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Abstract In this work a stabilized mixed formulation for the solution of
non-linear solid mechanics problems in nearly-incompressible conditions is
presented. In order to deal with high material deformation, an implicit Ma-
terial Point Method (MPM) is chosen. Such choice allows avoiding the clas-
sical limitations of the Finite Element Method (FEM), e.g., element tan-
gling and extreme mesh distortion. The proposed mixed formulation, with
displacement and pressure as primary variables, is tested through classical
benchmarks in solid and geo-mechanics where a Neo-Hookean, a J2 and
a Mohr-Coulomb plastic law are employed. Further, the stabilized mixed
formulation is compared with a displacement-based formulation to demon-
strate how the proposed approach gets better results in terms of accuracy,
not only when incompressible materials are simulated, but also in the case
of compressible ones.

Key words Particle Methods Nonlinear Finite Element Method implicit
MPM mixed formulation
1 Introduction

The solution of solid mechanics problems in large displacement and large
deformation regime, dealing with incompressible or nearly incompressible
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materials, is a topic of paramount importance in the computational mechan-
ics community since many engineering problems present such conditions. It
is well known that overly stiff numerical solutions appear when Poisson’s
ratio v tends to 0.5 or when plastic flow is constrained by the volume con-
servation condition. In these cases, a standard Galerkin displacement-based
formulation (u formulation) fails [IL2] due to the inability to evaluate the
correct strain field. In the literature, many possible solutions can be found.
For instance, Simo and Rifai introduced the Mized Enhanced Element for
small deformation problems [3]. This is a special three-field mixed finite
element method in which the space of discrete strains is augmented with
local functions. It is worth mentioning that also the class of B-bar meth-
ods [4] and the classical incompatible modes formulation [5] fall under this
theory. For general purposes, some variants of this procedure are analysed
in [6]. Alternative procedures suitable for geometrically non-linear regimes,
are given by the F-BAR method [7], a technique based on the concept of
multiplicative deviatoric/volumetric split in conjunction with the replace-
ment of the compatible deformation gradient field, the non-linear B-bar
method [8] and the family of enhanced elements [9], which represents an
extension to the non-linear regime of the procedures exposed in [4] and [5],
respectively. Though the good performance of all the aforementioned meth-
ods, none of such techniques is, however, suitable for application on sim-
plicial meshes [2,[I0L1T] . In this regards, among the successful strategies
for the fulfillment of the incompressibility constrain, it is worth mentioning
the group of the Mized Variational Methods. Different researchers worked
on mixed finite element formulations with displacement and mean stress as
primary variables [I12HI6]; Cervera and coworkers, for instance, proposed a
strain/displacement mixed formulation in the context of compressible and
incompressible plasticity [17[18]; Simo et al. introduced a non linear ver-
sion of a three-field Hu-Washizu Variational principle, where displacement,
pressure and the Jacobian of the deformation gradient are independent field
variables [19]. The use of Mized Variational Methods and the difficulties en-
countered when applying them with different elements have been largely
discussed in the 1970s. In [20H23] the need to satisfy the stability condition,
the so-called inf-sup condition, is demonstrated and the instability and in-
effectiveness of elements with equal-order interpolations for all the primary
variables is proved. This has motivated the development of a series of sta-
bilization techniques, which allow the employment of low order Galerkin
finite elements in computational fluid dynamics and solid mechanics prob-
lems [24H31].

The treatment of the incompressibility constraint is relatively new in the
context of the Material Point Method (MPM). Most MPM formulations deal
with compressible materials, avoiding the issues arising from the imposition
of the incompressibility constraint. However, some procedures for the treat-
ment of locking issues can be found in the literature. For instance, in [32] an
approach for the solution of kinematic (shearing and volumetric) locking is
proposed. The authors identified the employment of linear shape functions
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in conjunction with a regular, rectangular grid, as cause of the locking. The
mixed formulation, employed in such work, is derived from the definition
of a three-field Hu-Washizu potential, with stress, strain and displacement
considered as primary variables. In [33] the formulation presented makes
use of the Chorin’s projection [34], a popular fractional step formulation
solved implicitly for fluid mechanics problems and in [35] a similar strategy,
based on a splitting operator technique for solving the momentum equation,
is proposed for the treatment of the incompressibility constrain.

In this paper the computational strategy proposed in [36] for the solu-
tion of solid mechanics problems characterized by plastic incompressibility
in large displacement and large deformation regime, is described in detail
and applied to a wide range of test examples. A mixed wu-p formulation,
where the displacement and mean stress are considered as primary variables,
is implemented within the framework of an implicit Material Point Method
code, developed in the Kratos Multiphysics open source platform [37)38] fol-
lowing the algorithm presented by the authors in [39]. A monolithic solution
strategy is used, which allows not to impose "spurious" pressure boundary
conditions on the Neumann boundary, as done in [33}[35]. In the current
work only simplicial elements are considered and a stabilization technique
is adopted for the satisfaction of the inf-sup condition. The stabilization,
based on the Polynomial Pressure Projection (PPP), presented in [40], is
chosen for its ease of implementation and good performance demonstrated
in previous works [41L[42]. The proposed approach is validated through a
series of benchmark examples, where an elastic Neo-Hookean, a J2 and a
Mohr-Coulomb plastic material are employed. Further, for each test, the re-
sults obtained through a displacement-based (u) and the stabilized mixed
(u-p) formulation are compared.

The paper is organized as follow: in Section [ the u and u-p formula-
tions are derived in their matrix form and the constitutive laws employed
for the solution of the examples are briefly introduced. In Section [3] the
Material Point Method is presented. In Section [ the numerical examples
are illustrated and the results are discussed. Finally, Section [B] presents the
conclusions.

2 The irreducible and mixed formulation

In this section the displacement-based (u) and mixed (wu-p) formulations
are briefly introduced and derived in matrix form.

2.1 Governing equations in strong form

Let us consider the body B which occupies a region {2 of the three-dimensional
Euclidean space £ with a regular boundary 042 in its reference configuration.
A deformation of B is defined by a one-to-one mapping

p:2—=E (1)



4 I. Iaconeta et al.

that maps each point p of the body B into a spatial point x

x=¢(p) (2)

which represents the location of p in the deformed configuration of 5. The
region of £ occupied by B in its deformed configuration is denoted as ¢ (£2).

The boundary value problem of finite elastostatics consists in finding a
displacement field u : ¢ (£2) — £ such that the equilibrium equations and
the kinematic conditions are satisfied

—V-o=fin ¢()
o-n=ton ¢ON2N) (3)
u=uon ¢(0f2p)
where o is the Cauchy stress tensor, f denotes the body forces and ¢(9£2y)
and ¢(02p) the boundaries of ¢ (£2), where both the normal tension ()
(being m the outer normal) and the displacements () are prescribed.

As described in [I], the mixed formulation can be obtained expressing
the system of Equations (B) in function of two primary variables: the dis-
placement u and the mean stress p by splitting the stress tensor in its
volumetric and deviatoric part o9¢V. Thus, the system can be rewritten as

(ilm) 0w o

—(31:0)=0in )

(Udpc" +3])71) ‘n=1 on fo((?QN) )
u=muon @0p)

~V - (e +pl) = fin

being 1 the second order identity tensor. We can observe that if u is a
solution of Equation (), then (u, p), satisfying also p — (31:0) =0, is a
solution of Equation ().

2.2 Weak form and linearisation of the weak form in spatial form

Following the standard FEM procedure, the weak forms of Equations (3]
and (@) are obtained by employing the Galerkin method and are written in
spatial configuration, adopting an Updated Lagrangian framework.

For the displacement formulation, the first equation of ([B)) is multiplied
by a test function w, which is lying in the space V of kinematically admissi-
ble displacements, such that w = {w € V | w = 0on p(9£2p)}. By using the
divergence theorem the weak form of momentum balance can be obtained
as

G (w) = / o [Viw] dvf/ fw dvf/ twda=0, YweY
»(£2) »(£2) »(002N)

(5)
using the notation A° = % (A + AT). In this work a Newton-Raphson’s
iterative procedure is employed for the solution of problems characterized
by material and geometrical non-linearities. The non-linear weak form of
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Equation (Bl has to be linearized through an expansion in Taylor’s series,
evaluated at the last known equilibrium configuration u*, expressed as

L(du,w) =~ Gy (W) + DyG ey (w)[du] =0, Vw eV (6)

where L is the linearised virtual work and Dy, G (y,+)(w)[du] is the directional
derivative of G at u* in the direction of du. Assuming that only internal
force contributions are dependent on the displacement primary variable, the
directional derivative can be written as

d

. ( / ) (7w dv> .

where + is a scalar parameter and the following expression is used

e(y) =V (u" +vy0u) =€ +~V° (du). (8)

with € = V° (u*) the strain field at w*. The final matrix form can be
obtained as
K"™fu = -R 9)

where du is the vector of unknowns, R is the vector of residuals, expressed
as
R = Gy-)(w) (10)

and K" = Dy, Gy, (w) is the tangent matrix, evaluated as the sum of the
material stiffness matrix

KM ;:/ [Viw] D [V*6u] dv (11)

»(£2)

and the geometric stiffness matrix
K¢ ::/ [Vw] o [Véu] dv (12)

©(£2)

where D is the spatial algorithmic tangent moduli. The detailed procedure
to derive the final expression of the system of linearised equations in integral
and discrete form can be found in [39] and [43)].

Concerning the mixed formulation, linear interpolation finite elements
both for displacement and pressure (u-p) are considered. In this regard, the
weak form of the balance of the linear momentum (Equation (f])) can be
rewritten as

G (up) (W) = / (09 +p1) : [Viw] dv — / f-wdv—
»(£2) o(2) (13)

/ t-wda=0, YwcV
P(002N)
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where the Cauchy stress tensor o is decomposed in its deviatoric and vol-
umetric component, denoted as o?°¥ and p, respectively. The weak form
of the pressure continuity equation is obtained by performing a Lo inner
product of the second equation of (@) with an arbitrary test function ¢ € Q,
where Q is the space of virtual pressure. Finally the weak form of the pres-
sure continuity equation is expressed as

1
G(u,p)(Q):/ Q[<§110> —p] dv=0, VqgeQ (14)
»(£2)

By performing a linearization of Equations (I3)) and (I4)), similarly to
what explained for Equation (@), the solution system of linearized equations
can be derived and expressed in matrix form as

mKtan B Su Ru

5 ][R )
where Ry = Gy p)(w) and R, = G(yp)(q) are the components of the
residual vector, du and dp are the vector of unknown displacements and
unknown mean stresses, respectively. The components of the matrix on the
left hand side (lhs) of Equation (I3]) are given by the tangent stiffness ma-

trix K™ = DyG 4 p)(w), which can be seen as the sum of the material
stiffness matrix

mgM . / [Vow] (D 4 p(1 o1 —20) [V*ouldv  (16)
(£2)
being [ the fourth order identity tensor, and the geometric stiffness matrix
MK = / [Vw] (69°Y + p1) [Véu] dv (17)
©(£2)
Furthermore, M = D, Gy, p)(q) is

M = / qdpdv (18)
»(£2)

and the mixed terms B = DGy, ) (w) and B* = Dy G (4, 5)(q), are defined,
respectively, as

B= L(Q) (V-w) dpdv (19)

B* — /W) Du (%1 : a) (V - 6u) qdv (20)

where Dy, (31 : o) can be derived once determined the volumetric stress as
function of the strain field.

One can observe that ™K and ™K& are distinguished from K and
K¢, defined for the irreducible formulation (Equations (IT)) and (IZ)). In the
mixed case, the deviatoric part of D and o is separated by the volumetric
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one and an evaluation of the latter is done, not using the material response
of the constitutive law, but the interpolation of the nodal pressure field on
the material points, i.e., the integration points.

For the treatment of the incompressibility constraint, the Polynomial
Pressure Projection (PPP), introduced by Dohrmann and Bochev [40], is
used. This stabilization procedure is obtained by modifying the mixed vari-
ational equation by using a L? polynomial pressure projection. If k is the
order of the continuous polynomial shape functions used to approximate
p, the pressure projection is performed into a polynomial space with order
of k — 1. As in the current work linear shape functions are used for the
pressure, the L? polynomial pressure projection is made in a discontinuous
space and, consequently, it can be performed at the element level as

/ i(p—p)dv=0, YieQ (21)
»(£2)

being p the best approximation of p in (Q°) and ¢ € Q° an arbitrary test
function, where QY is the space of polynomial functions with zero degree in
each coordinate direction. Unlike other stabilization techniques, the pres-
sure stabilization is accomplished without the use of the residual of the
momentum equation; thus the calculation of higher-order derivatives and
the specification of a mesh-dependent stabilization parameter are avoided.
Moreover, it is demonstrated that symmetry of the mixed formulation is
retained.

In the case of simplicial elements, as in the current work, the stabilization
of the unstable mixed formulation requires only the addition of the bilinear
form

JeNeY ~
/ (@=@) z@—pdv=0 (22)
e(£2)°
to Equation (I4), where « is a parameter to be selected for stability and

G the shear modulus. The weak form of the pressure continuity equation
(Equation (I4) can be rewritten as

Gun= [ a|(51:7)»|-Glar-ana=0 e

and the matrix system (Equation (I3))) becomes

Kten B sul R, (24)
B* —M - M**| |6p| ~  |R,+ R}

where

M= [ S laop - a0p) do (25)
o) G
and
stab __ o ~

Ry = —lgp—qp] dv (26)

o(2) G
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2.8 Constitutive models

In this section the constitutive laws, employed in the current work, are
briefly discussed. In Sectiond] a hyperelastic Neo-Hookean law, a hyperelastic-
plastic J2 and Mohr-Coulomb plastic laws in finite strains are employed.

2.8.1 Hyperelastic law The hyperelastic law, used in Section 1] is a Neo-
Hookean model with a stored energy function W written as the sum of its

volumetric U(J) and deviatoric W (b) component
_ - 1 1 -
W(J,b) := KU(J)+ W(b) = 5K(J — 1)+ 3G (tr(b) — 3) (27)

with K representing the bulk modulus, J = det(F) the determinant of
the total deformation gradient and b the volume preserving part of the left
Cauchy-Green tensor b = FF' | defined as

b:=J3b (28)
The Kirchhoff stress 7 can be defined as

T =K J(J — 1)+ Gdev(b) (29)
and in the case of the mixed formulation, Equation ([29)) is reformulated as
T =p, J1+ Gdev(b) (30)

where p,, is the pressure value on the material point.
2.8.2 Hyperelastic - J2 plastic law Regarding the hyperelastic-plastic J2
law employed in Section 2] the approach presented in [44], based on the

multiplicative decomposition of F'; is adopted. Following this approach, F'
is split into a plastic and elastic contribution as

F = F°F? (31)

For the evaluation of the material response in the elastic regime, the reader

has to refer to the stored energy function (Equation (21)), while for the

plastic regime, the system of equations, represented by the yield surface
- \—1

f(7,q), the plastic flow rule (Cp) deduced by [45] for associative Ja-

plasticity, with the Kuhn-Tucker conditions, has to be considered:

f(r.a) = dev(r)|—/3 oy <0 )
-\ —1 .

(CP) = 2\t )F 'nF T

where ﬁ is the inverse of the volume preserving part of the plastic right

Cauchy-Green deformation tensor C? = FP" FP, ) is the plastic multiplier,
n is the unit vector of dev(T) and oy is the yield stress. As a perfectly
plastic law is used, the hardening law is neglected.
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2.3.8 Hyperelastic - Mohr-Coulomb plastic law In Section a Mohr-
Coulomb plastic law is considered. For its implementation the implicit in-
tegration scheme in principal stress space, presented in [46], is followed.
Also in this case no hardening law is used and in the formulation it will
be neglected. For the evaluation of the elasto-plastic response the system
of equations, represented by the yield surface f(o), the plastic flow rule €,
with the Kuhn-Tucker conditions, is

f(o1,02,03) = (01 — 03) + (01 + 03) sing — 2ccosp < 0
{ p_ 399(0) (33)
e = \——
Jo

where o1 > 09 > o3 are the major and minor principal stresses, ¢ is the
angle of internal friction and c¢ the cohesion. As in the current work an
associative flow rule is considered, the plastic potential g(o) coincides with
the yield surface function f(o) , i.e., g(o) = f(o).

According to [47/48], it is possible to redefine the scheme of the algorithm
presented in [46] for a finite strain regime, considering the Hencky strain
measure, evaluated in principal space as

1

€= 5111(,6) (34)

where 3 is the eigenvalue vector of the elastic left Cauchy-Green deformation
tensor b°, whose trial value is given by

be,trial — AF - b&™. AFT (35)
where b ™ is the converged value relative to the last known configuration
. dp (X, 1) .
at time ¢t and AF := —————= is the increment of the total deforma-
O (X, t7)

tion gradient between t” and t"*!. The free energy function is a quadratic
function of the principal elastic Hencky strains (5, €5, €5) [47]

YR = sAl s e tu (@ (@7 (7] 66)

with X and ;v denoting the Lamé constants and €9 the elastic Hencky strains
along the three principal directions.

3 The Material Point Method

The Material Point Method (MPM) is a particle-based method, whose ori-
gin goes back to the work of Harlow [49], who proposed the particle-in-cell
method (PIC), as a technique for the solution of fluid flow problems. Some
decades after, in the works of Sulsky and coworkers [50}51], the PIC method
was redefined within the solid mechanics framework, adopting the name of
Material Point Method. MPM combines the use of a Lagrangian description
of the continuum, represented by the material points, with a discretization
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of the computational domain, given, in this case, by an Eulerian grid, as
can be observed in Figure [II This distinctive feature allows to track the
deformation of the body and retrieve the history-dependent material infor-
mation at each time instant of the simulation, without committing the state
variables mapping errors, typical of methods, which make use of remeshing
techniques. This makes the method particularly attractive for the solution
of problems, characterized by very large deformations and by the use of
complex constitutive laws [52L53].

MATERIAL POINTS

o’/ i o

GRID NODES

Figure 1 MPM: Overlapping of material points and Eulerian grid (source: [39]).

Since the works published in [50/51], many improvements have been pro-
vided for a more efficient and algorithmically straightforward evaluation of
grid node integrals in the weak formulation, such as, the generalized inter-
polation material point method (GIMP) [54], the convected particle domain
interpolation technique (CPDI) [55] or the second-order convected particle
domain interpolation (CPDI2) [56]. In these versions, unlike the original
MPM, the particle mass is smeared over a particle domain (area or volume)
defined by an undeformable or a deformable parallelogram or a deformable
quadrilateral, in GIMP, CPDI and CPDI2, respectively. Alternative tech-
niques, which attempt to improve the nodal shape functions base, make use
of higher order interpolation functions [57H59].

The MPM formulation, in the current work, uses the classical interpola-
tion procedure with linear shape functions and an implicit Newmark time
integration scheme. Such approach has been developed for taking into ac-
count of both geometric and material non-linearities; for this reason the
non-linear governing equations have to be linearized and solved through an
iterative Newton-Raphson scheme. Extension to GIMP, CPDI or CPDI2
versions can also be considered, but goes out of the scope of the present
work, where a mixed MPM formulation is presented.

As in the classic MPM, the algorithm consists of three main steps (Figure

2):

(a) Initialization phase: at the beginning of the calculation step, the initial
nodal conditions are evaluated through a mapping of the material point
information on the nodes of the computational grid (Figure [2(a)));
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(b) UL FEM phase: once the initial conditions on the nodes are created, it
is possible to evaluate the nodal unknowns in terms of displacement and
pressure (Figure 2(b));

(c) Convective phase: as last step, the material point information are up-
dated throughout an interpolation of the nodal data. Before concluding
the current time step, the material points are moved to a new position
and the nodal information are deleted (Figure 2(c)).

For further details, the algorithm, followed for the implementation of the

MPM code, can be found in [39].

pi, pj: MATERIAL POINTS WITH LOCAL POSITION DOES NOT CHANGE
THE $AME CONECTIVITY 1J,K

MATERIAL
POINTS

(a) Initialization phase (b) Updated Lagrangian FEM phase

UPDATE MATERIAL POINTS POSITION
LT H

UNDEFORMED
/GRID RECOVERED

UPDATE LIST OF MATERIAL
POINTS WITHIN ELEMENT LJ,K

(c) Convective phase

Figure 2 MPM phases (source: [39]).

If a mixed (u-p) formulation is used in the framework of the MPM, it
is important to highlight that some changes have to be considered in the
initialization and convective phase, described in [39]. In the initialization
phase, initial nodal pressure values p}, related to the previous time ¢", have
to be evaluated, in addition to the mass, velocity and acceleration ones,
using the following expression:

p? _ Zp Nlmppz
Zp Nrmy
where Ny is the shape function of node I evaluated at the position of the

p — th material point, and m; and pj; are the mass and the pressure of the
material point, respectively. Once the solution is iteratively computed using

(37)
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the linearized system of Equations (24)), the convective phase is performed,
as explained in detail in [39]. The pressure on the material points is updated
in addition to the material point displacement, velocity and acceleration,
through an interpolation of the current nodal pressure values p’}‘"l on the
material point position

pptt = NPt (38)
I

4 Numerical Examples

In this section, three numerical examples are presented for the validation of
the mixed formulation. Firstly, the well-known benchmark test of a Cook’s
elastic membrane is considered and a mesh convergence study is performed.
The stability of the mixed formulation is assessed in a quasi-incompressible
elastic case. Secondly, a plane strain tension test of a J2-plastic plate in
compressible and incompressible state is analysed. In this example, the per-
formances of the irreducible « and the mixed u-p formulations are compared
in the case of incompressible plastic flow. Finally, a plain strain rigid strip
footing is studied. The reason for choosing such example is twofold: on one
hand it represents a case of saturated porous solid in undrained conditions
which is known to suffer from volumetric locking. On the other hand, the
MPM formulation can be validated in large displacement and large defor-
mation regimes. The results obtained with the u and u-p formulations are
compared and used to demonstrate that a mixed MPM formulation can
provide more accurate and reliable results, not only under the assumption
of elastic and plastic incompressibility, but even in compressible situations.

In this work a stabilization parameter («) with value of 1 has been used
and for the solution of the system of linearized equations, both in the case
of w and wu-p formulations, the direct solver SuperLLU is employed.

4.1 Cook’s membrane problem

As a first numerical example, we consider the well known Cook’s membrane
test, proposed for the first time by Cook [60]. This test is often used as a
benchmark to check the element formulation under compressible and incom-
pressible conditions. In the literature, the Cook’s membrane is commonly
tested in infinitesimal deformation assumption and material linearity [14],
geometric non-linearity and material linearity [61] and, finally, in geometric
and material non-linearities [7,[I3[41[47]. The geometry and material prop-
erties of the problem are shown in FigureBl A clamped trapezoidal plate,
subjected to a distributed shear load, whose resultant force is P = 1V,
applied along the right side, is analysed. The static case is solved study-
ing the response of a compressible and a quasi-incompressible Neo-Hookean
material, whose stored energy function is defined by Equation (27). The
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E = 70Pa
P=1N
Compressible case: v=0.33

44m Quasi-incompressible case: v = 0.499

I y
L 1

48m

Figure 3 Cook’s membrane. Geometry, material properties and boundary con-
ditions

convergence study is performed using six structured triangular meshes with
an initial value of one material point per cell.

Since the formulations under study are based on the assumption of fi-
nite deformation and material non-linearity, the results relative to a very
fine mesh (256 elements per side) of a FEM analsys is considered as reference
solution in the compressible case, while the result of [41] is the benchmark
solution for the quasi-incompressible case. The reference solution of vertical
displacement at point A (FigureB)) is found to be 0.323m, in the compress-
ible case, and 0.275m in the quasi-incompressible cases, respectively. The
results of u and wu-p formulations, with and without stabilization term (UP
No Stab and UP Stab) are summarized in Table () for both the com-
pressible and nearly incompressible cases. The same results can be observed
graphically in Figures @ and

Table 1 Cook’s membrane. Compressible case: vertical displacement at point A
obtained with the U, UP formulation without and with stabilization

Elements per side Compressible case Quasi-incompressible case
U UP No Stab  UP Stab U UP No Stab  UP Stab
2 0.089 0.1013 0.1172 0.0723 0.0788 0.1277
4 0.1415 0.1718 0.1953 0.0736 0.1157 0.1932
8 0.2183 0.2511 0.2669 0.0742 0.1821 0.2424
16 0.2771 0.2952 0.3025 0.075 0.2356 0.2648
32 0.30386 0.3119 0.315 0.0775 0.2606 0.2725
64 0.3133 0.3176 0.319 0.0862 0.2702 0.275

The u formulation is less accurate than the wu-p formulation both for
the UP No Stab and UP Stab cases, not only for the nearly incompressible
condition, as expected, but also for the compressible one. However, the
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discrepancy is clearly visible in the quasi-incompressible problem (Figure
Bl), where the capability of the w formulation to predict the displacement
field is compromised due to volumetric locking.

0.35 T T T

Vertical displacement [m]

005 Ll 1 i i
24 8 16 32 64
Number of elements per side

U —— Up No Stab —— Up Stab —%—  Ref Solution - - -

Figure 4 Cook’s membrane. Compressible case: vertical displacement at point
A

03 T T T

Vertical displacement [m]

005 Lii i i i

2 4 8 16 32 64
Number of elements per side
U —— Up No Stab —— Up Stab —x— Ref Solution - - -
Figure 5 Cook’s membrane. Quasi-incompressible case: vertical displacement at
point A

Regarding the mixed approaches, from Figure [l it is possible to infer
that even not using a stabilization term the solution is not affected by
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volumetric locking. However, through the stabilized u-p formulation it is
also possible to prevent pressure oscillation issues in the mean stress field,
as can be observed in Figure [6l

PRESSURE

l

PRESSURE

I

0.059357 0.059357
-0.0067965

--0.07295

- -0.1391

-0.20526

-0.0067965
--0.07295
- -0.1391
-0.20526
- -0.27141

- -0.27141
-0.33756
-0.40372

-0.33756
-0.40372

(a) u-p without stabilization (b) u-p with stabilization

Figure 6 Cook’s membrane. Quasi-incompressible case: Pressure counter fill. The
mixed formulation without any stabilization (a) fails to predict the pressure field,
while it is correctly evaluated using the PPP stabilization (b). Black contour
colour should be intended as out of range.

4.2 2D tension test

As second numerical example, a plane strain tension problem is consid-
ered to test the mixed formulation in an elasto-plastic regime. A 2D plate,
clamped at the bottom of the specimen, is subjected to a prescribed vertical
displacement on the upper side. Both geometry and material properties are
taken from [16] and are depicted in Figure[ll The plate is made by a hypere-
lastic perfectly-plastic material which is simulated using a J2 plastic law. An
unstructured triangular background mesh with a mesh size of 0.001m and
an initial distribution of 12 material points per cell, which is found to give
the optimal trade-off between accuracy of the results and computational
cost in both the compressible and incompressible cases, are adopted.

The results of the compressible case are shown in Figures 8 @ [0 and
[[dl where the displacement along x and y-direction, the equivalent plastic
strains and the vertical Cauchy stresses are shown. Volumetric locking is not
affecting the numerical results, as the plate is working under compressible
conditions. However, the u-p formulation is more accurate than the u one,
not only in the evaluation of the stress field, but also of the displacement
field. Moreover, the goodness of the solution can be appreciated looking at
Figure the equivalent plastic strains are distinctly distributed along
a cross shape, while the result of Figure [10(a)| revokes the same shape, but
without the same order of precision. In conclusion, even if a compressible
material is simulated, the results obtained with the u-p formulation present
a higher order of accuracy, by using the same mesh size and the same number
of material points per element.
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I TTITTT T T T 77 Awstmm

0.1m

E=2E11Pa
oy =15 E8 Pa

Thickness = 1m
Compressible case: v=0.3
Quasi-incompressible case: v = 0.499

0.1m

Figure 7 Tension test. Geometry, material properties and boundary conditions

The results of the incompressible case are shown in Figures [2] @[3} 04
and In this case, the u formulation fails in the simulation of the ten-
sion test. As expected, the displacement and stress fields are affected by
volumetric locking and the plastic deformations are incorrectly localized.
On the other hand, Figures [12(b)} [13(b)] [14(b)| and [15(b)| show that the
u-p formulation is able to evaluate correctly the displacement and stress
field under incompressible conditions. The results are similar to those de-
picted in Figures [8(b)] [0(b)] [T0(b)] and [TI(b)} the cross-shape distribution
of the equivalent plastic strains and stresses are recovered. Furthermore,
Figures and show a comparison between the numerical results
of the mixed formulation in the nearly-incompressible case and the refer-
ence solution [16]. We can observe that there is a good agreement in the
cross-shape distribution of the equivalent plastic strains and in the range
of pressures. Finally, the stress - displacement curve, evaluated with the
mixed formulation, is shown in Figure 7 The results for the compressible
and incompressible cases are in good agreement. Both correctly predict the
elastic regime and the inception of the plastic flow when the yield stress is
reached.

Since a mixed formulation with displacement and pressure as primary
variables is adopted, strains are not linearly distributed within the ele-
ment, but these coincide with a constant function. It worth highlighting
that through this numerical procedure while it is possible to avoid the volu-
metric locking, the problems related with strain localization are still present.
This means that the width of the shear bands still depends on the size of the
elements. This problem can be solved by regularization of the element size
as proposed, e.g. in [I7,[I8,62] or [4]8], where the formulations consider the
strain field as primary variable and, therefore, its linear distribution can be
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evaluated, which allows to accurately predict strain localization with mesh
independence.
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(a) u formulation (b) u-p formulation

Figure 8 Tension test. Compressible case: horizontal displacement
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Figure 9 Tension test. Compressible case: vertical displacement
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(a) u formulation (b) u-p formulation

Figure 10 Tension test. Compressible case: equivalent plastic strain
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Figure 11 Tension test. Compressible case: Cauchy stress along loading axis
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Figure 12 Tension test. Incompressible case: horizontal displacement
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Figure 13 Tension test. Incompressible case: vertical displacement
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Figure 14 Tension test. Incompressible case: equivalent plastic strain
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Figure 15 Tension test. Incompressible case: Cauchy stress along loading axis
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Figure 16 Tension test. Incompressible case: results evaluated at a total imposed
vertical displacement of 0.0001m using a T1/P1 wu-p formulation. Results taken

from [16]
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Figure 17 Tension test. Stress-Displacement curve. Comparison between the
compressible case (red curve) and the incompressible curve (green curve).
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4.8 Plain strain rigid footing on undrained soil

The last example is a plain strain rigid strip footing for the evaluation of
the bearing capacity of the soil in undrained conditions, underneath the
foundation. The soil is modelled as a purely cohesive weightless elastic-
perfectly plastic Mohr-Coulomb material with associative flow rule. For its
implementation the return mapping defined in [46] has been followed and
the algorithm has been adapted to the case of finite strains plasticity [47,63],
as briefly discussed in Section The geometry, the boundary conditions
and material properties are represented in Figure [[8 where for symmetry
only half of the domain is considered.

B/2=0.5m

— 2m

<

B

D
b <t
D : <t
6m | |12 MP: <
> H L
> =
D <t
D <t
12m L PO <
> 4MP <
<t
D <t

D
> =
D <t

D
E=10°Pa D <t
v =0.499 > <
cu=10°Pa > <
i <t

hhabbbhbbbbbbhablb

10m
Figure 18 Rigid strip footing. Geometry, material properties, boundary condi-

tions and initial material points density. 12 material points (MP) per element are
used in the vicinity of the footing while only 4 are used in the rest of the domain.

In the geomechanics community this is a classical benchmark for the
validation of the constitutive law and of the numerical method adopted for
its simulation. In the literature, the rigid strip footing has been studied by
many authors. In [64] Nazem and coworkers solved this example in three
different kinematics frameworks: a Total Lagrangian (TL), an Updated La-
grangian (UL) and an Arbitrary Lagrangian Eulerian (ALE) Finite Element
Methods. They show that for high deformations an ALE method is more
suitable than UL and TL strategies, avoiding mesh distortion with a remesh-
ing technique. Even if the remeshing could smear a stress concentration and
compromise the strain localization, they found that the load-displacement
curve is comparable with the numerical solutions available in the literature.
In [65] the technique of [64] is generalized to the case of higher order ele-
ments. The same test example has been also used to prove that the MPM
represents an ideal numerical approach since it naturally tracks large de-
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formations without the need of remeshing procedures. For instance, in [53]
this example is successfully solved exploiting the capability of MPM to track
large deformation and large displacement of the solid. However, the work
of [53] is limited to the infinitesimal strain assumption.

In the current paper the work of [53] is generalized considering a stabi-
lized mixed formulation, valid under geometric and material non-linearities.
The simulation is performed using displacement control with steps of incre-
mental vertical displacement Au = —0.001m. The total displacement has
been imposed in 2000 time steps which corresponds to twice the founda-
tion width B. The discretization of the computational domain is performed
through a unstructured triangular background mesh with a mesh size of
0.05m. At the interface between the foundation and the soil, where the
largest deformations take place, a higher initial number of material points
per element is used for a better resolution of the results (Figure [I8]).

In Figures 19 and [21] the displacement and stress fields obtained
with the 4 and wu-p formulations are compared. As expected, more reliable
and accurate results are computed with the mixed finite element formula-
tion. It can be noted that the final deformation is accurately described and
an improvement is registered if the final deformation is compared with the
numerical results of [64] and [65] which are more similar to the final config-
uration obtained through the displacement-based formulation. The need for
a mixed formulation is evident when evaluating the vertical stress field. In
Figure the displacement-based formulation fails to evaluate a reliable
stress response, as the magnitude of the vertical Cauchy stress is out of the
expected range in the area where the foundation buries itself. On the other
hand, the mixed formulation is able to evaluate a continuous stress field and
using such result it is possible to evaluate the normalised load-displacement
response of the foundation, which is used for the validation of the current
example.

(a) u formulation (b) u-p formulation

Figure 19 Rigid strip footing. Horizontal displacement
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Y-MPMDisplacement

Y-MPMDisplacement
I 0.035555
0.035555 021889

I -0.21889 047333
-0.47333 -0.72778
-0.72778 098222
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(a) u formulation (b) u-p formulation

Figure 20 Rigid strip footing. Vertical displacement

(a) u formulation (b) u-p formulation

Figure 21 Rigid strip footing. Vertical Cauchy stress

Since the problem has no analytical solution, the numerical result of [66],
obtained through a sequential limit analysis formulation, is taken as refer-
ence solution. The problem is solved under the assumption of large defor-
mations, hence, the bearing capacity of the soil is expected to be higher
than the value of 2 + m which corresponds to the small deformation case
for a given footing displacement. Under this hypothesis, the mobilized soil
resistance does not reach an asymptotic value, but gradually increases, as
explained in [66]. In Figure[22 the result obtained through the u-p formula-
tion in terms of normalized bearing capacity of the soil, as a function of the
normalized settlement, is depicted and compared with the benchmark solu-
tion. It can be observed that, the obtained curve is in good agreement with
the reference solution [66]. The discrepancy that is observed for the initial
values of the settlement is the consequence of the chosen material elastic
properties. The Young Modulus F and the Poisson’s ratio v have values
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which correspond to an undrained bulk modulus of K, = 3,33 - 10°Pa,
which gives a ratio K, /c, = 3,33-10%. In [53], the influence of this ratio on
the normalised load-displacement curve is studied: the elastic response of
the soil becomes less or more important and the bearing capacity of the soil
can increase or decrease, for higher or lower values of this ratio, respectively.
For this reason the numerical results plotted in Figure 22 have an important
elastic response and are deviating during the initial phase of the simulation
from the perfectly rigid behaviour of the benchmark solution.

Force/(c area)[-]

da Silva et al. (2011) ——
Numerical results - X -
I

0 0.5 1 15 2
Settlement/B [-]
Figure 22 Rigid strip footing. Normalised load-displacement curve: comparison
between reference solution taken from [66] and the u-p formulation solution pre-
sented in this work.

The example of the rigid footing on undrained soil has been validated
using a stabilized mixed MPM formulation. The soil bearing capacity is
well predicted and comparable with accurate numerical results from the lit-
erature. Moreover, a good description of the final deformation of the soil
is achieved by using the MPM and its capability of solving large displace-
ment and large deformation problems is equivalent, if not superior, to other
techniques proposed in the literature [64L[65].

5 Conclusions

In this paper a stabilized mixed formulation is presented within the frame-
work of an implicit Material Point Method (MPM) for the solution of
non-linear incompressible solid mechanics problems. The MPM is a par-
ticle method able to overcome typical issues of standard FEM when the
continuum needs to undergo severe deformations, such as element tan-
gling and extreme mesh distortion. The stabilized mixed u-p formulation
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is tested through a series of benchmark examples and compared with a
displacement-based u approach. Firstly, the Cook’s membrane problem, a
bending dominated test, is investigated. Two cases, a compressible and a
nearly-incompressible one, are solved through the uw and u-p strategies. It is
demonstrated that the u-p formulation always gives the best performance in
term of convergence. In the quasi-incompressible case the volumetric locking
issue is overcome and pressure oscillations are avoided if a stabilization term
is added to the mixed finite element formulation. In the second example, a
J2 plastic plate, subjected to uniform tension on one side and fixed to the
other side, is simulated using both methodologies under an isochoric plastic
flow condition. Comparing the displacement-based and mixed approach it is
shown that better results are obtained through the u-p strategy. Indeed, a
more accurate definition of displacement, equivalent plastic strains and ver-
tical Cauchy stress fields and a good agreement with the reference solution
are observed. Despite volumetric locking issue is fixed in the case of the u-p
formulation, further problems, such as, mesh independence and strain local-
ization, are not addressed in the current work and they represent interesting
topics for a future research. As third benchmark test, the rigid footing on
undrained soil is considered. This is a clear example, where the MPM repre-
sents a successful solution over the standard FEM since for the tracking of
severe deformations the employment of remeshing procedures is avoided. In
this case the good performances of the MPM wu-p formulation are tested also
under the finite deformation regime: a higher accuracy of the displacement
and stress fields are confirmed. Moreover, evaluating the bearing capacity
as function of the footing displacement, the load-displacement curve is ob-
tained and used as validation tool to be compared with a reference solution.
The numerical example shows that the MPM wu-p formulation is able to
evaluate more accurate results in terms of displacement and stress fields,
not only under near-incompressible state, avoiding the typical drawback of
volumetric locking, but even under compressible conditions.

In conclusion, the implicit MPM is numerical strategy, able to success-
fully model highly deforming materials which may undergo incompressible
or nearly-incompressible conditions.
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