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a b s t r a c t 

We provide an analytical approximation to the dynamics in each of the three most impor- 

tant low order secondary resonances (1:1, 2:1, and 3:1) bifurcating from the synchronous 

primary resonance in the gravitational spin-orbit problem. To this end we extend the per- 

turbative approach introduced in [10], based on normal form series computations. This 

allows to recover analytically all non-trivial features of the phase space topology and bifur- 

cations associated with these resonances. Applications include the characterization of spin 

states of irregular planetary satellites or double systems of minor bodies with irregular 

shapes. The key ingredients of our method are: i) The use of a detuning parameter mea- 

suring the distance from the exact resonance, and ii) an efficient scheme to ‘book-keep’ 

the series terms, which allows to simultaneously treat all small parameters entering the 

problem. Explicit formulas are provided for each secondary resonance, yielding i) the time 

evolution of the spin state, ii) the form of phase portraits, iii) initial conditions and stabil- 

ity for periodic solutions, and iv) bifurcation diagrams associated with the periodic orbits. 

We give also error estimates of the method, based on analyzing the asymptotic behavior 

of the remainder of the normal form series. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

The study of resonant configurations is of primary importance in many astronomical problems. One of the most fre-

quently observed commensurabilities in our Solar system is that between the orbital and the rotational period of natural

satellites. Our Moon, for example, is locked in a synchronous (1:1) spin-orbit resonance and this is probably the case also

for all large planetary satellites. In a simple spin-orbit coupling model, the dynamics about the synchronous resonance can

be described with a pendulum approximation. The phase-space is separated by a separatrix into a rotation and a libration

domain. The frequency of the libration is determined to a first-order approximation by the shape of the satellite. For partic-

ular values of the asphericity parameter, used to measure the divergence of the real shape from a sphere, this frequency can
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become resonant with the orbital frequency. This situation, known as a secondary resonance , creates a non-trivial topology

in the synchronous resonance librational domain which has to be studied further. 

In astronomical literature, examples of the study of secondary resonances around the synchronous primary resonance

are motivated by possible connections to the problem of tidal evolution of systems such as a satellite with aspherical shape

around a planet, or a double configuration of minor bodies (e.g., asteroids) where one or both bodies have irregular shapes.

An example of the former case is Enceladus: it was originally conjectured ( [29] ) that the asphericity ratio of this satellite

would make possible a past temporary trapping into the 3:1 secondary resonance located within the synchronous spin-

orbit resonance with Saturn. Such a scenario would justify an amount of tidal heating substantially larger than far from the

secondary resonance. The efficiency of this scenario was questioned as Cassini’s observations reduced Enceladus’ estimated

asphericity closer to ε ≈ 1/4 rather than 1/3 ( [24] ; see the review by [20] ). On the other hand, the overall role that secondary

resonances could have played for the tidal evolution of planetary satellites towards their final synchronous state is a largely

open problem. As regards minor planetary satellites or double minor bodies (e.g., double asteroids), exploration of the sub-

ject is still bounded by the scarcity of observations (see e.g., [25] ). A question of central interest regards predicting changes

in the stability character of a certain spin ‘mode’ (or periodic orbit) associated with a resonance, as the main parameters

of the problem (eccentricity, asphericity) are varied. Varying the parameters leads to bifurcations of new periodic orbits,

accompanied by a change of stability of their parent orbits. For secondary resonances l : k of order | l| + | k | > 4 , such bifur-

cations are described by a general theory (see, for example, [1] ). Instead, for low order resonances ( 2 ≤ | l| + | k | ≤ 4 ) such

transitions are case-dependent, and they lead to important changes in the topology of the phase portrait in the neighbour-

hood of one resonance. Besides theoretical interest in modelling these cases, the determination of stability of the various

resonant modes can be useful to the interpretation of observations. An additional motivation stems from the need for precise

models of spin-orbit motion in connection with future planned missions to double minor body systems. 

With the above applications in mind, in the present paper we discuss the implementation of our method recently in-

troduced in [10] with the aim to provide an analytical modelling allowing to fully reproduce the dynamics of the 3:1, 2:1

and 1:1 secondary resonances around the synchronous primary spin orbit resonance. Besides demonstrating the ability to

analytically deal with all peculiarities encountered in the phase space features and bifurcation properties of these secondary

resonances, the provision of analytical formulas with high precision is of practical utility, as it can substitute expensive

numerical treatments with practically no loss of accuracy. In fact, we make an analysis of the error introduced in our ap-

proximation, based on well known methods used in asymptotic analysis of series expansions in classical perturbation theory.

More precisely, after computing a Hamiltonian normal form for the secondary resonance, we measure the goodness of the

approximation by the estimate of the remainder function , whose size is determined by two principal factors: i) The way we

‘book-keep’ the series terms including the detuning as a small parameter in the series (see Section 2 below), and ii) the

accumulation of small divisors in the series terms. The typical behavior of the size of the remainder is that it decreases

up to a certain order and then it increases. The order at which the size of the remainder attains its minimum is called

the optimal order of the normal form. In this work we outline a procedure to estimate the optimal order, and hence obtain

explicit estimates of the error of our analytical approximation. In fact, a key result is that our normal form construction,

albeit non-standard in the way we ‘book-keep’ the Hamiltonian terms, still exhibits the desired asymptotic behavior of more

conventional constructions, as, e.g., multivariate series in powers of more than one small parameters (see for example [26] ).

The paper is organized as follows. The general problem is introduced in Section 2 . The normalization process is discussed

in a general setting in Section 3 , along with a demonstration of how estimates of the errors follow from an asymptotic

analysis of the normal form’s remainder. The specific application to the description of secondary resonances in the spin-

orbit problem is given in Section 4 , with concrete applications to the 1:1, 2:1 and 3:1 secondary resonances. Error analysis

for each secondary resonance is discussed in Section 5 . Finally, our results are summarised in Section 6 . Explicit formulas

for use in analytic computations are provided in the Appendix A . 

2. Hamiltonian of the spin-orbit problem 

The Hamiltonian describing the orbital and rotational coupling of a satellite in a Keplerian orbit, rotating about one of its

primary axes of inertia, which is assumed perpendicular to the orbital plane, is given by [4,11,22] : 

H(p θ , θ, t ) = 

p 2 
θ

2 

− ν2 ε 
2 

4 

a 3 

r 3 (t ) 
cos (2 θ − 2 f (t )) , (1) 

where θ is the angle formed by the largest physical axis of the satellite and the orbit apsis line, a is the orbit’s semi-major

axis, ν is the orbital frequency, f the true anomaly, r the distance between the two bodies and ε the asphericity parameter

defined as: 

ε = 

√ 

3(B − A ) 

C 
, (2) 

where A, B, C are the moments of inertia of the satellite ( C is the one corresponding to the rotational axis), and we assume

A ≤ B ≤ C (see [16] for a discretized version, [5] for a dissipative version of the spin-orbit equation). 

We choose units such that a = ν = 1 . Both the true anomaly f = f (t) and the orbital radius r = r(t) are known func-

tions of the time and can be expanded in Fourier series. Therefore, making explicit the time dependence, the spin-orbit
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Hamiltonian takes the form: 

H(p θ , θ, t) = 

p 2 
θ

2 

− ε 2 

4 

m = ∞ ∑ 

m � =0 ,m = −∞ 

W 

(
m 

2 

, e 

)
cos (2 θ − mt) , (3)

where the coefficients W = W 

(
m 

2 , e 
)

are the classical G functions of [15] and they are series in the eccentricity of order

e | m −2 | ( [3] ): 

W 

(
1 

2 

, e 

)
= − e 

2 

+ 

e 3 

16 

+ O(e 5 ) , 

W (1 , e ) = 1 − 5 

2 

e 2 + 

13 

16 

e 4 + O(e 6 ) , 

W 

(
3 

2 

, e 

)
= 

7 

2 

e − 123 

16 

e 3 + O(e 5 ) . 

We consider now an extended phase-space by introducing a dummy action p 2 , conjugated to the time variable with

frequency equal to the orbital frequency (which is equal to 1). The extended Hamiltonian reads as 

H(p 1 , p 2 , q 1 , q 2 ) = 

p 2 1 

2 

+ p 2 − ε 2 

4 

m = ∞ ∑ 

m � =0 ,m = −∞ 

W 

(
m 

2 

, e 

)
cos (2 q 1 − mq 2 ) . 

Introducing the resonant angle 

ψ = q 1 − p 

q 
q 2 , 

through the canonical transformation 

p 1 = p ψ 

+ 

p 

q 
, p 2 = p φ − p 

q 
p ψ 

, ψ = q 1 − p 

q 
q 2 , φ = q 2 , (4)

for some p, q integers, the Hamiltonian takes the form 

H = p φ + 

p 2 
ψ 

2 

− ε 2 

4 

m = ∞ ∑ 

m � =0 ,m = −∞ 

W 

(
m 

2 

, e 

)
cos (2 ψ + ( 2(p/q ) − m ) φ) . (5)

The ratio p / q in (4) is chosen according to which primary resonance we are interested in studying. For m = 2(p/q ) the angle

φ vanishes from the arguments of the trigonometric terms and the Hamiltonian takes the form: 

H = p φ + 

p 2 
ψ 

2 

− ε 2 

4 

W 

(
p 

q 
, e 

)
cos (2 ψ) + H nonres . (6)

We remark that the resonant part of the Hamiltonian (6) is the sum of the dummy action p φ and a pendulum-like Hamil-

tonian in the resonant angle ψ . 

For the synchronous (1:1) resonance the transformation (4) reads as 

p 1 = p ψ 

+ 1 , p 2 = p φ − p ψ 

, ψ = q 1 − q 2 , φ = q 2 , 

and the resonant part of the Hamiltonian is 

H res = p φ + 

p 2 
ψ 

2 

− ε 2 

4 

W (1 , e ) cos (2 ψ) , (7)

where W (1 , e ) = 1 − 5 
2 e 

2 + 

13 
16 e 

4 + . . . . To describe the librations around the primary resonance, through the Taylor series

cos (2 ψ) = 1 − 2 ψ 

2 + . . . , we get the Hamiltonian: 

H = p φ + 

p 2 
ψ 

2 

+ 

ε 2 

2 

ψ 

2 + H pert (ψ, φ; e, ε) , (8)

where, H pert is polynomial in ψ . 

The integrable part of the Hamiltonian introduces the unperturbed frequencies ω 1 = 1 , ω 2 = ε. Finally, we introduce the

action angle variables ( J, u ) through 

ψ = 

√ 

2 J 

ε 
sin u, p ψ 

= 

√ 

2 Jε cos u, J φ = p φ, (9)

which brings our Hamiltonian into the following form: 

H = J φ + εJ + H pert (J, u, φ; e, ε) . (10)

The perturbing part H pert is a Fourier series in u, φ of the form 

H pert (J, u, φ; e, ε) = 

∑ 

c k 0 k 1 k 2 (e, ε) J 
k 0 
2 e i (k 1 u + k 2 φ) , k 0 , k 1 , k 2 ∈ N . 
k 0 ,k 1 ,k 2 
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3. General normal form theory 

In this section we discuss our proposed canonical normalization procedure and generalise our method for the study of

an arbitrary order secondary resonance appearing in the vicinity of a primary resonance that can be described locally by

a pendulum approximation. First we assume a Hamiltonian model which has the form (10) . Then, we introduce the main

ingredients that will be used to compute the normal form: the introduction of a detuning term, measuring the distance

from the exact resonance, and the ordering of different terms through a book-keeping parameter. Finally, we discuss how to

obtain error estimates based on an optimal normalisation order in our construction. 

3.1. The Hamiltonian 

Consider a general Hamiltonian system with 2 d.o.f., depending on a set of M control parameters c α α = 1 , . . . , M, which

are associated with the specific nature of the problem. Let ( J 1 , J 2 , φ1 , φ2 ) denote action-angle variables with (J 1 , J 2 ) ∈ R 

2 ,

(φ1 , φ2 ) ∈ T 

2 . We consider a Hamiltonian function of the form 

H(J 1 , J 2 , φ1 , φ2 ; c α) = 

∑ 

j 1 , j 2 ,k 1 ,k 2 ∈ Z 
a j 1 j 2 k 1 k 2 (c α) J j 1 / 2 

1 
J j 2 / 2 
2 

e i (k 1 φ1 + k 2 φ2 ) , (11)

where a j 1 j 2 k 1 k 2 are real coefficients depending on the control parameters. According to Meyer et al. [21] , we introduce the

following definition. 

Definition 1. The Hamiltonian (11) is said to have the D’Alembert character, whenever for j 1 , j 2 ∈ N , k 1 , k 2 ∈ Z , the following

conditions are satisfied: 

j a ≥ | k a | , j a = | k a | ( mod 2) , a = 1 , 2 . (12)

As showed in [21] , the Hamiltonian (11) is derived from a power series of the form 

∑ 

b k 1 k 2 	 1 	 2 p 
k 1 
1 

p 
k 2 
2 

q 
	 1 
1 

q 
	 2 
2 

, setting p k =
(2 J k ) 

1 / 2 cos φk , q k = (2 J k ) 
1 / 2 sin φk , if and only if (11) has the D’Alembert character. It is useful to note here that in the

derived power series p k and q k appear only in positive integer powers, i.e. k 1 , k 2 , 	 1 , 	 2 ∈ N . 

3.2. Detuning 

The class of Hamiltonian systems described by (11) includes nearly-integrable systems, provided one identifies an inte-

grable part and assuming that the remaining terms are small in some sense. A typical example which naturally comes out

when reducing the system around a given resonance is represented by a Hamiltonian function which is linear in the actions.

This means that (11) should admit linear terms independent of the angles, taking the form 

H 0 (J 1 , J 2 ) = ω 1 J 1 + ω 2 J 2 , (13) 

where ω a ∈ R , a = 1 , 2 , denote the unperturbed frequencies associated with oscillations in the ( q 1 , p 1 ) and ( q 2 , p 2 ) planes. We

will focus on the case in which there exists a near (albeit not necessarily exact) commensurability between the unperturbed

frequencies, which can be expressed in the form 

ω 1 

ω 2 

− k 

	 
≡ δ, (14) 

where k, 	 ∈ Z , and δ is a small real parameter which we refer to as the detuning (see [17,18,27] ). It is important to no-

tice that, in this generic case, the resonance is in principle absent from the unperturbed dynamics, but it can appear in

the perturbed system, once it is triggered by the non-linear, higher-order coupling terms. Low-order nearly-resonant ratios

(namely those with | k | + | 	 | ≤ 4 ) deserve particular attention, since they generate several interesting phenomena which will

be examined in the following sections. 

Having fixed a given k / 	 (nearly) resonance as in (14) , a normalization process can be implemented to transform the

original Hamiltonian (11) into a normal form. As detailed in Section 3.4 , the standard approach is that in which the normal

form is constructed by imposing the conservation of the linear part (13) . A resonant k / 	 normal form is more generically set-

up under the hypothesis that the condition (14) is satisfied with δ = 0 , while the small term proportional to the detuning

is considered as part of the perturbation. 

3.3. Book-keeping 

The Hamiltonian (11) is a series expansion whose terms are characterized by three different small parameter scales:

they are respectively associated with the action variables J a (giving the amplitude of the motion), (a subset of) the coupling

parameters c α and the detuning δ. Powers of each of these quantities appear in the series expansions of the original and

transformed Hamiltonians. Since the normalization is not a unique process, as different strategies can be adopted according

to various ordering of the terms, it is very useful to use a single parameter, which is able to deal with all sets of small quan-

tities at the same time. According, e.g., to Efthymiopoulos [8] , we introduce a book-keeping parameter λ, which determines
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the ordering of the various terms in (11) by means of suitable substitution rules. Applying such rules, the decrease in size

of each term will be naturally related to increasing powers of λ. 

The rules for assigning the book-keeping parameter to the set of the action coordinates, the small control parameters,

and the detuning are implemented as follows: 

1. Scaling of the action variables J a is the usual procedure to account for the ordering of terms of different powers in the

amplitude of motion. In view of the role played by the linear terms in (13) and the fact that in the expansion there can be

altogether smaller action terms with exponents j a ≤ 1, the natural choice is to perform the following scaling for powers of

the actions: 

J j a a → λmax [2 j a −2 , 0] J j a a , a = 1 , 2 , (15)

where max [ q, 0] denotes the greatest between the relative integer q and zero. This choice reflects a natural scaling of the

oscillating phase-space variables, which transforms as half-integer powers of J a . 

2. Concerning the coupling parameters, we can simplify the discussion by making the assumption that among the c α ,

α = 1 , . . . , M, only one of them is small with respect to the others and we call it c S . In the example of the Hamiltonian (10) ,

the role of the small parameter is played by the eccentricity e . We decide to rescale the small parameter c S as 

c S → λc S . (16)

We stress that in case of more small parameters (e.g., the eccentricity and the inclination) the rescaling can be conveniently

applied to all small control parameters. 

3. The detuning parameter introduced in (14) is assumed to be small. Therefore, the natural choice is the substitution 

δ → λδ. (17)

We recall that in general the parameter δ may appear not only in the linear part (13) , but also within higher-order terms. 

Applying the three rules described before to the Hamiltonian (11) and rescaling time according to t → 

ω 2 
	 

t the book-kept

Hamiltonian takes the form 

H = kJ 1 + 	J 2 + λ	δJ 2 + 

∑ 

i 

λi H i (J 1 , J 2 , φ1 , φ2 ; c α, δ) , (18)

where H i , i ≥ 1, denote terms of progressively higher order in λ. 

Remark 2. We remark that λ is a symbol appearing at all orders of the expansions; once the normalization procedure is

completed, the value of λ is set to one, thus losing any quantitative meaning. Nevertheless, powers of λ allow us to group

different terms in all expansions according to their corresponding order of smallness. Moreover, the notation O s indicates a

series of terms of powers s or higher in the book-keeping parameter λ. 

3.4. Canonical normalization 

The normalisation approach implemented on the Hamiltonian (18) consists of finding a change of variables from ( J 1 , J 2 ,

φ1 , φ2 ) to a new set of coordinates, such that the new Hamiltonian is in resonant normal form up to high orders in the

book-keeping parameter. The normalization can be achieved through different approaches; here we choose to implement

the so-called Hori–Deprit method (see, e.g., [6,9,14] ), which is based on Lie series transformations. 

The method consists in finding a sequence of canonical transformations close to the identity, so that the initial coordi-

nates ( J 1 , J 2 , φ1 , φ2 ) ≡
(

J (0) 
1 

, J (0) 
2 

, φ(0) 
1 

, φ(0) 
2 

)
are successively transformed as 

(
J (0) 
1 

, J (0) 
2 

, φ(0) 
1 

, φ(0) 
2 

)
→ 

(
J (1) 
1 

, J (1) 
2 

, φ(1) 
1 

, φ(1) 
2 

)
→ 

(
J (2) 
1 

, J (2) 
2 

, φ(2) 
1 

, φ(2) 
2 

)
. . . (19)

The sequence of transformations are determined in such a way that the transformed Hamiltonian after n normalization steps

H 

( n ) takes the form 

H 

(n ) = Z 0 + λZ 1 + . . . + λn Z n + λn +1 H 

(n ) 
n +1 

+ λn +2 H 

(n ) 
n +2 

+ O n +3 , (20)

where λ denotes the book-keeping parameter. We refer to the normal form part of the Hamiltonian (20) as the function 

Z (n ) = Z 0 + λZ 1 + . . . + λn Z n , (21)

which depends just on the actions in the non-resonant case, or on the actions and on suitable combinations of the angles in

the resonant case. The functions Z j are determined recursively, together with the generating functions of the Lie canonical

transformation by solving suitable homological equations. With reference to (20) , we define the remainder function after n

normalisation steps as the quantity 

R 

(n ) = λn +1 H 

(n ) 
n +1 

+ λn +2 H 

(n ) 
n +2 

+ O n +3 . (22)

The size of R ( n ) gives a measure of the difference between the true dynamics and that provided by the normal form Z ( n ) ,

thus yielding the size of the error of the normal form approach at the order n (see Section 3.8 and Section 5 ). 
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Using the Hori–Deprit method, the changes of coordinates (19) are determined using a sequence of Lie generating func-

tions. Normalizing up to the order n , we consider the generating functions χ1 , χ2 , ..., χn , such that 

J 1 = exp 

(
L χn 

)
exp 

(
L χn −1 

)
. . . exp 

(
L χ1 

)
J ( 

n ) 
1 

, 

J 2 = exp 

(
L χn 

)
exp 

(
L χn −1 

)
. . . exp 

(
L χ1 

)
J ( 

n ) 
2 

, 

φ1 = exp 

(
L χn 

)
exp 

(
L χn −1 

)
. . . exp 

(
L χ1 

)
φ( n ) 

1 
, 

φ2 = exp 

(
L χn 

)
exp 

(
L χn −1 

)
. . . exp 

(
L χ1 

)
φ( n ) 

2 
, (23) 

where L χ denotes the Poisson bracket operator, 

L χ ( ·) ≡ { ·, χ} , 
and the exponential is defined as 

exp (L χ ) = 

∞ ∑ 

k =0 

1 

k ! 
L k χ . (24) 

In practice, one needs to retain a finite number N of terms in (22) , with N > n. N will be referred to as the truncation order.

Upon the transformation of coordinates (23) , the Hamiltonian becomes 

H 

(n ) = exp (L χn 
) exp (L χn −1 

) . . . exp (L χ2 
) exp (L χ1 

) H 

(0) . (25) 

We remark that this Hamiltonian is composed of the n -th order normal form and N − n consecutive terms of the remainder

series. 

The generating functions χ j , j = 1 , 2 , . . . , n are determined recursively by solving, at the r -th step of the normalization

procedure, the following homological equation : 

{ Z 0 , χr+1 } + λr+1 h 

(r) 
r+1 

= 0 . (26) 

The function Z 0 = kJ 1 + 	J 2 is named the kernel of the normalization procedure, while the function h (r) 
r+1 

is composed of all

terms of H 

(r) 
r+1 

, whose Poisson bracket with Z 0 is different from zero. In this way we obtain the function Z (r+1) = H 

(r) 
r+1 

− h (r) 
r+1 

(see [14] , [6] , [8] for further details). 

The functions h (r) 
r+1 

, r = 1 , 2 , . . . , n can be written as the Fourier sum 

h 

(r) 
r+1 

= 

∑ 

k 1 ,k 2 �∈M 

b (r) 
r+1 , (k 1 ,k 2 ) 

(J 1 , J 2 )e i (k 1 φ1 + k 2 φ2 ) , 

where 

M = { k ≡ (k 1 , k 2 ) : k 1 k − k 2 	 = 0 } , 
is the resonant module . Thus, the solution of the homological equation can be written as 

χr+1 = 

∑ 

k 1 ,k 2 �∈M 

b (r) 
r+1 , (k 1 ,k 2 ) 

(J 1 , J 2 ) 

k 1 k − k 2 	 
e i (k 1 φ1 + k 2 φ2 ) . 

By implementing the above procedure, at each step we obtain a new Hamiltonian 

H 

(r+1) = exp L χr+1 
H 

(r) , 

which is normalized up to the order r + 1 : 

H 

(r+1) = Z 0 + λZ 1 + . . . + λr Z r + λr+1 Z r+1 + λr+2 H 

(r+1) 
r+2 

+ O r+3 . 

Remark 3. The functions H 

( r ) depend on the transformed variables φ( r ) , J ( r ) . For simplicity of notation, we hereafter avoid

superscripts in the notation of canonical variables, assuming correspondence with the order of normalization which is pro-

vided whenever needed. 

In the non-resonant case, the function Z 0 depends only on J 1 , J 2 , while in the resonant case the normal form depends

also on the combination of the angles 	φ1 − kφ2 . This leads to introduce in a natural way another set of canonical variables

( J F , J R , φF , φR ) for the resonant Hamiltonian, defined as 

φ1 → φR + 

k 

	 
φF , φ2 → φF , J 1 → J R , J 2 → J F − k 

	 
J R , 

where the suffix F stands for fast and R stands for resonant, so that 

	φR = 	φ1 − kφ2 . 
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The transformed Hamiltonian normal form becomes: 

Z = 	J F + λδ( 	J F − kJ R ) + 

n ∑ 

j=1 

λ j Z j ( J F , J R , 	φR ; c α, δ) . (27)

The action 

J F = 

Z 0 
	 

= 

k 

	 
J 1 + J 2 , 

is now a constant of the motion, since its conjugate angle φF is not present in the Hamiltonian. The problem has finally

been reduced to one degree of freedom and it is an integrable approximation of the original non-integrable system (18) . 

3.5. Orbits and phase portraits 

Among the different applications of the normal form, we start by quoting that the Hamiltonian (21) (or (27) ) provides

an integrable approximation of the original system (18) , which is more accurate than just retaining the lowest order term.

For example, in the resonant case by analyzing the reduced function (27) , one can obtain valuable information about the

original system. The solutions of the real system are encoded in the level curves of the integral Z 0 or, equivalently, the

constant energy curves of the Hamiltonian (27) . In fact, by trivially integrating the orbits of (27) and back-transforming to

the original variables via the transformation Eqs. (23) , one obtains highly precise approximations of the time solutions of

the real system, at least in the domain of regular motions. 

3.6. Analytical approximation of the periodic orbits 

Periodic solutions of the equations of motion play a very important role. Several methods have been developed to com-

pute periodic orbits of Hamiltonian systems. Taking advantage of the simplified dynamics of the resonant normal form (27) ,

an explicit formula for the periodic orbits associated with the main resonance can be easily derived. 

Such periodic solutions correspond to the equilibrium points of the reduced normal form (39) . Let us denote by 

J R = J 0 , φR = φ0 , (28)

one of these points and by 

ω F = 

∂Z 

∂ J F 
| J R = J 0 ,φR = φ0 

, 

the fast frequency. Fixing a level set for J F and using the same procedure as for any other phase-space function, we back-

transform the equilibrium point to a solution in terms of the original variables ( J 1 , J 2 , φ1 , φ2 ): 

J 1 (t; c α, δ) = 

(
exp 

(
L χn 

)
. . . exp 

(
L χ2 

)
exp 

(
L χ1 

)(
J (n ) 
R 

))∣∣∣∣
J (n ) 
R 

= J 0 ,φ(n ) 
R 

= φ0 ,φ
(n ) 
F 

= ω F t 
, (29)

J 2 (t; c α, δ) = 

(
exp 

(
L χn 

)
. . . exp 

(
L χ2 

)
exp 

(
L χ1 

)(
J F − k 

	 
J (n ) 
R 

))∣∣∣∣
J (n ) 
R 

= J 0 ,φ(n ) 
R 

= φ0 ,φ
(n ) 
F 

= ω F t 
, (30)

φ1 (t; c α, δ) = 

(
exp 

(
L χn 

)
. . . exp 

(
L χ2 

)
exp 

(
L χ1 

)(
φ(n ) 

R 
+ 

k 

	 
φ(n ) 

F 

))∣∣∣∣
J (n ) 
R 

= J 0 ,φ(n ) 
R 

= φ0 ,φ
(n ) 
F 

= ω F t 
, (31)

φ2 (t; c α, δ) = 

(
exp 

(
L χn 

)
. . . exp 

(
L χ2 

)
exp 

(
L χ1 

)(
φ(n ) 

F 

))∣∣∣∣
J (n ) 
R 

= J 0 ,φ(n ) 
R 

= φ0 ,φ
(n ) 
F 

= ω F t 
. (32)

The Eqs. (29) –(32) provide the variation in time of the periodic orbit. 

Moreover, the above equations give a generalised expression for the position of the periodic orbit with respect to the

system parameters. Therefore, they could be used to compute the characteristic curves for the families of periodic solutions

in the parameter space. 

3.7. Bifurcation thresholds 

By varying the energy level or some control parameters, it can happen that the equilibrium solutions (28) undergo a

transition from stability to instability, or vice-versa. For topological reasons this phenomenon implies the appearance or

disappearance of additional critical points with associated bifurcations of new families of periodic orbits. Usually, an analysis

of the Hessian determinant in terms of internal and control parameters is straightforward and then it is possible to get

explicit bifurcation curves in a relevant parameter space. The computation of the normal form allows one to refine the

results and to obtain bifurcation values as close as possible to the curves computed by a numerical approach. 
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3.8. Error estimates and optimal order 

The precision of the normal form is measured by the size of the remainder function. Thus, it makes sense to measure

the size of R ( n ) at each order n of the normalization procedure. This section is devoted to provide formal norm definitions

allowing to estimate the size of the remainder function. 

With reference to (22) , let R (n ) : R 

2 × T 

2 → R be the remainder function, that we write in the form 

R 

(n ) ( J 1 , J 2 , φ2 , φ2 ; c α, λ, δ) = λn +1 H 

(n ) 
n +1 

+ λn +2 H 

(n ) 
n +2 

+ O n +3 

= 

∞ ∑ 

s =1 

λn + s ∑ 

s 1 ,s 2 ,k 1 ,k 2 

a (n,s ) 
s 1 s 2 k 1 k 2 

(c α, δ) J 
s 1 
2 

1 
J 

s 2 
2 

2 
e i (k 1 φ1 + k 2 φ2 ) , (33) 

where s 1 , s 2 ∈ N and k 1 , k 2 ∈ Z , with lower and upper bounds depending on the order of the book-keeping λ. The coefficients

a (n,s ) 
s 1 s 2 k 1 k 2 

are computed via the recursive application of the Lie normalisation scheme (25) and (26) . For a sufficiently small

parameter ξ > 0, the Lie series procedure guarantees that the series R ( n ) is convergent in a set 

� ≡ { (J 1 , J 2 , φ2 , φ2 ) ∈ R 

2 × T 

2 : | J i | < ξ φi ∈ T i = 1 , 2 } . (34)

The parameter ξ gives a measure of the size of the domain in the actions around the equilibrium position, where the

normal form method is applicable, i.e, the associated Lie transformation converges (see Remark 4 below). On the other

hand, when computing the normal form explicitly, possibly by means of an algebraic manipulator, we need to truncate

the series expansions appearing in (33) . To this end, let N be the order of the truncation, and let R ( n,N ) be the truncated

remainder function defined as 

R 

(n,N) = 

N ∑ 

s =1 

λn + s ∑ 

s 1 ,s 2 ,k 1 ,k 2 

a (n,s ) 
s 1 s 2 k 1 k 2 

(c α, δ) J s 1 / 2 
1 

J s 2 / 2 
2 

e i (k 1 φ1 + k 2 φ2 ) . (35) 

Given that the function R ( n,N ) is still defined in the set � as in (34) , we introduce the following majorant norm, which

depends on the control parameters c α as well as on the detuning δ: 

‖ R 

(n,N) ‖ (c α,δ,ξ ) = 

N ∑ 

s =1 

∑ 

s 1 ,s 2 ,s 3 ,k 1 ,k 2 

| a (n,s ) 
s 1 s 2 k 1 k 2 

(c α, δ) | ξ s 3 
2 . (36) 

Based on (36) , concrete analytical estimates of the size of the remainders || R ( n,N ) ||, at every order n , as well as the optimal

order, where || R ( n,N ) || becomes minimum, can be provided (see Section 5 ). 

Remark 4. i ) The sequence ‖ R (n,N) ‖ (c α,δ,ξ ) , for fixed values of n, c α , δ, ξ and for N = 1 , 2 , . . . is convergent provided that c α ,

δ, ξ are sufficiently small (see, e.g., [9] ). Its limit as N → ∞ is hereafter denoted ‖ R ( n , ∞ ) ‖ . 
ii ) The sequence ‖ R (n, ∞ ) ‖ (c α,δ,ξ ) is asymptotic . Indeed, a typical behavior is that for a normalization order n small enough,

the size ‖ R (n, ∞ ) ‖ (c α,δ,ξ ) decreases as n increases. However, beyond a certain order which we refer to as the optimal order ,

say n opt , the quantity ‖ R (n, ∞ ) ‖ (c α,δ,ξ ) starts to increase with n . This shows that the minimum size of the remainder- corre-

sponding to the best normal form approximation - occurs at the normalization order n = n opt . 

iii ) According to Nekhoroshev theory (see [23] , see also [8] ) the optimal order n opt decreases as the small parameters

(e.g., c α , δ or ξ ) increase. 

4. Application to the secondary resonances of the synchronous resonance in the spin-orbit problem 

The general method described in the previous section is now applied to the particular cases of the secondary resonances

of the 1:1 primary resonance in the spin-orbit problem. More specifically, we study the three lowest order secondary reso-

nances: 1:1, 2:1 and 3:1. For each case we construct a high-order normal form and provide a series of analytical computa-

tions. First, we compare the analytical Poincaré surfaces of section with the numerical ones, and confirm that our integrable

approximation successfully captures the topological transitions accompanying the bifurcations of periodic orbits for each 

particular secondary resonance. Moreover, we compute the characteristic curves of the families of periodic orbits involved

in the secondary resonances and compare them with those computed numerically by means of a Newton–Raphson method.

Finally, the bifurcation curves for each resonance are determined analytically in the parameter space ( e, δ). 

4.1. The 1:1 secondary resonance 

The 1:1 secondary resonance becomes important for asphericities close to ε = 1 . This corresponds, e.g., to nearly prolate

bodies with axial ratios ≈ 1.5. Historically, the case of the satellite of Saturn Hyperion, which represents the first example

of observationally detected chaotic spin rotation in the Solar system [12] , belong to this class. Being, instead, interested in
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finding the various ‘modes’ and parameters for which ordered motion would be possible in the 1:1 secondary resonance,

we follow the normalization procedure described in Section 3.4 and we consider 

k = 	 = 1 . 

We apply the normalization scheme of Section 3 to the Hamiltonian (18) , using a computer-algebraic program up to the

normalization order n = 11 . The first few terms of the normalized Hamiltonian read 

H = Z 0 + λZ 1 + λ2 Z 2 + O 3 , 

with 

Z 0 = J + J φ, 

Z 1 = δJ − e 
√ 

2 J cos (u − φ) , 

Z 2 = −2 e 2 J − 1 

4 

J 2 − e 2 J cos (u − φ) + 

√ 

2 eJ 3 / 2 cos (u − φ) − 3 

2 

e 
√ 

2 J δ cos (u − φ) . 

Recall that, according to Remark 3 , J and u above denote the near identity transformation of the action angle variables

defined in Eq. (9) after n = 11 normalization steps. 

Next, we introduce another set of canonical variables for the resonant Hamiltonian: 

φ → φF , u → φR + φF , J → J R , J φ → J F − J R . 

The transformed Hamiltonian becomes: 

H = J F + λδJ R − 2 λ2 e 2 J 2 R − 1 
4 
λ2 J 2 R − λe 

√ 

2 J cos (φR ) + 

√ 

2 λ2 eJ 3 / 2 
R 

cos (φR ) 

− 3 
2 
λ2 e 

√ 

2 J R δ cos (φR ) − λ2 e 2 J R cos (φR ) + O 3 . 

We can further simplify the resonant Hamiltonian by applying a canonical transformation to Poincaré variables 

X = 

√ 

2 J R sin φR , Y = 

√ 

2 J R cos φR . 

Since J F plays now the role of the dummy action J φ , without loss of generality we can set J F = 0 . Dropping the formal

dependence on the book-keeping parameter λ (see Remark 2 ) the Hamiltonian in polynomial form reads: 

H = 

1 
2 
δ
(
X 

2 + Y 2 
)

− 1 
16 

(
X 

4 + Y 4 
)

− 1 
2 

e 2 X 

2 − eY + 

1 
2 

eX 

2 Y − 3 
2 

e 2 Y 2 (37)

− 1 
8 

X 

2 Y 2 + 

1 
2 

eY 3 − 3 
2 

eδY + O 3 . 

The complete form of the function in Eq. (37) up to order O 6 is given in the Appendix A . Since the model (37) is integrable,

this allows to find explicit analytical formulas approximating the time evolution of the spin state in the domain of regular

motion. 

4.1.1. Poincaré surfaces of section 

In Fig. 1 we superpose the analytically found invariant curves (red curves) to the numerical phase portrait (black dots)

computed as a stroboscopic surface of section for the 1:1 secondary resonance. The red curves correspond to level curves

of constant energy of the Hamiltonian (37) back-transformed to the original variables. One sees that, for values of the as-

phericity ε > 1 there can exist more than one synchronous state. At the point (ε = 1 , e = 0) a tangent bifurcation occurs and

we have the appearance of a new pair of periodic solutions, one stable and one unstable. The topological changes in the

phase space around this critical value are depicted in Fig. 1 . For values of the parameters (ε = . 93 , e = 0 . 01) , in the surface

of section we observe a typical pendulum-like structure in the synchronous resonant domain. However, as we increase the

asphericity to a value ε > 1, the phase portrait shows that two stable synchronous solutions co-exist. The lower stable solu-

tion is called the α-mode while the upper one is the β-mode [19] . Both the α and β mode are surrounded by the separatrix

stemming from the third unstable solution. 

We mention here that such a phase portrait corresponds to the so-called Second Fundamental Model of a resonance [13] .

In fact, the resonant normalized Hamiltonian Eq. (37) has indeed the form of the Second Fundamental Model, thus, allowing

to describe in a straightforward way the bifurcation to the β-mode. 

4.1.2. Characteristic curves and bifurcation diagram 

The normal form construction allows to compute the characteristic curves (coordinates of the fixed point of the α and β
mode as one parameter is varied) for a given value of the eccentricity, and varying δ, or vice versa. Fig. 2 shows an example,

for fixed e = 0 . 01 . The periodic solutions are given as equilibrium points of the equations of motion derived by the resonant

normalised Hamiltonian. For fixed ε, e one can solve the algebraic equation to find the equilibria and then back-transform

them to the original variables. Fig. 2 shows the excellent agreement between the numerical 1 and analytical characteristic
1 The numerical method uses the equations of motion derived by Eq. (1) and locates the synchronous periodic orbits via a Newton–Raphson process 

over the stroboscopic map. 
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Fig. 1. Poincaré surfaces of sections for different values of the control parameters ( ε, e ): left panel (0.93,0.01), right panel (1.07,0.01). The sections produced 

from the level curves of the resonant Hamiltonian normal form truncated at the normalization order 11 (red curves) are superposed to those produced 

from the numerical integration of the equations of motion (black points). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 2. On the left: the analytical estimates for the position of the periodic solution of the α and β-mode derived by our 11th order normal form con- 

struction (blue curve) and by the nonlinear method of Bogoliubov and Mitropolsky [2,28] (red curve). The analytical results are also compared with those 

derived by the numerical method (black curve). On the right: the analytical estimates for the bifurcation curves derived by our 11th order normal form 

construction (red curve) and by the numerical method (black curve). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

curves. Note that δ is valued in the interval −0 . 2 < δ < 0 . 2 , which is about 20% of the asphericity value ε = 1 , corresponding

to the central value of the secondary resonance. 

As a comparison, another analytical method to estimate the position of the periodic orbits was proposed in [28] using the

nonlinear method of Bogoliubov and Mitropolsky [2] . They derived a formula for the position of the synchronous resonance

p θ = (1 + ψ) 
1 + e 2 

(1 − e 2 ) 3 / 2 
, (38) 
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where ψ is determined from the equation 

ψ − ε 2 J 1 (2 ψ) + 4 e = 0 , 

where J n are the usual Bessel functions. For values of ε > 1, Eq. (38) has 1 or 3 solutions depending on the eccentricity,

allowing us to compute the positions of the α and β-modes. The solution is also shown in Fig. 2 . The purely numerical

method has the Newton–Raphson accuracy 10 −13 (black curves). The red and blue curves are computed, respectively, using

the analytical formula provided by [28] and using our resonant normal form up to the normalization order n = 11 . Our an-

alytical estimates give the best agreement with the numerical computations. We note that, the analytical estimate for the

position of the α-mode and β-mode is satisfactory not only very close to the value of the asphericity ε = 1 , but also in a

significant interval [0.8,1.2] around it. In fact, the α-mode is very well represented from values of ε from about 0.5 up to

about 1.2 where the normal form solution starts diverging. However, it is interesting the fact that although diverging from

the numerical solution, the normal form estimate now converges to the other analytical estimate from Wisdom’s formula.

Since all these normal form constructions are supposed to work well in local domains (in the actions or the parameters, see

Section 3 ), we suspect that the similarity observed in the divergence of the two analytical predictions is related to the over-

all expected failure of the averaging process (performed either with the nonlinear method of Bogoliubov and Mitropolsky

[2,28] or our proposed normal form method) in a range of parameters outside this domain. 

Finally, the right panel of Fig. 2 shows the computation of the complete bifurcation diagram of the tangent bifurcation.

As already mentioned, topological transitions in the phase portrait are associated with the appearance of a pair of new

periodic solutions that appears along the θ = 0 axis. The periodic solutions of the system correspond to fixed points of

the normal form. Moreover, in Poincaré variables the Hamiltonian has a polynomial form and for θ = 0 we can set X = 0 .

Then it suffices to study the number of real roots of the polynomial H ( Y ): the points in the ( e , ε)-plane where we pass

from 1 to 3 real roots give us the analytical locus of the bifurcation curve. In the same manner, one can do the same

computation numerically by finding the set of points in the ( e , ε)-plane where we pass from one periodic solution to three.

The results show that the analytical predictions fit well with the numerical ones up to e ≈ 0.15, δ ≈ 1.3. Again here the limits

are connected with the domain of applicability of the normal form approach, and they are further commented in Section 5 ,

where a detailed analysis of the error of the method is made. 

4.2. The 2:1 secondary resonance 

The normal form construction of the 2:1 secondary resonance of the synchronous primary resonance is presented in

detail in [10] . We summarize here some basic results, and proceed in a detailed error analysis for this resonance in Section 5 .

We have 

k = 1 , 	 = 2 , 

and the normalized Hamiltonian reads 

H = Z 0 + λZ 1 + λ2 Z 2 + O 3 , 

with Z 0 = 

1 
2 J + J φ, Z 1 = δJ − 3 

8 eJ cos (2 u − φ) and Z 2 = 

89 
128 e 

2 J − 1 
4 J 

2 − 3 
4 eδJ cos (2 u − φ) . In the resonant variables 

φ → φF , u → φR + 

1 

2 

φF , J → J R , J φ → J F − 1 

2 

J R , 

the normal form becomes: 

H = J F + λδJ R − 89 

128 

λ2 e 2 J R − 1 

4 

λ2 J 2 R − eJ R 

(
3 

8 

λ + 

3 

4 

λ2 δ
)

cos (2 φR ) + O 3 . 

In the Poincaré variables X = 

√ 

2 J R sin φR , Y = 

√ 

2 J R cos φR , and setting as before J F = 0 , one gets the Hamiltonian in a

polynomial form: 

H = 

3 

16 

eX 

2 − 89 

256 

e 2 X 

2 − 1 

16 

X 

4 − 3 

16 

eY 2 − 89 

256 

e 2 Y 2 − 1 

8 

X 

2 Y 2 − 1 

16 

Y 4 + 

1 

2 

X 

2 δ + 

3 

8 

eX 

2 δ + 

1 

2 

Y 2 δ − 3 

8 

eY 2 δ + O 3 . (39)

The complete form of the function in Eq. (39) up to order O 6 is given in the Appendix A (see also [10] ). Similarly to the

case of the 1:1 secondary resonance, these explicit formulas can be used to derive analytical approximations for the time

evolution of the spin state in the domain of applicability of the normal form. 

The transitions in the phase-space of the spin-orbit problem in the case of the 2:1 secondary resonance were studied

in [10] , while a further example is shown in Fig. 3 . Note that even as chaos increases fast as the eccentricity increases

( e = 0 . 05 in Fig. 3 ), the invariant curves found by the normal form capture precisely the dynamics in places where regular

islands still exist. Hence, the normal form reproduces well the bifurcations of periodic orbits around the primary resonance.

In particular, the system undergoes two critical transitions. First, the primary resonance becomes unstable and we have the

appearance of a pure figure-8 structure ( Fig. 3 central panel). A stable family of periodic orbits appears on either side of the

central resonance for almost the same value of the action p θ . By further changing the control parameter, we have another

topological transition. The central resonance becomes stable again, and two unstable periodic orbits appear for the same

value of the angle θ ( Fig. 3 right panel). 
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Fig. 3. Poincaré surfaces of sections for e = 0 . 05 and for different values of the asphericity: left panel (ε = 0 . 45) , central panel (ε = 0 . 5) and right panel 

(ε = 0 . 55) . The sections produced from the level curves of the resonant Hamiltonian normal form truncated at the normalization order 11 (red curves) are 

superposed to those produced from the numerical integration of the equations of motion (black points). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Left panel: the analytical estimates for the position of the periodic solutions involved in the 2:1 secondary resonance. The colors for the analytical 

solutions denote the stable (blue) and unstable (red) members of each family. The numerical results are superposed with black circles. Right panel: the 

bifurcation diagram for the 2:1 resonance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

The characteristic curves, showing these transitions, are depicted in left panel of Fig. 4 . We compute analytically the

characteristic curves for the families of periodic orbits involved in the topology of the 2:1 secondary resonance. The stability

of each periodic orbit is also computed from the eigenvalues of the linearised matrix for each equilibrium solution. The two

families of stable (blue) periodic orbits that appear on the first bifurcation and the two families of unstable (red) periodic

orbits are presented, along with the central periodic orbit. Moreover, we can estimate the threshold of the two critical

transitions in the topology, both analytically and numerically. The results are presented in the right panel of Fig. 4 . For more

details on these computations we refer the reader to [10] . 

4.3. The 3:1 secondary resonance 

In the case of the 3:1 secondary resonance we follow the normalization procedure described in Section 3 with 

k = 1 , 	 = 3 . 

By applying the above normalization scheme on the Hamiltonian (18) , the normalized Hamiltonian reads 

H = Z 0 + λZ 1 + λ2 Z 2 + O 3 , 
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Fig. 5. Poincaré surfaces of sections for e = 0 . 1 and for different values of the asphericity ε: (from top-left to bottom-right) ε = 0 . 3333 , ε = 0 . 3350 , ε = 

0 . 3370 , ε = 0 . 3381 and ε = 0 . 34 . The sections produced from the level curves of the resonant Hamiltonian normal form truncated at the normalization 

order 11 (red curves) are superposed to those produced from the numerical integration of the equations of motion (black points). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

with 

Z 0 = 

1 

3 

J + J φ, 

Z 1 = δJ, 

Z 2 = − 4 

15 

e 2 J − 1 

4 

J 2 −
√ 

2 

27 

eJ 3 / 2 cos (3 u − φ) . 

Introducing the resonant canonical variables: 

φ → φF , u → φR + 

1 

3 

φF , J → J R , J φ → J F − 1 

3 

J R , 

the transformed Hamiltonian becomes: 

H = J F + λδJ R − 1 

4 

λ2 J 2 R −
4 

15 

λ2 e 2 J R −
√ 

2 

27 

λ2 eJ 3 / 2 
R 

cos (3 φR ) + O 3 , 

or, in Poincaré variables X = 

√ 

2 J R sin φR , Y = 

√ 

2 J R cos φR (with J F = 0 ): 

H = 

1 

2 

δ(X 

2 + Y 2 ) − 1 

16 

(X 

4 + Y 4 ) − 2 

15 

e 2 (X 

2 + Y 2 ) − 1 

8 

X 

2 Y 2 − 1 

6 

√ 

3 

eY 3 + 

1 

2 

√ 

3 

eX 

2 Y + O 3 . 

The complete form of the function in Eq. (40) up to order O 6 is given in the Appendix A . 

The topology around the 1:1 primary resonance changes dramatically as we approach the critical value of the asphericity

ε = 1 / 3 . In Fig. 5 we present a series of Poincaré surfaces of section that try to capture all the possible transitions. These

transitions take place as δ is varied by about δ = 0 . 01 . At first, the primary resonance yields the well-known center topology

( Fig. 5 top-left panel). As we approach the critical value of ε for the appearance of the secondary resonance the inner region

of the resonance takes a triangle shape pointing downwards ( Fig. 5 top-centre panel). Then a chain of islands of period 3
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Fig. 6. On the left: the analytically computed characteristic curves for the periodic solutions associated with the 3:1 secondary resonance. On the right: 

bifurcation curves for the 3:1 secondary resonance of the 1:1 primary. The bifurcation limit ε1 corresponds to the values of the parameters where the 

chain of period 3 island chain appears. Bifurcation limit ε2 corresponds to the passage of the secondary resonance through the main one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

appears on the edges of this triangle ( Fig. 5 top-right panel). The central periodic orbit is still surrounded by the separatrix

created by the period-3 unstable periodic orbit. The separatrix keeps shrinking until it actually coincides with the central

orbit. At this point, the so-called squizing effect happens. Further increasing the ε value, the separatrix appear again, with

the same triangular shape, but this times it looks upwards ( Fig. 5 bottom-left panel). Finally the 3:1 secondary resonance

moves away from the central one, which takes its regular shape again ( Fig. 5 bottom-right panel). This peculiar chain of

bifurcations in the 3:1 resonance is well known (see Appendix 7 of [1] ). 

The left panel of Fig. 6 shows the analytically computed characteristic curves for the families of the periodic orbits

involved in the topological transitions of the 3:1 secondary resonance. Both the new appearing stable and unstable families

are of multiplicity 3. For clarity, in the left panel Fig. 6 we present only the initial conditions with respect to the action

value p θ and θ = 0 . 

A determination of bifurcation curves in the parameter space ( ε, e ), where the period-3 chain of resonant islands around

the primary resonance appears, can be done as follows. Numerically this is detected by looking for period-3 solutions in

the vicinity of the primary resonance. We fix one of the parameters and we smoothly change the other until we encounter

the period-3 solution for the first time. Analytically the same work can be done, using the normal form for the secondary

resonance. Now, we count the number of roots of the multivariable polynomial in Poincaré variables. The results of this

calculation are presented in the right panel of Fig. 6 , where the above described bifurcation limit is denoted ε1 . 

However, the topology is much more rich than a single bifurcation. As the value of the asphericity continues to increase,

we have the secondary resonance to pass through the primary resonance, which for an instance becomes unstable. This

phenomenon can also be studied with our theory and the bifurcation curve is shown in the right panel of Fig. 6 as ε2 . We

estimate both analytically and numerically this limit by looking at the stability properties of the primary resonance. 

5. Series asymptotic behavior and error analysis 

In this section we apply the error analysis estimates introduced in Section (3.8) , based on the asymptotic behavior of

the remainder function associated with the normal forms computed in the previous sections. The basic quantity of interest

is ‖ R (n,N) ‖ (c α,δ,ξ ) , introduced in Eq. (36) . Given particular parameter values e, δ, the first step in the analysis is to check

that the successive normalizations keep our transformed Hamiltonian convergent within the domain | J i | < ξ , for a value

of ξ selected so as to contain all orbits which we are interested in. Fig. 7 (left panel) gives an example of such testing:

The quantity ‖ R ( n,N ) ‖ ( e, δ, ξ ) ‖ is computed in the case of the 2: 1 secondary resonance, for e = 0 . 01 , δ = 0 . 1 ξ = 0 . 01 , and

three different normalization orders, n = 3 , 5 and 7. In all three cases, the truncated remainder norm is computed when the

truncation order extends to N = n + q, with q = 1 , . . . , 5 . One sees a rapid convergence of the remainder norm to a limiting

value: Actually, with a truncation even as low as q = 1 one obtains a remainder value estimate which is, within a factor

smaller than 2, close to the limiting value. We emphasize that this convergence test is crucial: contrary to a widespread

belief, for the analytical approach to be valid, all performed normalizations must lead to convergent expressions as regards

both the resulting canonical transformations and Hamiltonian normal form series. The celebrated ‘divergence’ of the Birkhoff
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Fig. 7. In the left panel we observe the asymptotic behavior of the remainder function for different normalization orders n . The error saturates as a 

function of the number of terms N in the truncated remainder function. In the right panel the optimal normalisation order, denoted by a circularized 

point, is presented for different values of the control parameters. 

Fig. 8. For the case of the 1:1 secondary resonance we provide in the left panel the optimal normalisation order n in the 3-dimensional space of the 

parameters ( ξ , e, δ). In right panel the normalisation order n is shown for different values of the ‘distance’ from the origin ρ . 

 

 

 

 

 

 

 

 

normal form refers to the divergence of the sequence 

‖ R 

(n ) ‖ (e,δ,ξ ) ≡ lim 

N→∞ 

‖ R 

(n,N) ‖ (e,δ,ξ ) ‖ , 

when the normalization order n tends to infinity, assuming, for any finite n , that the right hand side limit of the above

equation exists. Estimating the limit by setting N large ( N = n + 5 in our numerical examples), we distinguish immediately

the asymptotic character of the sequence ‖ R ( n ) ‖ ( e, δ, ξ ) : one has that ‖ R ( n ) ‖ ( e, δ, ξ ) is a decreasing function of n up to an optimal

normalization order n opt , defined by 

‖ R 

(n opt ) ‖ (e,δ,ξ ) < ‖ R 

(n ) ‖ (e,δ,ξ ) both for n < n opt and n > n opt . (40)

Thus, n opt = 7 in the left panel of Fig. 7 . As shown in the right panel in the same figure, our particular book-keeping rule

introduced for the detuning parameter is consistent with the expected behavior for asymptotic series: n opt is a decreasing

function of δ. We find the power-law estimate n opt ∼ δ−b , with b ≈ 1, while, as a consequence, ‖ R (n opt ) ‖ (e,δ,ξ ) increases as δ
increases. 

Figs. 8–10 summarize the information on the optimal normalization order, estimated by || R (n opt ) || e,δ,ξ , as a function of

the three small parameters e, δ, ξ , for the secondary resonances 1:1, 2:1 and 3:1 respectively. All three figures have a
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Fig. 9. Same as in Fig. 8 but for the case of the 2:1 secondary resonance. 

Fig. 10. Same as in Fig. 8 but for the case of the 3:1 secondary resonance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

similar structure, which represents the general trend expected for asymptotic series, namely the fact that the optimal order

decreases as the value of the small parameter(s) increases. Regarding more precise quantitative estimates, the right panels

in Figs. 8–10 show the dependence of the computed optimal orders n opt on a unique quantity ρ representing the ‘distance’

from the origin in parameter or phase space, defined as: 

ρ = 

√ 

ξ + δ2 + e 2 . (41) 

Note that in above expression ξ appears in the first power in the square root, since ξ represents a limit in the action space

( J < ξ in the norm definition; see Eq. (36) ), thus it represents already the square of the distance from the origin in the

Poincaré variables ( X, Y ). As shown in the right panels of Figs. 8–10 , for various combinations of the three parameters ( ξ ,

δ, e ) yielding a fixed ρ below some threshold ρ < ρc , one obtains various optimal orders bounded from below according

to n opt ≥ n opt,min . The lack of upper limit in the optimal order simply reflects the integrability of the model when e = 0 (a

fact which implies that the series are convergent in this case for appropriate bounds in ξ and δ). On the other hand, the

lower bound is close to the power law n opt,min ∝ ρ−1 , a relation which is characteristic of resonant normal forms (see [7] for

more details). This power-law behavior breaks, however, at ρ ≈ρc . The behavior of the series there is dominated again by its

dependence on the eccentricity: we find that, independently of the asphericity value, chaos prevails in phase space when the

eccentricity acquires values around e ≈ 0 . 2 − 0 . 3 . This fact is connected with the resonance overlap between the 1:1 and 3:2

primary resonances. A rough application of Chirikov’s resonance overlap criterion shows that this happens at eccentricities

e c ≥ 2/7, a value which marks the onset of large chaos and the collapse of the integrable representation of the system by the

normal form approach. 

These results are verified also in Figs. 11–13 , which show the dependence of the optimal normalization order, as well as

the optimal remainder value (i.e. the error at the optimal order) as a function of the detuning and orbital parameters δ and e ,



I. Gkolias, C. Efthymiopoulos and A. Celletti et al. / Commun Nonlinear Sci Numer Simulat 77 (2019) 181–202 197 

Fig. 11. The optimal order n (top row) and the error estimates in powers of 10 (bottom row) in the ( e, δ) plane for different values of ξ in the case of the 

1:1 secondary resonance. 

Fig. 12. Same as in Fig. 11 but for the case of the 2:1 secondary resonance. 

 

 

 

 

 

 

for three different values of ξ , namely ξ = 0 . 01 , 0.1 and ξmax , with ξmax = 0 . 5 in the case of the 1:1 secondary resonance,

while ξmax = 0 . 3 for the 2:1 and 3:1 secondary resonances. The value of ξmax represents the extend of the regular domain

up to about the separatrix limit of the primary resonance (compare with the phase portraits in Figs. 1, 3 and 5 ), while the

value ξ = 0 . 01 represents a domain within which most bifurcations take place. The value ξ = 0 . 1 is intermediate between

the two previous cases. Besides observing the general collapse of the normal form approach close to the separatrix limit of

the primary resonance, where chaos prevails, one notices also the nearly uniform, in the rest of the parameters, collapse
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Fig. 13. Same as in Fig. 11 but for the case of the 3:1 secondary resonance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the normal form approach when the eccentricity exceeds a value ≈ 0 . 2 − 0 . 3 , which represents the threshold to large

scale chaos due to the resonance overlap between the 1:1 and 3:2 primary resonances. At any rate, far from these limits

one obtains a remarkably good behavior of the normal form, with errors around 10 −10 or smaller very close to the origin,

where most bifurcation phenomena take place, and still quite low ( ∼ 10 −5 ) at intermediate distances from the origin, both

in phase space and in parameter space. 

6. Conclusions 

The normal form theory can be used to study a wide variety of astronomical systems. The study of resonances, primary

and secondary, can give us very important results in understanding and exploiting the natural dynamics of the system. In

this work, we further generalise the method presented in [10] for the study of secondary resonances. The spin-orbit model

still serves as our test problem to apply the proposed techniques and study their efficiency. The result for the 2:1 secondary

resonance are here extended and additional secondary resonances are studied (1:1, 3:1), confirming that our method is

generally applicable. 

The proposed canonical normalisation scheme, when applied to each particular secondary resonance, allows us to com-

pute an integrable approximation that describes accurately the dynamics in the domain of ordered motion. The derived

expressions result in polynomial functions in Poincaré variables, which allow us to retrieve useful information for the sys-

tem in a broad range of the parameter space ( e , ε). Moreover, back-transforming the propagated 1 D.O.F. dynamics to the

original variables, allow us to obtain accurately the time evolution of the satellite’s spin. 

The difference with other normalisation methods proposed in the literature, is the exploitation of the detuning and

book-keeping techniques to design a normalisation scheme that is efficient, robust and algorithmically convenient. The de-

tailed analysis of the error behavior in our normal form constructions shows that, even with this non-classical choice of

term ordering in the Hamiltonian function, the asymptotic behavior of the remainder still remains. Our constructions, not

only accurately depict the phase-space in parameter space about the secondary resonances, but also cover with sufficient

precision a broad region around them. 

From an application point of view, the results presented here could be useful in explaining a series of astronomical obser-

vations related to irregularly shaped satellites and moonlets in distant binary systems. The analytically derived expressions

could provide parameter dependent formulas for the libration angle of the rotating body. Given such kind of measurements,

those formulas can be used to fit the data and provide estimates for the eccentricity of the satellite’s orbits, as well as the

size of its equatorial bulge. 

The success of the method in this basic setup, motivates us to pursue future applications in any type of secondary

resonances in orbital and rotational motion of astronomical objects. In addition, further adaptation of the technique to work
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with more detailed models of the spin-orbit coupling is feasible. Successful implementations in other cases will solidify the

method as a useful tool for the general studies of resonant phenomena. 
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Appendix A 

The n -th order normal form of Eq. (39) , expressed in Poincaré variables, has the form 

H = Z ( n ) = 

∑ 

i 1 ,i 2 ,i 3 ,i 4 ,i 5 

a i 1 ,i 2 ,i 3 ,i 4 ,i 5 λ
i 1 e i 2 δi 3 X 

i 4 Y i 5 , 

with exponents i j , j = 1 , . . . , 6 , determined by the book-keeping rules. The entire form of Z (6) is given in the following tables

for all low-order secondary resonances of the 1:1 primary resonance: Table A.1 contains the resonant construction for the

1:1 secondary resonance, Table A.2 for the 2:1 secondary resonance and Table A.3 for the 3:1 secondary resonance. 
Table A.1 

Coefficient list for the 6th order normal form in Poincaré variables for the 1:1 secondary resonance of the 1:1 primary spin-orbit resonance. 

i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff

1 0 1 2 0 1/2 5 1 0 0 5 −15/512 6 2 0 0 6 −329/960 

1 0 1 2 0 1/2 5 2 1 2 0 −11/64 6 0 0 2 6 −5/512 

1 0 1 0 2 1/2 5 4 1 2 0 −175/96 6 1 0 0 7 5/128 

2 2 0 2 0 −1/2 5 2 1 4 0 1/64 6 0 0 0 8 −5/2048 

2 0 0 4 0 −1/16 5 0 1 6 0 1/128 6 4 1 2 0 4435/2304 

2 1 0 2 1 1/2 5 3 1 2 1 265/384 6 2 1 4 0 31/128 

2 2 0 0 2 −3/2 5 1 1 4 1 −9/256 6 3 1 2 1 −2431/768 

2 0 0 2 2 −1/8 5 2 1 0 2 −17/64 6 1 1 4 1 −11/1024 

2 1 0 0 3 1/2 5 4 1 0 2 461/96 6 4 1 0 2 8809/2304 

2 0 0 0 4 −1/16 5 2 1 2 2 31/64 6 2 1 2 2 69/128 

3 2 0 2 0 1/4 5 0 1 4 2 3/128 6 3 1 0 3 −375/256 

3 1 0 2 1 −1/8 5 3 1 0 3 −2765/1152 6 1 1 2 3 −11/512 

3 2 0 0 2 3/4 5 1 1 2 3 −9/128 6 2 1 0 4 19/64 

3 1 0 0 3 −1/8 5 2 1 0 4 15/32 6 1 1 0 5 −11/1024 

3 2 1 2 0 −1/4 5 0 1 2 4 3/128 6 2 2 2 0 −69/512 

3 1 1 2 1 1/4 5 1 1 0 5 −9/256 6 4 2 2 0 −3803/1152 

3 2 1 0 2 −5/4 5 0 1 0 6 1/128 6 2 2 4 0 −6065/4608 

3 1 1 0 3 1/4 5 2 2 2 0 1/16 6 0 2 6 0 −1/128 

4 2 0 2 0 −1/32 5 1 2 2 1 5/64 6 3 2 2 1 821/144 

4 4 0 2 0 −115/192 5 2 2 0 2 −1/16 6 1 2 4 1 1/256 

4 2 0 4 0 −9/32 5 1 2 0 3 5/64 6 2 2 0 2 −173/1536 

4 0 0 6 0 −1/128 5 2 3 2 0 23/72 6 4 2 0 2 −2051/1152 

4 3 0 2 1 59/48 5 1 3 2 1 1/16 6 2 2 2 2 −405/256 

4 1 0 4 1 3/32 5 2 3 0 2 59/72 6 0 2 4 2 −3/128 

4 2 0 0 2 −3/32 5 1 3 0 3 1/16 6 3 2 0 3 23/24 

4 4 0 0 2 −275/192 6 4 0 2 0 17/768 6 1 2 2 3 1/128 

4 2 0 2 2 −3/4 6 6 0 2 0 −221/1152 6 2 2 0 4 −1225/4608 

4 0 0 4 2 −3/128 6 2 0 4 0 −113/2048 6 0 2 2 4 −3/128 

4 3 0 0 3 169/144 6 4 0 4 0 −20891/15360 6 1 2 0 5 1/256 

4 1 0 2 3 3/16 6 2 0 6 0 −41/240 6 0 2 0 6 −1/128 

4 2 0 0 4 −15/32 6 0 0 8 0 −5/2048 6 2 3 2 0 −89/768 

4 0 0 2 4 −3/128 6 3 0 2 1 105/256 6 1 3 2 1 −25/1536 

4 1 0 0 5 3/32 6 5 0 2 1 9337/1536 6 2 3 0 2 −107/768 

4 0 0 0 6 −1/128 6 3 0 4 1 12607/7680 6 1 3 0 3 −25/1536 

4 2 1 2 0 7/16 6 1 0 6 1 5/128 6 2 4 2 0 −871/540 

( continued on next page ) 
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Table A.1 ( continued ) 

i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff

4 1 1 2 1 −5/32 6 4 0 0 2 −363/256 6 1 4 2 1 −47/768 

4 2 1 0 2 21/16 6 6 0 0 2 −12545/1152 6 2 4 0 2 −349/540 

4 1 1 0 3 −5/32 6 2 0 2 2 −105/1024 6 1 4 0 3 −47/768 

4 2 2 2 0 25/48 6 4 0 2 2 −19517/2560 

4 1 2 2 1 −1/16 6 2 0 4 2 −219/320 

4 2 2 0 2 −53/48 6 0 0 6 2 −5/512 

4 1 2 0 3 −1/16 6 3 0 0 3 97/256 

5 4 0 2 0 757/384 6 5 0 0 3 56143/4608 

5 2 0 4 0 15/256 6 3 0 2 3 13477/3840 

5 3 0 2 1 −673/384 6 1 0 4 3 15/128 

5 1 0 4 1 −15/512 6 2 0 0 4 −97/2048 

5 4 0 0 2 1607/384 6 4 0 0 4 −97051/15360 

5 2 0 2 2 45/128 6 2 0 2 4 −137/160 

5 3 0 0 3 −1757/1152 6 0 0 4 4 −15/1024 

5 1 0 2 3 −15/256 6 3 0 0 5 14347/7680 

5 2 0 0 4 75/256 6 1 0 2 5 15/128 

Table A.2 

Coefficient list for the 6th order normal form in Poincaré variables for the 2:1 secondary resonance of the 1:1 primary spin-orbit resonance. 

i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff

1 1 0 2 0 3/16 5 3 0 0 2 3/160 6 2 0 2 4 −761357/614400 

1 1 0 0 2 −3/16 5 4 0 0 2 186527/115200 6 0 0 4 4 −15/256 

1 0 1 2 0 1/2 5 5 0 0 2 458595/1048576 6 2 0 0 6 −358757/1843200 

1 0 1 0 2 1/2 5 2 0 2 2 −37/60 6 0 0 2 6 −5/128 

2 2 0 2 0 −89/256 5 1 0 4 2 −57/1024 6 0 0 0 8 −5/512 

2 0 0 4 0 −1/16 5 2 0 0 4 23/120 6 3 1 2 0 −1723/21600 

2 2 0 0 2 −89/256 5 3 0 0 4 15443/409600 6 4 1 2 0 14951113/8640 0 0 

2 0 0 2 2 −1/8 5 1 0 2 4 57/1024 6 5 1 2 0 −39531961/23592960 

2 0 0 0 4 −1/16 5 1 0 0 6 57/1024 6 2 1 4 0 502/225 

2 1 1 2 0 3/8 5 2 1 2 0 −19/27 6 3 1 4 0 −7916917/10240 0 0 

2 1 1 0 2 −3/8 5 3 1 2 0 2213/14400 6 1 1 6 0 111/512 

3 2 0 2 0 −1/3 5 4 1 2 0 1033099/589824 6 3 1 0 2 1723/21600 

3 3 0 2 0 −365/4096 5 2 1 4 0 36991/19200 6 4 1 0 2 14951113/8640 0 0 

3 1 0 4 0 −3/64 5 0 1 6 0 1/32 6 5 1 0 2 39531961/23592960 

3 2 0 0 2 −1/3 5 2 1 0 2 −19/27 6 2 1 2 2 −196/225 

3 3 0 0 2 365/4096 5 3 1 0 2 −2213/14400 6 1 1 4 2 111/512 

3 1 0 0 4 3/64 5 4 1 0 2 1033099/589824 6 2 1 0 4 502/225 

3 2 1 2 0 −223/256 5 2 1 2 2 73457/19200 6 3 1 0 4 7916917/10240 0 0 

3 2 1 0 2 −223/256 5 0 1 4 2 3/32 6 1 1 2 4 −111/512 

3 1 2 2 0 −3/8 5 2 1 0 4 36991/19200 6 1 1 0 6 −111/512 

3 1 2 0 2 3/8 5 0 1 2 4 3/32 6 2 2 2 0 −112/27 

4 2 0 2 0 −1/18 5 0 1 0 6 1/32 6 3 2 2 0 108329/180 0 0 

4 3 0 2 0 −31/240 5 2 2 2 0 −208/27 6 4 2 2 0 12143431/4423680 

4 4 0 2 0 62221/196608 5 3 2 2 0 6989/4096 6 2 2 4 0 −9556079/23040 0 0 

4 2 0 4 0 3619/10240 5 1 2 4 0 −49/128 6 0 2 6 0 −1/16 

4 0 0 6 0 −1/64 5 2 2 0 2 −208/27 6 2 2 0 2 −112/27 

4 2 0 0 2 −1/18 5 3 2 0 2 −6989/4096 6 3 2 0 2 −108329/180 0 0 

4 3 0 0 2 31/240 5 1 2 0 4 49/128 6 4 2 0 2 12143431/4423680 

4 4 0 0 2 2221/196608 5 2 3 2 0 39/64 6 2 2 2 2 2620 0921/11520 0 0 

4 2 0 2 2 −2981/5120 5 2 3 0 2 39/64 6 0 2 4 2 −3/16 

4 0 0 4 2 −3/64 5 1 4 2 0 −15/32 6 2 2 0 4 −9556079/23040 0 0 

4 2 0 0 4 3619/10240 5 1 4 0 2 15/32 6 0 2 2 4 −3/16 

4 0 0 2 4 −3/64 6 4 0 2 0 42653/57600 6 0 2 0 6 −1/16 

4 0 0 0 6 −1/64 6 5 0 2 0 −10105549/215040 0 0 6 2 3 2 0 −1312/81 

4 2 1 2 0 −22/9 6 6 0 2 0 −561054889/1509949440 6 3 3 2 0 43/10240 

( continued on next page ) 



I. Gkolias, C. Efthymiopoulos and A. Celletti et al. / Commun Nonlinear Sci Numer Simulat 77 (2019) 181–202 201 

Table A.2 ( continued ) 

i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff

4 3 1 2 0 239/256 6 2 0 4 0 23/720 6 1 3 4 0 139/384 

4 1 1 4 0 15/64 6 3 0 4 0 −2723/19200 6 2 3 0 2 −1312/81 

4 2 1 0 2 −22/9 6 4 0 4 0 −106116307/322560 0 0 6 3 3 0 2 −43/10240 

4 3 1 0 2 −239/256 6 2 0 6 0 −358757/1843200 6 1 3 0 4 −139/384 

4 1 1 0 4 −15/64 6 0 0 8 0 −5/512 6 2 4 2 0 −1179/1280 

4 2 2 2 0 −3/256 6 4 0 0 2 42653/57600 6 2 4 0 2 −1179/1280 

4 2 2 0 2 −3/256 6 5 0 0 2 10105549/215040 0 0 6 1 5 2 0 1/5 

4 1 3 2 0 13/16 6 6 0 0 2 −561054889/1509949440 6 1 5 0 2 −1/5 

4 1 3 0 2 −13/16 6 2 0 2 2 −37/360 

5 3 0 2 0 −3/160 6 4 0 2 2 −22740677/430 080 0 0 

5 4 0 2 0 86527/115200 6 2 0 4 2 −761357 /614400 

5 5 0 2 0 −458595/1048576 6 0 0 6 2 −5/128 

5 2 0 4 0 23/120 6 2 0 0 4 23/720 

5 3 0 4 0 −15443/409600 6 3 0 0 4 2723/19200 

5 1 0 6 0 −57/1024 6 4 0 0 4 −106116307/322560 0 0 

Table A.3 

Coefficient list for the 6th order normal form in Poincaré variables for the 3:1 secondary resonance of the 1:1 primary spin-orbit resonance. 

i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff i 1 i 2 i 3 i 4 i 5 coeff

1 0 1 2 0 1/2 5 1 1 4 1 27 
√ 

3 /128 6 2 1 4 0 199/1024 

1 0 1 0 2 1/2 5 2 1 0 2 −11/128 6 3 1 2 1 1390787 
√ 

3 /31360 0 0 

2 2 0 2 0 −2/15 5 4 1 0 2 −194453/40 0 0 0 6 1 1 4 1 243 
√ 

3 /2048 

2 0 0 4 0 −1/16 5 2 1 2 2 −66191/80 0 0 6 4 1 0 2 −404401/3920 0 0 

2 1 0 2 1 1/(2 
√ 

3 ) 5 0 1 4 2 27/128 6 2 1 2 2 199/512 

2 2 0 0 2 −2/15 5 3 1 0 3 14981/(160 0 0 
√ 

3 ) 6 3 1 0 3 −1390787/(31360 0 0 
√ 

3 ) 

2 0 0 2 2 −1/8 5 1 1 2 3 9 
√ 

3 /64 6 1 1 2 3 81 
√ 

3 /1024 

2 1 0 0 3 −1/(6 
√ 

3 ) 5 2 1 0 4 −66191/160 0 0 6 2 1 0 4 199/1024 

2 0 0 0 4 −1/16 5 0 1 2 4 27/128 6 1 1 0 5 −81 
√ 

3 /2048 

3 2 0 2 0 −1/12 5 1 1 0 5 −9 
√ 

3 /128 6 2 2 2 0 −621/1024 

3 1 0 2 1 1/(16 
√ 

3 ) 5 0 1 0 6 9/128 6 4 2 2 0 −34 9866 81/80 0 0 0 0 

3 2 0 0 2 −1/12 5 2 2 2 0 −189/64 6 2 2 4 0 −13986039/320 0 0 0 

3 1 0 0 3 −1/(48 
√ 

3 ) 5 1 2 2 1 15 
√ 

3 /512 6 0 2 6 0 −27/128 

3 2 1 2 0 41/100 5 2 2 0 2 −189/64 6 3 2 2 1 −850233 
√ 

3 /40 0 0 0 

3 1 1 2 1 
√ 

3 /4 5 1 2 0 3 −5 
√ 

3 /512 6 1 2 4 1 −243 
√ 

3 /128 

3 2 1 0 2 41/100 5 2 3 2 0 228177/50 0 0 6 2 2 0 2 −621/1024 

3 1 1 0 3 −1/(4 
√ 

3 ) 5 1 3 2 1 45 
√ 

3 /16 6 4 2 0 2 −34 9866 81/80 0 0 0 0 

4 2 0 2 0 −1/192 5 2 3 0 2 228177/50 0 0 6 2 2 2 2 −13986039/160 0 0 0 

4 4 0 2 0 −7837/240 0 0 5 1 3 0 3 −15 
√ 

3 /16 6 0 2 4 2 −81/128 

4 2 0 4 0 −277/1200 6 4 0 2 0 5189/188160 6 3 2 0 3 283411 
√ 

3 /40 0 0 0 

4 0 0 6 0 −3/128 6 6 0 2 0 358873969/83160 0 0 0 0 6 1 2 2 3 −81 
√ 

3 /64 

4 3 0 2 1 −97/(400 
√ 

3 ) 6 2 0 4 0 7/6144 6 2 2 0 4 −13986039/320 0 0 0 

4 2 0 0 2 −1/192 6 4 0 4 0 13690483/10 080 0 0 0 6 0 2 2 4 −81/128 

4 4 0 0 2 −7837/240 0 0 6 2 0 6 0 128837/6720 0 0 6 1 2 0 5 81 
√ 

3 /128 

4 2 0 2 2 −277/600 6 0 0 8 0 −45/2048 6 0 2 0 6 −27/128 

4 0 0 4 2 −9/128 6 3 0 2 1 
√ 

3 /256 6 2 3 2 0 −1377/256 

4 3 0 0 3 97/(1200 
√ 

3 ) 6 5 0 2 1 1592807/(1680 0 0 0 
√ 

3 ) 6 1 3 2 1 −765 
√ 

3 /512 

4 2 0 0 4 −277/1200 6 3 0 4 1 367253/(4480 0 0 
√ 

3 ) 6 2 3 0 2 −1377/256 

4 0 0 2 4 −9/128 6 1 0 6 1 −81 
√ 

3 /1024 6 1 3 0 3 255 
√ 

3 /512 

4 0 0 0 6 −3/128 6 4 0 0 2 5189/188160 6 2 4 2 0 1708047/6250 

4 2 1 2 0 −13/16 6 6 0 0 2 358873969/83160 0 0 0 0 6 1 4 2 1 −2727 
√ 

3 /256 

4 1 1 2 1 11 
√ 

3 /64 6 2 0 2 2 7/3072 6 2 4 0 2 1708047/6250 

4 2 1 0 2 −13/16 6 4 0 2 2 13690483/5040 0 0 0 6 1 4 0 3 909 
√ 

3 /256 

4 1 1 0 3 −11/(64 
√ 

3 ) 6 2 0 4 2 932087/2240 0 0 

4 2 2 2 0 7533/10 0 0 6 0 0 6 2 −45/512 

4 1 2 2 1 −3 
√ 

3 /16 6 3 0 0 3 −1/(256 
√ 

3 ) 

4 2 2 0 2 7533/10 0 0 6 5 0 0 3 −1592807/(5040 0 0 0 
√ 

3 ) 

4 1 2 0 3 
√ 

3 /16 6 3 0 2 3 367253/(6720 0 0 
√ 

3 ) 

5 4 0 2 0 257/4200 6 1 0 4 3 −135 
√ 

3 /1024 

5 2 0 4 0 7/384 6 2 0 0 4 7/6144 

5 3 0 2 1 −1201/(11200 
√ 

3 6 4 0 0 4 13690483/10 080 0 0 0 

5 4 0 0 2 257/4200 6 2 0 2 4 −406663/2240 0 0 

2 0 2 2 7/192 6 0 0 4 4 −135/1024 

5 3 0 0 3 1201/(33600 
√ 

3 ) 6 3 0 0 5 67253/(13440 0 0 
√ 

3 ) 

5 2 0 0 4 7/384 6 1 0 2 5 −27 
√ 

3 /1024 

5 2 1 2 0 −11/128 6 2 0 0 6 396587/6720 0 0 

5 4 1 2 0 −194453/40 0 0 0 6 0 0 2 6 −45/512 

5 2 1 4 0 −66191/160 0 0 6 1 0 0 7 27 
√ 

3 /1024 

5 0 1 6 0 9/128 6 0 0 0 8 −45/2048 

5 3 1 2 1 −14981 
√ 

3 /160 0 0 6 4 1 2 0 −404401/3920 0 0 



202 I. Gkolias, C. Efthymiopoulos and A. Celletti et al. / Commun Nonlinear Sci Numer Simulat 77 (2019) 181–202 

 

 

References 

[1] Arnold VI . Mathematical methods of classical mechanics. Springer; 1978 . 

[2] Bogoliubov NN , Mitropolsky YA . Asymptotic methods in the theory of non-Linear oscillations. CRC Press; 1961 . 

[3] Cayley A. Memories of the royal astronomical society. 1861. 29, 191–306. 
[4] Cellettim A . J Appl Math Phys (ZAMP) 1990;41:174–204 . 

[5] Celletti A . Commun Nonlinear Sci Numer Simul 2014;19(9):3399–411 . 
[6] Deprit A . Celestial Mechanics 1969;1:12–30 . 

[7] Efthymiopoulos C , Giorgilli A , Contopoulos G . Nonconvergence of formal integrals: II. improved estimates for the optimal order of truncation. J Phys A
2004;37:10831–58 . 

[8] Efthymiopoulos C , Cincotta PM , Giordano CM , Efthymiopoulos C . editors. Asociación Argentina de Astronomia Workshop Series, Vol. 3; 2011. p. 3–146 .

[9] Giorgilli A. Notes on exponential stability of Hamiltonian systems. 2002. Centro di Ricerca Matematica E. De Giorgi, Pisa. 
[10] Gkolias I , Celletti A , Efthymiopoulos C , Pucacco G . MNRAS 2016;459(2):1327–39 . 

[11] Goldreich P , Peale S . Astronom J 1966;71:425–38 . 
[12] Harbison RA , Thomas PC , Nicholson PC . Rotational modeling of hyperion. Celestial Mech Dyn Astron 2011;110:1–16 . 

[13] Henrard J , Lemaitre A . A second fundamental model for resonance. Celestial Mech 1983;30(2):197–218 . 
[14] Hori G. Publications of the Astronomical Society of Japan. 1966. 18, 287–296. 

[15] Kaula WM . Theory of satellite Geodesy. Waltham, MA: Blaisdell Publishing Company; 1966 . 

[16] Lhotka C . CMDA 2013;115(4):405–26 . 
[17] Marchesiello A , Pucacco G . MNRAS 2013;428:2029–38 . 

[18] Marchesiello A , Pucacco G . Nonlinearity 2014;27:43–66 . 
[19] Melnikov AV , Shevchenko II . Icarus 2010;209:786–94 . 

[20] Meyer J , Wisdom J . Icarus 2007;188:535 . 
[21] Meyer KR , Hall GR , Offin D . Introduction to Hamiltonian dynamical systems and the N-Body problem. Berlin: Springer-Verlag; 2009 . 

[22] Murray CD , Dermott SF . Solar system dynamics. Cambridge University Press; 1999 . 
[23] Nekhoroshev N . Russ Math Surv 1977;32:1–65 . 

[24] Porco CC . Science 2006;311:1393 . 

[25] Pravec P , et al. Icarus 2016;267:267 . 
[26] Sansottera M , Lhotka C , Lemaitre A . CMDA 2014;119(1):75–89 . 

[27] Verhulst F . Royal society (London). Philos Trans Series A 1979;290:435–65 . 
[28] Wisdom J , Peale SJ , Mignard F . Icarus 1984;58:137–52 . 

[29] Wisdom J . Astron J 2004;128:484–91 . 

http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0001
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0001
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0002
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0002
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0002
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0003
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0003
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0004
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0004
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0009
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0009
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0009
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0012
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0012
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0013
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0013
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0014
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0014
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0014
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0015
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0015
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0015
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0017
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0017
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0017
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0018
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0018
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0018
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0020
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0020
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0020
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0021
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0021
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0022
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0022
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0025
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0025
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0027
http://refhub.elsevier.com/S1007-5704(19)30126-1/sbref0027

	Accurate modelling of the low-order secondary resonances in the spin-orbit problem
	1 Introduction
	2 Hamiltonian of the spin-orbit problem
	3 General normal form theory
	3.1 The Hamiltonian
	3.2 Detuning
	3.3 Book-keeping
	3.4 Canonical normalization
	3.5 Orbits and phase portraits
	3.6 Analytical approximation of the periodic orbits
	3.7 Bifurcation thresholds
	3.8 Error estimates and optimal order

	4 Application to the secondary resonances of the synchronous resonance in the spin-orbit problem
	4.1 The 1:1 secondary resonance
	4.1.1 Poincaré surfaces of section
	4.1.2 Characteristic curves and bifurcation diagram

	4.2 The 2:1 secondary resonance
	4.3 The 3:1 secondary resonance

	5 Series asymptotic behavior and error analysis
	6 Conclusions
	Acknowledgements
	Appendix A
	References


