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Abstrat In this work a stabilized mixed formulation for the solution of

non-linear solid mehanis problems in nearly-inompressible onditions is

presented. In order to deal with high material deformation, an impliit Ma-

terial Point Method (MPM) is hosen. Suh hoie allows avoiding the las-

sial limitations of the Finite Element Method (FEM), e.g., element tan-

gling and extreme mesh distortion. The proposed mixed formulation, with

displaement and pressure as primary variables, is tested through lassial

benhmarks in solid and geo-mehanis where a Neo-Hookean, a J2 and

a Mohr-Coulomb plasti law are employed. Further, the stabilized mixed

formulation is ompared with a displaement-based formulation to demon-

strate how the proposed approah gets better results in terms of auray,

not only when inompressible materials are simulated, but also in the ase

of ompressible ones.
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1 Introdution

The solution of solid mehanis problems in large displaement and large

deformation regime, dealing with inompressible or nearly inompressible
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materials, is a topi of paramount importane in the omputational mehan-

is ommunity sine many engineering problems present suh onditions. It

is well known that overly sti� numerial solutions appear when Poisson's

ratio ν tends to 0.5 or when plasti �ow is onstrained by the volume on-

servation ondition. In these ases, a standard Galerkin displaement-based

formulation (u formulation) fails [1, 2℄ due to the inability to evaluate the

orret strain �eld. In the literature, many possible solutions an be found.

For instane, Simo and Rifai introdued the Mixed Enhaned Element for

small deformation problems [3℄. This is a speial three-�eld mixed �nite

element method in whih the spae of disrete strains is augmented with

loal funtions. It is worth mentioning that also the lass of B-bar meth-

ods [4℄ and the lassial inompatible modes formulation [5℄ fall under this

theory. For general purposes, some variants of this proedure are analysed

in [6℄. Alternative proedures suitable for geometrially non-linear regimes,

are given by the F-BAR method [7℄, a tehnique based on the onept of

multipliative deviatori/volumetri split in onjuntion with the replae-

ment of the ompatible deformation gradient �eld, the non-linear B-bar

method [8℄ and the family of enhaned elements [9℄, whih represents an

extension to the non-linear regime of the proedures exposed in [4℄ and [5℄,

respetively. Though the good performane of all the aforementioned meth-

ods, none of suh tehniques is, however, suitable for appliation on sim-

pliial meshes [2, 10, 11℄ . In this regards, among the suessful strategies

for the ful�llment of the inompressibility onstrain, it is worth mentioning

the group of the Mixed Variational Methods. Di�erent researhers worked

on mixed �nite element formulations with displaement and mean stress as

primary variables [12�16℄; Cervera and oworkers, for instane, proposed a

strain/displaement mixed formulation in the ontext of ompressible and

inompressible plastiity [17, 18℄; Simo et al. introdued a non linear ver-

sion of a three-�eld Hu-Washizu Variational priniple, where displaement,

pressure and the Jaobian of the deformation gradient are independent �eld

variables [19℄. The use of Mixed Variational Methods and the di�ulties en-

ountered when applying them with di�erent elements have been largely

disussed in the 1970s. In [20�23℄ the need to satisfy the stability ondition,

the so-alled inf-sup ondition, is demonstrated and the instability and in-

e�etiveness of elements with equal-order interpolations for all the primary

variables is proved. This has motivated the development of a series of sta-

bilization tehniques, whih allow the employment of low order Galerkin

�nite elements in omputational �uid dynamis and solid mehanis prob-

lems [24�31℄.

The treatment of the inompressibility onstraint is relatively new in the

ontext of the Material Point Method (MPM). Most MPM formulations deal

with ompressible materials, avoiding the issues arising from the imposition

of the inompressibility onstraint. However, some proedures for the treat-

ment of loking issues an be found in the literature. For instane, in [32℄ an

approah for the solution of kinemati (shearing and volumetri) loking is

proposed. The authors identi�ed the employment of linear shape funtions
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in onjuntion with a regular, retangular grid, as ause of the loking. The

mixed formulation, employed in suh work, is derived from the de�nition

of a three-�eld Hu-Washizu potential, with stress, strain and displaement

onsidered as primary variables. In [33℄ the formulation presented makes

use of the Chorin's projetion [34℄, a popular frational step formulation

solved impliitly for �uid mehanis problems and in [35℄ a similar strategy,

based on a splitting operator tehnique for solving the momentum equation,

is proposed for the treatment of the inompressibility onstrain.

In this paper the omputational strategy proposed in [36℄ for the solu-

tion of solid mehanis problems haraterized by plasti inompressibility

in large displaement and large deformation regime, is desribed in detail

and applied to a wide range of test examples. A mixed u-p formulation,

where the displaement and mean stress are onsidered as primary variables,

is implemented within the framework of an impliit Material Point Method

ode, developed in the Kratos Multiphysis open soure platform [37,38℄ fol-

lowing the algorithm presented by the authors in [39℄. A monolithi solution

strategy is used, whih allows not to impose "spurious" pressure boundary

onditions on the Neumann boundary, as done in [33, 35℄. In the urrent

work only simpliial elements are onsidered and a stabilization tehnique

is adopted for the satisfation of the inf-sup ondition. The stabilization,

based on the Polynomial Pressure Projetion (PPP), presented in [40℄, is

hosen for its ease of implementation and good performane demonstrated

in previous works [41, 42℄. The proposed approah is validated through a

series of benhmark examples, where an elasti Neo-Hookean, a J2 and a

Mohr-Coulomb plasti material are employed. Further, for eah test, the re-

sults obtained through a displaement-based (u) and the stabilized mixed

(u-p) formulation are ompared.

The paper is organized as follow: in Setion 2 the u and u-p formula-

tions are derived in their matrix form and the onstitutive laws employed

for the solution of the examples are brie�y introdued. In Setion 3 the

Material Point Method is presented. In Setion 4 the numerial examples

are illustrated and the results are disussed. Finally, Setion 5 presents the

onlusions.

2 The irreduible and mixed formulation

In this setion the displaement-based (u) and mixed (u-p) formulations

are brie�y introdued and derived in matrix form.

2.1 Governing equations in strong form

Let us onsider the body B whih oupies a regionΩ of the three-dimensional

Eulidean spae E with a regular boundary ∂Ω in its referene on�guration.

A deformation of B is de�ned by a one-to-one mapping

ϕ : Ω → E (1)
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that maps eah point p of the body B into a spatial point x

x = ϕ (p) (2)

whih represents the loation of p in the deformed on�guration of B. The
region of E oupied by B in its deformed on�guration is denoted as ϕ (Ω).

The boundary value problem of �nite elastostatis onsists in �nding a

displaement �eld u : ϕ (Ω) → E suh that the equilibrium equations and

the kinemati onditions are satis�ed







−∇ · σ = f in ϕ (Ω)
σ · n = t on ϕ(∂ΩN )

u = u on ϕ(∂ΩD)
(3)

where σ is the Cauhy stress tensor, f denotes the body fores and ϕ(∂ΩN )
and ϕ(∂ΩD) the boundaries of ϕ (Ω), where both the normal tension (t)

(being n the outer normal) and the displaements (u) are presribed.

As desribed in [1℄, the mixed formulation an be obtained expressing

the system of Equations (3) in funtion of two primary variables: the dis-

plaement u and the mean stress p by splitting the stress tensor in its

volumetri and deviatori part σdev
. Thus, the system an be rewritten as















−∇ ·
(

σdev + p1
)

= f in ϕ (Ω)
p−

(

1
31 : σ

)

= 0 in ϕ (Ω)
(

σdev + p1
)

· n = t on ϕ(∂ΩN )
u = u on ϕ(∂ΩD)

(4)

being 1 the seond order identity tensor. We an observe that if u is a

solution of Equation (3), then (u, p), satisfying also p −
(

1
31 : σ

)

= 0, is a
solution of Equation (4).

2.2 Weak form and linearisation of the weak form in spatial form

Following the standard FEM proedure, the weak forms of Equations (3)

and (4) are obtained by employing the Galerkin method and are written in

spatial on�guration, adopting an Updated Lagrangian framework.

For the displaement formulation, the �rst equation of (3) is multiplied

by a test funtion w, whih is lying in the spae V of kinematially admissi-

ble displaements, suh thatw = {w ∈ V | w = 0 onϕ(∂ΩD)}. By using the
divergene theorem the weak form of momentum balane an be obtained

as

G(u)(w) =

∫

ϕ(Ω)

σ : [∇sw] dv−

∫

ϕ(Ω)

f ·w dv−

∫

ϕ(∂ΩN )

t·w da = 0, ∀w ∈ V

(5)

using the notation A
s = 1

2

(

A+A
T
)

. In this work a Newton-Raphson's

iterative proedure is employed for the solution of problems haraterized

by material and geometrial non-linearities. The non-linear weak form of
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Equation (5) has to be linearized through an expansion in Taylor's series,

evaluated at the last known equilibrium on�guration u∗
, expressed as

L(δu,w) ≃ G(u∗)(w) +DuG(u∗)(w)[δu] = 0, ∀w ∈ V (6)

where L is the linearised virtual work andDuG(u∗)(w)[δu] is the diretional
derivative of G at u∗

in the diretion of δu. Assuming that only internal

fore ontributions are dependent on the displaement primary variable, the

diretional derivative an be written as

DuG(u∗)(w)[δu] =
d

dγ

∣

∣

∣

∣

γ=0

(

∫

ϕ(Ω)

[σ(ǫ(γ)) : (∇sw)] dv

)

(7)

where γ is a salar parameter and the following expression is used

ǫ(γ) = ∇s (u∗ + γδu) = ǫ∗ + γ∇s (δu) . (8)

with ǫ∗ = ∇s (u∗) the strain �eld at u∗
. The �nal matrix form an be

obtained as

K
tanδu = −R (9)

where δu is the vetor of unknowns, R is the vetor of residuals, expressed

as

R = G(u∗)(w) (10)

and K
tan = DuG(u)(w) is the tangent matrix, evaluated as the sum of the

material sti�ness matrix

K
M :=

∫

ϕ(Ω)

[∇sw]D [∇sδu] dv (11)

and the geometri sti�ness matrix

K
G :=

∫

ϕ(Ω)

[∇w]σ [∇δu] dv (12)

where D is the spatial algorithmi tangent moduli. The detailed proedure

to derive the �nal expression of the system of linearised equations in integral

and disrete form an be found in [39℄ and [43℄.

Conerning the mixed formulation, linear interpolation �nite elements

both for displaement and pressure (u-p) are onsidered. In this regard, the

weak form of the balane of the linear momentum (Equation (5)) an be

rewritten as

G(u,p)(w) =

∫

ϕ(Ω)

(

σdev + p1
)

: [∇sw] dv −

∫

ϕ(Ω)

f ·w dv−

∫

ϕ(∂ΩN )

t ·w da = 0, ∀w ∈ V

(13)
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where the Cauhy stress tensor σ is deomposed in its deviatori and vol-

umetri omponent, denoted as σdev
and p, respetively. The weak form

of the pressure ontinuity equation is obtained by performing a L2 inner

produt of the seond equation of (4) with an arbitrary test funtion q ∈ Q,

where Q is the spae of virtual pressure. Finally the weak form of the pres-

sure ontinuity equation is expressed as

G(u,p)(q) =

∫

ϕ(Ω)

q

[(

1

3
1 : σ

)

− p

]

dv = 0, ∀q ∈ Q (14)

By performing a linearization of Equations (13) and (14), similarly to

what explained for Equation (6), the solution system of linearized equations

an be derived and expressed in matrix form as

[

m
K

tan
B

B
∗ −M

] [

δu
δp

]

= −

[

Ru

Rp

]

(15)

where Ru = G(u,p)(w) and Rp = G(u,p)(q) are the omponents of the

residual vetor, δu and δp are the vetor of unknown displaements and

unknown mean stresses, respetively. The omponents of the matrix on the

left hand side (lhs) of Equation (15) are given by the tangent sti�ness ma-

trix

m
K

tan = DuG(u,p)(w), whih an be seen as the sum of the material

sti�ness matrix

m
K

M :=

∫

ϕ(Ω)

[∇sw]
(

D
dev + p(1⊗ 1− 2I)

)

[∇sδu] dv (16)

being I the fourth order identity tensor, and the geometri sti�ness matrix

m
K

G :=

∫

ϕ(Ω)

[∇w]
(

σdev + p1
)

[∇δu] dv (17)

Furthermore, M = DpG(u,p)(q) is

M =

∫

ϕ(Ω)

q δp dv (18)

and the mixed terms B = DpG(u,p)(w) and B
∗ = DuG(u,p)(q), are de�ned,

respetively, as

B =

∫

ϕ(Ω)

(∇ ·w) δp dv (19)

B
∗ =

∫

ϕ(Ω)

Du

(

1

3
1 : σ

)

(∇ · δu) q dv (20)

where Du

(

1
31 : σ

)

an be derived one determined the volumetri stress as

funtion of the strain �eld.

One an observe that

m
K

M
and

m
K

G
are distinguished from K

M
and

K
G
, de�ned for the irreduible formulation (Equations (11) and (12)). In the

mixed ase, the deviatori part of D and σ is separated by the volumetri
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one and an evaluation of the latter is done, not using the material response

of the onstitutive law, but the interpolation of the nodal pressure �eld on

the material points, i.e., the integration points.

For the treatment of the inompressibility onstraint, the Polynomial

Pressure Projetion (PPP), introdued by Dohrmann and Bohev [40℄, is

used. This stabilization proedure is obtained by modifying the mixed vari-

ational equation by using a L2
polynomial pressure projetion. If k is the

order of the ontinuous polynomial shape funtions used to approximate

p, the pressure projetion is performed into a polynomial spae with order

of k − 1. As in the urrent work linear shape funtions are used for the

pressure, the L2
polynomial pressure projetion is made in a disontinuous

spae and, onsequently, it an be performed at the element level as

∫

ϕ(Ω)

q̃ (p− p̃) dv = 0, ∀q̃ ∈ Q0
(21)

being p̃ the best approximation of p in (Q0) and q̃ ∈ Q0
an arbitrary test

funtion, where Q0
is the spae of polynomial funtions with zero degree in

eah oordinate diretion. Unlike other stabilization tehniques, the pres-

sure stabilization is aomplished without the use of the residual of the

momentum equation; thus the alulation of higher-order derivatives and

the spei�ation of a mesh-dependent stabilization parameter are avoided.

Moreover, it is demonstrated that symmetry of the mixed formulation is

retained.

In the ase of simpliial elements, as in the urrent work, the stabilization

of the unstable mixed formulation requires only the addition of the bilinear

form

∫

ϕ(Ω)e
(q − q̃)

α

G
(p− p̃) dv = 0 (22)

to Equation (14), where α is a parameter to be seleted for stability and

G the shear modulus. The weak form of the pressure ontinuity equation

(Equation (14)) an be rewritten as

G(u,p)(q) =

∫

ϕ(Ω)

q

[(

1

3
1 : σ

)

− p

]

−
α

G
[q p− q̃ p̃] dv = 0 (23)

and the matrix system (Equation (15)) beomes

[

K
tan

B

B
∗ −M−M

stab

] [

δu
δp

]

= −

[

Ru

Rp +Rstab
p

]

(24)

where

M
stab =

∫

ϕ(Ω)

α

G
(q δp− q̃ δp̃) dv (25)

and

Rstab
p =

∫

ϕ(Ω)

α

G
[q p− q̃ p̃] dv (26)
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2.3 Constitutive models

In this setion the onstitutive laws, employed in the urrent work, are

brie�y disussed. In Setion 4, a hyperelasti Neo-Hookean law, a hyperelasti-

plasti J2 and Mohr-Coulomb plasti laws in �nite strains are employed.

2.3.1 Hyperelasti law The hyperelasti law, used in Setion 4.1, is a Neo-

Hookean model with a stored energy funtion W written as the sum of its

volumetri U(J) and deviatori W̃ (b̄) omponent

W (J, b̄) := K U(J) + W̃ (b̄) =
1

2
K(J − 1)2 +

1

2
G (tr(b̄)− 3) (27)

with K representing the bulk modulus, J = det(F ) the determinant of

the total deformation gradient and b̄ the volume preserving part of the left

Cauhy-Green tensor b = FF T
, de�ned as

b̄ := J−
2

3 b (28)

The Kirhho� stress τ an be de�ned as

τ := K J(J − 1) +Gdev(b̄) (29)

and in the ase of the mixed formulation, Equation (29) is reformulated as

τ = pp J1+Gdev(b̄) (30)

where pp is the pressure value on the material point.

2.3.2 Hyperelasti - J2 plasti law Regarding the hyperelasti-plasti J2

law employed in Setion 4.2, the approah presented in [44℄, based on the

multipliative deomposition of F , is adopted. Following this approah, F

is split into a plasti and elasti ontribution as

F = F eF p
(31)

For the evaluation of the material response in the elasti regime, the reader

has to refer to the stored energy funtion (Equation (27)), while for the

plasti regime, the system of equations, represented by the yield surfae

f(τ , q), the plasti �ow rule

(

˙
Cp
)

−1

dedued by [45℄ for assoiative J2-

plastiity, with the Kuhn-Tuker onditions, has to be onsidered:







f(τ , q) = |dev(τ )|−
√

2
3 σY ≤ 0

(

˙
Cp
)

−1

= − 2
3 λ̇ tr(b

e)F−1nF−T
(32)

where

˙
Cp

is the inverse of the volume preserving part of the plasti right

Cauhy-Green deformation tensor Cp = F pTF p
, λ is the plasti multiplier,

n is the unit vetor of dev(τ ) and σY is the yield stress. As a perfetly

plasti law is used, the hardening law is negleted.
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2.3.3 Hyperelasti - Mohr-Coulomb plasti law In Setion 4.3 a Mohr-

Coulomb plasti law is onsidered. For its implementation the impliit in-

tegration sheme in prinipal stress spae, presented in [46℄, is followed.

Also in this ase no hardening law is used and in the formulation it will

be negleted. For the evaluation of the elasto-plasti response the system

of equations, represented by the yield surfae f(σ), the plasti �ow rule ǫ̇p,

with the Kuhn-Tuker onditions, is

{

f(σ1, σ2, σ3) = (σ1 − σ3) + (σ1 + σ3) sinφ− 2c cosφ ≤ 0

ǫ̇p = λ̇
∂g(σ)

∂σ

(33)

where σ1 > σ2 > σ3 are the major and minor prinipal stresses, φ is the

angle of internal frition and c the ohesion. As in the urrent work an

assoiative �ow rule is onsidered, the plasti potential g(σ) oinides with
the yield surfae funtion f(σ) , i.e., g(σ) = f(σ).

Aording to [47,48℄, it is possible to rede�ne the sheme of the algorithm

presented in [46℄ for a �nite strain regime, onsidering the Henky strain

measure, evaluated in prinipal spae as

ǫ =
1

2
ln(β) (34)

where β is the eigenvalue vetor of the elasti left Cauhy-Green deformation

tensor be, whose trial value is given by

be, trial = ∆F · be, n ·∆F T
(35)

where be, n is the onverged value relative to the last known on�guration

at time tn and ∆F :=
∂ϕ
(

X, tn+1
)

∂ϕ (X, tn)
is the inrement of the total deforma-

tion gradient between tn and tn+1
. The free energy funtion is a quadrati

funtion of the prinipal elasti Henky strains (ǫe1, ǫ
e
2, ǫ

e
3) [47℄

ψ(ǫeA) =
1

2
λ [ǫe1 + ǫe2 + ǫe3]

2 + µ
[

(ǫe1)
2 + (ǫe2)

2 + (ǫe3)
2
]

(36)

with λ and µ denoting the Lamé onstants and ǫeA the elasti Henky strains

along the three prinipal diretions.

3 The Material Point Method

The Material Point Method (MPM) is a partile-based method, whose ori-

gin goes bak to the work of Harlow [49℄, who proposed the partile-in-ell

method (PIC), as a tehnique for the solution of �uid �ow problems. Some

deades after, in the works of Sulsky and oworkers [50,51℄, the PIC method

was rede�ned within the solid mehanis framework, adopting the name of

Material Point Method. MPM ombines the use of a Lagrangian desription

of the ontinuum, represented by the material points, with a disretization
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of the omputational domain, given, in this ase, by an Eulerian grid, as

an be observed in Figure 1. This distintive feature allows to trak the

deformation of the body and retrieve the history-dependent material infor-

mation at eah time instant of the simulation, without ommitting the state

variables mapping errors, typial of methods, whih make use of remeshing

tehniques. This makes the method partiularly attrative for the solution

of problems, haraterized by very large deformations and by the use of

omplex onstitutive laws [52, 53℄.

Figure 1 MPM: Overlapping of material points and Eulerian grid (soure: [39℄).

Sine the works published in [50,51℄, many improvements have been pro-

vided for a more e�ient and algorithmially straightforward evaluation of

grid node integrals in the weak formulation, suh as, the generalized inter-

polation material point method (GIMP) [54℄, the onveted partile domain

interpolation tehnique (CPDI) [55℄ or the seond-order onveted partile

domain interpolation (CPDI2) [56℄. In these versions, unlike the original

MPM, the partile mass is smeared over a partile domain (area or volume)

de�ned by an undeformable or a deformable parallelogram or a deformable

quadrilateral, in GIMP, CPDI and CPDI2, respetively. Alternative teh-

niques, whih attempt to improve the nodal shape funtions base, make use

of higher order interpolation funtions [57�59℄.

The MPM formulation, in the urrent work, uses the lassial interpola-

tion proedure with linear shape funtions and an impliit Newmark time

integration sheme. Suh approah has been developed for taking into a-

ount of both geometri and material non-linearities; for this reason the

non-linear governing equations have to be linearized and solved through an

iterative Newton-Raphson sheme. Extension to GIMP, CPDI or CPDI2

versions an also be onsidered, but goes out of the sope of the present

work, where a mixed MPM formulation is presented.

As in the lassi MPM, the algorithm onsists of three main steps (Figure

2):

(a) Initialization phase: at the beginning of the alulation step, the initial

nodal onditions are evaluated through a mapping of the material point

information on the nodes of the omputational grid (Figure 2(a));
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(b) UL FEM phase: one the initial onditions on the nodes are reated, it

is possible to evaluate the nodal unknowns in terms of displaement and

pressure (Figure 2(b));

() Convetive phase: as last step, the material point information are up-

dated throughout an interpolation of the nodal data. Before onluding

the urrent time step, the material points are moved to a new position

and the nodal information are deleted (Figure 2()).

For further details, the algorithm, followed for the implementation of the

MPM ode, an be found in [39℄.

(a) Initialization phase (b) Updated Lagrangian FEM phase

() Convetive phase

Figure 2 MPM phases (soure: [39℄).

If a mixed (u-p) formulation is used in the framework of the MPM, it

is important to highlight that some hanges have to be onsidered in the

initialization and onvetive phase, desribed in [39℄. In the initialization

phase, initial nodal pressure values pnI , related to the previous time tn, have
to be evaluated, in addition to the mass, veloity and aeleration ones,

using the following expression:

pnI =

∑

pNImpp
n
p

∑

pNImp

(37)

where NI is the shape funtion of node I evaluated at the position of the

p− th material point, and mp and pnp are the mass and the pressure of the

material point, respetively. One the solution is iteratively omputed using
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the linearized system of Equations (24), the onvetive phase is performed,

as explained in detail in [39℄. The pressure on the material points is updated

in addition to the material point displaement, veloity and aeleration,

through an interpolation of the urrent nodal pressure values pn+1
I on the

material point position

pn+1
p =

∑

I

NIp
n+1
I . (38)

4 Numerial Examples

In this setion, three numerial examples are presented for the validation of

the mixed formulation. Firstly, the well-known benhmark test of a Cook's

elasti membrane is onsidered and a mesh onvergene study is performed.

The stability of the mixed formulation is assessed in a quasi-inompressible

elasti ase. Seondly, a plane strain tension test of a J2-plasti plate in

ompressible and inompressible state is analysed. In this example, the per-

formanes of the irreduible u and the mixed u-p formulations are ompared

in the ase of inompressible plasti �ow. Finally, a plain strain rigid strip

footing is studied. The reason for hoosing suh example is twofold: on one

hand it represents a ase of saturated porous solid in undrained onditions

whih is known to su�er from volumetri loking. On the other hand, the

MPM formulation an be validated in large displaement and large defor-

mation regimes. The results obtained with the u and u-p formulations are

ompared and used to demonstrate that a mixed MPM formulation an

provide more aurate and reliable results, not only under the assumption

of elasti and plasti inompressibility, but even in ompressible situations.

In this work a stabilization parameter (α) with value of 1 has been used

and for the solution of the system of linearized equations, both in the ase

of u and u-p formulations, the diret solver SuperLU is employed.

4.1 Cook's membrane problem

As a �rst numerial example, we onsider the well known Cook's membrane

test, proposed for the �rst time by Cook [60℄. This test is often used as a

benhmark to hek the element formulation under ompressible and inom-

pressible onditions. In the literature, the Cook's membrane is ommonly

tested in in�nitesimal deformation assumption and material linearity [14℄,

geometri non-linearity and material linearity [61℄ and, �nally, in geometri

and material non-linearities [7,13,41,47℄. The geometry and material prop-

erties of the problem are shown in Figure 3. A lamped trapezoidal plate,

subjeted to a distributed shear load, whose resultant fore is P = 1N ,

applied along the right side, is analysed. The stati ase is solved study-

ing the response of a ompressible and a quasi-inompressible Neo-Hookean

material, whose stored energy funtion is de�ned by Equation (27). The
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16m

44m

48m

P

E = 70Pa

P = 1N

 Compressible case:  � = 0.33

Quasi-incompressible case: � = 0.499

A

Figure 3 Cook's membrane. Geometry, material properties and boundary on-

ditions

onvergene study is performed using six strutured triangular meshes with

an initial value of one material point per ell.

Sine the formulations under study are based on the assumption of �-

nite deformation and material non-linearity, the results relative to a very

�ne mesh (256 elements per side) of a FEM analsys is onsidered as referene

solution in the ompressible ase, while the result of [41℄ is the benhmark

solution for the quasi-inompressible ase. The referene solution of vertial

displaement at point A (Figure 3) is found to be 0.323m, in the ompress-

ible ase, and 0.275m in the quasi-inompressible ases, respetively. The

results of u and u-p formulations, with and without stabilization term (UP

No Stab and UP Stab) are summarized in Table (1) for both the om-

pressible and nearly inompressible ases. The same results an be observed

graphially in Figures 4 and 5.

Table 1 Cook's membrane. Compressible ase: vertial displaement at point A

obtained with the U, UP formulation without and with stabilization

Elements per side Compressible ase Quasi-inompressible ase

U UP No Stab UP Stab U UP No Stab UP Stab

2 0.089 0.1013 0.1172 0.0723 0.0788 0.1277

4 0.1415 0.1718 0.1953 0.0736 0.1157 0.1932

8 0.2183 0.2511 0.2669 0.0742 0.1821 0.2424

16 0.2771 0.2952 0.3025 0.075 0.2356 0.2648

32 0.30386 0.3119 0.315 0.0775 0.2606 0.2725

64 0.3133 0.3176 0.319 0.0862 0.2702 0.275

The u formulation is less aurate than the u-p formulation both for

the UP No Stab and UP Stab ases, not only for the nearly inompressible

ondition, as expeted, but also for the ompressible one. However, the
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disrepany is learly visible in the quasi-inompressible problem (Figure

5), where the apability of the u formulation to predit the displaement

�eld is ompromised due to volumetri loking.
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Figure 4 Cook's membrane. Compressible ase: vertial displaement at point

A
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Figure 5 Cook's membrane. Quasi-inompressible ase: vertial displaement at

point A

Regarding the mixed approahes, from Figure 5 it is possible to infer

that even not using a stabilization term the solution is not a�eted by
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volumetri loking. However, through the stabilized u-p formulation it is

also possible to prevent pressure osillation issues in the mean stress �eld,

as an be observed in Figure 6.

(a) u-p without stabilization (b) u-p with stabilization

Figure 6 Cook's membrane. Quasi-inompressible ase: Pressure ounter �ll. The

mixed formulation without any stabilization (a) fails to predit the pressure �eld,

while it is orretly evaluated using the PPP stabilization (b). Blak ontour

olour should be intended as out of range.

4.2 2D tension test

As seond numerial example, a plane strain tension problem is onsid-

ered to test the mixed formulation in an elasto-plasti regime. A 2D plate,

lamped at the bottom of the speimen, is subjeted to a presribed vertial

displaement on the upper side. Both geometry and material properties are

taken from [16℄ and are depited in Figure 7. The plate is made by a hypere-

lasti perfetly-plasti material whih is simulated using a J2 plasti law. An

unstrutured triangular bakground mesh with a mesh size of 0.001m and

an initial distribution of 12 material points per ell, whih is found to give

the optimal trade-o� between auray of the results and omputational

ost in both the ompressible and inompressible ases, are adopted.

The results of the ompressible ase are shown in Figures 8, 9, 10 and

11, where the displaement along x and y-diretion, the equivalent plasti

strains and the vertial Cauhy stresses are shown. Volumetri loking is not

a�eting the numerial results, as the plate is working under ompressible

onditions. However, the u-p formulation is more aurate than the u one,

not only in the evaluation of the stress �eld, but also of the displaement

�eld. Moreover, the goodness of the solution an be appreiated looking at

Figure 10(b): the equivalent plasti strains are distintly distributed along

a ross shape, while the result of Figure 10(a) revokes the same shape, but

without the same order of preision. In onlusion, even if a ompressible

material is simulated, the results obtained with the u-p formulation present

a higher order of auray, by using the same mesh size and the same number

of material points per element.
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0.1m

Δu=1mm

0
.1

m

y

x

Figure 7 Tension test. Geometry, material properties and boundary onditions

The results of the inompressible ase are shown in Figures 12, 13, 14

and 15. In this ase, the u formulation fails in the simulation of the ten-

sion test. As expeted, the displaement and stress �elds are a�eted by

volumetri loking and the plasti deformations are inorretly loalized.

On the other hand, Figures 12(b), 13(b), 14(b) and 15(b) show that the

u-p formulation is able to evaluate orretly the displaement and stress

�eld under inompressible onditions. The results are similar to those de-

pited in Figures 8(b), 9(b), 10(b) and 11(b): the ross-shape distribution

of the equivalent plasti strains and stresses are reovered. Furthermore,

Figures 16(a) and 16() show a omparison between the numerial results

of the mixed formulation in the nearly-inompressible ase and the refer-

ene solution [16℄. We an observe that there is a good agreement in the

ross-shape distribution of the equivalent plasti strains and in the range

of pressures. Finally, the stress - displaement urve, evaluated with the

mixed formulation, is shown in Figure 17. The results for the ompressible

and inompressible ases are in good agreement. Both orretly predit the

elasti regime and the ineption of the plasti �ow when the yield stress is

reahed.

Sine a mixed formulation with displaement and pressure as primary

variables is adopted, strains are not linearly distributed within the ele-

ment, but these oinide with a onstant funtion. It worth highlighting

that through this numerial proedure while it is possible to avoid the volu-

metri loking, the problems related with strain loalization are still present.

This means that the width of the shear bands still depends on the size of the

elements. This problem an be solved by regularization of the element size

as proposed, e.g. in [17, 18, 62℄ or [48℄, where the formulations onsider the

strain �eld as primary variable and, therefore, its linear distribution an be
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evaluated, whih allows to aurately predit strain loalization with mesh

independene.

(a) u formulation (b) u-p formulation

Figure 8 Tension test. Compressible ase: horizontal displaement

(a) u formulation (b) u-p formulation

Figure 9 Tension test. Compressible ase: vertial displaement

(a) u formulation (b) u-p formulation

Figure 10 Tension test. Compressible ase: equivalent plasti strain
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(a) u formulation (b) u-p formulation

Figure 11 Tension test. Compressible ase: Cauhy stress along loading axis

(a) u formulation (b) u-p formulation

Figure 12 Tension test. Inompressible ase: horizontal displaement

(a) u formulation (b) u-p formulation

Figure 13 Tension test. Inompressible ase: vertial displaement

(a) u formulation (b) u-p formulation

Figure 14 Tension test. Inompressible ase: equivalent plasti strain
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(a) u formulation (b) u-p formulation

Figure 15 Tension test. Inompressible ase: Cauhy stress along loading axis

(a) equivalent plasti

strain

() pressure

Figure 16 Tension test. Inompressible ase: results evaluated at a total imposed

vertial displaement of 0.0001m using a T1/P1 u-p formulation. Results taken

from [16℄
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Figure 17 Tension test. Stress-Displaement urve. Comparison between the

ompressible ase (red urve) and the inompressible urve (green urve).
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4.3 Plain strain rigid footing on undrained soil

The last example is a plain strain rigid strip footing for the evaluation of

the bearing apaity of the soil in undrained onditions, underneath the

foundation. The soil is modelled as a purely ohesive weightless elasti-

perfetly plasti Mohr-Coulomb material with assoiative �ow rule. For its

implementation the return mapping de�ned in [46℄ has been followed and

the algorithm has been adapted to the ase of �nite strains plastiity [47,63℄,

as brie�y disussed in Setion 2.3. The geometry, the boundary onditions

and material properties are represented in Figure 18, where for symmetry

only half of the domain is onsidered.

12m

10m

B/2 = 0.5 m

E = 10
5
 Pa 

ν = 0.499

cu = 10
3 
Pa

12 MP

4 MP

2m

6m

Figure 18 Rigid strip footing. Geometry, material properties, boundary ondi-

tions and initial material points density. 12 material points (MP) per element are

used in the viinity of the footing while only 4 are used in the rest of the domain.

In the geomehanis ommunity this is a lassial benhmark for the

validation of the onstitutive law and of the numerial method adopted for

its simulation. In the literature, the rigid strip footing has been studied by

many authors. In [64℄ Nazem and oworkers solved this example in three

di�erent kinematis frameworks: a Total Lagrangian (TL), an Updated La-

grangian (UL) and an Arbitrary Lagrangian Eulerian (ALE) Finite Element

Methods. They show that for high deformations an ALE method is more

suitable than UL and TL strategies, avoiding mesh distortion with a remesh-

ing tehnique. Even if the remeshing ould smear a stress onentration and

ompromise the strain loalization, they found that the load-displaement

urve is omparable with the numerial solutions available in the literature.

In [65℄ the tehnique of [64℄ is generalized to the ase of higher order ele-

ments. The same test example has been also used to prove that the MPM

represents an ideal numerial approah sine it naturally traks large de-
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formations without the need of remeshing proedures. For instane, in [53℄

this example is suessfully solved exploiting the apability of MPM to trak

large deformation and large displaement of the solid. However, the work

of [53℄ is limited to the in�nitesimal strain assumption.

In the urrent paper the work of [53℄ is generalized onsidering a stabi-

lized mixed formulation, valid under geometri and material non-linearities.

The simulation is performed using displaement ontrol with steps of inre-

mental vertial displaement ∆u = −0.001m. The total displaement has

been imposed in 2000 time steps whih orresponds to twie the founda-

tion width B. The disretization of the omputational domain is performed

through a unstrutured triangular bakground mesh with a mesh size of

0.05m. At the interfae between the foundation and the soil, where the

largest deformations take plae, a higher initial number of material points

per element is used for a better resolution of the results (Figure 18).

In Figures 19, 20 and 21 the displaement and stress �elds obtained

with the u and u-p formulations are ompared. As expeted, more reliable

and aurate results are omputed with the mixed �nite element formula-

tion. It an be noted that the �nal deformation is aurately desribed and

an improvement is registered if the �nal deformation is ompared with the

numerial results of [64℄ and [65℄ whih are more similar to the �nal on�g-

uration obtained through the displaement-based formulation. The need for

a mixed formulation is evident when evaluating the vertial stress �eld. In

Figure 21(a) the displaement-based formulation fails to evaluate a reliable

stress response, as the magnitude of the vertial Cauhy stress is out of the

expeted range in the area where the foundation buries itself. On the other

hand, the mixed formulation is able to evaluate a ontinuous stress �eld and

using suh result it is possible to evaluate the normalised load-displaement

response of the foundation, whih is used for the validation of the urrent

example.

(a) u formulation (b) u-p formulation

Figure 19 Rigid strip footing. Horizontal displaement
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(a) u formulation (b) u-p formulation

Figure 20 Rigid strip footing. Vertial displaement

(a) u formulation (b) u-p formulation

Figure 21 Rigid strip footing. Vertial Cauhy stress

Sine the problem has no analytial solution, the numerial result of [66℄,

obtained through a sequential limit analysis formulation, is taken as refer-

ene solution. The problem is solved under the assumption of large defor-

mations, hene, the bearing apaity of the soil is expeted to be higher

than the value of 2 + π whih orresponds to the small deformation ase

for a given footing displaement. Under this hypothesis, the mobilized soil

resistane does not reah an asymptoti value, but gradually inreases, as

explained in [66℄. In Figure 22, the result obtained through the u-p formula-

tion in terms of normalized bearing apaity of the soil, as a funtion of the

normalized settlement, is depited and ompared with the benhmark solu-

tion. It an be observed that, the obtained urve is in good agreement with

the referene solution [66℄. The disrepany that is observed for the initial

values of the settlement is the onsequene of the hosen material elasti

properties. The Young Modulus E and the Poisson's ratio ν have values



Mixed formulation within the MPM 23

whih orrespond to an undrained bulk modulus of Ku = 3, 33 · 105Pa,
whih gives a ratio Ku/cu = 3, 33 · 103. In [53℄, the in�uene of this ratio on

the normalised load-displaement urve is studied: the elasti response of

the soil beomes less or more important and the bearing apaity of the soil

an inrease or derease, for higher or lower values of this ratio, respetively.

For this reason the numerial results plotted in Figure 22 have an important

elasti response and are deviating during the initial phase of the simulation

from the perfetly rigid behaviour of the benhmark solution.
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Figure 22 Rigid strip footing. Normalised load-displaement urve: omparison

between referene solution taken from [66℄ and the u-p formulation solution pre-

sented in this work.

The example of the rigid footing on undrained soil has been validated

using a stabilized mixed MPM formulation. The soil bearing apaity is

well predited and omparable with aurate numerial results from the lit-

erature. Moreover, a good desription of the �nal deformation of the soil

is ahieved by using the MPM and its apability of solving large displae-

ment and large deformation problems is equivalent, if not superior, to other

tehniques proposed in the literature [64, 65℄.

5 Conlusions

In this paper a stabilized mixed formulation is presented within the frame-

work of an impliit Material Point Method (MPM) for the solution of

non-linear inompressible solid mehanis problems. The MPM is a par-

tile method able to overome typial issues of standard FEM when the

ontinuum needs to undergo severe deformations, suh as element tan-

gling and extreme mesh distortion. The stabilized mixed u-p formulation
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is tested through a series of benhmark examples and ompared with a

displaement-based u approah. Firstly, the Cook's membrane problem, a

bending dominated test, is investigated. Two ases, a ompressible and a

nearly-inompressible one, are solved through the u and u-p strategies. It is

demonstrated that the u-p formulation always gives the best performane in

term of onvergene. In the quasi-inompressible ase the volumetri loking

issue is overome and pressure osillations are avoided if a stabilization term

is added to the mixed �nite element formulation. In the seond example, a

J2 plasti plate, subjeted to uniform tension on one side and �xed to the

other side, is simulated using both methodologies under an isohori plasti

�ow ondition. Comparing the displaement-based and mixed approah it is

shown that better results are obtained through the u-p strategy. Indeed, a

more aurate de�nition of displaement, equivalent plasti strains and ver-

tial Cauhy stress �elds and a good agreement with the referene solution

are observed. Despite volumetri loking issue is �xed in the ase of the u-p

formulation, further problems, suh as, mesh independene and strain loal-

ization, are not addressed in the urrent work and they represent interesting

topis for a future researh. As third benhmark test, the rigid footing on

undrained soil is onsidered. This is a lear example, where the MPM repre-

sents a suessful solution over the standard FEM sine for the traking of

severe deformations the employment of remeshing proedures is avoided. In

this ase the good performanes of the MPM u-p formulation are tested also

under the �nite deformation regime: a higher auray of the displaement

and stress �elds are on�rmed. Moreover, evaluating the bearing apaity

as funtion of the footing displaement, the load-displaement urve is ob-

tained and used as validation tool to be ompared with a referene solution.

The numerial example shows that the MPM u-p formulation is able to

evaluate more aurate results in terms of displaement and stress �elds,

not only under near-inompressible state, avoiding the typial drawbak of

volumetri loking, but even under ompressible onditions.

In onlusion, the impliit MPM is numerial strategy, able to suess-

fully model highly deforming materials whih may undergo inompressible

or nearly-inompressible onditions.
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