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Abstract8

This paper provides iterative model selection for forecasting day–ahead hourly electricity prices,9

while accounting for fundamental drivers. The iterative procedure is based on the automatisation10

of the forecasting process, by allowing for switching across several model specifications. Forecasts11

of demand, infeed from renewable energy sources, traditional fossil fuel prices, and physical flows12

are all included in linear and nonlinear specifications, ranging in the class of ARFIMA–GARCH13

models. Results support the adopting a flexible structure that is able to adapt to market conditions.14

Predictions, made for the northern Italian hourly electricity prices and compared by using the15

Diebold–Mariano test and the Model Confidence Set, indicate a strong predictive power from16

forecast demand at any hour and from RES mainly at peak hours, as well as a non–diminishing17

role of natural gas and CO2 prices, and a high level of significance of electricity weighted inflows,18

especially during the morning hours.19
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1. Introduction22

Forecasting day–ahead electricity prices has always attracted attention from practitioners and23

scholars because trading decisions are based on strategic and stochastic components such as24

arbitrage speculations and variability introduced into the system by effects of new regulations25

and imperfect predictability of fundamental drivers. This paper investigates both aspects.26

On one hand, day–ahead electricity prices are determined for each hour of the day, before27

delivery, by the intersection of the aggregated curves of demand and supply. Therefore, factors28

that influence both curves have been largely investigated in price modelling. Fundamental variables29
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such as forecasted demand, and often weather conditions, have been taken into account for the30

demand curve, whereas the predicted intermittent generation by renewable energy sources has31

been recently considered a risk source in the supply curve, together with import/export flows and32

the international movements of fossil fuel prices used in traditional thermal plants; for extensive33

reviews see Weron (2014) and Nowotarski and Weron (2018).34

All these variables must be considered in the formulation of ex–ante expectations of day–ahead35

electricity prices. Furthermore, in recent years, the power generated by renewable energy sources36

has increased substantially due to incentives and the worldwide goal of reducing carbon emissions.37

Indeed, as a country in the European Union (EU), Italy is among the top six countries in the world38

for renewable power capacity (not including hydro), after Germany and together with the United39

Kingdom. Specifically, Italy is among the top EU countries for wind and solar photovoltaic (PV)40

capacity addictions in 2017 (REN21, 2018).41

On the other hand, it has been recently observed that the organisation of electricity markets42

allows for strategic bidding and speculations. Some generators can explore the arbitrage43

opportunities among sequential market sessions and decide to withhold capacity unsold on the44

day–ahead market if they are allowed to bid on balancing market sessions. These sessions are45

close to real time, can realise higher profits because of the pay–as–bid pricing mechanisms, and46

thus obtain the price declared in submitted bids. In Italy, this behaviour attracted the attention47

of the energy regulator in 2016 because enormous costs were generated within the system as a48

consequence of speculative trading of few units acting in the balancing sessions. Gianfreda et al.49

(2018) documented the time evolution of balancing costs in Italy by investigating auction–bid data50

observed over all market sessions, from the day–ahead to real time, and passing through intraday51

sessions. Another observation is that units allowed to bid on a balancing market attempted to close52

their position with zero quantities sold in the day–ahead market to have the capacity to be sold at53

higher prices in balancing sessions, where there is no competition of traders and renewable energy54

sources (RES) units. The last ones depress the day–ahead prices as an effect of the merit order:55

according to this principle, producing units that pollute less have the priority of dispatch and move56

the supply curve towards the right, decreasing equilibrium prices and consequently reducing profit57

opportunities for conventional technologies (which generally act on balancing sessions, together58

with some hydro units).59

To overcome these critical issues, some EU countries, including Italy, have started to discuss the60
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possibility of allowing RES units to act also in the balancing markets. However, in the meanwhile,61

the prediction of prices on the day–ahead market is becoming an increasingly important and62

essential step in the evaluation of trading strategies since operators (of thermal conventional units)63

consider the price spreads among the various sequential sessions and the possibility to act over a64

long–term capacity market. Based on all these considerations and because of the raised issue in65

2016, Italy is an excellent case study. Moreover, the zonal structure allows the consideration of66

the operators’ bidding behaviour across different areas and according to the composition of their67

generation mix.68

Northern Italy is an exceptionally good example for the following main reasons: 1) the zone69

is well interconnected with foreign countries, from whom electricity can be imported at lower70

prices; 2) a high share of solar PV generation has been observed in recent years; 3) most of the71

hydro generation is located in the Alps; 4) and more importantly, the zonal demand represents72

almost half of the national one; hence, variations in demand and supply can boost the strategic73

use of balancing sessions. Therefore, the prediction of day–ahead electricity prices observed in74

northern Italy can increase the understanding of the main drivers in modelling these prices, and75

in monitoring (hence controlling), the bidding strategies across market sessions, according to the76

day–ahead price levels expected in the day–head market.77

According to the literature, few papers have inspected the predictability of day–ahead prices78

in northern Italy. The limited inspection mainly occurred because this area was observed to79

have no notable implications. The most notable studies are Gianfreda and Grossi (2012) and80

Shah and Lisi (2019). The latter adopts a nonparametric functional autoregressive model based81

on individual bids, whereas the former considered the Italian zonal prices by studying the first82

years after liberalisation (2006–2008), during which RES had a limited and marginal role in the83

determination of prices. In that contribution, no quantities from wind, solar, or hydro were84

considered, and only indicators for marginal units determining the prices, as well as demand, an85

index to detect market power and zonal congestions, were considered as zonal price drivers. This86

paper represents an extension of that work by including (predicted) RES values, weighted import87

flows, and fossil fuel prices in the model specifications for the prediction of northern Italian zonal88

prices. In addition, our contribution relies on both the Diebold–Mariano (DM) (Diebold and89

Mariano, 1995) and the Model Confidence Set (MCS) (Hansen et al., 2011) testing procedures to90

guide practitioners in choosing the best model specification according to different hours.91
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For other market structures, Karakatsani and Bunn (2008) and others have attempted to92

capture the impacts of economic, technical, strategic, and risk factors on intraday prices.93

Oberndorfer (2009) focused on the relationship between energy market developments, external94

shocks, and pricing of European utility stocks. Hickey et al. (2012) implemented ARMAX–GARCH95

models trend, dummy variables for seasonality and load for five MISO pricing hubs. Subsequently,96

Maciejowska and Weron (2016) focused on the increased granularity of data available on the97

British market (where prices have a half–hour frequency) to test a set of fundamental explanatory98

variables (i.e. natural gas, coal, and CO2 emissions). de Marcos et al. (2019) proposed an99

econometric and fundamental approach to forecast short–term prices in the Iberian market by100

pairing a neural network with a set of expected and actual fundamental variables. Gianfreda101

et al. (2020) compared several univariate and multivariate models augmented with fundamental102

variables, including demand forecasts, and production forecasts from fossil and renewable energy103

sources, to predict hourly day-ahead electricity prices in several European markets.104

Following the extensive literature, we select AR(FI)MA–GARCH–type models and compare105

their forecasting ability with/without a set of regressors, while adopting a rolling window approach106

and an adaptive scheme. The former approach recalls the dynamic evolution of fundamentals107

over time, in line with the time–varying parameter regression model implemented in Karakatsani108

and Bunn (2008) to adapt continuously price structures to market changes. Furthermore, the109

latter scheme develops to the estimation strategy implemented in Weron and Misiorek (2008),110

Chen and Bunn (2014) and Maciejowska and Weron (2016), by extending the selection to both111

the autoregressive and moving average lag–orders for each calibration window and each model112

specification, including the options to switch from one model to another in cases of problems of113

convergence of some model specifications and to replace negative forecasted prices with null prices114

(since that negative pricing is not allowed in the Italian market). Moreover, we expand the set115

of fundamentals including RES (wind, solar PV, and hydro) and weighted flows and we explore116

nonlinear models to provide empirical evidence on their forecasting performance, given the mixed117

results in the literature and their under-performance assumed in Hong et al., 2014 and explored118

only in British and German markets.119

We tested several AR(FI)MAX–GARCH models and we observed that both the ARFIMAX120

model with Normal distribution and the ARMAX–EGARCH model with skew Student’s t121

distribution perform quite accurately. These models have the lowest average root mean square122
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errors (RMSEs) in the out–of–sample and highlight different pattern behaviours across the 24123

hours. The separate analysis over hours without solar (1–7 and 21–24) suggests the presence of124

volatility clustering, especially during the 21–24 hours, simultaneously suggesting a combined125

significant effect between gas and hydro (during 1–7 hours) and the use of GARCH–type126

specifications (during 21–24 hours), with the relative forecasting accuracy that decreases across127

the ramp–up and ramp–down hours. We also assess the coefficients of the exogenous regressors to128

investigate their degree of significance through the considered sample and we provide evidence that129

fundamental factors can drive zonal electricity prices differently within trading periods. The most130

notable evidence is that RES (wind, solar, and hydro) and imports from neighbouring countries play131

a relevant role in price creation. Differently from the empirical results found in UK and Germany,132

coal is found to be not statistically significant, whereas natural gas confirms its relevance especially133

at ramp–up and ramp–down hours. Surprisingly, carbon prices can exhibit a significant negative134

effect which may be understood as a consequence of energy policy of increasing green generation.135

The remainder of the paper is structured as follows. Section 2 presents a brief description of136

the Italian market with a focus on the northern zone, Section 3 provides a detailed description137

of the data employed and the methodological strategy used to predict hourly electricity prices,138

Section 4 presents the results, and finally Section 5 concludes.139

2. The Italian Market Structure and the Northern Zone140

The Italian electricity market is structured into three main segments: the day–ahead, the141

intraday, and the ancillary services markets. The latter is paired by the balancing market operated142

in real time on the day of delivery. All segments are open to a variety of national and international143

operators (producers, consumers, traders), for a total of 258 different market participants in 20171.144

Market participation is voluntary both in the day–ahead and in the intraday markets, whereas it145

is compulsory in the ancillary services market sessions. We focus on the day–ahead market, which146

opens nine days before the day of delivery and closes at noon on the day before delivery.147

The Italian electricity market is structured into geographical and foreign virtual zones. The148

1The spot market is complemented by the forward market (a platform for different types of contracts) and by

the bilateral contract platform (where all OTC energy transactions that require flows through the power grid are

registered).
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geographical zones represent a portion of the national grid delimited by bottlenecks in transmission149

capacity, and these are northern Italy, central–northern Italy, central–southern Italy, southern Italy,150

Sicily, and Sardinia. The foreign virtual zones are points of interconnection with neighbouring151

countries. In this paper we consider northern Italy; thus, the foreign virtual zones in this analysis152

are France, Switzerland, Austria, and Slovenia.153

Each geographical and virtual zone yields an hourly (clearing) price, obtained from an implicit154

bidding mechanism in which pairs of quantities (in MWh) and prices (in ¤/MWh) are considered155

by accounting for the market splitting in case of congestions. Therefore, in the same hour, zonal156

prices in contiguous market zones can differ depending on transmission bottlenecks. The zonal157

prices concur to generate the single national price (or prezzo unico nazionale, PUN), that is, the158

average of zonal day–ahead prices weighted for total purchases, net of purchases for pumped–159

storage units, and purchases by neighbouring zones. Additional details on the Italian market160

structure and the process of the creation of a system marginal price are found in Bosco et al.161

(2007), Gianfreda and Grossi (2012), Gianfreda et al. (2016, 2019) and Shah and Lisi (2019).162

These researchers have emphasised the differences in the generation mix across regions and163

how the industrial activities are mainly concentrated in the northern area of the country, which164

is by far the most relevant in terms of consumption, due to the high concentration of population165

and industries. The northern consumption is 175,396 GWh over 303,443 GWh at the national166

level. Energy intensity is consistently higher, with an average of 6,326 kWh per inhabitant versus167

a national average of 5,024 kWh (Terna, 2018).168

The northern area is also characterised by a varied, flexible generation mix, with 26%169

hydropower, and other renewables such as solar (6%) and biomasses (8%); conventional thermal170

generation covers the remaining portion. In 2017, the production in the northern zone was 149,204171

GWh over a total of 289,708 GWh, roughly 51%.172

Moreover, Italy has arranged market–coupling agreements with Slovenia since 2011, and with173

France and Austria since 2015, which represent completion steps to the creation of a single internal174

electricity market in Europe. Market coupling allows for the simultaneous calculation of electricity175

prices and cross–border flows across coupled regions, and the main benefits are both an optimised176

and more efficient utilisation of cross–border capacity and a better price alignment among different177

countries. Because of the relevant interconnection capacity between foreign countries and northern178

Italy, it is possible to import electricity at a lower price. For instance, in 2018, Italy imported179
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47,170 GWh of electricity (approximately equivalent to 15% of total consumption) from French,180

Swiss, and Slovenian borders. Hence, cross–border flows are included in this analysis.181

3. Data and Methodology182

This section provides a detailed overview of the available data and then explains the183

methodological strategy to predict hourly electricity prices. In particular, subsection 3.1 describes184

both the endogenous and the exogenous variables used in our model specifications, while subsection185

3.2 shows all the model specifications and the forecast procedure.186

3.1. Data and Preliminary Analysis187

To perform our analysis, we use day–ahead electricity prices determined hourly in the northern188

zone of Italy. We directly retrieve these prices (in ¤/MWh) from the website of the Italian system189

operator (Gestore dei Mercati Energetici, GME2) and collect from ENTSO–E the forecasted day–190

ahead load (quoted in MW) for the same zone. Load is used as a proxy for predictions of local191

electricity demand. From the same platform, we download hourly actual hydro generation for192

northern Italy and forecasts of renewable solar PV and wind generation (all quoted in MW).193

Forecasted load and RES quantities were re–scaled from MW to GW, as in Chen and Bunn (2010)194

among many others.195

In addition, we include flows with foreign countries and with the contiguous zone, i.e. the196

central–northern Italy. To account for different prices and quantities observed in neighbouring197

foreign markets, we construct a series of average hourly prices (expressed in ¤/MWh) weighted for198

imports of electricity into the northern zone. Specifically, this is calculated as the average of day–199

ahead hourly prices observed in Austria, France, Switzerland, Slovenia, and in central–northern200

Italy, weighted for actual hourly electricity physical flows, to capture the effects of electricity201

transits across bordering markets and the connected national zone.202

Finally, we consider commodity prices to account for the marginal costs of conventional thermal203

generation, such as Dutch TTF natural gas prices (for delivery over the next month) and CO2204

emissions prices3. We collect these variables from Datastream, whose misure units are converted205

2http://www.mercatoelettrico.org
3We also considered the ICE API2 Rotterdam Future prices for coal, but coefficients were not significant and

thus we excluded it from the analysis. Results are available upon request. However, we would like to emphasize
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to ¤/MWh when necessary. Our final database comprises 35,064 hourly observations for each206

variable, from January 2015 to December 2018.207

Following Bunn (2000), Cuaresma et al. (2004) and subsequent references, we adopt a variable208

segmentation approach. The modelling and forecasting process considers hourly time series per209

time, i.e. we model and forecast each of the hourly prices individually. Moreover, the model210

specification strategy replaces missing or incomplete hourly actual data (when they are unavailable211

because they have not yet been published) with the corresponding information observed for the212

same hour on the day before.213

Differently from Weron (2007) and Afanasyev and Fedorova (2019), we maintain the outliers in214

all the variable series and we do not decompose the effects of seasonality. We claim that outliers215

represent peculiar characteristics of the Italian market since they incorporate notable market216

information in terms of sample variance and arbitrage opportunity from a day–ahead trading217

perspective. In addition and in contrast to Conejo et al. (2005), Garcia et al. (2005), Weron and218

Misiorek (2008), Bordignon et al. (2013) among others, we do not apply logarithms to prices to219

improve normality and stabilize variance, since this transformation could mask the statistical price220

properties and volatility dynamics that we want to capture and model, see Karakatsani and Bunn221

(2010) and Paraschiv et al. (2014) for a similar choice to our paper.222

The descriptive statistics of the selected variables are reported in Table 1, and their dynamics223

are depicted in Figure 1. Even if the hourly electricity prices range between 5 and 206.12¤/MWh,224

Italian power prices have a floor of 0¤/MWh and a cap of 3,000¤/MWh. Notably, even if wind225

generation in northern Italy exhibits low values (a range between 0 and 20 MW), we include this226

variable for completeness and consistency with the zonal generation mix.227

Electricity prices time series present a weekly seasonality, with consumption behaviour peaking228

on central working days, and a more relaxed load pattern during the weekends. These features229

are more evident in Figure 2, where time series are presented for a sample of hours within peak230

and off–peak periods (i.e. hours 3, 9, 13, 15, 21, and 24). Consistently, a monthly seasonality231

is characterised by a consumption peak in winter months (January and February) and a peak232

in summer months, because of the widespread use of cooling systems and heat pumps. Wind233

that, in case of a further reduction of coal prices and/or a sudden increase of emission prices, electricity prices will

be expected to react differently to what observed in this sample.
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and solar PV generation fluctuate according to weather conditions, and solar PV generation also234

fluctuates according to hours of solar radiation. Electricity inflows from bordering zones (central–235

northern Italy) and foreign markets (Austria, France, Switzerland, and Slovenia) also exhibit strong236

seasonality, especially in the beginning of our sample.237

We consider the Jarque–Bera (JB) test to check for normality of error terms (Jarque and238

Bera, 1987), and both the augmented Dickey–Fuller (ADF) (Dickey and Fuller, 1979; Said and239

Dickey, 1984), and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests for the stationarity240

(Kwiatkowski et al., 1992). Since we observed non–normality according to JB test, stationarity241

according to the ADF test and both level and trend non–stationarity according to the KPSS test,242

we opted to account for alternative distributions of the error terms and consider the ARFIMA243

model specifications.

Min Mean Max Std.Dev Skew. Ex. Kurt.

Price 5.00 52.62 206.12 17.11 1.16 3.36

Load 8.41 18.54 31.30 4.82 0.17 -1.12

Weighted Import 0.00 43.55 248.98 16.20 0.92 2.74

Natural Gas 10.70 18.31 29.33 3.83 0.24 -0.28

CO2 3.91 8.70 25.20 4.90 1.60 1.51

Solar 0.00 0.77 5.50 1.16 1.42 0.89

Wind 0.00 0.00 0.02 0.01 1.02 0.36

Hydro 0.55 3.81 9.44 1.99 0.34 -0.83

Table 1: Descriptive Statistics of Fundamental Variables computed over the Full Sample. Note that Std.Dev.,

Skew., Ex. Kurt. mean standard deviation, skewness and excess of kurtosis respectively.

244
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Figure 1: Time Series of all used Endogenous and Exogenous Variables.
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Figure 2: Day–ahead Electricity Prices in Northern Italy at hours 3, 9, 13, 15, 21, and 24.
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3.2. Model Specifications245

Based on the preliminary analysis and common practice, we propose and compare different246

specifications to model the electricity zonal prices observed over individual hours: each hour247

is modelled separately by following a daily frequency for prices and drivers. Because all the248

information is available or reconstructed at approximately 11 a.m. (i.e. before the market closure249

when traders must submit their offers), we are able to model all the 24 hours and forecast them250

for the next day by a simple prediction process that produces a set of 24 price predictions for the251

24 hours of the following day.252

Our initial set of models contains six specifications: (i) an ARMAX(p,q) model with only253

dummy variables (the benchmark model); (ii) an ARMAX(p,q) model with dummies and all the254

exogenous regressors previously described; (iii) an ARMAX(7,7), as in the previous formulation255

but with fixed parameters p = 7 and q = 7; (iv) an ARIMAX(7,1,7) that contains a fractionally256

integrated parameter d = 1 in addition to p = 7, q = 7, dummies and all the regressors; (v)257

an ARFIMAX(p,d,q), with dummies, all the regressors, and a Normal distribution for the error258

terms; and (vi) an ARFIMAX(p,d,q) specified as before but with a skew Student’s t distribution.259

In both the ARMAX(p,q) and ARFIMAX(p,d,q) model specifications, the procedure automatically260

suggests the orders of the autoregressive and moving average polynomials, and the inclusion of the261

fractionally integrated coefficient d. In other words, following an adaptive scheme for selection262

and estimation, the values of p and q are selected at each iteration within a range of 1–7 for both263

the orders, and d is estimated over the rolling window, when included; then, price forecasts are264

obtained according to these iteratively selected coefficients.265

Let consider first the benchmark ARMA(p,q) process, i.e.266

Φ (L) (yt − µt) = Θ (L) εt εt | Ft−1 ∼ D
(
0, σ2

·
)

t = 1, ..., T (1)

where yt is the hourly electricity price observed on day t and L is the lag operator defined as267

Llyt = yt−l. The polynomials Φ (L) = 1 −
∑p

i=1 φiL
i and Θ (L) = 1 +

∑q
j=1 θjL

j represent the268

autoregressive and moving average components with p and q orders, respectively. Ft−1 is the269

information up to time t − 1, while the conditional expected value of the dependent variable on270

day t, i.e. µt = E (yt | Ft−1), is equal to271

µt = µ+ ψ1D
1
t + · · ·+ ψ11D

11
t + γWeekendt + ξMondayt (2)

12



where Dj
t for j = 1, . . . , 11 are dummies for months, Weekendt is a dummy for weekends and272

holidays, Mondayt is a dummy for Mondays, and ψj, ξ and γ are their coefficients, respectively. In273

particular, D1
t is the dummy for January, D2

t is the dummy for February, . . . , D11
t is the dummy for274

November, excluding December. Monthly dummy variables are used to model calendar seasonality,275

and Mondayt captures the impact of a change in consumptions among working days and the first276

day after the weekends.277

Based on the aforementioned considerations regarding the fundamental drivers of Italian278

electricity prices, we extend the benchmark model with a set of regressors xt; then, the mean279

equation is specified as follows280

µt = µ+ ψ1D
1
t + · · ·+ ψ11D

11
t + γWeekendt + ξMondayt + λ′xt (3)

where xt is the vector at time t of exogenous regressors, which include forecasted load, wind and281

solar PV generation, weighted imports, natural gas, CO2 prices, and actual hydro generation.282

The ARFIMAX model specifications are defined as in the following283

Φ (L) (1− L)d (yt − µt) = Θ (L) εt (4)

where d is the fractional integration parameter and µt is defined in equation (3). For both the284

specifications in equations (1) and (4), the variance of the errors is assumed to be constant; hence,285

σ2
t = σ2 ∀t.286

To account for possible time–varying volatility patterns, asymmetries and shocks induced by287

fundamental drivers, we expand our models by including GARCH–type specifications. A similar288

approach has been used by, for example, Koopman et al. (2007), Huurman et al. (2012), Paraschiv289

et al. (2014), Ketterer (2014) and Laporta et al. (2018). For the Italian market, Bosco et al. (2007)290

used an ARMA–GARCH model, whereas Gianfreda and Grossi (2012) used ARFIMAX–GARCHX291

models with Student’s t distributions and several exogenous factors to address congestion, market292

power, traded volumes, and marginal technologies.293

Hence, we compare several GARCH–type models: standard GARCH (SGARCH); exponential294

GARCH (EGARCH); and threshold GARCH (TGARCH) with Normal, Student’s t, skew295

Student’s t, generalised error, and skew generalised error distributions. These models differ296

according to the type of GARCH adopted and the distribution of the error terms. Thus, the297

second set of models extends the previous one with time–varying volatility expressed w.l.o.g. on298

day t as σ2
t = V (εt | Ft−1).299
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The SGARCH(1,1) can be defined as300

σ2
t = ω + αε2t−1 + βσ2

t−1, (5)

while for the EGARCH(1,1) we have301

log σ2
t = ω + τg (Zt−1) + β log σ2

t−1, (6)

where g (Zt−1) = κZt−1 + η (|Zt−1| − E (Zt−1)), and it allows the conditional variance process to302

respond asymmetrically to rises and falls in electricity prices (Nelson, 1991). Finally, to account for303

asymmetries in volatility, making it a function of positive and negative values of the innovations,304

we consider the TGARCH(1,1) process (Zakoian, 1994), defined as follows305

σt = ω + α+
1 ε

+
t−1 + α−1 ε

−
t−1 + βσt−1 (7)

where ε+t−1 = εt−1 if εt−1 > 0 and 0 otherwise, ε−t−1 = εt−1 if εt−1 ≤ 0 and 0 otherwise. We306

expand the proposed GARCH specifications to also include the vector of exogenous regressors, xt.307

Furthermore, we consider the model by Ziel and Weron (2018) as an alternative benchmark.308

As anticipated, we use a rolling window approach to compare models with an ex–ante fixed309

structure and those in which the orders of p, d and q are automatically selected at each iteration310

according to the Akaike Information Criterion (AIC). To achieve this objective, we use the first311

730 days of our dataset (i.e. from 1/1/2015 to 31/12/2016) for the in–sample estimation, and then312

the first out–of–sample prediction is obtained for 1/1/2017; thereafter, the window is rolled one313

step–ahead with further estimation and forecasts obtained for 2/1/2017, and so forth, until the314

last observation in the sample. Therefore, we produce forecasts over two years from 1/1/2017 to315

31/12/2018.316

We recall that the modelling and forecasting process is undertaken on day t to provide a set317

of 24 hourly prices forecasted for the next day t + 1. These forecasts must be submitted before318

the closure of the market, i.e. before noon on day t (thus, we assume that these models must be319

started no later than 11 a.m. and have completed their runs by noon). To predict the day–ahead320

hourly price on day t + 1, we use the information referred to that specific hour as follows: we321

assume that market operators submit their bids by noon on day t, based on predicted prices for322

day t + 1, obtained by considering commodity prices and hydropower generation determined on323

day t − 1 (and, in this case, as in Conejo et al. (2005) we use a two–step–ahead random walk324
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prediction); the weighted import prices for the hours before 11 a.m. and the realised values on day325

t (in this case, we use a 1–step–ahead random walk prediction); and finally, the forecasted values326

for RES and zonal load available for day t+ 1. Further details on timing of the relevant variables327

are reported in Appendix 5.328

To assess the forecasting performance of the implemented models, we use root mean square329

errors (RMSEs). In addition, we implement the Diebold–Mariano (DM) test to judge the330

superiority among two competing models (see Diebold and Mariano, 2002, Diebold and Mariano,331

1995 and also West, 1996), and the Hansen–Luden–Nason procedure of Model Confidence Set332

(MCS) to verify the statistical significance in terms of differences in forecasting performances333

among the selected models (see Hansen et al., 2011). The DM test compares the forecast residuals334

of only two competing models, and the MCS procedure is a sequence of statistical tests in which335

the null hypothesis is built on the equal predictive ability (EPA) of several model specifications.336

Given that the EPA statistical tests can be calculated for different loss functions (depending on337

the aim of the comparison), we consider a loss function for level forecasts because of our interest338

in a comparison of the predictability power in the mean between our models.339

4. Results340

In this section, we first show the results of the predictability power of the selected models;341

next, the time evolution of the estimated orders of AR(FI)MA models are shown together with342

those for the estimated coefficients of the preferred models. To judge the quality of the forecasted343

prices, the RMSEs over all the 24 hours, and the Average RMSE over the 24 hours (Avg1−24) and344

over the peak hours 8–20 (Avg8−20) are computed and presented in Table 2.345

First, we observe that the inclusion of all the selected exogenous regressors drastically reduces346

the RMSE over the 24 hours, especially during peak hours, for all the considered models with347

respect to the ARMA benchmark model. Therefore, we extend evidence in Gianfreda et al.348

(2020) on the predictive power of a large set of exogenous regressors to forecast regional prices.349

Results show that the ARFIMAX(p,d,q) with Normal (Norm) distribution and the ARMAX(p,q)–350

EGARCH(1,1) with skew Student’s t (SkewStd) distribution have the lowest Average RMSE351

over the 24 hours: 7.820 and 7.821 (approximately 7.80 ¤/MWh), respectively. However, the352

ARFIMAX(p,d,q)–Norm model performs better during midday, when solar power is produced.353

Additionally, the Average RMSE computed over hours 8–20 (i.e. Avg8−20) equals 9.390,354
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which is slightly lower than 9.424, namely, the same average computed for the ARMAX(p,q)–355

EGARCH(1,1)–SkewStd specification. Second, the ARMAX(p,q)–EGARCH(1,1)–SkewStd model356

predicts very well during hours 21–24, suggesting volatility clustering in those hours, and showing357

its ability to capture intraday realised volatility. Therefore, these two models are the best358

candidates to forecast performance: they provide on average more accurate results, even if with359

different performances across hours.360

In Figure 3, we compare the performances of the benchmark model with those of the ARMAX361

and ARFIMAX models (on the left), and the best ARFIMAX with the ARMAX–GARCH362

specifications (on the right). Notably, forecasting precision drastically decreases during the ramp–363

up (hours 7–9) and ramp–down (hours 19–21) phases, when the conventional thermal generation364

is necessary to restore the balance between demand and supply. Across peak hours, the non365

programmable renewables (solar and wind) bid at 0¤/MWh and have priority of dispatch of the366

produced energy. Therefore, their intermittent, erratic feed–in increases the variability of prices367

and consequently affects the forecasting errors, especially at 9 and 19 when demand is at its368

higher levels. The first comparison shows that the benchmark model poorly performs at all hours369

and in addition that ARIMAXs and ARFIMAXs perform almost equally, with a slightly superior370

performance exhibited by the ARFIMAX(p,d,q)–Norm especially at hours 9–12 & 17–20. More371

interestingly, it seems that the inclusion of nonlinear specifications to account for time–varying372

conditional volatility does not improve the forecasting performance. The ARFIMAX(p,d,q)–Norm373

is found again to outperform all the ARMAX–GARCH specifications, in line with the findings in374

Karakatsani and Bunn (2010), Hong et al. (2014) and Paraschiv et al. (2014); hence, adopting375

a model which properly includes fundamental drivers may be sufficient to eliminate the ARCH376

effects.377

To check the effective superiority of the ARFIMAX model over the ARMAX one, the dynamics378

of the estimated fractionally integrated parameter d in the ARFIMAX(p,d,q)–Norm model is379

inspected and its evolution at hour 13 is depicted in Figure 4. The estimated coefficient is lower380

than 0.5 over the full out–of–sample period, suggesting that the model tends to be more an381

ARMAX(p,q) than an ARIMAX(p,1,q). This reason is probably why there is no a substantial382

difference in the predictability power between the ARFIMAX(p,d,q) and the ARMAX(p,q)383

specifications. However, a drastic change in the evolution can be observed over the last part384

of the sample: during 2017, the estimated value of the term d fluctuates approximately around385
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Figure 3: RMSE for different model specifications over the 24 hours: (a) RMSE of the Benchmark model

(black line), ARMAX(7,7) model (green line), ARIMAX(7,1,7) model (purple line), ARMAX(p,q) model

(blue line), ARFIMAX(p,d,q) model with Normal distribution (red line), ARFIMAX(p,d,q) model with

skew Student’s t distribution (orange line); (b) RMSE of the ARFIMAX(p,d,q) with Normal distribution

(black line), ARMAX(p,q)–SGARCH with Normal distribution (red line), with Student’s t distribution

(red dashed line), with skew Student’s t distribution (dotted red line), ARMAX(p,q)–EGARCH with

Normal distribution (blue line), with Student’s t distribution (blue dashed line), with skew Student’s

t distribution (dotted blue line), ARMAX(p,q)–TGARCH with Normal distribution (orange line), with

Student’s t distribution (orange dashed line), and with skew Student’s t distribution (dotted orange line).

0.4, and the series varies between zero and 0.3 during 2018. In addition, the evolutions of the p386

and q estimated parameters for both the ARMAX(p,q) and ARFIMAX(p,d,q)–Norm models are387

shown in Figures 5 and 6 for a sample of hours. They clearly show the importance of considering388

an iterative adaptive scheme.389

Regarding the comparisons of forecasting ability, the results of both the DM test and the MCS390

procedure are also presented in Table 2. The pairwise comparisons between the benchmark model391

and each alternative specification performed with the DM tests show that the majority of the392

selected model specifications has significant lower RMSE values with respect to the benchmark393

model, especially during hours 1–7. In the middle of the day, that is, during the peak hours,394

the predictability power of some models decreases and loses its significance, especially during the395
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Figure 4: Estimated fractionally integrated parameter d in the ARFIMAX(p,d,q)–Norm model used for

electricity prices observed at hour 13.
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Figure 5: Estimated p parameter for the ARMAX(p,q) (in red) and ARFIMAX(p,d,q)–Norm (in black)

models used for electricity prices observed at hours 3, 13 and 21, respectively.

evening. In general, the worst performances are those of the ARMAX(p,q)–GARCH models with396

generalised error and skew generalised error distributions. Furthermore, we consider the model397

proposed by Ziel and Weron (2018) as an alternative benchmark. However, the RMSEs for this398

additional model are higher than the RMSEs of our models for all 24 hours, probably because of399

the peculiarities of the Italian market structure; thus, we omit these results, but they are available400

upon request.401
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Figure 6: Estimated q parameter for the ARMAX(p,q) (in red) and ARFIMAX(p,d,q)–Norm (in black)

models used for electricity prices observed at hours 3, 13 and 21, respectively.

When all the models are simultaneously compared, the computations of the Superior Set of402

Models (SSM)4, in terms of minimum loss function for level forecasts, show that several models403

are not statistically different from each other in predictability power, but differences exist among404

the 24 hours and especially over the off–peak hours.405

The final preferred model is on average the ARFIMAX(p,d,q)–Norm model because of its406

forecasting ability, especially during peak hours, and its parsimonious specification. However, the407

combined ARMAX(p,q)–EGARCH–SkewStd model might be useful when forecasting hours 21–24408

to account for potential volatility clustering. Furthermore, the predictability power of fundamental409

variables decreases during the evening hours because the forecast horizons are longer than those410

for the morning hours. This argument is particularly notable for RES because the accuracy of411

weather predictions decreases substantially with the length of forecasting horizons.412

Regarding the regressors, following the exercise in Paraschiv et al. (2014) their information413

power is explored by comparing a set of models in which fossil fuels (natural gas and CO2)414

and RES (wind, solar, and hydro) are first all included and in a second specification where415

all regressors are all excluded (the latter one is labelled “No RES & FOSSIL”) in the models416

ARFIMAX(p,d,q)–Norm and ARMAX(p,q)–EGARCH-SkewStd. Figure 7 also shows the RMSEs417

of the ARMAX(p,q)–EGARCH-SkewStd that comprises all regressors in both the conditional mean418

4We implement the MCS procedure with the Tmax,M test (Hansen et al., 2011, p. 465) at the α = 0.15

significance level by using the R function MCSprocedure within the package MCS written by Bernardi and Catania

(2018).
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Figure 7: RMSEs for a Selection of Models with and without Fundamental Regressors (Fossil Fuels and

RES).

and conditional variance, i.e. ARMAX(p,q)–EGARCH–SkewStd with “X in Var”.419

First, the intradaily dynamics of the RMSEs shows that the latter specification of420

ARMAX(p,q)–EGARCH–SkewStd with regressors in both the equations does not improve on421

average the power predictability of the same model with regressors contained only in the conditional422

mean equation. This comparison (ARMAX(p,q)–EGARCH–SkewStd with X in Var versus the423

simpler ARMAX(p,q)–EGARCH–SkewStd, using the names in the label) leads us to conclude that424

a more parsimonious model has to be preferred because fossil fuels and RES have no impact in425

explaining the conditional variance and in improving the forecasting performance. This finding426

is particularly evident at hours 17 and 19, and it is in line with Karakatsani and Bunn (2010)427

and Paraschiv et al. (2014). Given that the forecast performance did not improve in the GARCH428

specifications with X in Var, we omit numerical results to save space.429

Second, although we observe no difference on average between the ARFIMAX(p,d,q)–Norm430

and ARMAX(p,q)–EGARCH–SkewStd, differences emerge when fossil fuels and RES are excluded,431

with the former model outperforming the latter one. This finding further supports the importance432

of their inclusion. In detail, the ARFIMAX(p,d,q)–Norm (without these variables) performs better433

than the GARCH specification, suggesting that the fractional integrated coefficient d plays a434
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greater role than the accounting for time–varying volatility. Notably, this issue is particularly435

evident during hours 21–24, when only slight differences are observed with respect to the same436

model with all the regressors included. For hours 1–7, RMSEs vary across different models: we437

observed a combining and significant effect between gas and hydro that was useful to reduce the438

RMSE values.439

As expected, the inclusion of fundamental variables in the conditional mean equation440

substantially improves the forecasting performances. Next, we report the estimated coefficients441

(with confidence intervals at 80%) of the ARFIMAX(p,d,q)–Norm model at hours 3, 9, 15, and 21442

in the out–of–sample period. Results for the remaining hours are omitted but are available upon443

request.444

Consistently with the literature, forecasted load is statistically significant with a positive effect445

on day–ahead price, meaning that prices do respond to load with an increasing influence through446

the years at hour 3 and a decreasing influence at hours 9 and 21; whereas a flat influence at hour447

15, which may reflect the negative demand effect of solar PV generation, see Figure 8.448

Solar PV forecasts are statistically significant at hour 15 with a negative sign, implying their449

reduction of the mean level of zonal prices, and it turns non significant in the last year of the sample450

at hour 9, see Figure 9. Unsurprisingly, the influence of wind power is negative and significant only451

at hour 3, given its limited generation in northern Italy; these results are omitted for lack of space.452

Also actual hydropower generation is statistically significant and negative only at hour 3. The453

dynamics of its estimated coefficient are reported in Figure 10. This finding may be consistent454

with the findings in Gianfreda et al. (2018), who argued that hydro units mainly abandon the455

day–ahead market to explore higher profit opportunities in balancing market sessions. Notably,456

the variable Hydro at hour 10 is significant in the early afternoon.457

Weighted imports are significant and positive at hours 3 and 9, especially in the morning, see458

Figure 12. The Weighted Import and the Weighted Import at hour 10 variables are both positive459

and significant most of the time with an average range impact of [0.1, 0.4], while the information460

coming from the Lagged Weighted Import is not statistically different from 0 during the entire461

period. Therefore, foreign prices and demand affect Italian electricity price via scheduled capacity462

on interconnectors and shared power exchange algorithms via market coupling. The relevance of463

the 10–th hour regressor suggests an underlying persistence of short memory in trading decisions.464

Figure 14 shows that natural gas confirms its attitude to increase electricity prices across all465
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selected hours, but with a particularly pronounced increasing trend at hours 9 and 15, paired with466

higher volatility. This finding is consistent with the relevant share of electricity generation covered467

by combined cycle gas turbine plants in northern Italy.468

On the contrary, the CO2 emission prices in Figure 15 exhibit a significant negative effect only469

in the last year of the sample and for hours 9 and 15, which may suggest that the increment of470

CO2 prices does not affect day–ahead prices because of RES.471

5. Conclusions472

Forecasting day–ahead electricity prices has become extremely important for generation473

planning, given the imperfect predictability of weather conditions that affect both demand and474

RES generation, and for trading decisions influenced by the exploitation of possible arbitrage475

opportunities that can occur in subsequent market sessions. Hence, this paper provides a new,476

flexible model selection through an iterative and adaptive procedure which produces good and477

timely predictions of hourly day–ahead prices for northern Italy, where monitoring the bidding478

strategies for detecting strategic behaviours across market sessions is becoming critical to avoid479

market speculations and consequent increasing costs for final customers.480

Using a set of drivers, comprising forecasted demand, forecasted wind and solar PV generation481

fossil fuels and expanded to include hydro generation and price–weighted flows, northern Italian482

electricity prices are forecasted through linear and nonlinear models with a flexible structure483

iteratively selected at both the autoregressive and moving average orders over each calibration484

window and each model, including the possibility to switch from one model to another. Our485

results clearly show the importance of adopting a flexible structure that adapts to time–varying486

market conditions and of avoiding overparametrisation in an ex–ante ordering selection.487

We provide evidence that fundamental factors can drive zonal electricity prices differently488

within trading periods and that their simultaneous inclusion (fuels, imports and RES as well)489

substantially improves the forecast accuracy.490

Exploring the forecasting performance of linear and nonlinear models when a set of drivers491

are all included or excluded, we provide important empirical evidence contributing to the mixed492

results already presented in the literature. Indeed, adding GARCH residuals slightly improves493

forecast accuracy only in the ARMAX(p,q)–EGARCH(1,1)–SkewStd specification, and we can494

conclude that the previous documented time–varying volatility is captured by the intermittent495
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behaviour of renewable energy sources. This confirms that adopting a model which properly496

includes fundamental drivers is sufficient to eliminate the ARCH effects, or that they are a surrogate497

for omitted factors (Karakatsani and Bunn, 2010).498

Implementing the DM test and the MCS to gain insights into the best performing models,499

we find a strong predictive power from forecast demand at any hour and from RES mainly at500

peak hours. Notably, we also observe that electricity inflows weighted by prices determined in501

bordering countries and connected zones also have a significant impact on prices. As far as fuels502

are concerned and contrarily to empirical results found in UK and Germany, coal is found to be503

non statistically significant in the price formation of zonal prices in northern Italy, at least for504

the sample considered. Instead, natural gas confirms its importance especially at ramp–up and505

ramp–down hours. Surprisingly, carbon prices exhibit a significant negative effect only in the last506

year of the sample and for hours 9 and 15, due to the increase in the PV infeed. This can be a507

practical consequence of the energy policy of increasing green generation: the increment of CO2508

prices did not affect day–ahead prices because of the substitution effect of RES generation with509

traditional fuels in the supply curve.510

However, it would be interesting to monitor the effects of fuels in the future, especially carbon511

prices. On one hand, the conversion of power plants into gas–fired units will induce coal prices to512

further decrease and, in contrast, gas prices to increase. On the other hand, there is an enormous513

pressure to increase substantially carbon emission prices, since they are considered too low to514

be effective in reducing emissions. As argued, they are considered inadequate to reflect actual515

climate costs, then governments and policy makers are demanded for raising them faster to meet516

their commitments on cutting emissions. This would certainly change their influence on fossil fuel517

prices and, consequently, on electricity prices.518
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Tables619

Model/Hour 1 2 3 4 5 6 7 8 9 10 11 12 13

Benchmark 5.808 5.744 5.747 5.927 6.154 6.133 6.655 8.739 12.052 11.234 10.159 10.152 9.270

ARMAX(7,7) 5.410 ∗ ∗∗ 5.277 ∗ ∗∗ 5.220 ∗ ∗∗ 5.460 ∗ ∗∗ 5.664 ∗ ∗∗ 5.652 ∗ ∗∗ 5.969 ∗ ∗∗ 8.024 ∗ ∗∗ 10.637 ∗ ∗∗ 10.026 ∗ ∗∗ 8.985 ∗ ∗∗ 9.298 ∗ ∗ 8.619∗

ARIMAX(7,1,7) 5.434 ∗ ∗∗ 5.259 ∗ ∗∗ 5.216 ∗ ∗∗ 5.472 ∗ ∗∗ 5.670 ∗ ∗∗ 5.607 ∗ ∗∗ 5.986 ∗ ∗∗ 7.993 ∗ ∗∗ 10.778 ∗ ∗∗ 10.067 ∗ ∗∗ 9.013 ∗ ∗∗ 9.317 ∗ ∗ 8.657∗

ARMAX(p,q) 5.365 ∗ ∗∗ 5.228 ∗ ∗∗ 5.241 ∗ ∗∗ 5.434 ∗ ∗∗ 5.625 ∗ ∗∗ 5.680 ∗ ∗∗ 6.048 ∗ ∗∗ 8.058 ∗ ∗ 10.704 ∗ ∗∗ 10.016 ∗ ∗∗ 8.980 ∗ ∗∗ 9.268 ∗ ∗∗ 8.503 ∗ ∗

ARFIMAX(p,d,q) Norm 5.342 ∗ ∗∗ 5.234 ∗ ∗∗ 5.222 ∗ ∗∗ 5.400 ∗ ∗∗ 5.620 ∗ ∗∗ 5.655 ∗ ∗∗ 6.004 ∗ ∗∗ 7.952 ∗ ∗ 10.591 ∗ ∗∗ 9.887 ∗ ∗∗ 8.876 ∗ ∗∗ 9.169 ∗ ∗∗ 8.760 ∗ ∗∗

ARFIMAX(p,d,q) SkewStd 5.416 ∗ ∗∗ 5.294 ∗ ∗∗ 5.247 ∗ ∗∗ 5.416 ∗ ∗∗ 5.590 ∗ ∗∗ 5.652 ∗ ∗∗ 5.941 ∗ ∗∗ 8.309 11.178∗ 10.137 ∗ ∗∗ 9.115 ∗ ∗∗ 9.131 ∗ ∗ 8.708∗

ARMAX(p,q)-SGARCH Norm 5.401 ∗ ∗∗ 5.222 ∗ ∗∗ 5.215 ∗ ∗∗ 5.452 ∗ ∗∗ 5.676 ∗ ∗∗ 5.748 ∗ ∗∗ 6.007 ∗ ∗∗ 8.088∗ 11.221 ∗ ∗ 10.657· 8.864 ∗ ∗∗ 9.211 ∗ ∗ 8.423∗

ARMAX(p,q)-SGARCH Std 5.438 ∗ ∗∗ 5.272 ∗ ∗∗ 5.233 ∗ ∗∗ 5.454 ∗ ∗∗ 5.655 ∗ ∗∗ 5.736 ∗ ∗∗ 5.984 ∗ ∗∗ 8.225· 11.162 ∗ ∗ 10.253 ∗ ∗∗ 9.174 ∗ ∗∗ 9.239 ∗ ∗ 8.386∗

ARMAX(p,q)-SGARCH SkewStd 5.391 ∗ ∗∗ 5.264 ∗ ∗∗ 5.225 ∗ ∗∗ 5.449 ∗ ∗∗ 5.652 ∗ ∗∗ 5.687 ∗ ∗∗ 5.958 ∗ ∗∗ 8.057∗ 10.980 ∗ ∗ 10.039 ∗ ∗∗ 9.030 ∗ ∗∗ 9.294∗ 8.323∗

ARMAX(p,q)-SGARCH Ged 5.446 ∗ ∗∗ 5.263 ∗ ∗∗ 5.209 ∗ ∗∗ 5.510 ∗ ∗∗ 5.732 ∗ ∗∗ 5.797 ∗ ∗ 6.220∗ 9.618 12.424 11.081 9.472∗ 9.284 ∗ ∗ 8.907

ARMAX(p,q)-SGARCH SkewGed 8.502 6.753 6.702 6.578 6.575 8.430 7.657 14.280 17.149 15.080 9.132 ∗ ∗∗ 9.225 ∗ ∗ 10.622

ARMAX(p,q)-EGARCH Norm 5.351 ∗ ∗∗ 5.228 ∗ ∗∗ 5.223 ∗ ∗∗ 5.527 ∗ ∗∗ 5.744 ∗ ∗∗ 5.704 ∗ ∗∗ 6.001 ∗ ∗∗ 8.067∗ 10.887 ∗ ∗∗ 10.399 ∗ ∗∗ 9.051 ∗ ∗∗ 9.082 ∗ ∗∗ 8.369∗

ARMAX(p,q)-EGARCH Std 5.409 ∗ ∗∗ 5.254 ∗ ∗∗ 5.218 ∗ ∗∗ 5.475 ∗ ∗∗ 5.686 ∗ ∗∗ 5.708 ∗ ∗∗ 5.993 ∗ ∗∗ 8.218· 11.098 ∗ ∗∗ 10.160 ∗ ∗∗ 9.078 ∗ ∗∗ 9.293 ∗ ∗ 8.358∗

ARMAX(p,q)-EGARCH SkewStd 5.354 ∗ ∗∗ 5.234 ∗ ∗∗ 5.208 ∗ ∗∗ 5.489 ∗ ∗∗ 5.672 ∗ ∗∗ 5.651 ∗ ∗∗ 5.939 ∗ ∗∗ 8.055∗ 10.734 ∗ ∗∗ 9.986 ∗ ∗∗ 8.967 ∗ ∗∗ 9.154 ∗ ∗ 8.309∗

ARMAX(p,q)-EGARCH Ged 12.069 8.446 7.546 7.565 7.494 6.431 12.162 21.713 27.189 13.686 9.229 ∗ ∗ 9.222 ∗ ∗ 14.535

ARMAX(p,q)-EGARCH SkewGed 14.257 12.562 13.529 8.417 9.404 10.135 15.701 19.984 32.976 19.478 9.203 ∗ ∗∗ 9.162 ∗ ∗ 12.654

ARMAX(p,q)-TGARCH Norm 5.343 ∗ ∗∗ 5.271 ∗ ∗∗ 5.229 ∗ ∗∗ 5.511 ∗ ∗∗ 5.694 ∗ ∗∗ 5.798 ∗ ∗ 6.081 ∗ ∗∗ 8.242 11.207 ∗ ∗ 10.214 ∗ ∗∗ 8.948 ∗ ∗∗ 9.401 ∗ ∗ 8.506∗

ARMAX(p,q)-TGARCH Std 5.440 ∗ ∗∗ 5.287 ∗ ∗∗ 5.255 ∗ ∗∗ 5.491 ∗ ∗∗ 5.674 ∗ ∗∗ 5.753 ∗ ∗∗ 5.983 ∗ ∗∗ 8.236· 11.135 ∗ ∗ 10.160 ∗ ∗∗ 9.107 ∗ ∗∗ 9.212 ∗ ∗ 8.487∗

ARMAX(p,q)-TGARCH SkewStd 5.423 ∗ ∗∗ 5.274 ∗ ∗∗ 5.249 ∗ ∗∗ 5.487 ∗ ∗∗ 5.663 ∗ ∗∗ 5.735 ∗ ∗∗ 5.954 ∗ ∗∗ 8.079∗ 10.979 ∗ ∗∗ 10.065 ∗ ∗∗ 9.094 ∗ ∗∗ 9.236 ∗ ∗ 8.351∗

ARMAX(p,q)-TGARCH Ged 5.922 5.328 ∗ ∗∗ 5.271 ∗ ∗∗ 5.664∗ 5.723 ∗ ∗∗ 6.130 6.397 9.285 12.114 10.945 9.145 ∗ ∗∗ 9.383∗ 9.113

ARMAX(p,q)-TGARCH SkewGed 11.137 6.938 7.048 8.856 6.072 7.319 11.391 10.939 15.967 17.209 10.613 9.240 ∗ ∗ 10.491

Model/Hour 14 15 16 17 18 19 20 21 22 23 24 Avg1−24 Avg8−20

Benchmark 8.279 9.999 10.738 11.014 10.706 11.203 10.912 8.748 7.750 6.185 5.327 8.526 10.343

ARMAX(7,7) 7.397 ∗ ∗∗ 8.841 ∗ ∗∗ 9.537 ∗ ∗∗ 9.984 ∗ ∗∗ 10.042 ∗ ∗∗ 10.751 ∗ ∗ 10.521∗ 8.414∗ 7.566· 6.045 5.208 7.856 9.436

ARIMAX(7,1,7) 7.403 ∗ ∗∗ 8.903 ∗ ∗∗ 9.577 ∗ ∗∗ 10.017 ∗ ∗∗ 10.090 ∗ ∗∗ 10.862∗ 10.598∗ 8.397 ∗ ∗ 7.575∗ 6.062 5.279 7.885 9.483

ARMAX(p,q) 7.428 ∗ ∗∗ 8.828 ∗ ∗∗ 9.589 ∗ ∗∗ 10.134 ∗ ∗∗ 10.107 ∗ ∗ 10.837∗ 10.499 ∗ ∗ 8.385 ∗ ∗ 7.524∗ 6.024 5.181· 7.862 9.458

ARFIMAX(p,d,q) Norm 7.359 ∗ ∗∗ 8.818 ∗ ∗∗ 9.556 ∗ ∗∗ 9.983 ∗ ∗∗ 9.933 ∗ ∗∗ 10.696 ∗ ∗ 10.485 ∗ ∗ 8.422 ∗ ∗ 7.580· 6.011· 5.143∗ 7.821 9.390

ARFIMAX(p,d,q) SkewStd 7.293 ∗ ∗∗ 8.848 ∗ ∗∗ 9.603 ∗ ∗∗ 10.227 ∗ ∗∗ 10.105∗ 10.759· 10.586 8.338∗ 7.560 5.972 5.079∗ 7.896 9.538

ARMAX(p,q)-SGARCH Norm 7.416 ∗ ∗∗ 9.001 ∗ ∗∗ 9.726 ∗ ∗∗ 10.822 10.435 11.013 10.619 8.540· 7.634 6.074 5.143∗ 7.984 9.654

ARMAX(p,q)-SGARCH Std 7.474 ∗ ∗∗ 8.918 ∗ ∗∗ 9.716 ∗ ∗∗ 10.527∗ 10.212∗ 10.896 10.675 8.509 7.503 5.961 5.052∗ 7.944 9.604

ARMAX(p,q)-SGARCH SkewStd 7.378 ∗ ∗∗ 8.882 ∗ ∗∗ 9.634 ∗ ∗∗ 10.440∗ 10.260· 10.857 10.595· 8.335∗ 7.403∗ 5.923 5.068∗ 7.880 9.521

ARMAX(p,q)-SGARCH Ged 7.484 ∗ ∗∗ 9.304∗ 10.022∗ 11.169 12.270 11.067 11.127 8.547 7.831 6.782 5.833 8.392 10.248

ARMAX(p,q)-SGARCH SkewGed 8.243 12.840 11.180 15.503 13.729 17.129 13.909 15.347 13.234 10.214 7.876 11.079 12.925

ARMAX(p,q)-EGARCH Norm 7.431 ∗ ∗∗ 8.995 ∗ ∗∗ 9.617 ∗ ∗∗ 14.557 10.270∗ 10.761∗ 10.742 8.338 ∗ ∗ 7.595· 6.025· 5.219 8.091 9.864

ARMAX(p,q)-EGARCH Std 7.419 ∗ ∗∗ 8.948 ∗ ∗∗ 9.740 ∗ ∗∗ 10.392 ∗ ∗ 10.214∗ 10.764∗ 10.658· 8.435· 7.610 6.661 5.091∗ 7.953 9.565

ARMAX(p,q)-EGARCH SkewStd 7.399 ∗ ∗∗ 8.859 ∗ ∗∗ 9.653 ∗ ∗∗ 10.237 ∗ ∗∗ 10.142 ∗ ∗ 10.612 ∗ ∗ 10.408 ∗ ∗ 8.245 ∗ ∗∗ 7.406 ∗ ∗ 5.889 ∗ ∗ 5.084∗ 7.820 9.424

ARMAX(p,q)-EGARCH Ged 11.137 14.707 16.993 20.579 17.917 21.359 17.633 16.243 17.028 11.580 8.994 13.811 16.608

ARMAX(p,q)-EGARCH SkewGed 12.796 13.737 18.689 18.456 21.851 23.768 22.865 20.495 17.700 15.366 13.936 16.130 18.124

ARMAX(p,q)-TGARCH Norm 7.521 ∗ ∗∗ 9.108 ∗ ∗∗ 9.895 ∗ ∗ 10.812 10.225∗ 11.078 10.771 8.414∗ 7.691 6.200 5.128∗ 8.012 9.687

ARMAX(p,q)-TGARCH Std 7.466 ∗ ∗∗ 8.908 ∗ ∗∗ 9.718 ∗ ∗∗ 10.440 ∗ ∗ 10.145 ∗ ∗ 10.818· 10.703 8.488· 7.536 6.005· 5.062∗ 7.938 9.579

ARMAX(p,q)-TGARCH SkewStd 7.412 ∗ ∗∗ 8.862 ∗ ∗∗ 9.596 ∗ ∗∗ 10.399 ∗ ∗ 10.206∗ 10.802∗ 10.568∗ 8.366∗ 7.371∗ 5.943∗ 5.069 ∗ ∗ 7.883 9.511

ARMAX(p,q)-TGARCH Ged 7.425 ∗ ∗∗ 9.364∗ 12.075 11.356 11.892 11.188 13.356 11.266 10.373 7.761 5.725 8.842 10.511

ARMAX(p,q)-TGARCH SkewGed 8.022 11.417 14.474 14.991 17.612 17.339 18.643 14.572 16.444 10.066 8.290 11.879 13.612

Table 2: RMSEs of all the selected models for 24 hours. The average over the 24 hours and the average over the hours

8–20 are also included. The benchmark refers to an ARMAX(p,q) with only dummies. ***, **, *, . , are the 0.1%,

1%, 5%, 10% significant levels according to the DM test statistic. Grey cells refer to the superior set of models selected

according to the Hansen–Luden–Nason MCS procedure at α = 0.15.
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Figure 8: Estimated coefficients for forecasted load by using the ARFIMAX(p,d,q) model with Normal

distribution at hours 3, 9, 15, and 21. Robust Confidence Intervals at 80% are also reported over the

out–of–sample period from 2017/01/01 to 2018/12/31.
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Figure 9: Estimated coefficients for Forecasted Solar PV Power using the ARFIMAX(p,d,q) model with

Normal distribution at hours 9 and 15. Robust Confidence Intervals at 80% are also reported over the

out–of–sample period from 2017/01/01 to 2018/12/31.
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Figure 10: Estimated coefficients for Hydro using the ARFIMAX(p,d,q) model with Normal distribution

at hours 3, 9, 15, and 21. Robust Confidence Intervals at 80% are also reported over the out–of–sample

period from 2017/01/01 to 2018/12/31. Notably, lagged values are used at hours 15 and 21.
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Figure 11: Estimated coefficients for Hydro at hour 10 using the ARFIMAX(p,d,q) model with Normal

distribution at hours 15 and 21. Robust Confidence Intervals at 80% are also reported over the out–of–

sample period from 2017/01/01 to 2018/12/31.
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Figure 12: Estimated coefficients for Weighted Imports using the ARFIMAX(p,d,q) model with Normal

distribution at hours 3, 9, 15, and 21. Robust Confidence Intervals at 80% are also reported over the

out–of–sample period from 2017/01/01 to 2018/12/31. Notably, lagged values are used at hours 15 and

21.
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Figure 13: Estimated coefficients for Weighted Imports at hour 10 using the ARFIMAX(p,d,q) model

with Normal distribution at hours 15 and 21. Robust Confidence Intervals at 80% are also reported over

the out–of–sample period from 2017/01/01 to 2018/12/31.
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Figure 14: Estimated coefficients for Natural Gas using the ARFIMAX(p,d,q) model with Normal

distribution at hours 3, 9, 15, and 21. Robust Confidence Intervals at 80% are also reported over the

out–of–sample period from 2017/01/01 to 2018/12/31.
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Figure 15: Estimated coefficients for CO2 using the ARFIMAX(p,d,q) model with Normal distribution

at hours 3, 9, 15, and 21. Robust Confidence Intervals at 80% are also reported over the out–of–sample

period from 2017/01/01 to 2018/12/31.

33



Appendix: Data management of hydropower and weighted imports621

The regressors included in our models are the values of load, wind, and solar PV power generation622

forecasted for the next day t + 1; the fossil fuel prices determined on the day before t − 1 (given that623

the settlement prices are released at the end of the day at approximately 19.00 or 7 p.m.); and two624

additional variables, actual hydropower generated in northern Italy and the weighted imports. The625

hourly aggregated hydro output and the physical flows are published no later than one hour after the626

operational period, as described by ENTSO–E.627

We emphasise that all the relevant information (i.e. actual hydro generated for all 24 hours and628

flows) is not available in a timely manner for their inclusion in the forecasting models of all the 24629

price series (because the quantities displayed before noon refer up to hour 11). Therefore, we consider630

the actual hydro generation and flows observed on day t available for early morning hours (i.e. hours631

1–10 of the same day), as well as their values observed on the day before; the latter is used for the632

remaining hours for which actual values are not published before the closure of the day-ahead bidding633

(i.e. Ht−1 and Wt−1 are used for the past hydro and weighted imports included in the modelling and the634

forecasting process of hours 11–24, respectively). In addition, the values for hour 10 observed on the635

day t are included in the process of modelling and forecasting electricity prices at hours 11–24 (these636

variables are named H10
t and W 10

t ).637
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