often used as a

ben
hmark to 
he
k the element formulation under 
ompressible and in
om-

pressible 
onditions. In the literature, the Cook's membrane is 
ommonly

tested in in�nitesimal deformation assumption and material linearity [14℄,

geometri
 non-linearity and material linearity [61℄ and, �nally, in geometri


and material non-linearities [7,13,41,47℄. The geometry and material prop-

erties of the problem are shown in Figure 3. A 
lamped trapezoidal plate,

subje
ted to a distributed shear load, whose resultant for
e is P = 1N ,

applied along the right side, is analysed. The stati
 
ase is solved study-

ing the response of a 
ompressible and a quasi-in
ompressible Neo-Hookean

material, whose stored energy fun
tion is de�ned by Equation (27). The



Mixed formulation within the MPM 13

16m

44m

48m

P

E = 70Pa

P = 1N

 Compressible case:  � = 0.33

Quasi-incompressible case: � = 0.499

A

Figure 3 Cook's membrane. Geometry, material properties and boundary 
on-

ditions


onvergen
e study is performed using six stru
tured triangular meshes with

an initial value of one material point per 
ell.

Sin
e the formulations under study are based on the assumption of �-

nite deformation and material non-linearity, the results relative to a very

�ne mesh (256 elements per side) of a FEM analsys is 
onsidered as referen
e

solution in the 
ompressible 
ase, while the result of [41℄ is the ben
hmark

solution for the quasi-in
ompressible 
ase. The referen
e solution of verti
al

displa
ement at point A (Figure 3) is found to be 0.323m, in the 
ompress-

ible 
ase, and 0.275m in the quasi-in
ompressible 
ases, respe
tively. The

results of u and u-p formulations, with and without stabilization term (UP

No Stab and UP Stab) are summarized in Table (1) for both the 
om-

pressible and nearly in
ompressible 
ases. The same results 
an be observed

graphi
ally in Figures 4 and 5.

Table 1 Cook's membrane. Compressible 
ase: verti
al displa
ement at point A

obtained with the U, UP formulation without and with stabilization

Elements per side Compressible 
ase Quasi-in
ompressible 
ase

U UP No Stab UP Stab U UP No Stab UP Stab

2 0.089 0.1013 0.1172 0.0723 0.0788 0.1277

4 0.1415 0.1718 0.1953 0.0736 0.1157 0.1932

8 0.2183 0.2511 0.2669 0.0742 0.1821 0.2424

16 0.2771 0.2952 0.3025 0.075 0.2356 0.2648

32 0.30386 0.3119 0.315 0.0775 0.2606 0.2725

64 0.3133 0.3176 0.319 0.0862 0.2702 0.275

The u formulation is less a

urate than the u-p formulation both for

the UP No Stab and UP Stab 
ases, not only for the nearly in
ompressible


ondition, as expe
ted, but also for the 
ompressible one. However, the
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dis
repan
y is 
learly visible in the quasi-in
ompressible problem (Figure

5), where the 
apability of the u formulation to predi
t the displa
ement

�eld is 
ompromised due to volumetri
 lo
king.
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Figure 4 Cook's membrane. Compressible 
ase: verti
al displa
ement at point

A
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Figure 5 Cook's membrane. Quasi-in
ompressible 
ase: verti
al displa
ement at

point A

Regarding the mixed approa
hes, from Figure 5 it is possible to infer

that even not using a stabilization term the solution is not a�e
ted by
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volumetri
 lo
king. However, through the stabilized u-p formulation it is

also possible to prevent pressure os
illation issues in the mean stress �eld,

as 
an be observed in Figure 6.

(a) u-p without stabilization (b) u-p with stabilization

Figure 6 Cook's membrane. Quasi-in
ompressible 
ase: Pressure 
ounter �ll. The

mixed formulation without any stabilization (a) fails to predi
t the pressure �eld,

while it is 
orre
tly evaluated using the PPP stabilization (b). Bla
k 
ontour


olour should be intended as out of range.

4.2 2D tension test

As se
ond numeri
al example, a plane strain tension problem is 
onsid-

ered to test the mixed formulation in an elasto-plasti
 regime. A 2D plate,


lamped at the bottom of the spe
imen, is subje
ted to a pres
ribed verti
al

displa
ement on the upper side. Both geometry and material properties are

taken from [16℄ and are depi
ted in Figure 7. The plate is made by a hypere-

lasti
 perfe
tly-plasti
 material whi
h is simulated using a J2 plasti
 law. An

unstru
tured triangular ba
kground mesh with a mesh size of 0.001m and

an initial distribution of 12 material points per 
ell, whi
h is found to give

the optimal trade-o� between a

ura
y of the results and 
omputational


ost in both the 
ompressible and in
ompressible 
ases, are adopted.

The results of the 
ompressible 
ase are shown in Figures 8, 9, 10 and

11, where the displa
ement along x and y-dire
tion, the equivalent plasti


strains and the verti
al Cau
hy stresses are shown. Volumetri
 lo
king is not

a�e
ting the numeri
al results, as the plate is working under 
ompressible


onditions. However, the u-p formulation is more a

urate than the u one,

not only in the evaluation of the stress �eld, but also of the displa
ement

�eld. Moreover, the goodness of the solution 
an be appre
iated looking at

Figure 10(b): the equivalent plasti
 strains are distin
tly distributed along

a 
ross shape, while the result of Figure 10(a) revokes the same shape, but

without the same order of pre
ision. In 
on
lusion, even if a 
ompressible

material is simulated, the results obtained with the u-p formulation present

a higher order of a

ura
y, by using the same mesh size and the same number

of material points per element.
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0.1m

Δu=1mm

0
.1

m

y

x

Figure 7 Tension test. Geometry, material properties and boundary 
onditions

The results of the in
ompressible 
ase are shown in Figures 12, 13, 14

and 15. In this 
ase, the u formulation fails in the simulation of the ten-

sion test. As expe
ted, the displa
ement and stress �elds are a�e
ted by

volumetri
 lo
king and the plasti
 deformations are in
orre
tly lo
alized.

On the other hand, Figures 12(b), 13(b), 14(b) and 15(b) show that the

u-p formulation is able to evaluate 
orre
tly the displa
ement and stress

�eld under in
ompressible 
onditions. The results are similar to those de-

pi
ted in Figures 8(b), 9(b), 10(b) and 11(b): the 
ross-shape distribution

of the equivalent plasti
 strains and stresses are re
overed. Furthermore,

Figures 16(a) and 16(
) show a 
omparison between the numeri
al results

of the mixed formulation in the nearly-in
ompressible 
ase and the refer-

en
e solution [16℄. We 
an observe that there is a good agreement in the


ross-shape distribution of the equivalent plasti
 strains and in the range

of pressures. Finally, the stress - displa
ement 
urve, evaluated with the

mixed formulation, is shown in Figure 17. The results for the 
ompressible

and in
ompressible 
ases are in good agreement. Both 
orre
tly predi
t the

elasti
 regime and the in
eption of the plasti
 �ow when the yield stress is

rea
hed.

Sin
e a mixed formulation with displa
ement and pressure as primary

variables is adopted, strains are not linearly distributed within the ele-

ment, but these 
oin
ide with a 
onstant fun
tion. It worth highlighting

that through this numeri
al pro
edure while it is possible to avoid the volu-

metri
 lo
king, the problems related with strain lo
alization are still present.

This means that the width of the shear bands still depends on the size of the

elements. This problem 
an be solved by regularization of the element size

as proposed, e.g. in [17, 18, 62℄ or [48℄, where the formulations 
onsider the

strain �eld as primary variable and, therefore, its linear distribution 
an be
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evaluated, whi
h allows to a

urately predi
t strain lo
alization with mesh

independen
e.

(a) u formulation (b) u-p formulation

Figure 8 Tension test. Compressible 
ase: horizontal displa
ement

(a) u formulation (b) u-p formulation

Figure 9 Tension test. Compressible 
ase: verti
al displa
ement

(a) u formulation (b) u-p formulation

Figure 10 Tension test. Compressible 
ase: equivalent plasti
 strain
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(a) u formulation (b) u-p formulation

Figure 11 Tension test. Compressible 
ase: Cau
hy stress along loading axis

(a) u formulation (b) u-p formulation

Figure 12 Tension test. In
ompressible 
ase: horizontal displa
ement

(a) u formulation (b) u-p formulation

Figure 13 Tension test. In
ompressible 
ase: verti
al displa
ement

(a) u formulation (b) u-p formulation

Figure 14 Tension test. In
ompressible 
ase: equivalent plasti
 strain
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(a) u formulation (b) u-p formulation

Figure 15 Tension test. In
ompressible 
ase: Cau
hy stress along loading axis

(a) equivalent plasti


strain

(
) pressure

Figure 16 Tension test. In
ompressible 
ase: results evaluated at a total imposed

verti
al displa
ement of 0.0001m using a T1/P1 u-p formulation. Results taken

from [16℄
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Figure 17 Tension test. Stress-Displa
ement 
urve. Comparison between the


ompressible 
ase (red 
urve) and the in
ompressible 
urve (green 
urve).
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4.3 Plain strain rigid footing on undrained soil

The last example is a plain strain rigid strip footing for the evaluation of

the bearing 
apa
ity of the soil in undrained 
onditions, underneath the

foundation. The soil is modelled as a purely 
ohesive weightless elasti
-

perfe
tly plasti
 Mohr-Coulomb material with asso
iative �ow rule. For its

implementation the return mapping de�ned in [46℄ has been followed and

the algorithm has been adapted to the 
ase of �nite strains plasti
ity [47,63℄,

as brie�y dis
ussed in Se
tion 2.3. The geometry, the boundary 
onditions

and material properties are represented in Figure 18, where for symmetry

only half of the domain is 
onsidered.

12m

10m

B/2 = 0.5 m

E = 10
5
 Pa 

ν = 0.499

cu = 10
3 
Pa

12 MP

4 MP

2m

6m

Figure 18 Rigid strip footing. Geometry, material properties, boundary 
ondi-

tions and initial material points density. 12 material points (MP) per element are

used in the vi
inity of the footing while only 4 are used in the rest of the domain.

In the geome
hani
s 
ommunity this is a 
lassi
al ben
hmark for the

validation of the 
onstitutive law and of the numeri
al method adopted for

its simulation. In the literature, the rigid strip footing has been studied by

many authors. In [64℄ Nazem and 
oworkers solved this example in three

di�erent kinemati
s frameworks: a Total Lagrangian (TL), an Updated La-

grangian (UL) and an Arbitrary Lagrangian Eulerian (ALE) Finite Element

Methods. They show that for high deformations an ALE method is more

suitable than UL and TL strategies, avoiding mesh distortion with a remesh-

ing te
hnique. Even if the remeshing 
ould smear a stress 
on
entration and


ompromise the strain lo
alization, they found that the load-displa
ement


urve is 
omparable with the numeri
al solutions available in the literature.

In [65℄ the te
hnique of [64℄ is generalized to the 
ase of higher order ele-

ments. The same test example has been also used to prove that the MPM

represents an ideal numeri
al approa
h sin
e it naturally tra
ks large de-
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formations without the need of remeshing pro
edures. For instan
e, in [53℄

this example is su

essfully solved exploiting the 
apability of MPM to tra
k

large deformation and large displa
ement of the solid. However, the work

of [53℄ is limited to the in�nitesimal strain assumption.

In the 
urrent paper the work of [53℄ is generalized 
onsidering a stabi-

lized mixed formulation, valid under geometri
 and material non-linearities.

The simulation is performed using displa
ement 
ontrol with steps of in
re-

mental verti
al displa
ement ∆u = −0.001m. The total displa
ement has

been imposed in 2000 time steps whi
h 
orresponds to twi
e the founda-

tion width B. The dis
retization of the 
omputational domain is performed

through a unstru
tured triangular ba
kground mesh with a mesh size of

0.05m. At the interfa
e between the foundation and the soil, where the

largest deformations take pla
e, a higher initial number of material points

per element is used for a better resolution of the results (Figure 18).

In Figures 19, 20 and 21 the displa
ement and stress �elds obtained

with the u and u-p formulations are 
ompared. As expe
ted, more reliable

and a

urate results are 
omputed with the mixed �nite element formula-

tion. It 
an be noted that the �nal deformation is a

urately des
ribed and

an improvement is registered if the �nal deformation is 
ompared with the

numeri
al results of [64℄ and [65℄ whi
h are more similar to the �nal 
on�g-

uration obtained through the displa
ement-based formulation. The need for

a mixed formulation is evident when evaluating the verti
al stress �eld. In

Figure 21(a) the displa
ement-based formulation fails to evaluate a reliable

stress response, as the magnitude of the verti
al Cau
hy stress is out of the

expe
ted range in the area where the foundation buries itself. On the other

hand, the mixed formulation is able to evaluate a 
ontinuous stress �eld and

using su
h result it is possible to evaluate the normalised load-displa
ement

response of the foundation, whi
h is used for the validation of the 
urrent

example.

(a) u formulation (b) u-p formulation

Figure 19 Rigid strip footing. Horizontal displa
ement
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(a) u formulation (b) u-p formulation

Figure 20 Rigid strip footing. Verti
al displa
ement

(a) u formulation (b) u-p formulation

Figure 21 Rigid strip footing. Verti
al Cau
hy stress

Sin
e the problem has no analyti
al solution, the numeri
al result of [66℄,

obtained through a sequential limit analysis formulation, is taken as refer-

en
e solution. The problem is solved under the assumption of large defor-

mations, hen
e, the bearing 
apa
ity of the soil is expe
ted to be higher

than the value of 2 + π whi
h 
orresponds to the small deformation 
ase

for a given footing displa
ement. Under this hypothesis, the mobilized soil

resistan
e does not rea
h an asymptoti
 value, but gradually in
reases, as

explained in [66℄. In Figure 22, the result obtained through the u-p formula-

tion in terms of normalized bearing 
apa
ity of the soil, as a fun
tion of the

normalized settlement, is depi
ted and 
ompared with the ben
hmark solu-

tion. It 
an be observed that, the obtained 
urve is in good agreement with

the referen
e solution [66℄. The dis
repan
y that is observed for the initial

values of the settlement is the 
onsequen
e of the 
hosen material elasti


properties. The Young Modulus E and the Poisson's ratio ν have values
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whi
h 
orrespond to an undrained bulk modulus of Ku = 3, 33 · 105Pa,
whi
h gives a ratio Ku/cu = 3, 33 · 103. In [53℄, the in�uen
e of this ratio on

the normalised load-displa
ement 
urve is studied: the elasti
 response of

the soil be
omes less or more important and the bearing 
apa
ity of the soil


an in
rease or de
rease, for higher or lower values of this ratio, respe
tively.

For this reason the numeri
al results plotted in Figure 22 have an important

elasti
 response and are deviating during the initial phase of the simulation

from the perfe
tly rigid behaviour of the ben
hmark solution.
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Figure 22 Rigid strip footing. Normalised load-displa
ement 
urve: 
omparison

between referen
e solution taken from [66℄ and the u-p formulation solution pre-

sented in this work.

The example of the rigid footing on undrained soil has been validated

using a stabilized mixed MPM formulation. The soil bearing 
apa
ity is

well predi
ted and 
omparable with a

urate numeri
al results from the lit-

erature. Moreover, a good des
ription of the �nal deformation of the soil

is a
hieved by using the MPM and its 
apability of solving large displa
e-

ment and large deformation problems is equivalent, if not superior, to other

te
hniques proposed in the literature [64, 65℄.

5 Con
lusions

In this paper a stabilized mixed formulation is presented within the frame-

work of an impli
it Material Point Method (MPM) for the solution of

non-linear in
ompressible solid me
hani
s problems. The MPM is a par-

ti
le method able to over
ome typi
al issues of standard FEM when the


ontinuum needs to undergo severe deformations, su
h as element tan-

gling and extreme mesh distortion. The stabilized mixed u-p formulation
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is tested through a series of ben
hmark examples and 
ompared with a

displa
ement-based u approa
h. Firstly, the Cook's membrane problem, a

bending dominated test, is investigated. Two 
ases, a 
ompressible and a

nearly-in
ompressible one, are solved through the u and u-p strategies. It is

demonstrated that the u-p formulation always gives the best performan
e in

term of 
onvergen
e. In the quasi-in
ompressible 
ase the volumetri
 lo
king

issue is over
ome and pressure os
illations are avoided if a stabilization term

is added to the mixed �nite element formulation. In the se
ond example, a

J2 plasti
 plate, subje
ted to uniform tension on one side and �xed to the

other side, is simulated using both methodologies under an iso
hori
 plasti


�ow 
ondition. Comparing the displa
ement-based and mixed approa
h it is

shown that better results are obtained through the u-p strategy. Indeed, a

more a

urate de�nition of displa
ement, equivalent plasti
 strains and ver-

ti
al Cau
hy stress �elds and a good agreement with the referen
e solution

are observed. Despite volumetri
 lo
king issue is �xed in the 
ase of the u-p

formulation, further problems, su
h as, mesh independen
e and strain lo
al-

ization, are not addressed in the 
urrent work and they represent interesting

topi
s for a future resear
h. As third ben
hmark test, the rigid footing on

undrained soil is 
onsidered. This is a 
lear example, where the MPM repre-

sents a su

essful solution over the standard FEM sin
e for the tra
king of

severe deformations the employment of remeshing pro
edures is avoided. In

this 
ase the good performan
es of the MPM u-p formulation are tested also

under the �nite deformation regime: a higher a

ura
y of the displa
ement

and stress �elds are 
on�rmed. Moreover, evaluating the bearing 
apa
ity

as fun
tion of the footing displa
ement, the load-displa
ement 
urve is ob-

tained and used as validation tool to be 
ompared with a referen
e solution.

The numeri
al example shows that the MPM u-p formulation is able to

evaluate more a

urate results in terms of displa
ement and stress �elds,

not only under near-in
ompressible state, avoiding the typi
al drawba
k of

volumetri
 lo
king, but even under 
ompressible 
onditions.

In 
on
lusion, the impli
it MPM is numeri
al strategy, able to su

ess-

fully model highly deforming materials whi
h may undergo in
ompressible

or nearly-in
ompressible 
onditions.
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