
1314 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

Fitting Software Execution-Time Exceedance into
a Residual Random Fault in ISO-26262

Irune Agirre , Francisco J. Cazorla , Jaume Abella , Carles Hernandez , Enrico Mezzetti ,
Mikel Azkarate-askatsua, and Tullio Vardanega

Abstract—Car manufacturers relentlessly replace or augment
the functionality of mechanical subsystems with electronic
components. Most such subsystems (e.g., steer-by-wire) are safety
related, hence, subject to regulation. ISO-26262, the dominant
standard for road vehicles, regards software faults as systematic,
while differentiating hardware faults between systematic and
random. The analysis of systematic faults entails rigorous pro-
cesses and qualitative considerations. The increasing complexity
of modern on-board computers, however, questions the very
notion of treating the violation of execution-time envelopes for
software programs as a systematic fault. Modern hardware in fact
reduces the user’s ability to delve deep enough into the fabric of
hardware–software interaction to gage its extent of contribution
to the worst-case execution time (WCET). Changing the nature
of the WCET-analysis problem may help address that challenge
effectively. To this end, we propose a solution that should allow
ISO-26262 to quantify the likelihood of execution-time exceedance
events, relating it to target failure metrics employed in support of
certification arguments, similarly to random faults in hardware.
To this end, we inject randomization in the timing behavior of the
computer hardware to relieve the user from the need to control
hard-to-reach low-level parts, and use measurement-based proba-
bilistic timing analysis to quantify, constructively, the failure rates
resulting from the likelihood of execution-time exceedance events.

Manuscript received July 31, 2017; revised November 16, 2017 and February
20, 2018; accepted April 14, 2018. Date of publication May 24, 2018; date
of current version August 30, 2018. This work was supported in part by the
Spanish Ministry of Science and Innovation under Grant TIN2015-65316-P, in
part by the HiPEAC Network of Excellence, and in part by the CONCERTO
project (ARTEMIS-JU Grant 333053). The work of J. Abella was supported in
part by the Ministry of Economy and Competitiveness under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717. The work of C. Hernández
was supported in part by the Spanish Ministry of Economy and Competitiveness
and in part by FEDER funds through Grant TIN2014-60404-JIN. The work of
E. Mezzetti was supported in part by the Spanish Ministry of Economy and
Competitiveness under Juan de la Cierva-Incorporación Postdoctoral Fellowship
number IJCI-2016-27396. Associate Editor: A. Romanovsky. (Corresponding
author: Irune Agirre.)

I. Agirre and M. Azkarate-askatsua are with the Department of Depend-
able Embedded Systems, IK4-IKERLAN, Mondragón 20500, Spain (e-mail:,
iagirre@ikerlan.es; mazkarateaskasua@ikerlan.es).

F. J. Cazorla is with the Computer Architecture—Operating Systems group,
Barcelona Supercomputing Center, Barcelona 08034, Spain, and also with Ar-
tificial Intelligence Research Institute, Spanish Council for Scientific Research
(IIIA-CSIC), Barcelona 08193, Spain (e-mail:,francisco.cazorla@bsc.es).

J. Abella, C. Hernandez, and E. Mezzetti are with the Computer
Architecture—Operating Systems group, Barcelona Supercomputing Center,
Barcelona 08034, Spain (e-mail:, jaume.abella@bsc.es; carles.hernandez@
bsc.es; enrico.mezzetti@bsc.es).

T. Vardanega is with the Department of Mathematics, Università degli Studi
di Padova, Padova 35122, Italy (e-mail:,tullio.vardanega@math.unipd.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2018.2828222

Index Terms—Automotive real-time systems, execution-time
exceedance, measurement-based probabilistic timing analysis
(MBPTA), safety certification.

I. INTRODUCTION AND MOTIVATION

AN INCREASING variety of functions in modern cars are
controlled by electrical and/or electronic (E/E) subsys-

tems; for instance, active/passive safety and driver assistance.
For quantity, complexity, and use, those functions make the
safety of E/E systems an increasingly important and complex
matter.

ISO-26262 [28] is the functional safety standard of reference
for the automotive domain. It is an adaptation of the broader
IEC-61508 safety standard, which has been similarly adapted to
nuclear plants, industrial machinery, railway, and other applica-
tion domains (see Fig. 1).

ISO-26262 seeks to preserve systems’ safety by sustaining
safety goals (SGs) that prevent hazardous situations due to E/E
malfunction. To this end, ISO-26262 (much like the parent IEC-
61508) defines procedures for the management of deterministic
design faults (i.e., systematic faults) and unpredictable hardware
faults (i.e., random faults). The ISO-26262 tenet is that system-
atic faults can be either avoided by adopting prevention measures
throughout the development process, or controlled at run time by
safety mechanisms such as diverse redundancy. ISO-26262 uses
cognizant assessment, based on judgment from practical expe-
rience, to guarantee that the contribution of systematic faults
to SGs violation is kept acceptably low by assuring coverage
of all requirements of the standard. Conversely, random faults
can only be controlled at run time: ISO-26262 requires their
likelihood of occurrence to be quantified and assessed against
reference values, asserting with sufficiently high confidence that
the residual risk of SGs violation falls below tolerable rates.

Motivation. While for hardware parts,1 the standard con-
templates both systematic and random hardware faults, soft-
ware faults are all deemed systematic. Yet, software has func-
tional and nonfunctional traits, which may give rise to different
fault trees, ill-fit for the homogeneous treatment prescribed
by ISO-26262. This problem becomes apparent for execution-
time exceedance events (i.e., the violation of the worst-case
execution-time (WCET) boundaries), which is a nonfunctional

1In this paper we focus on the functional safety of the computer subsystems
in cars, using the term hardware to refer to embedded computers within the
automotive E/E; likewise we use software to refer to applications.

0018-9529 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9507-8841
https://orcid.org/0000-0002-3344-376X
https://orcid.org/0000-0001-7951-4028
https://orcid.org/0000-0001-5393-3195
https://orcid.org/0000-0002-1886-2931
https://orcid.org/0000-0002-0089-0889
mailto:iagirre@ikerlan.es
mailto:mazkarateaskasua@ikerlan.es
mailto:francisco.cazorla@bsc.es
mailto:jaume.abella@bsc.es
mailto:carles.hernandez@global advance �reakcnt @ne penalty -@M bsc.es
mailto:carles.hernandez@global advance �reakcnt @ne penalty -@M bsc.es
mailto:enrico.mezzetti@bsc.es
mailto:tullio.vardanega@math.unipd.it

AGIRRE et al.: FITTING SOFTWARE EXECUTION-TIME EXCEEDANCE INTO A RESIDUAL RANDOM FAULT IN ISO-26262 1315

Fig. 1. Safety standards in different application domains and those inheriting
from IEC-61508 (including ISO-26262).

trait, evidently involving software and hardware concerns. An
incorrect (optimistic) WCET estimation may be the root cause
of a possible deadline violation, and thus, of a timing failure.
For instance, the system design may assign a task an insufficient
execution-time allowance, and this underprovision may go un-
noticed because the established boundary value is only exceeded
when rare circumstances of hardware/software interaction hap-
pen, either undocumented or unknown, or exceedingly hard for
the user to reproduce during the WCET analysis. Determining
the WCET of a software program is a very difficult task in-
deed, as the programs’ execution time varies much beyond user
control (and, sometimes, also comprehension). This strenuous
task is being made significantly harder by the massive increase
in complexity of the hardware and software of modern automo-
tive systems. Postulating that such execution-time violations can
all be prevented by standard procedures defined for systematic
faults is becoming increasingly prohibitive, yielding unsatisfac-
tory ratios of effort versus quality of outcome. The following
observations manifest the magnitude of the problem.

1) While the software embedded in cars already totals hun-
dreds of millions lines of code [18], the computational
needs of novel functionalities such as advanced driver as-
sistance are projected to increase by 100x in the next
decade [11]. This trend reflects the centrality of soft-
ware to a rising proportion of the competitive value of the
vehicle.

2) Those performance needs can only be met with high-
performance processors that include multi- and many-core
components, with deep cache hierarchies and high-end
GPUs (like in the NVIDIA DrivePX [2], RENESAS R-
Car H3 [4], QUALCOMM Snapdragon 820 Processor [3],
and the Intel Go [1]), with massively increasing hardware
complexity.

A string of increasingly powerful WCET analysis techniques
for safety-critical systems has been put forward by the research
community over the last two decades [7], [45], and commer-
cial tooling exists that implements (some of) them [9], [42].
Yet, the most part of those techniques only really applies to a
small subset of relatively simple and highly critical (automotive
safety integrity level (ASIL)-D) subsystems running on simple
and well-understood processor architectures, thus only cover-
ing a fraction of the needs. For most subsystems, therefore, the
common industrial practice to upper bound the execution time
of real-time software programs uses high-water mark (HWM)

measurements and adds a safety margin to them to account for
unobserved behavior. With this practice, the confidence in the
resulting estimates rests on the user ability to: 1) understand the
hardware internals well enough to capture the major sources of
execution-time variability and 2) construct test cases that serve
for the WCET determination effectively. This knowledge, to-
gether with the addition of a conservative margin, sustains the
argument that the risk of missing out relevant situations in the
analysis is sufficiently low. While this approach may seem inad-
equate in comparison to state-of-the-art static analysis solutions
for other than low-criticality parts, evidence of (cautious) use
of measurement-based methods exists for DO-178C-certified
avionics software at the highest criticality [35].

Emerging systems imperil the current timing analysis prac-
tices, by challenging the user ability to understand deep enough
the sources of the jitter in the hardware internals, and to con-
trol them. The former weakness hinders the determination of
how hardware–software interactions affect timing; the latter im-
pairs the creation of effective analysis scenarios. In those cir-
cumstances, the risk of execution-time exceedance events can
be made “sufficiently” low by using either inordinately large
margins (hence, renouncing resource efficiency) or lower mar-
gins with less support evidence (hence, increasing risk). Either
prospect faces the user with a dire conundrum.

Measurement-based probabilistic timing analysis (MBPTA)
[8] proposes a set of techniques that require applying small
and sustainable changes in the hardware design (or alternatively
in dedicated runtime libraries) to cause the system to exhibit a
probabilistic—hence, probabilistically analyzable—timing be-
havior. In this way, MBPTA provides by-construction evidence
to quantify the probability of execution-time exceedance events.
Earlier work describes how to design MBPTA-friendly hard-
ware and software platforms [31], [32] such that execution-
time exceedance occurs with an (arbitrarily low) probability.
Both hardware [31] and software [32] implementations of the
MBPTA support have proven viable even with complex hard-
ware designs (i.e., multicore processors with multilevel cache
hierarchies), in space [27] and automotive platforms [29], with
successful evaluation in industrial case studies [20], [25], [29].
So far, however, there is lack of understanding of how the prob-
abilistic treatment of execution-time exceedance events can be
understood by safety certification standards in general, and ISO-
26262, in particular. In this regard, this paper seeks to answer
the following research question.

How does the approach of quantifying the probability of oc-
currence of execution-time exceedance events fit the scope and
intent of ISO-26262?

Contribution. To address this research question, this paper
analyzes ISO-26262 and its treatment of faults, describing how
probabilistic execution-time analysis can satisfy ISO-26262 pre-
scriptions and how quantitative evidence can be obtained to
support certification arguments. Our contention is that to tackle
this challenge satisfactorily, we should change the nature of
the WCET-analysis problem: standards should be enabled to al-
low sound quantification of the execution-time exceedance rate
(or its likelihood of occurrence), in relation with target failure
metrics associated with SGs. This approach would be akin to

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

1316 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

Fig. 2. Schematic view of ISO-26262 concept and development phases.

established practice for hardware random faults in ISO-26262,
and would no longer require leaning on qualitative cognizant
experience, scarcely available with new hardware, as in current
practice for the treatment of systematic faults.

Accordingly, in the remainder of this paper: we survey the
management of systematic and random faults in ISO-26262 (see
Section II); we show how an asymmetric treatment of software
faults that addresses execution-time exceedance probabilisti-
cally, fits in the safety life cycle defined in ISO-26262 and how
it can be extended to IEC-61508 (see Section III); we present the
concept of the MBPTA as a solution to quantify execution-time
exceedance rates, and examine the feasibility of applying it to
ISO-26262 compliant automotive applications (see Section IV);
we provide evidence of the viability of the proposed approach
with an automotive case study targeting the AURIX [44], a mul-
ticore processor candidate for use in automotive systems (see
Section V). Finally, in Section VI, we draw the main conclusions
from this study.

II. HARDWARE AND SOFTWARE FAULTS IN ISO-26262

ISO-26262 requires the user to provide evidence of the ab-
sence of unreasonable risk due to hazards caused by the mal-
function of E/E systems. For the management of functional
safety, ISO-26262 includes a concept definition phase, system,
hardware and software development processes, and production
and operation measures. Fig. 2 depicts the ISO-26262 workflow
for the concept and development phases, which are the focus of
this study.

Concept Phase: For each item to be developed and certi-
fied, the hazard analysis and risk assessment step defines the
set of hazardous events caused by item’s malfunction under
specific operational situations. Safety experts classify the haz-
ardous events at different integrity levels—called ASIL—based
on their severity, probability of exposure, and controllability.
The ASIL levels range from A to D, with D being the most
restrictive. Overall, this step formulates the safety goals and
associated ASILs for each hazardous event.

For each safety goal, the functional safety concept (functional
SC) defines the safety measures to be implemented in the item.
Rather than the technical implementation details, the functional

SC describes the functional safety requirements to achieve the
safety goal. Safety measures include activities for the avoidance
of systematic faults and technical safety mechanisms to detect
and control errors caused by systematic and random hardware
faults. Whenever a safety mechanism detects an error, an action
shall be taken as defined in the functional SC. In the application
domain of ISO-26262, this action typically seeks to achieve
or maintain a safe state, in which no unreasonable level of
risk is known to exist. If the system has a safe state, then it is
categorized as fail safe.

Development Phase. Here, the technical SC elicits technical
requirements from the functional SC requirements, which de-
termine how the hardware and software parts should implement
the functional SC to achieve the stated SG. The ASIL of each SG
determines the set of safety requirements assigned to each part.
In this way, the stringency of the design is determined by the
properties of the possible hazardous events that the parts may
influence. At that point, the hardware and the software parts of
the system are developed in accord with the technical SC.

A. Hardware Faults in ISO-26262

ISO-26262 provides quantitative techniques for assessing the
safety mechanisms, and the residual risk of violating SGs.

The hardware development process (see Fig. 2) involves the
following steps:

1) determining and planning functional safety activities in
the product initiation phase;

2) deriving the hardware safety requirements from the tech-
nical SC;

3) designing hardware components;
4) designing their interconnect at architectural level, and

each component in detail, factoring safety requirements
in them (i.e., with provisions for fault tolerance);

5) evaluating the hardware mechanisms designated to handle
faults;

6) integrating and verifying the hardware architecture against
the system specification.

Steps 4 and 5 include a quantitative analysis of safety mech-
anisms and residual risk: the hardware architectural metrics de-
fined in step 4 evaluate the effectiveness of the hardware archi-
tecture and the implemented safety mechanisms against the fault
handling requirements; and step 5 requires evaluating whether
the residual risk of safety goal violations is acceptable (i.e.,
sufficiently low).

ISO-26262 acknowledges that safety techniques cannot
achieve full coverage for all types of faults and allows
diagnostic coverages even below 90% for the highest-criticality
applications. The system may, therefore, be exposed to
uncovered faults, which results in residual risk that needs to
be assessed. Faults can be classified into following two types:
1) safely ignorable faults (i.e., multiple-point perceived or
detected faults) that are regarded as irrelevant since their effects
become “visible” before they can do harm, or they are simply
harmless; and 2) nonsafely ignorable faults (i.e., single-point
faults that are not covered by safety mechanisms, residual
faults that may escape safety mechanisms and multiple-point

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

AGIRRE et al.: FITTING SOFTWARE EXECUTION-TIME EXCEEDANCE INTO A RESIDUAL RANDOM FAULT IN ISO-26262 1317

TABLE I
TARGET VALUES FOR HARDWARE QUANTIFICATION METRICS [28]

latent faults) that are critical, as they may lead to SGs
violation.

ISO-26262 addresses nonsafely-ignorable faults by defining
the single-point fault metric that determines the item’s robust-
ness to single-point and residual faults by either design or safety
mechanisms, and the latent fault metric that determines the
item’s robustness to latent faults by either design or safety mech-
anisms or driver logic diagnosing the fault before SGs violation.
The pass/fail reference figures [see Table I(a)] defined for these
metrics range between 90% and 99% for single-point faults and
between 60% and 90% for latent ones, depending on the target
ASIL level.

To assess whether the residual risk is acceptable, strict values
are imposed on the allowed failure rates. In one of the meth-
ods described in ISO-26262, failure rate classes (FRCs) 1 to 5
are defined with different target rates. Table I(b) describes the
maximum FRC for hardware parts depending on the diagnostic
coverage achieved for the hardware faults and the target ASIL.
For instance, an ASIL-D SG requires proving residual failure
rate ≤ 10−7 (FRC 4) when the diagnostic coverage is above
99.9%. Lower failure rates are required if the diagnostic cover-
age is lower, with higher failure rates allowed if the ASIL level
is lower (e.g., C or B).

Overall, the quantitative assessment of random hardware
faults provides evidence of whether the resulting design meets
its assigned safety requirements.

B. Software Faults in ISO-26262

ISO-26262 holds a deterministic view of software faults and
classifies them all as systematic. Moreover, it assumes that all
systematic faults have to be prevented, tolerated, or removed at
some stage of the development process. It is for this reason that
their contribution to the residual risk is not contemplated. The
software development process is similar to the hardware one
(see Fig. 2), except that it does not include quantitative analysis.

In practice, however, process-oriented solutions cannot pro-
vide positive evidence of the lack of residual faults, especially
in the face of the increasing complexity of modern software
functions, and the intricate interactions that they may have with
advanced hardware. Interestingly, some authors [43] argue that
the software complexity combined with that of the associated de-
velopment process cause faults to be randomly scattered across
the program code.

Qualitative analysis is meant to prevent faults in the devel-
opment phase, not to predict their occurrence during operation.

For qualitative assessment, software variants exist [36], [39]
of state-of-the-art techniques that apply to hardware compo-
nents, such as fault tree analysis and failure mode and effects
analysis. The main focus at this level would be on process-level
issues, to make sure that all discrepancies between program
behavior and functional specification are intercepted. Proactive
techniques, such as software fault injection or workload gen-
erators can be leveraged to further increase the test coverage
and reduce the risk of residual faults. All the aforementioned
techniques, however, suffer from the limitations that the quality
of their outcomes depends on the user’s ability to achieve the
sufficient test coverage.2

The objective of quantitative analysis, instead, is to predict the
occurrence of residual faults. ISO-26262 introduces the quan-
titative assessment for random hardware faults, to quantify the
risk of residual faults and to determine whether it is below the
assigned threshold. Our contention here is that the same should
be done for software: means should be provided to reason on
the probability of residual software faults (whose presence is
bound to stem from the increasing complexity of the system),
and to relate that probability to given thresholds.

The metric to be used to quantify the risk of residual software
faults depends on the specific property, either functional or non-
functional, for which the risk needs to be quantified. From the
functional/implementation standpoint, a lot of effort has been
devoted to study and predict the occurrence of software faults as
a ground for reasoning on software reliability. Both determin-
istic or probabilistic models have been proposed. Deterministic
models build on characteristics of the program’s code (e.g., Hal-
stead’s delivered bugs metric [26] or McCabe’s cyclomatic com-
plexity [37]) complementary to those suggested by best practice
and guidelines for the software implementation. Probabilistic
models instead relate the occurrence of faults in a function to
its frequency of execution or, inversely, to the number of tests
executed on it [40]. Probabilistic models generally extrapolate
the information collected during the test campaign to predict
the occurrence of faults during operation. These models derive
reliability predictions from trends observed in failure data. Rel-
evant techniques include failure rate, fault count models, or the
software reliability growth models [23].

For nonfunctional properties, such as, e.g., the program’s
timing behavior, the metrics of interest tend to relate to the test
quality and the (test) coverage achieved during the development.
While a quantitative approach may be needed to assess the
residual risk of various types of software faults, in the sequel,
we focus on execution-time exceedance events, where a software
unit exceeds its assigned budget during operation.

III. CASE FOR EXECUTION-TIME EXCEEDANCE RATES

ISO-26262 requires establishing upper bounds on the exe-
cution time of real-time tasks. The resulting WCET estimates
allow deciding how to schedule tasks at run time, thereby, as-
suring the overall feasibility of system’s execution. The pro-
vided WCET values should be tight, to avoid waste of processor

2Note that the analysis of nonfunctional failures has its own metrics and
analysis techniques (including timing and schedulability analysis).

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

1318 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

resources. The WCET values should also be consistent with
the SG requirements. It is commonly held that any WCET es-
timate overrun may cause a system-level failure. Yet, this is a
misconception since existing safety mechanisms may factor in
the execution-time exceedance’s impact on the SG, and prevent
its escalation into a timing failure.

Whereas an execution-time exceedance may not compromise
system safety, the timing behavior of software functions should
still be characterized to assure proper functioning of the sys-
tem. It is, therefore, crucial to assess the quality of the pro-
vided WCET estimates to assure that they tightly upper bound
the application’s timing behavior under any possible execution
scenario. Unfortunately, as noted, the increasing complexity of
modern computing platforms threatens the soundness of qualita-
tive assessment of timing correctness, and may allow execution-
time exceedance situations to escape prevention.

Execution-time exceedance may result, for instance, from the
combination of specific task interleaving, initial cache states,
interrupt arrival patterns, and DRAM refresh operations, whose
sources are often too remote from the user’s reach and too
difficult to control and prevent. Accordingly, we contend that
execution-time exceedance events should be treated by ISO-
26262 similarly to random hardware faults, and the concept of
the residual risk should apply to the former too, in conjunction
with quantification means as proposed in this paper.

A. Timing Analysis Challenges on Complex Systems

With increasingly complex hardware and software, the
WCET bounds obtained with traditional means are subject to un-
quantifiable risk arising from the limitations of the analysis pro-
cess and the exceeding hardness of the verification procedures.
Two main WCET-analysis paradigms have been used so far in
industry [45]: static timing analysis (STA) and measurement-
based timing analysis (MBTA). Those paradigms and their hy-
brid variants have been reviewed critically in [7], concluding
that, in spite of occasional successes in industrial applications,
none of them can be claimed to be effective in the general case
and even less so against the relentless increase in complexity of
new-generation systems.

While STA is generally held as scientifically sound, confi-
dence in the results of it critically depends on the availability
of a detailed and trustworthy timing model of the computing
platform underneath the application. Sadly, the latter is increas-
ingly rare, as IP restrictions severely limit the level of detail
in public documentation. Hence, for future complex hardware
and software systems, STA may become untenable, as obtaining
the information needed for it may become too hard or altogether
impossible. Evidence of this trend emerges from recent avionics
and automotive reports, where the industrial teams and their STA
tool providers have been compelled to resort to measurement-
based analysis to derive timing bounds for multicore proces-
sor architectures like the NXP P4080 [38], Texas Instrument
TMS320C6678 [34], and ARM-based SABRE Lite [14]. Indus-
trial pragmatism, therefore, continues to regard the MBTA as
the most practicable timing analysis approach even for safety-

related real-time systems, which explains STA’s weaker pene-
tration [45].

The MBTA requires identifying the main sources of execution
-time jitter, to activate them during analysis. While being far
from trivial, this identification is a much easier job than build-
ing or acquiring the detailed timing model required by STA, and
can be performed by first reviewing processor specifications to
identify those resources, and then, using specialized programs
called microkernels [38][41] that place a predetermined load
on the desired processor resource(s) to quantify their impact
on timing. For the MBTA, uncertainty stems from the inherent
difficulty in mimicking, during analysis, all of the execution
conditions—especially those of jittery processor resources—
that can arise during operation. Deriving reliable WCET esti-
mates on the complex hardware requires that low-level architec-
tural features, which can contribute to significant execution-time
variations (e.g., cache placement), are factored in the measure-
ment runs taken during analysis so that the observed execution
times can be considered representative of those that can arise
during operation. As complex hardware architectures may have
a huge number of potential states with bearing on execution-time
jitter, it is not realistically possible to fully explore them during
analysis. Hence, by construction, MBTA cannot exclude that
residual execution-time exceedance events may occur during
operation, reflecting circumstances not covered during analysis.

Common industrial practice to address uncertainties in the
WCET analysis requires adding conservative safety margins
(often starting at 20%) to the computed WCET value. Any such
number, however, evidently lacks scientific grounding and sim-
ply rests on engineering judgment. Consequently, this practice
may yield either ineffective use of the available resources (due
to WCET overestimation) or higher risk of execution-time ex-
ceedance events (owing to WCET underestimation), as a result
of insufficient quality in the computed bound. Moreover, this
practice does not scale to more complex hardware and software.
Already on a relatively simple four-core processor, in fact, small
variations in execution conditions have been shown to cause
either tiny (e.g., below 10%) or huge slowdowns (e.g., up to
20x) [24]. Appropriate means are, therefore, needed to produce
tight WCET estimates that can be related to a quantified (and
arbitrarily low) risk of execution-time exceedance.

B. Probabilistic WCET Distribution

To address this challenge, we build on timing analysis so-
lutions that yield probabilistic distributions of the execution-
time behavior of application tasks (nicked probabilistic WCET,
pWCET), instead of a single-valued WCET. The pWCET dis-
tribution, illustrated in the right side of Fig. 3, represents the
probability that a task may exceed the assigned budget envelope
at run time. Cutting the tail of it at the desired probability of
exceedance (10−10 on the Y-axis, per run or hour of operation)
projects onto an execution-time value (7 on the X-axis) that may
serve as the WCET budget at that level of assurance. Hence, the
pWCET provides means to statistically quantify the likelihood
of execution-time exceedance accurately.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

AGIRRE et al.: FITTING SOFTWARE EXECUTION-TIME EXCEEDANCE INTO A RESIDUAL RANDOM FAULT IN ISO-26262 1319

Fig. 3. Sketch of how pWCET fits in the ISO-26262 software development
process.

C. Fitting pWCET into the Safety Life Cycle

Interestingly, the notion of the pWCET distribution follows
ISO-26262’s philosophy for the handling of random hardware
faults and applies it to the timing domain. Returning to the
ISO-26262 life cycle depicted in Fig. 2, with focus on timing-
related requirements, we now describe how an approach deliver-
ing a pWCET curve can fit in the software development process
defined in the standard, which we illustrate in Fig. 3.

In the concept phase (not shown in Fig. 3), the functional SC
should be extended to also consider the possibility of execution-
time exceedance events that can propagate into timing failures,
and accordingly, define adequate safety protection measures
against them (e.g., watchdog timer).

In the software development phase, ISO-26262 includes
timing-related requirements in three different phases of the soft-
ware V-model (sketched in Fig. 3). First, during software safety
specification phase ©1 , it requires system designers to specify
the time budgets of critical software. Then, the software ar-
chitectural design ©2 shall consider the time upper bounds to
dimension the system. If an approach delivering a pWCET dis-
tribution instead of a single-valued WCET is used, the designer
needs to identify the appropriate probability of exceedance ©4

to determine the corresponding WCET from the pWCET curve
©5 . To this end, the cutoff exceedance probability (or allowed
execution-time exceedance rate) shall be evaluated together with
the diagnostic coverage for timing errors and the ASIL of the
SG. In other words, the standard should provide target metrics
for the combination of these three factors as done for random
hardware faults in Table I.

For integration testing ©3 , ISO-26262 requires providing evi-
dence that the software is allocated enough time to complete its
functionality. The pWCET distribution allows associating the
assigned budget envelope to the corresponding probability of
exceedance.

This approach advocates abandoning the current practice of
adding a safety margin to the WCET estimate and assuming—
on expert judgment only—that it will never be exceeded, and

therefore, exposing to an unquantified risk of execution-time
exceedance. In contrast with that, the pWCET improves the
soundness of the verification process by providing a quanti-
tative upper bound to the risk of execution-time exceedance
estimated with a sound approach. To this end, however, it is of
vital importance that the timing analysis technique meets the
property of guaranteeing that the delivered pWCET distribution
is representative of the worst-case timing behavior that may
occur during operation.

D. Software FRCs and Diagnosis Coverage

We now describe FRCs and diagnostic coverage for
execution-time exceedance events so that they can be used as
for hardware random faults.

1) Failure Rate Classes: The pWCET distribution allows
selecting the acceptable rate of execution-time exceedance, nor-
mally associated with a single run of the task. By multiplying
this value by the task’s execution frequency per hour, we deter-
mine the execution-time exceedance rate per hour for the task.
For instance, in order to assure an execution-time exceedance
rate per hour of, e.g., 10−9 , for a program executed 103 times
per hour, the user should cut the pWCET tail at the 10−12 ex-
ceedance threshold, which would yield a 7.7-ms WCET value
in Fig. 3. In this way, it is probabilistically guaranteed that the
accumulated execution-time exceedance rate of all instances of
the program executed per hour is below 10−9 . This reasoning
matches random hardware metrics as defined in Table I. Simi-
larly to the hardware case, the particular probability to choose
comes from the ASIL level assigned to the software element.

2) Diagnostic Coverage: The standard suggests the usage
of watchdog timers to detect the consequences that a fault in a
hardware component may have in the program schedule (e.g.,
missed, delayed, or too close activations of the program). In this
scenario, the standards of interest categorize the diagnostic cov-
erage achievable by watchdogs for errors in the control logic of
processing units as either low (60%) or medium (90%). Accord-
ingly, watchdogs can also detect (possibly with a high, >99%,
diagnostic coverage) execution-time exceedance events in the
operational system. On the occurrence of such an event, the
safety mechanisms in place detect the error and instigate action
to remove the residual risk of the SG violation. While advising
the usage of an external monitoring facility (e.g., watchdog) for
the error detection at the software architectural level (which cor-
relates to software faults categorized as systematic), ISO-26262
does not explicitly allude to the achievable diagnostic coverage
of mechanisms against execution-time exceedance.

For fail-safe systems, the system should be moved to a safe
state every time a diagnostic mechanism detects an execution-
time exceedance. In that manner, the SG would be preserved at
the expense of making some functionality (or the entire system)
unavailable. As a result, the degree of diagnostic coverage that
the safety mechanisms provide for timing faults should be taken
into account when quantifying the residual failure rate [as it
is the case for hardware, see Table I(b)]. Whereas safety is not
affected in fail-safe systems in the event of an execution-time ex-
ceedance (assuming that high diagnostic coverage mechanisms

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

1320 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

are in place), system availability is instrumental for the end
user since an unavailable system does not deliver the expected
functionality. Arguably, therefore, solutions that yield reliable
pWCET distributions can improve the design process by allow-
ing the user to assess the availability of fail-safe systems from a
timing perspective.

For fail-operational systems, which need to stay operational
to preserve safety, the event of an execution-time exceedance
should activate the use of appropriate forms of redundancy or
diversity so that the occasional failure of one unit does not
stop the (safe) operation of the entire system. Whenever this
solution is not possible, having high diagnostic coverage against
timing faults is not sufficient to preserve safety and a sufficiently
low cutoff probability needs to be chosen to ensure that the
contribution of execution-time exceedance to the residual risk
is kept correspondingly low.

E. From ISO-26262 to IEC-61508

The IEC-61508 meta- (or parent-) standard differs from
ISO-26262 only slightly. The latter refines some definitions for
the life-cycle phases and provides additional requirements for
the safety requirement specification of the hardware. IEC-61508
does not organize the life cycle around concept and development
phases explicitly, but rather fragments it into smaller units that
match the activities defined within the ISO-26262 workflow.
Those activities include, for instance, the hazard and risk anal-
ysis (which ISO-26262 names hazard analysis and risk assess-
ment) and the overall safety requirements and allocation (which
ISO-26262 places in the functional safety concept), where the
SIL level, ranging 1–4, is computed. As a rule of thumb, the
highest ASIL level in ISO-26262 (ASIL-D) matches on certifi-
cation ambition an SIL-3 in IEC-61508. The safety requirement
specification concerning random hardware faults is lighter in
IEC-61508 than in ISO-26262. The hardware concept and de-
velopment involve the same steps in the metastandard, but the
derivation of hardware faults neither includes latent faults nor
multiple-point faults, which simplifies the calculations. Regard-
ing software faults, the approach is identical in both standards:
software faults are considered systematic and qualitative mea-
sures are recommended for fault avoidance, such as WCET
analysis to assure temporal independence among software
elements.

Like ISO-26262, IEC-61508 determines the requirements for
avoiding or controlling systematic faults based on expert judg-
ment from practical experience. IEC-61508 states that “the prob-
ability of occurrence of systematic faults cannot in general be
quantified.” To exemplify this difficulty, IEC-61508 reasoning
observes that the effects of systematic faults manifesting at run
time, depend on the moment of the life cycle in which they
were introduced, and the effectiveness of the prevention mea-
sures (e.g., structured programming) in place, which are both
difficult to quantify sensibly. However, IEC-61508 allows con-
sidering that the target failure reduction for a safety function is
achieved by demonstrating compliance to all requirements of
the standard. In this regard, the standard introduces the concept
of systematic capability, which is equivalent to the SIL, but

only considers systematic faults. In addition to systematic fault
reduction or prevention in the design, the standard does also
define mechanisms to control the run-time errors arising from
systematic faults (e.g., diverse software redundancy).

Overall, IEC-61508 retains the notion of random hardware
faults and proposes a qualitative approach for software faults
that may not scale well against increasingly complex systems.
Arguably, therefore, all the application domains covered by the
IEC-61508 umbrella might equally benefit from incorporating
an execution-time exceedance quantification approach, much
like the automotive domain would do via ISO-26262 following
the solution presented in this paper.

IV. MBPTA: CONCEPT AND APPLICATION

As a particular probabilistic timing analysis solution, we build
on the MBTA variant proposed in [8], [30], [31], called MBPTA.
MBPTA yields a reliable pWCET distribution while guarantee-
ing, by construction, that the delivered pWCET is an upper
bound of the execution conditions that may occur at system op-
eration: it, therefore, fits the ISO-26262 exceedance rate quan-
tification approach presented in Section III.

MBPTA acknowledges that the control that the user can
exercise on the application’s timing behavior during analysis
necessarily leverages high-level metrics such as software
code coverage, but has increasingly less means to address
low-level hardware aspects (e.g., bus occupancies, placement
of program’s code/data in cache) comprehensively. Hence,
MBPTA relieves the user from the latter burden by introducing
some platform modifications.

The application of the MBPTA rests on the premise that
the computing platforms that enable its use [31], [32] mod-
ify the timing behavior of selected jittery resources so that
the execution-time measurements collected during analysis ei-
ther match or upper bound probabilistically the timing behavior
that may occur during operation. In that manner, the obtained
pWCET distribution is warranted to capture any extreme be-
havior that may occur at operation, and it is produced without
burdening the user with the need to comprehend all system states
relevant to execution-time analysis.

If hardware support is provided to enable the use of the
MBPTA, the processor vendor is the party in charge of sin-
gling out jittery resources and of designing MBPTA compli-
ance around them appropriately. Interestingly, using MBPTA,
the processor vendor would not need to build a timing model of
its processor, or granting access to all details of the hardware
design as STA requires. All it would be required of the vendor
is to design processor resources that can be explicitly and indi-
vidually configured to feature the desired forms of the MBPTA
conformance, and to document them in public user manuals.

Conversely, if hardware support for MBPTA were scarce
or inexistent, the user would have to identify the sources of
execution-time variation building on the processor specifica-
tions, and apply software solutions to reach MBPTA compli-
ance. In general, the resources that cause the largest jitter (e.g.,
cache memories, interconnection networks, and memory con-
trollers) are easy to identify. Missing out some sources of jitter,

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

AGIRRE et al.: FITTING SOFTWARE EXECUTION-TIME EXCEEDANCE INTO A RESIDUAL RANDOM FAULT IN ISO-26262 1321

while not desirable, is not particularly harmful as long as the
jitter that they may produce is not larger than the cumulative
effect of the execution-time variation produced by the other
known sources.

To handle jittery resources, MBPTA defines two main tech-
niques, implemented in either hardware [31] or software [32],
which we present in the following subsections.

A. Time Upper Bounding

This technique forces selected jittery hardware resources to
work at their highest latency during analysis. In that manner, the
operation conditions cannot lead to higher execution times from
them, and hence, a single run suffices to capture their worst-
case operation-time behavior. The hardware resources that best
fit the use of this technique are those whose extended variation in
timing behavior depends on elements that the hardware cannot
discriminate efficiently [19], [27].

The floating-point unit (FPU) provides an illustrative exam-
ple of this kind of resources. The latency of floating-point (FP)
operations depends on the operands, outside of the hardware’s
own control. For instance, multiplying any value by 0.0 may
incur shorter latency than multiplying any pair of not-null pa-
rameters. Hence, for the analysis of even the simplest sequential
program that included FP operations, capturing the full extent
of latencies that it might incur would require enumerating all of
the executed FP operations and their respective operands, which
is unduly onerous and likely to involve laborious debugging. On
top of that, the user would also need to determine whether the
distribution of the FP operations and operands observed during
analysis is representative of what may occur at operation, which
is even harder, if at all possible. Instead, MBPTA’s prescription
to force the FPU to work at its highest latency (per operation
type) during analysis relieves the user from the burden of con-
trolling the impact that each FP operation incurs on the program
execution time.

Original FPUs allow serving the result and releasing as soon
as the current operation finalizes. To implement the said tech-
nique, the hardware default is modified by deactivating the
immediate-release check so that all operations take maximum
latency regardless of the input operands. The hardware fea-
ture that allows enforcing the highest latency can be enabled
or disabled by setting the corresponding configuration regis-
ter accordingly, so that it can be kept enabled during analysis
and disabled during operation. In that manner, operation-time
behavior may experience shorter, but never longer, latency.

Time upper bounding also applies to other resources such as,
e.g., the number of arbitrated contenders on the shared bus that
connect cores to a shared L2 cache [19], [27]. For a program
running on a core, the contentions suffered during operation
depend on the software being run on the other cores. This infor-
mation is exceedingly difficult to determine during analysis even
for the strictest of static scheduling scenarios, since the arrival
time of bus requests from contenders may change across dif-
ferent execution paths and cache hit/miss patterns. To address
this challenge, a simple modification to the hardware arbiter
is applied [27] to cause arbitration to occur across all potential

contenders regardless of whether they have pending requests or
not, keeping the bus busy for the longest request latency after
selection. Selectively disabling this feature during operation al-
lows the program to experience fewer stalls than contemplated
for WCET analysis.

B. Time Randomization

This technique causes the response time of some jittery
resources to exhibit a probabilistic behavior that also holds dur-
ing operation. Accordingly, a representative distribution of the
impact that jittery resources may cause on execution time can
emerge after a statistically significant number of observation
runs. For instance, randomizing the placement and replacement
of objects in cache memories, allows using execution-time
measurements to model cache behavior probabilistically. Such
randomization makes cache conflicts independent of the mem-
ory location of program objects, which relieves the user from
the need to control memory placement. In integrated modular
architecture systems as used in avionics [5] and automotive [13],
individual software applications are often subcontracted to
different providers. As a result, the integration of the system
progresses incrementally, requiring to assess at every step of
integration that the new build conforms with the specification,
for functional and nonfunctional requirements. However, as
applications get integrated into the system binary, their memory
placement and cache layout may vary [22], invalidating the
WCET estimates computed previously. This phenomenon defers
timing verification to the latest stages of integration, where the
(binary) image is near final, which in turn makes timing faults
much more costly to handle than during earlier phases of the
development.

Randomized caches mimic the behavior of multiple software
integrations, which allows the WCET estimates computed in
earlier development stages to hold across the whole process of
integration as well as during operation.

To date, time randomization has been implemented in proces-
sor resources whose timing behavior depends on the structural
dependencies created by the hardware design. Randomization
helps remove those dependencies, which have no bearing on the
program semantics. For instance, whether two addresses com-
pete for the same cache space depends on how they are mapped
to cache lines. And cache mapping can be randomized to make
conflicts occur probabilistically. To ensure that the observations
made during analysis represent (probabilistically) the timing
events that may occur during operation, such randomization
must be kept enabled at all times, with no distinction between
analysis and operation. Random placement and random re-
placement have been successfully implemented in the hardware
[19], [27].

This technique is evidently superior to the “time upper bound-
ing” alternative of modifying the cache hardware to respond with
the highest (miss) latency during analysis, owing to the massive
performance decay incurred by the latter.

With little difficulty, time randomization has also been ap-
plied to the bus arbiter, changing the way it chooses which core
is granted access to the shared L2 cache. Bus arbiters, there-

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

1322 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

Fig. 4. Example results of MBPTA application.

fore, have two types of modifications: time upper bounding to
determine the number of contenders and the latency with which
the bus is released; and time randomization to choose which
core is granted access to the shared L2 cache.

All hardware parts that use time randomization require a hard-
ware source of randomness. An exemplary pseudorandom num-
ber generator (PRNG) has been implemented to that end [10],
with a degree of randomness that has passed the most stringent
cryptographic tests. The cited publication shows that the hard-
ware cost of its implementation is low, also because a single
PRNG can be shared across multiple resources. The PRNG has
also been proven compatible with high safety integrity levels.
If time randomization is to be implemented in software, a soft-
ware implementation of the very same PRNG algorithm can also
be used.

C. Probabilistic Analysis

The execution time of the program “inflated” by time upper
bounding and randomization results in an analysis-time distri-
bution (ATD) that upper bounds the operation-time distribution
(OTD) by construction. Fig. 4 illustrates this notion. The dotted
line depicts the empirical complementary cumulative distribu-
tion (ECCDF) of the OTD, and the dashed line the ECCDF of
the ATD. A sound use of probabilistic analysis [such as, e.g.,
extreme value theory (EVT)] uses a sample of ATD values—
no less than a hundred, and typically up to two thousands,
which keeps the MBPTA overhead low—to derive a high-quality
pWCET distribution that upper bounds the ATD (and hence, the
OTD) [8]. For the EVT to be applicable, the observed execution
times must correspond to independent and identically distributed
(i.i.d.) random variables, which means that each measurement
observation must belong to the same execution-time distribu-
tion. Satisfying this requirement has been proven doable with
simple-enough procedures [15].

The MBPTA process collects execution-time samples from
the ATD, earning MBPTA conformance thanks to the hardware
modifications discussed earlier, and to a measurement collec-
tion process that controls the initial conditions of the experi-
ment [15]. The analysis procedure may determine that the sam-
ple fails to meet the eligibility criteria for the application of
the EVT or detect that it cannot be upper bounded by expo-
nential tail distributions, which is required to ensure tightness.
These situations are addressed by enlarging the sample size. It
is known, in fact, that increasingly larger samples from an i.i.d.
random variable with a guarantee finite bound will eventually

be proven statistically i.i.d., and also converge, more tightly,
to either exponential or light tails, the former always upper
bounding the latter. In our analogy, the program’s execution-
time observations are the random outcomes of that variable, and
the program itself has bounded duration in conformance with
the well-established real-time coding practice. At that point, the
larger the sample size, the tighter the pWCET. Accordingly,
MBPTA users should collect large—yet affordable—samples,
below 2000 measurements on average [8].

MBPTA promotes a paradigm shift with respect to the
traditional, deterministic (i.e., single-valued) WCET analysis.
The relation of the MBPTA with its deterministic counter-
part is straightforward: MBPTA’s main constituents (time up-
per bounding and randomization) specifically address the rep-
resentativity concerns that afflict standard measurement-based
approaches, and threaten to become insurmountable with in-
creasingly complex systems. Relating MBPTA to STA is much
harder instead, as those two techniques build on largely differ-
ent (and mostly incompatible) assumptions [6]. The correctness
and the precision of either of them depend on whether and to
what extent their assumptions are guaranteed to hold; see [7] for
a detailed analysis of those assumptions and how they relate to
hardware and software complexity.

D. MBPTA: Industrial Viability

MBPTA’s viability for industrial use in safety-related systems
relates to the cost of the required hardware or software changes,
and how the approach can be fitted in the overall ISO-26262
safety life cycle as discussed in Section III-C.

The latter question leverages the need to step up the guide-
lines of current safety standards to increasing complexity of
new-generation processors. This has been done, for instance,
in the avionics domain, where CAST32 [16] and the accompa-
nying CAST-32A [17] address the use of multicore processors.
Arguably, this game-changing scenario should ease the task of
incorporating MBPTA-related changes.

The MBPTA requirements on the computing platform, if im-
plemented at the hardware level, have been shown affordable,
first by implementation in architectural simulators, then at the
register-transfer level (RTL) in a field-programmable gate ar-
ray, and finally, in off-the-shelf products [19]. Implementing
randomization has been surprisingly nonintrusive. We illustrate
this for two cases. Bus protocols like AMBA [12] (one of the
most, if not the most, used), do not define any particular arbi-
tration policy. This situation allows adding random arbitration
policies with no impact on the protocol specification. The same
happens for the cache placement and replacement. While the lat-
ter is already supported in many processors, adding the former
requires combining the address being accessed with a hardware-
(or software-) generated random seed [10], changed across runs,
to map the address to a random cache set. This change causes
the timing behavior of cache conflict scenarios that are proba-
bilistically relevant—those whose timing behavior can only be
exceeded with negligible probability—to be close to average
behavior, which, in turn, is very close to the typical behavior on
conventional hardware designs.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

AGIRRE et al.: FITTING SOFTWARE EXECUTION-TIME EXCEEDANCE INTO A RESIDUAL RANDOM FAULT IN ISO-26262 1323

At software level, randomization has been implemented as a
pass in the LLVM compiler [30] or as a source-to-source transla-
tor developed in an approach called toolchain-agnostic software
randomization (TASA) [32]. Both solutions leverage the fact
that the way in which functions and data (locals and globals)
are placed in the source code and the binary determines their
address in memory. By randomly allocating them and adding
padding space among them keeps the program functionality un-
changed and attains similar randomized timing to that obtained
with hardware-implemented random placement. As opposed to
the hardware and LLVM-based software solutions, which attain
randomization at program run granularity, the TASA approach
applies randomization on a per-binary basis. As a result, the
probability of exceedance determined by the use of the TASA
is equivalent to the execution-time exceedance probability of all
systems with the same randomly generated binary. For the hard-
ware and LLVM-based software randomization cases instead,
the obtained probability is per run of the program, and there-
fore, has to be multiplied by its rate. Time upper bounding at a
software level is managed offline, by monitoring relevant events
during the analysis-time measurements [through performance
monitoring counters (PMC)] and by padding execution-time
observations so that their impact on the program’s execution
time is deterministically upper bounded. For instance, reading
a PMC that returns the quantity of FP operations executed by
a program, allows computing a padding equivalent to each FP
operation taking the highest latency. Similarly, a bus jitter can
be deterministically upper bounded by monitoring the number
of bus access requests with PMCs and applying a contention
model that assumes worst-case overlap among them [21].

Both hardware and software randomization and upper bound-
ing solutions have proven effective for the performance in var-
ious platforms and with negligible implementation costs: ≈1%
additional hardware for a four-core processor for the space do-
main [27], and a preprocess compiler step for TASA source-to-
source transformations in the automotive domain [32]. More-
over, pWCET estimates have been shown to be typically within
20% of the HWM on conventional (time deterministic) plat-
forms used as reference for industrial applications in the space,
avionics, and automotive domains [20], [25], [29]. This evi-
dence proves that time randomization and upper bounding do
not incur untenable pessimism.

V. EXPERIMENTAL SUPPORT EVIDENCE

To sustain our contention, we discuss an exemplary applica-
tion of the MBPTA in an automotive case study targeting the
AURIX TC277 [44]. We show that, even on a processor whose
hardware design expressly seeks maximum determinism, the
execution-time behavior of applications running on it suffers
jitter created by resources that may be hard, if at all possible,
for the user to control. We do not aim to present a full WCET
analysis method for the TC277: our intent is just to show that
the execution-time jitter of hard-to-predict resources like the
cache—a definite and massive asset of future automotive pro-
cessors [1]–[4]—can be handled with the MBPTA.

Fig. 5. Block diagram of the case-study application.

A. Application Case

The AURIX TC277 comprises three cores (plus two addi-
tional ones that operate in lockstep mode): one energy-efficient
core and two performance-efficient ones. We focus on the latter,
which embed high-performance jittery resources such as caches
and dynamic branch predictors. All cores are equipped with lo-
cal scratchpad memories and caches, for both instruction and
data, and are connected via a crossbar to a common “memory
system” comprising a shared SRAM, and program/data flash
memories.

The application we consider is an automotive cruise con-
trol system, whose functional code was automatically gener-
ated from a Simulink model, and a CONCERTO3 model for its
architectural specification. The application was run on a cus-
tomized version of ERIKA Enterprise,4 which implements an
OSEK/VDX compliant personality. The originating Simulink
model comprised in excess of 200 blocks, which corresponded
to about 3000 lines of C code. After a transformation process
that flattened the Simulink block hierarchy, optimally regrouped
the blocks by compatible rates, and regenerated source code ac-
cordingly, the application was embedded in the following three
real-time ERIKA tasks: 1) signal acquisition; 2) monitoring;
and 3) speed controller, as shown in Fig. 5. A fourth task, status
update, was added to the application to close the simulation loop
in the experiment by stubbing and interconnecting all input and
output ports.

For the purposes of this paper, we discuss the impact of
the instruction cache layout on the application’s execution-time
behavior, to showcase its relevance as a source of jitter, and
demonstrate how the MBPTA can capture its contribution in the
analysis process. To this end, we deployed the application on
the processor such that part of the code was stored (and cached
from) the program Flash memory segment. Private stack and
data were located in the local scratchpads while local shared
data were mapped to the shared SRAM. The instruction cache
size in the performance-efficient cores is 16 kB, with 32-B cache
lines. Other sources of variability and combinations thereof are
not considered here. How to jointly account for them is dis-
cussed in [21].

3CONCERTO, ARTEMIS JU, http://www.concerto-project.org/.
4Erika Enterprise RTOS, http://erika.tuxfamily.org/drupal/.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

1324 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

B. Instruction Cache Jitter

To analyze the impact of the cache layout on the execution-
time jitter, we used TASA, a technique that applies software
randomization to off-the-shelf caches to make their response
time probabilistically analyzable. As explained in Section IV,
TASA performs source-to-source program code transformations
where the relative location of functions, stack frames, and global
variables is randomized by reordering and padding the source
file so that each resultant binary incurs a randomly different
cache placement. Thus, by studying the timing behavior of a
statistically significant number of binaries, the impact of caches
can be accounted for probabilistically. In our experiments, we
generated 1000 distinct binaries with TASA, all with identical
functionality, and each with different stack and global data allo-
cations to memory positions. Simple ad hoc scripts were needed
to automate this process: they invoke the TASA preprocess pass
and compile the output of it to produce one binary; this process
is repeated as many times as needed, varying the random seed
so that the required number of binaries is obtained. Each such
binary needs to be run once for the purposes of the MBPTA.
The computational cost of this process is proportional to two
characteristics of the software being considered: 1) its size and
complexity and 2) its execution time. The former determines the
cost of generating the binary, largely dominated by the compile
time, much more complex than the TASA preprocessing step.
The latter determines the cost to execute each binary. In our par-
ticular case, generating the binary and executing it took around 5
s altogether (the most part for the compilation), which serialized
in less than 1.5 h for all binaries. Of course, binary generation
and execution can be parallelized in multiple instances: as the
process is fully independent per binary, the turn-around time
would decrease roughly linearly with the degree of paralleliza-
tion. The remainder of the MBPTA process (acquiring the col-
lected execution times, and producing the pWCET distribution)
takes just a few seconds.

While the cost of this process for a single program is rather
low, it would increase linearly for applications that include mul-
tiple programs assigned to a criticality level that requires evi-
dence of bounded execution time. However, each such program
could be analyzed separately, thus allowing the analysis pro-
cess to proceed independently (and perhaps with internal paral-
lelism). In general, devoting around 1–2 hours of computational
cost (less if parallelized) to the timing analysis of each program,
with minimal user intervention, should be affordable even for
complex applications.

Fig. 6 reports the execution-time variability observed for the
four application tasks—for the same program path—, as de-
termined by the different randomly generated program layouts.
For the system under analysis, the observed variability, which
may incorporate the effects of other sources of execution-time
jitter, ranged up to approximately 5%. In all cases, the HWM
was quite distant from the observed average and mode.5 The
impact of time upper bounded jittery resources, computed of-
fline based on PMC measurements, should then be added to

5The mode of a data sample is the most frequent value.

Fig. 6. Uncontrolled variability induced by the program layout.

these execution-time observations before obtaining the pWCET
distribution. This kind of variability is not explored by state-
of-the-art WCET analysis procedures, measurement-based and
static alike. Even more critical is the fact that the traditional
measurement-based techniques do not support constructing ar-
guments on whether and to what extent the effect of jittery
resources has been captured at analysis time. Next, we show
how MBPTA can consider these effects in the determination of
pWCET bounds.

C. Application of the MBPTA

We applied MBPTA to the four tasks of the case-study ap-
plication. According to the TASA prescriptions, we collected
timing measurements for each such task by executing the same
set of 1000 randomly generated binaries of the application.
The collected observations successfully passed the statistical
i.i.d. tests (a precondition to apply statistical analysis), which
allowed using them as input to the subsequent probabilistic
analysis process. To the latter end, we used the MBPTA method
using the coefficient of variation (MBPTA-CV) [8], which ap-
plies the EVT [33] by automatically selecting the distribution

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

AGIRRE et al.: FITTING SOFTWARE EXECUTION-TIME EXCEEDANCE INTO A RESIDUAL RANDOM FAULT IN ISO-26262 1325

Fig. 7. pWCET distributions computed by the MBPTA for the four application
tasks. (a) Signal acquisition. (b) Monitoring. (c) Speed control. (d) Update status.

parameters that best fit the maxima of the observed execution
times. In all cases, 1000 measurements were sufficient for the
MBPTA to converge: adding additional observations for each
application would not change the resulting pWCET distributions
shown in Fig. 7.

The red dotted line in Fig. 7 plots the observed execution
times (OET), in the form of complementary cumulative dis-
tribution function (CCDF), to show that the pWCET curves
(solid black lines) always tightly upper bound the observed
data. The pWCET bounds for the analyzed functions at rele-
vant exceedance thresholds are reported against the HWM in

TABLE II
PWCET BOUNDS AT RELEVANT EXCEEDANCE THRESHOLDS

(IN PROCESSOR CYCLES)

Table II. The application of the MBPTA-CV to the automotive
functions led to extremely tight results as, when compared to
their respective HWM, the predicted pWCET bounds are always
below the reference 20% margin. The low distances for higher
exceedance thresholds can be partially ascribed to the overall
high predictability of the execution platform.

An intuitive but wrong conclusion here might be that the
20% margin is a reliable figure in the general case. In fact, our
experiments show that, limited to the processor considered in
this paper, and focusing only on the instruction cache, a con-
servative margin at 20% would be conservatively pessimistic,
and therefore, sound. Yet, for other processor architectures, with
complexity similar to the technology used in the automotive do-
main [1]–[4], that margin would be optimistic instead, hence,
unsound [25].

In actual fact, the slope of the pWCET distribution, hence, the
margin above the highest observed value for the acceptable ex-
ceedance probability, depends on the particular characteristics
of the program under analysis and how it uses the underlying
processor hardware. Such margin (or the pWCET value itself) is
guaranteed not to be exceeded with a particular probability (e.g.,
10−12 per run). That would be the exceedance probability if all
the sources of the jitter that have been upper bounded, always
caused their highest latency. This does not happen in the general
case; how often it may, cannot be told beforehand as it depends
on the input-dependent behavior of the application during op-
eration. In this situation, the MBPTA method allows the user
to strictly upper bound the residual risk of execution-time ex-
ceedance. Conversely, time-deterministic approaches building
on a margin set on the expert judgment for a particular platform,
hardly scale to other (arbitrarily complex) platforms and also do
not provide means to assess the residual risk.

VI. CONCLUSION

ISO-26262 classifies hardware faults as either systematic or
random, while it considers all software faults to be systematic.
The unrelented demand for newer value-added functionalities
for computer-based systems requires the use of increasingly
complex hardware and software. This trend challenges the vi-
ability of exhaustive analysis and prevention for all types of
systematic faults as prescribed by the standard. This threat is
especially true for the timing behavior of software applications,
as the fabric of new systems denies users the ability to capture
all sources of execution-time variations and to create the test
scenarios needed to estimate the residual risk of failure. Recent
timing analysis techniques that deliver WCET estimates with an
associated probability of exceedance have the potential to over-
come this limitation. However, how the quantification of the

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

1326 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

likelihood of execution time exceedance events fits the scope
and intent of safety standards such as ISO-26262 is still an open
research question. In this paper, we address this question by
proposing ISO-26262 adaptations to assess the residual risk as-
sociated to exceeding the timing budget assigned to a software
program, in analogy to what is done for random hardware faults.
This approach relies on timing-analysis techniques that deliver
a probabilistic WCET bound and serve the purpose of the upper
bounding residual risk. We exemplify this approach with a par-
ticular incarnation of the MBPTA, which transparently applies
time randomization to selected hardware or software elements
of the computing platform, in this manner, relieving the user
from the burden of controlling the impact of low-level hard-
ware elements on the software execution time. This proposal
is presented in the context of the ISO-26262 software develop-
ment process and the treatment of random hardware faults in the
safety life cycle, with the intent of promoting the acceptance of
execution-time exceedance rate quantification in the standard.

ACKNOWLEDGMENT

The authors would like to thank Intecs SpA, lead of CON-
CERTO who provided the sources of the automotive applica-
tion, and the University of Padova, the build automation for the
AURIX target.

REFERENCES

[1] Intel GO Automated Driving Solution Product Brief. [Online]. Avail-
able: https://www.intel.es/content/www/es/es/automotive/go-automated-
accelerated-product-brief.html, Accessed on: May 1, 2018.

[2] NVIDIA DRIVE PX, “Scalable supercomputer for autonomous driv-
ing.”[Online]. Available: http://www.nvidia.com/object/drive-px.html.
Accessed on: May 1, 2018.

[3] QUALCOMM Snapdragon 820 Automotive Processor. [Online]. Avail-
able: https://www.qualcomm.com/products/snapdragon/processors/820-
automotive. Accessed on: May 1, 2018.

[4] RENESAS R-Car H3. [Online]. Available: https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html. Accessed on: May 1,
2018.

[5] Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment. SAE International, ARP4761,
2001.

[6] J. Abella, D. Hardy, I. Puaut, E. Quiñones, and F. J. Cazorla, “On the com-
parison of deterministic and probabilistic WCET estimation techniques,”
in Proc. Euromicro Conf. Real-Time Syst., 2014, pp. 266–275.

[7] J. Abella et al., “WCET analysis methods: Pitfalls and challenges on their
trustworthiness,” in Proc. IEEE Int. Symp. Ind. Embedded Syst., 2015,
pp. 1–10.

[8] J. Abella, M. Padilla, J. Del Castillo, and F. J. Cazorla, “Measurement-
based worst-case execution time estimation using the coefficient of vari-
ation,” ACM Trans. Des. Autom. Electron. Syst., vol. 22, no. 4, pp. 72-1–
72-29, Jun. 2017.

[9] AbsInt Angewandte Informatik GmbH, aiT WCET Analyzers. [Online].
Available: https://www.absint.com/ait/. Accessed on: May 1, 2018.

[10] I. Agirre et al., “IEC-61508 SIL 3 compliant pseudo-random number
generators for probabilistic timing analysis,” in Proc. Euromicro Conf.
Digit. Syst. Design, 2015, pp. 677–684.

[11] ARM, ARM Expects Vehicle Compute Performance to Increase 100x
in Next Decade, Apr. 2015. [Online]. Available: https://www.arm.com/
about/newsroom/arm-expects-vehicle-compute-performa nce-to-increase
-100x-in-next-decade.php

[12] ARM Ltd. “AMBA open specifications.” [Online]. Available: http://
www.arm.com/products/system-ip/amba/amba-open-specifications.php.
Accessed on: May 1, 2018.

[13] AUTOSAR Technical Overview V2.2.1, AUTOSAR GbR, Munich,
Germany, 2006. [Online]. Available: https://www.autosar.org/

[14] A. Blin, C. Courtaud, J. Sopena, J. Lawall, and G. Muller, “Maximiz-
ing parallelism without exploding deadlines in a mixed criticality em-
bedded system,” in Proc. 28th Euromicro Conf. Real-Time Syst., 2016,
pp. 109–119.

[15] F. J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella, “Upper-bounding
program execution time with extreme value theory,” in Proc. Int. Workshop
Worst-Case Execution Time Anal., 2013, pp. 61–70.

[16] Certification Authorities Software Team, “Multi-core processors—
Position paper,” Certification Authorities Software, Tech. Rep. CAST-32,
May 2014.

[17] Certification Authorities Software Team, “Multi-core processors—
Position paper,” Certification Authorities Software, Tech. Rep. CAST-
32A, Nov. 2016.

[18] R. N. Charette, “This car runs on code,” IEEE Spectr., 2009. [Online].
Available: https://spectrum.ieee.org/transportation/systems/this-car-runs-
on-code, Accessed on: Feb. 1, 2009.

[19] COBHAM, “LEON3 Processor. Probabilistic platform,” [Online]. Avail-
able: http://www.gaisler.com/index.php/products/processors/leon3. Ac-
cessed on: May 1, 2018.

[20] F. Cros et al., “Dynamic software randomisation: Lessons learned from
an aerospace case study,” in Proc. Design, Autom. Test Eur. Conf. Exhib.,
Mar. 2017, pp. 103–108.

[21] E. Dı́az et al., MC2: Multicore and Cache Analysis via Deterministic
and Probabilistic Jitter Bounding. Cham, Switzerland: Springer, 2017,
pp. 102–118.

[22] E. Mezzetti and T. Vardanega, “A rapid cache-aware procedure position-
ing optimization to favor incremental development,” in Proc. Real-Time
Embedded Technol. Appl. Symp., 2013, pp. 107–116.

[23] W. Farr, “Software reliability modeling survey,” in Handbook of Software
Reliability Engineering. Hightstown, NJ, USA: McGraw-Hill, Inc., 1996,
pp. 71–117.

[24] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello, and
F. J. Cazorla, “Assessing the suitability of the NGMP multi-core processor
in the space domain,” in Proc. ACM Int. Conf. Embedded Softw., 2012,
pp. 175–184.

[25] M. Fernandez et al., “Probabilistic timing analysis on time-randomized
platforms for the space domain,” in Proc. Design, Autom. Test Eur. Conf.
Exhib., Mar. 2017, pp. 738–739.

[26] M. H. Halstead, Elements of Software Science (Operating and Program-
ming Systems Series). New York, NY, USA: Elsevier, 1977.

[27] C. Hernández et al., “Design and implementation of a time predictable
processor: Evaluation with a space case study,” in Proc. 29th Euromicro
Conf. Real-Time Syst., 2017, pp. 16-1–16-23.

[28] Road Vehicles—Functional Safety, International Organization for Stan-
dardization, ISO/DIS 26262, 2009.

[29] L. Kosmidis et al., “Measurement-based timing analysis of the AURIX
caches,” in Proc. 16th Int. Workshop Worst-Case Execution Time Anal.,
2016, pp. 9:1–9:11.

[30] L. Kosmidis, C. Curtsinger, E. Quiñones, J. Abella, E. Berger, and
F. J. Cazorla, “Probabilistic timing analysis on conventional Cache
designs,” in Proc. Design, Autom. Test Eur. Conf. Exhib., 2013,
pp. 603–606.

[31] L. Kosmidis et al., “Fitting processor architectures for measurement-based
probabilistic timing analysis,” Microprocess. Microsyst., vol. 47, pp. 287–
302, 2016.

[32] L. Kosmidis, R. Vargas, D. Morales, E. Quiñones, J. Abella, and F. J.
Cazorla, “TASA: Toolchain-agnostic static software randomisation for
critical real-time systems,” in Proc. 35th Int. Conf. Comput.-Aided Design,
2016, pp. 59-1–59-8.

[33] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Ap-
plications. Singapore: World Scientific, 2000.

[34] A. Kritikakou et al., “Distributed run-time WCET controller for concurrent
critical tasks in mixed-critical systems,” in Proc 22nd Real-Time Netw.
Syst., 2014, pp. 139–148.

[35] S. Law and I. Bate, “Achieving appropriate test coverage for reliable
measurement-based timing analysis,” in Proc. 28th Euromicro Conf. Real-
Time Syst., Toulouse, France, Jul. 5–8, 2016, pp. 189–199.

[36] N. G. Leveson and P. R. Harvey, “Software fault tree analysis,” J. Syst.
Softw., vol. 3, no. 2, pp. 173–181, 1983.

[37] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. SE-
2, no. 4, pp. 308–320, Dec. 1976.

[38] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and M.
Schmidt, “Multi-core interference-sensitive WCET analysis leveraging
runtime resource capacity enforcement,” in Proc. 28th Euromicro Conf.
Real-Time Syst., 2014, pp. 109–118.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

AGIRRE et al.: FITTING SOFTWARE EXECUTION-TIME EXCEEDANCE INTO A RESIDUAL RANDOM FAULT IN ISO-26262 1327

[39] H. Pentti and H. Atte, “Failure mode and effects analysis of software-based
automation systems,” VTT Industrial Systems, Espoo Finland STUK-
YTO-TR 190, 2002, p. 190.

[40] H. Pham, System Software Reliability (Springer Series in Reliability En-
gineering). London, U.K.: Springer-Verlag, 2006.

[41] P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J.
Cazorla, “On the evaluation of the impact of shared resources in mul-
tithreaded COTS processors in time-critical environments,” ACM Trans.
Archit. Code Optim., vol. 8, no. 4, pp. 34-1–34-25, 2012.

[42] Rapita Systems Ltd. Rapita Verification Suite (RVS). [Online]. Available:
https://www.rapitasystems.com/products/rvs, Accessed on: May 1, 2018.

[43] P. H. Seong, Reliability and Risk Issues in Large Scale Safety-Critical
Digital Control Systems, 1st ed. London, U.K.: Springer, 2008.

[44] AURIX Application Kit TC277 TFT, hitex. [Online]. Available:
http://www.ehitex.de/application-kits/infineon/2531/aurix-application-kit
-tc277-tft. Accessed on: May 1, 2018.

[45] R. Wilhelm et al., “The worst-case execution-time problem overview of
methods and survey of tools,” ACM Trans. Embedded Comput. Syst., vol. 7,
pp. 1–53, May 2008.

Irune Agirre received the M.Sc. degree in embedded systems from Mondragon
Unibertsitatea, Mondragón, Spain. She is a Ph.D. student with the Universitat
Politècnica de Catalunya, Barcelona, Spain.

She is a Researcher with the Dependable Embedded Systems Department,
IK4-Ikerlan Technology Research Center, Mondragón, Spain. Her research in-
terests include functional safety of real-time embedded systems.

Francisco J. Cazorla received the Ph.D. degree in computer science from the
Polytechnic University of Catalonia, Barcelona, Spain, in 2005.

He is the Director of the Computer Architecture Operating System Re-
search Group, Barcelona Supercomputing Center and a Researcher at IIIA-
CSIC, Barcelona, Spain. His research interests include hardware design and
performance analysis of embedded real-time and high-performance systems.

Jaume Abella received the Ph.D. degree in computer science from the Poly-
technic University of Catalonia, Barcelona, Spain, in 2005.

He is a Senior Ph.D. Researcher with the CAOS group at the Barcelona
Supercomputing Center, since 2009. His research interests include timing and
functional verification of critical real-time systems and performance analysis.
He is a member of HiPEAC.

Carles Hernandez has been a Ph.D. Researcher with the Barcelona Super-
computing Center, Barcelona, Spain, since 2012. He has participated in several
European research projects and with the European Space Agency on time pre-
dictable and reliable high-performance processor designs. In 2012, he was an
intern with the IP verification group at Intel Munich.

Enrico Mezzetti received the Ph.D. degree in computer science from the Uni-
versity of Bologna, Bologna, Italy.

He is currently a Researcher with the CAOS group at BSC. His research
interests include industrial-level timing analysis of embedded real-time systems
with a special focus on multi and many core platforms.

Mikel Azkarate-askatsua received the Ph.D. degree in computer science from
Technische Universitat Wien, Vienna, Austria.

He leads the real-time systems research group at IK4-Ikerlan, Mondragón,
Spain. He coordinates the SAFEPOWER H2020 project and several other R&D
activities on the implementation of embedded systems for real-time control
systems, control system modeling, and functional-safety certification.

Tullio Vardanega received the Ph.D. degree in computer science from the
Technical University of Delft, Delft, The Netherlands.

He was a staff member with the European Space Agency Research and
Technology Center. He has been with the University of Padova, Padova, Italy,
since 2002. His research interests include high-assurance real-time systems and
software engineering methods to develop them.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 04,2020 at 13:45:39 UTC from IEEE Xplore. Restrictions apply.

https://www.rapitasystems.com/products/rvs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

