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Abstract
Machine learning approaches have been fruitfully applied to several
neurophysiological signal classification problems. Considering the
relevance of emotion in human cognition and behaviour, an important
application of machine learning has been found in the field of emotion
identification based on neurophysiological activity. Nonetheless, there is
high variability in results in the literature depending on the neuronal activity
measurement, the signal features and the classifier type. The present work
aims to provide new methodological insight into machine learning applied to
emotion identification based on electrophysiological brain activity. For this
reason, we analysed previously recorded EEG activity measured while
emotional stimuli, high and low arousal (auditory and visual) were provided
to a group of healthy participants. Our target signal to classify was the
pre-stimulus onset brain activity. Classification performance of three
different classifiers (linear discriminant analysis, support vector machine
and k-nearest neighbour) was compared using both spectral and temporal
features. Furthermore, we also contrasted the classifiers’ performance with
static and dynamic (time evolving) features. The results show a clear
increase in classification accuracy with temporal dynamic features. In
particular, the support vector machine classifiers with temporal features
showed the best accuracy (63.8 %) in classifying high vs low arousal
auditory stimuli.
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Introduction
In last decades, the vision of the brain has moved from a  
passive stimuli elaborator to an active reality builder. In 
other words, the brain is able to extract information from the 
environment, building up inner models of external reality. 
These models are used to optimize the behavioural outcome  
when reacting to upcoming stimuli1–4.

One of the main theoretical models assumes that the brain, 
in order to regulate body reaction, runs an internal model of 
the body in the world, as described by embodied simulation  
framework5. A much investigated hypothesis is that the brain 
functions as a Bayesian filter for incoming sensory input; that 
is, it activates a sort of prediction based on previous experi-
ences about what to expect from the interaction with the social  
and natural environment, including emotion6. In light of this, 
it is possible to consider emotions, not only as a reaction  
to the external world, but also as partially shaped by our 
internal representation of the environment, which help us to 
anticipate possible scenarios and therefore to regulate our  
behaviour.

The construction model of emotion7 argues that the human being 
actively builds-up his/her emotions in relation to the every-
day life and social context in which they are placed. We actively 
generate a familiar range of emotions in our reality, based 
on their usefulness and relevance in our environment. In this  
scenario, in a familiar context we are able to anticipate which 
emotions will be probably elicited, depending on our model. 
As a consequence, the study of the anticipation of/prepara-
tion for forthcoming stimuli may represent a precious window 
for understanding the individual internal model and emotion  
construction process, resulting in a better understanding of human 
behaviour.

A strategy to study preparatory activity could be related to the 
experimental paradigm in which cues are provided regard-
ing the forthcoming stimuli, allowing the investigation of 
the brain activity dedicated to the elaboration of incoming  
stimuli8,9. A cue experiment to predict the emotional valence 
of the forthcoming stimuli showed that the brain’s anticipa-
tory activation facilitates, for example, successful reappraisal 
via reduced anticipatory prefrontal cognitive elaboration and  
better integration of affective information in the paralimbic 
and subcortical systems10. Furthermore, preparation for forth-
coming emotional stimuli also has relevant implications for 
clinical psychological conditions, such as mood disorders or  
anxiety11,12.

Recently, the study of brain anticipatory activity has been 
extended to statistically unpredictable stimuli13–15, providing 
experimental hints of specific anticipatory activity before stim-
uli are randomly presented. Starting from the abovementioned  
studies, we focused on the extension of brain anticipatory  
activity to statistically unpredictable emotional stimuli.

According to the so called dimensional model, emotion can 
be defined in terms of three different attributes (or dimen-
sions): valence, arousal and dominance. Valence measures the  

positiveness (ranging from unpleasant to pleasant), arousal 
measures the activation level (ranging from boredom to frantic 
excitement) and dominance measures the controllability (i.e. the  
sense of control)16.

Emotions can be estimated from various physiological signals17, 
such as via skin conductance, electrocardiogram (ECG) and 
electroencephalogram (EEG). The latter has received a con-
siderable amount of attention in the last decade, introducing 
several machine learning and signal processing techniques,  
originally developed in other contexts, such as brain computer 
interfaces18. Emotion recognition has been re-drawn as a 
machine learning problem, where proper EEG related features  
are used as inputs to specific classifiers.

The most common features belong the spectral domain, in the 
form of spectral powers in delta, theta, alpha and gamma bands19, 
as well as power spectral density (PSD) bins20. The remain-
ing belong to the time domain, in the form of event-related  
de/synchronizations (ERD/ERS) and event-related potentials 
(ERP)19, as well as shape related indices such as the Hjorth  
parameters and the fractal dimension20.

The most commonly used classifier is the support vector machine 
(SVM) with the radial basis function (RBF) kernel, followed 
by the k-nearest neighbour (kNN) and the linear discriminant  
analysis (LDA)19,20. Finally, most of the classifiers are imple-
mented as non-adaptive (i.e. static)19, in contrast to the dynamic 
versions that take into account the temporal variability of the  
features21.

The classification performances are very variable because 
of the different features and classifiers adopted. The follow-
ing examples are taken from 19 - in particular, from the subset 
(17 out of 63) of reviewed papers that focused on arousal clas-
sification. Using an SVM (RBF kernel) and spectral features  
(e.g. short-time Fourier transform), Lin and colleagues obtained 
94.4% accuracy (i.e. percentage of corrected classification)22, 
while using similar spectral features (e.g. PSD) and classi-
fier (SVM with no kernel), Koelstra and colleagues obtained  
an accuracy of 55.7%23. Liu and Sourina obtained an accu-
racy of 76.5% using temporal features (e.g. fractal dimen-
sion) with an SVM (no kernel)24, while Murugappan and 
Murugappan obtained a an accuracy of 63% using similar tem-
poral features and an SVM with a polynomial kernel25. Finally,  
Thammasan and collegues obtained an accuracy of 85.3% 
using spectral features (e.g. PSD), but with a kNN (with k=3)26.  
All the classifiers were static.

The purpose of the present work is to provide new methodo-
logical advancements on the machine learning classification 
of emotions, based on the brain anticipatory activity. For this 
purpose, we compared the performances of tree different clas-
sifiers (namely LDA, SVM, kNN) trained using two types of  
EEG features (namely, spectral and temporal). In addition, 
each classifier was dynamically trained, to take into account the  
temporal variability of the features. The results provide  
useful insights regarding the best classifier-features configuration  
to better discriminate emotion-related brain anticipatory activity.

Page 3 of 16

F1000Research 2020, 9:173 Last updated: 20 APR 2020



A more detailed description of the machine learning algorithms  
is provided as Extended data27.

Classification performances
In introducing pattern recognition, we underlined that the 
classifiers are built using a set of previously annotated class- 
prototypical features for the training set. It is common practice 
to extract from the training set a subset of annotated features  
(the test set) and use it to evaluate the performances of the trained 
classifiers – but not to train it.

Since the training set is limited, the specific train/test splitting 
introduce a bias in both the training and performance evalua-
tion. This can be avoided following the so-called k -fold cross  
validation scheme. The original training set D is partitioned 

into k disjoint and equal sized sets, =1
k
i kD D)� . The classi-

fier is then trained k-times using, each time, as the test set a dif-
ferent partition Dj and as the training set the remaining 1 .i iD) w   
Finally, the overall performance is computed as the average over  
the k single performances28 (pp. 483–485).

With the general term performance, we mostly refer to the clas-
sification accuracy ACC, defined as the ratio between the 
number of correctly classified features and the total number of  
features. Introducing the chance-level accuracy ACC0 as the 
ratio between the number of features for each class (i.e. how  
balanced is the training set), we can additionally define as  
performance the Kappa statistic: g = (ACC – ACC0)/ACC0

29.

Compared to ACC, g is a more robust performance measure, 
since it is normalized by the class unbalances. Another solution 
to take into account the class unbalances, is to compare (using  
for example a t-test) the k cross-validated accuracies against  
k random accuracies, obtained from a random classifier29–35.

Dynamic classifiers
To classify a time-varying signal (i.e. to perform a dynamic  

classification), an ordered sequence of features [ ]
1

N

i i
x

�
  

(i.e. temporal features), corresponding to N adjacent tem-
poral windows, is extracted. The temporal features are 
fed into either “dynamic” classifiers, such as the Hidden 
Markow Model (HMM)21, or an ordered sequence of “static”  

classifiers [ ]
1

N

i i
f

�
36–39. The former fully takes into account the 

signal’s temporal variability, since it uses the entire sequence 
during the training phase. The latter train each static classifier  
fi, using only the corresponding features xi, but provides an 

ordered sequence of accuracies [ ]
1

N

i i
ACC

�
, where each ACCi  

corresponds to fi.

Feature selection
As stated in the previous sections, the curse of dimensional-
ity arises when the number of available training features is small 
compared to the feature dimension m. In such situations, the 
parameter estimation becomes problematic (see for example the 
problem of the singularity of the estimated covariance matrix 
described in the LDA sub-section) and the trained classifier  
usually underperforms.

As a rule of thumb, the number of training features N should 
be an exponential function of the dimensionality (e.g. N = 10m),  
with the ratio growing with the complexity of the classifiers40. 
By fixing the feature dimension m, linear classifiers require, for  
example, a less numerous training set. Additionally, even with 
an adequate training set, feature dimensionality impacts on both 
the training and classification speed. In fact, as stated in the SVM 
sub-section, linear classification requires O(m) multiplications 
and sums to compute each scalar product. Reducing the feature  
dimensionality by means of so called feature selection  
algorithms, a classifier can be made more robust (i.e. less  
sensitive to the curse of dimensionality) and efficient (in terms  
of computational speed).

Feature selection can be broadly described as a mapping  
function : m ns lZ Z  such as: 

                              s(x) = (xs1
, xs2 

, ... , xsn
)T                                                           (13)

where n < m and {s1, s2, ... , sn} ⊂ {1, 2, ... , m}. In other 
words, a feature selection algorithm performs a projection of  
the original feature vector onto a lower dimensional subspace 
defined by a subset of scalar features. The best subspace, as 
selected among all the possible 2m, should not significantly  
decrease the classification performances, both globally  
(i.e. how features are classified overall) and locally (i.e. how the 
single feature is classified)41

Feature selection algorithms can be broadly grouped according  
to the following criteria42: 

1.    Label information. Supervised algorithms take into account 
the class information, while unsupervised algorithms 
do not, in assigning the training features as belonging  
to the same class.

2.    Search strategy. Filter algorithms (also known as classifier-
independent) are based on a two-step “ranking and select-
ing” criterium: scalar features are first ranked according to 
a proper criterion; then only the “best” ones are selected.  
Wrapper methods (also known as classifier dependent  
methods) use the selected classifier, following an “ad  
hoc” approach: the selected scalar features are those that  
give the best classification performance

An example of a supervised filter algorithm is the biserial  
correlation coefficient. Given a training set D composed by N+  
features belonging to the class +1 and N– features belonging 
to the class –1, the biserial correlation coefficient for the k-th  
scalar feature xk is given by 43:

                      
� 	 � 	

� 	
2 k k

k

k

m x m xN N
r

N N s x

� 
� 

� 


�

�
                       (13)

where m(·), s(·) are the sample mean and sample standard 
deviation operators, respectively, and kx

�
, kx


 are the subset of 

xk belonging to the classes +1 and –1, respectively. The total 
feature score is obtained by summing the m coefficients of  
each scalar feature xk. Once the scores 2

kr  are sorted in descending 
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order, the feature selection is made simply by selecting the 
first scalar features whose summing score get a percentage  
(e.g. 95%) of the total feature score.

Methods
Ethical statement
The data of the present study were obtained in the experi-
ment described in 37, which was approved by the Ethical  
Committee of the Department of General Psychology, Univer-
sity of Padova (No. 2278). Before taking part in the experi-
ment, each subject gave his/her informed consent in writing after  
having read a description of the experiment. In line with depart-
ment policies, this re-analysis of an original study approved  
by the ethics committee did not require new ethical approval.

Stimuli and experimental paradigm
In the present study, we reanalysed the EEG data27 of the 
experiment described in 37, applying an original static and 
dynamic features selection and classification by using the three  
different algorithms explained above.

A more detailed description of the experimental design is avail-
able in the original study. Here we describe only the main  
characteristics.

Two sensory categories of stimuli (i.e. visual and auditory), 
were extracted according to their arousal value from two stand-
ardized international archives. Visual stimuli consisted of  
pictures of 28 faces, 14 neutral faces and 14 fearful faces 
were extracted from the NIMSTIM archive44, whereas  
auditory stimuli consisted of 28 sounds, and 14 low- and 
14 high-arousal sounds were chosen from the International  
Affective Digitized Sounds (IADS) archive45.

To all 28 adult healthy participants, two different experimental 
tasks, which were delivered in separate blocks were presented. 

The two tasks are described in Figure 1, which illustrates the 
sequence of events and the temporal trial structure relative to  
the passive (top) and the active (bottom) tasks. Within each 
task, the stimuli were randomly presented and equally distrib-
uted according to either sensory category (faces or sounds) and  
arousal level (high or low). Full details of these tasks have  
been described previously in 37.

EEG recording
During the entire experiment, the EEG signal was continu-
ously recorded using a Geodesic high density EEG system 
(EGI GES-300) through a pre-cabled 128-channel HydroCel  
Geodesic Sensor Net (HCGSN-128) referenced to the vertex 
(CZ), with a sampling rate of 500 Hz. The impedance was  
kept below 60kΩ for each sensor. To reduce the presence of 
EOG artefacts, subjects were instructed to limit both eye blinks  
and eye movements, as much as possible.

EEG preprocessing
The continuous EEG signal was off-line band-pass filtered 
(0.1–45Hz) using a Hamming windowed sinc finite impulse 
response (FIR) filter (order = 16500) and then downsampled 
at 250 Hz. The EEG was epoched starting from 200 ms before  
the cue onset and ending at the stimulus onset. The ini-
tial epochs were 1300 ms long from the cue onset, including  
300 ms of cue/fixation cross presentation and 1000 ms of inter-
stimulus interval (ISI).

All epochs were visually inspected to remove bad channels 
and rare artefacts. Artefact-reduced data were then subjected 
to independent component analysis (ICA)45. All independent 
components were visually inspected, and those that related to 
eye blinks, eye movements, and muscle artefacts, according  
to their morphology and scalp distribution, were discarded. 
The remaining components were back-projected to the original  
electrode space to obtain cleaner EEG epochs.

Figure 1. Experimental tasks.
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The remaining ICA-cleaned epochs that still contained exces-
sive noise or drift (±100 µV at any electrode) were rejected 
and the removed bad channels were reconstructed. Data were  
then re-referenced to the common average reference (CAR) and 
the epochs were baseline-corrected by subtracting the mean  
signal amplitude in the pre-stimulus interval. From the original 
1300 ms long epochs, final epochs were obtained only from the 
1000 ms long ISI.

Static spectral features
From each epoch and each channel k, the PSD was estimated 
by a Welch’s periodogram using 250 points long Hamming’s 
windows with 50% overlapping. PSD was first log trans-
formed to compensate the skewness of power values46, then the  
spectral bins corresponding to alpha, beta and theta bands 
– defined as 13~30Hz, 6~13Hz and 4~6Hz, respectively47 – were 
summed together. Finally, alpha, beta and theta total powers were  
computed as:

                   [13;30]
( )k k

tot
i

PSD i^
�

� £

                   [6;13]
( )k k

tot
i

PSD i]
�

� £
                                 (14)
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�
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As a measure of emotional arousal, we computed the ratio 
between beta and alpha total powers k k

tot tot^ ] 48, while to measure 
cognitive arousal, we computed the ratio between beta and theta  
total powers k k

tot totk ^ 49.

For each epoch, the feature (with a dimensionality of 
256) was obtained, concatenating the beta-over-alpha and  
beta-over-theta ratio of all the channels:

                 
1 1 2 2 128 128

1 1 2 2 128 128, , , ,..., ,tot tot tot tot tot tot

tot tot tot tot tot tot

v �
^ k ^ k ^ k
] ^ ] ^ ] ^

§ ¶
¨ ·
© ¸

                    (15)

Static temporal features
It has been previously shown that arousal level (high or low) 
can be estimated from the contingent negative variation 
potentials37. The feature extraction procedure, therefore, fol-
lows the classical approach for event-related potentials50. Each 
epoch from each channel was first band pass filtered (0.05~10Hz)  
using a zero-phase 2nd order Butterworth filter and decimated 
to a sample frequency of 20Hz. EEG signal was thus normal-
ized (i.e. z-scored) according to the temporal mean and the  
temporal standard deviation:

                         ( ) ( ( ) ) /i i i ik kx t x t m s�� 

where ( )i kx t�  is the raw signal from i-th channel at time point 
tk, and mi and si are, respectively, the temporal mean and the  
temporal standard deviation of the i-th channel. For each epoch, 
the feature (with a dimensionality of 2560) was obtained,  
concatenating all normalized signal from each channel:

   ; =1 1 1 2 1 20 128 1 128 2 128 20( ), ( ),..., ( ),..., ( ), ( ),..., ( )v x t x t x t x t x t x t�    (16)

Dynamic features
Each epoch was partitioned into 125 temporal segments, 500 ms 
long and shifted by 1/250 s (one sample). Within each time  
segment, we extracted the dynamic spectral and temporal fea-
tures, following the same approaches described in Static  
spectral features and Static temporal features sub-sections, respec-
tively. Dynamic temporal features had a dimensionality of 1280, 
corresponding to 0.5 × 20 = 10 samples per channel. Dynamic 
spectral features had the same dimensionality as their static  
counterparts (256), but the Welch’s periodogram was com-
puted using a 16 points long Hamming’s window (zero-padded  
to 250 points) with 50% overlapping.

Feature reduction and classification
The extracted features (both static and dynamic) were grouped 
according to the stimulus type (sound or image) and the task 
(active or passive), in order to classify the group-related 
arousal level (high or low). A total of four binary classification  
problems (high arousal vs low arousal) were performed: active 
image (Ac_Im), active sound (Ac_So), passive image (Ps_Im)  
and passive sound (Ps_So).

Static features were reduced by means of the biserial correla-
tion coefficient r2 with the threshold set at 90% of the total 
feature score. In order to identify the discriminative power 
of each EEG channel, a series of scalp plots (one for each  
feature type and each group) of the coefficients were drawn. 
Since each channel is associated with N > 1 features (as well 
as N r2 coefficients), the coefficients (one coefficient for  
each channel) are calculated as a mean value. In other words, 
spectral and temporal features had two and 20 scalar fea-
tures, respectively, for each EEG channel. To compute their  
scalp plots, we averaged 2 and 20 r2 coefficients of each chan-
nel. To enhance the visualization of the plots, the coefficients 
were finally normalized to the total score and expressed as a  
percentage.

Each classification problem was addressed by the mean of 
three classifiers: LDA with pseudo-inverse covariance matrix; 
soft-margin SVM with penalty parameter C = 1 and RBF  
kernel; and kNN with Euclidean distance and k=1. Addition-
ally, a random classifier, giving a uniform pseudo-random 
class (Pr{HA} = Pr{LA} = 0.5), served as a benchmark29. The  
accuracy of the classifiers was measured, repeating 10 times  
for a 10-fold cross-validation scheme. The feature selec-
tion was computed within each cross-validation step, to avoid  
overfitting and reduce biased results43.

For each group (Ac_Im, Ac_So, Ps_Im, Ps_So) and each fea-
ture type (static spectral, static temporal), the classification  
produced a 10 × 4 matrix containing the mean accuracies (one 
for each of the 10-fold cross-validation repetitions) of each  
classifier.

Dynamic features were reduced and classified similarly to 
the static ones. For each temporal segment, the associated 
features were reduced by means of the biserial correlation  
coefficient (threshold at 90%) and the classifiers (SVM, 
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kNN, LDA and random) were evaluated using a 10-fold  
cross-validation scheme – repeated 10 times.

For each group, each feature type (dynamic spectral, dynamic 
temporal), each temporal segment and each classifier, the classi-

fication produced 10 sequences of mean accuracies [ ]125

1i i
ACC

�
 –  

one for each repetition of the 10-fold cross-validation scheme.

Data analysis
The syntax in MATLAB used for all analyses is available on 
GitHub along with the instructions on how to use it (see Software  
availability)51. The software can also be used with the  
open source program Octave.

Statistical analysis
The results of the static classifications were compared against 
the benchmark classifier by means of a two-sample t-test  
(right tail).

The results of dynamic classifications (i.e. based on dynamic 
spectral or dynamic temporal features) were compared follow-
ing a segment-by-segment approach. For each group, the accu-
racy sequences of the dynamic classifiers (SVM, kNN and LDA) 
were compared with the benchmark accuracy sequence. Each 
sample k

iACC , with k = {SVM, kNN, LDA}, was tested against  
Random
iACC  by means of two-sample t-tests (right tail). The cor-

responding p-value sequences [ ]125

1
k
i i

p �  were Bonferroni-Holm 
corrected for multiple comparisons. Finally, the best accuracy 
point was detected as the left extreme of the temporal  
window corresponding to the highest significant accuracy.

Results
Static features
In Figure 2 and Figure 3, the scalp distributions of r2 coef-
ficients for each binary static classification problem, grouped 
for feature (spectral, temporal) and groups (Ps_Im, Ps_So,  
Ac_Im, Ac_So), are shown.

The temporal feature gave the most consistent topographical  
pattern, showing that the regions that best differentiate between  
high vs low stimuli (auditory and visual) were located over the  
central-parietal electrodes, whereas a more diffuse pattern in  
the scalp topography emerged for the spectral features.

In Figure 4 and Figure 5, box plots of the accuracies of static 
temporal and spectral classifications, grouped for condition, 
are shown. Note that SVM accuracies (the 2nd boxplot from the  
left) are always shown as lines because the accuracies were  
constant within each cross-validation step (see also Table 1,  
Table 2 and Table 3).

Note that all the accuracies refer to the same static classifica-
tion problem (high arousal vs low arousal), performed using 
different classifiers (SVM, LDA, kNN) and features (spectral,  
temporal), on different groups (Ps_Im, Ps_So, Ac_Im, Ac_So).

Using spectral features, in only two groups did some clas-
sifiers show an accuracy greater than the benchmark. In the  
Ac_So group, ACCSVM = 50.9% (t(18)=2.371, p=0.015) and 
ACCkNN = 50.9% (t(18)=1.828, p=0.042), while for Ps_Im,  
ACCLDA = 51.4% (t(18)=4.667, p<0.001) and ACCSVM = 51.8% 
(t(18)=9.513, p<0.001).

Figure 2. Spectral features. Scalp distribution of the r2 coefficients (normalized to the total score and expressed as percentage) grouped for 
tasks and stimulus type. (a) Active task: left Image, right Sound; (b) Passive task: left Image, right Sound.
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Figure 3. Temporal features. Scalp distribution of the r2 coefficients (normalized to the total score and expressed as percentage), 
grouped for tasks and stimulus type. (a) Active task: left Image, right Sound; (b) Passive task: left Image, right Sound.

Figure 4. Box-plots of the accuracies of the static spectral classifications. From left: Active Image (Ac_Im), Active Sound (Ac_So), 
Passive Image (Ps_Im) and Passive Sound (Ps_So).
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Figure 5. Box-plots of the accuracies of the static temporal classifications. From left: Active Image (Ac_Im), Active Sound (Ac_So), 
Passive Image (Ps_Im) and Passive Sound (Ps_So).

Table 1. Static features. Ordered accuracies 
grouped for classifier, feature and group.

Classifier Accuracy Feature Group

SVM 51.80% Spectral Ps_Im

LDA 51.40% Spectral Ps_Im

kNN 51% Temporal Ac_So

kNN 50.90% Spectral Ac_So

SVM 50.90% Spectral Ac_So

SVM 50.90% Temporal Ac_So

SVM 50.40% Temporal Ps_So

SVM, support vector machine; LDA, linear 
discriminant analysis; kNN, k-nearest neighbour.

Table 2. Mean (M) and standard deviations (SD) of the accuracies of the static spectral 
classifications. Active Image (Ac_Im), Active Sound (Ac_So), Passive Image (Ps_Im) and 
Passive Sound (Ps_So).

Group LDA SVM kNN Random

Ac_Im M=0.496, SD=0.007 M=0.510, SD=0.000 M=0.500, SD=0.010 M=0.505, SD=0.011

Ac_So M=0.492, SD=0.004 M=0.509, SD=0.000 M=0.509, SD=0.007 M=0.503, SD=0.009

Ps_Im M=0.514, SD=0.010 M=0.518, SD=0.000 M=0.496, SD=0.010 M=0.495, SD=0.008

Ps_So M=0.488, SD=0.005 M=0.504, SD=0.000 M=0.493, SD=0.007 M=0.503, SD=0.013

SVM, support vector machine; LDA, linear discriminant analysis; kNN, k-nearest neighbour.
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Using temporal features, in all the groups some classifiers  
showed an accuracy greater than the benchmark. In the  
Ac_So group, ACCSVM = 50.9% (t(18)=2.907, p=0.005) and  
ACCkNN = 51% (t(18)=2.793, p=0.006) and in the Ps_So group, 
AACSVM = 50.4% (t(18)=9.493, p<0.001).

Dynamic features
In Figure 6–Figure 12, the results of the significant dynamic 
classifications are shown. In the upper section of the plots, 
the mean (bold line) and the standard deviation (shaded) of 
the accuracy sequence are shown. In the lower section of 

Figure 6. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted line) 
in Ac_Im group for LDA (a) and SVM (b) classifiers.

Figure 7. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted line) 
in Ac_So group for LDA (a) and SVM (b) classifiers.

Table 3. Mean (M) and standard deviations (SD) of the accuracies of the static temporal 
classifications. Active Image (Ac_Im), Active Sound (Ac_So), Passive Image (Ps_Im) and Passive 
Sound (Ps_So).

Group LDA SVM kNN Random

Ac_Im M=0.492, SD=0.010 M=0.510, SD=0.000 M=0.500, SD=0.008 M=0.498, SD=0.007

Ac_So M=0.501, SD=0.007 M=0.509, SD=0.000 M=0.510, SD=0.006 M=0.498, SD=0.012

Ps_Im M=0.500, SD=0.012 M=0.518, SD=0.000 M=0.492, SD=0.005 M=0.499, SD=0.006

Ps_So M=0.499, SD=0.008 M=0.504, SD=0.000 M=0.492, SD=0.006 M=0.498, SD=0.008

SVM, support vector machine; LDA, linear discriminant analysis; kNN, k-nearest neighbour.
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Figure 10. Temporal dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ac_So group for LDA classifier.

Figure 9. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted line) 
in Ac_So group for SVM (a) and kNN (b) classifiers.

Figure 8. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted line) 
in Ps_Im group for LDA (a) and SVM (b) classifiers.
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Figure 12. Temporal dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ps_So group for LDA (a) and kNN (b) classifiers.

Figure 11. Temporal dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ps_Im group for LDA (a), SVM (b) and kNN (c) classifiers.

the plot (black dashed line), the Bonferroni-Holm corrected  
p-values sequence, discretized (as a stair graph) as significant  
(p<0.05) or non-significant (p>0.05) is shown.

Note that all the accuracy plots refer to the same dynamic clas-
sification problem (high arousal vs low arousal), performed 
using different classifiers (SVM, LDA, kNN) and features on 

different groups. Spectral: Ac_Im (Figure 6), Ac_So (Figure 7),  
Ps_Im (Figure 8) and Ps_So (Figure 9); temporal: Ac_So  
(Figure 10), Ps_Im (Figure 11) and Ps_So (Figure 12).

Using spectral features, in all the groups some classifiers showed 
an accuracy greater than the benchmark. In the Ac_Im group, 
ACCLDA = 51.97% @t = 0.080s (t(18)=6.291, p<0.001) and 
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ACCSVM = 51.07% @t = 0.416s (t(18)=6.531, p<0.001). In the  
Ac_So group, ACCLDA = 53.04% @t = 0.332s (t(18)=8.583, 
p<0.001) and ACCSVM = 51.16% @t = 0.146s (t(18)=8.612,  
p<0.001). In the Ps_Im group, ACCLDA = 53.12% @t = 0.156s 
(t(18)=6.372, p=0.000) and ACCSVM = 51.83% @t = 0.140s 
(t(18)=6.668, p<0.001). In the Ps_So group, ACCSVM = 50.62%  
@t = 0.024s (t(18)=5.236, p=0.003) and ACCkNN = 51.41%  
@t = 0.476s (t(18)=4.307, p=0.026).

Using temporal features, in only three groups did some  
classifiers show an accuracy greater than the benchmark. In the  
Ac_So group, ACCSVM = 63.80% @t = 0.100s (t(18)=6.113, 
p=0.001). In the Ps_Im group, ACCLDA = 63.68% @t = 0.024s 
(t(18)=12.108, p<0.001) and ACCSVM = 51.43% @t = 0.084s 
(t(18)=4.881, p=0.008). In the Ps_So group, ACCLDA = 64.30%  
@t = 0.0276s (t(18)=11.092, p<0.001) and ACCkNN = 63.70%  
@t = 0.480s (t(18)=16.621, p<0.001).

Table 4 reports the accuracies for dynamic features, ordered 
in descending order and grouped for classifier, feature group  
and time.

Discussion
The aim of the study was to provide new methodological 
insights regarding machine learning approaches for the classi-
fication of anticipatory emotion-related EEG signals, by testing  
the performance of different classifiers on different features.

From the ISIs (i.e. the 1000 ms long window preceding each 
stimulus onset), we extracted two kinds of “static” features, 
namely spectral and temporal, the most commonly used features  
in the field of emotion recognition19,20. As spectral features, 
we used the beta-over-alpha and the beta-over-theta ratio, 
whereas for the temporal feature we concatenated the decimated  
EEG values.

Additionally, we extracted the temporal sequences of both 
static spectral and temporal features, using a 500 ms long 
window moving along the ISI to build dynamic spectral and  
temporal features, respectively. This step is crucial for our 
work since, considering the temporal resolution of the EEG, 
an efficient classification should take into account the temporal  
dimension, to provide information about when the difference 
between two conditions are maximally expressed and therefore 
classified.

We trained and tested three different classifiers (LDA, SVM, 
kNN, the most commonly used in the field of emotion  
recognition19,20) using both static and dynamic features,  
comparing their accuracies against a random classifier that  
served as benchmark.

Our goal was to identify the best classifier (static vs dynamic) 
and the best feature type (spectral vs temporal) to classify the 
arousal level (high vs low) of 56 auditory/visual stimuli. The 
stimuli, extracted from two standardized datasets (NIMSTIM52  
and IADS44), for visual and auditory stimuli, respec-
tively) were presented in a randomized order, triggered by a  
TrueRNG™ hardware random number generator.

Considering the number of groups (four), the number of clas-
sifiers (three) and the number of feature types (two), each  
classification (static or dynamic) produced a total of  
24 accuracies, whose significances were statistically tested  
(using a two-sample t-test and the benchmark’s accuracies).

Within the nine significant accuracies obtained using static  
features, the classifier that obtained the highest number of  
accuracies was the SVM (six significant accuracies), followed 
by kNN (two significant accuracies) and LDA (one significant 
accuracy). The most frequent feature was the temporal (five  
significant accuracies). Finally, the best (static) feature-classifier  
combination was the SVM with spectral features (51.8%),  
followed by LDA with spectral features (51.4%) and kNN with  
temporal features (51%).

Within the 13 significant accuracies obtained using dynamic 
features, the classifier that obtained the highest number of accu-
racies was the SVM (six significant accuracies), followed by 
LDA (four significant accuracies) and kNN (three significant 
accuracies). The most frequent feature was the spectral (eight  
significant accuracies). Finally, the best (dynamic) feature- 
classifier combination was the SVM with temporal features 
(63.8%), followed by kNN with temporal features (63.70%) 
and LDA with temporal features (63.68%). Spectral features  
produced only the 5th highest accuracy (53.12% with LDA). 
The three best accuracies were all within the first 100ms of 
the ISI, although a non-significant Spearman’s correlation  
between accuracy and time was observed (r=-0.308, p=0.306).

Our results show that globally the SVM presents the best accu-
racy, independent from feature type (temporal or spectral), 
but more importantly, the combination of SVM with the 
dynamic temporal feature produced the best classification  

Table 4. Dynamic features. Ordered accuracies 
grouped for classifier, feature and group.

Classifier Accuracy Time [s] Group Feature

SVM 63.80% 0.1 Ac_So Temporal

kNN 63.70% 0.048 Ps_So Temporal

LDA 63.68% 0.024 Ps_Im Temporal

LDA 63.30% 0.0276 Ps_So Temporal

LDA 53.12% 0.156 Ps_Im Spectral

LDA 53.04% 0.3332 Ac_So Spectral

LDA 51.97% 0.08 Ac_Im Spectral

SVM 51.83% 0.14 Ps_Im Spectral

SVM 51.43% 0.084 Ps_Im Temporal

kNN 51.41% 0.476 Ps_So Spectral

SVM 51.16% 0.146 Ac_So Spectral

SVM 51.07% 0.416 Ac_Im Spectral

SVM 50.62% 0.024 Ps_So Spectral

SVM, support vector machine; LDA, linear discriminant analysis; 
kNN, k-nearest neighbour.
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performance. This finding is particularly relevant, consider-
ing the application of EEG in cognitive science. In fact, due to 
its high temporal resolution, EEG is often applied to investi-
gate the timing of neural processes in relation to behavioural  
performance.

Our results therefore suggest that, in order to best classify  
emotions based on electrophysiological brain activity, the  
temporal dynamic of the EEG signal should be taken into 
account with a dynamic feature and consequently with a  
dynamic classifier. In fact, by including also time evolution 
of the feature in the machine learning model, it is possible to  
infer when two different conditions maximally diverge, allowing 
possible interpretation of the timing of the cognitive processes  
and the behaviour of the underlying neural substrate.

Finally, the main contribution of our results for the scientific 
community is that they provide a methodological advance-
ment that is generally valid both for the investigation of  
emotion based on a machine learning approach with EEG  
signals and also for the investigation of preparatory brain  
activity.

Data availability
Underlying data
Figshare: EEG anticipation of random high and low arousal faces 
and sounds. https://doi.org/10.6084/m9.figshare.6874871.v827

This project contains the following underlying data: 
-    EEG metafile (DOCX)

-    EEG data related to the Passive, Active and Predictive  
conditions (CSV)

-    Video clips of the EEG activity before stimulus presentation 
(MPG)

Extended data
Figshare: EEG anticipation of random high and low arousal  
faces and sounds. https://doi.org/10.6084/m9.figshare.6874871.
v827

This project contains the following extended data: 
-    Detailed description of LDA, SVM and kNN machine  

learning algorithms (DOCX)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/mbilucaglia/ 
ML_BAA

Archived source code at time of publication: https://doi.org/ 
10.5281/zenodo.366604551

License: GPL-3.0
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