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SINGULAR PERTURBATIONS FOR A SUBELLIPTIC OPERATOR ∗, ∗∗
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Abstract. We study some classes of singular perturbation problems where the dynamics of the fast
variables evolve in the whole space obeying to an infinitesimal operator which is subelliptic and er-
godic. We prove that the corresponding ergodic problem admits a solution which is globally Lipschitz
continuous and it has at most a logarithmic growth at infinity. The main result of this paper establishes
that, as ε → 0, the value functions of the singular perturbation problems converge locally uniformly to
the solution of an effective problem whose operator and terminal data are explicitly given in terms of
the invariant measure for the ergodic operator.
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1. Introduction

This paper is devoted to the asymptotic behaviour as ε→ 0 of stochastic control systems of the form

dXt = φ̃(Xt, Yt, ut)dt+
√

2σ̃(Xt, Yt, ut)dWt, X0 = x ∈ Rn

dYt =
1

ε
b(Yt)dt+

√
2√
ε
σ(Yt)dWt, Y0 = y ∈ Rm

where ut is a control law, Wt is a standard Brownian motion, while the coefficients φ̃, σ̃, b and σ are Lipschitz
continuous uniformly in u. We are mostly interested in the asymptotic behaviour of the value function

V ε(t, x, y) := sup
u∈U

E

[∫ T

t

f(Xs, Ys, us)ds+ ea(t−T )g(XT )

]
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where E denotes the expectation, U is the set of progressively measurable processes with values in a compact
metric set U and a is a fixed positive parameter. Our aim will be to characterize the limit of V ε as the solution
to an effective Cauchy problem whose operator and terminal data need to be suitably chosen.

Problems of this type arise from models where the variables Y evolve much faster than the variables X.
Although the present work is not directly concerned with financial mathematics, it has been partially inspired

by some models of financial assets whose price Xt is a stochastic process with a possibly degenerate diffusion.
In such models, the volatility Yt is itself a stochastic process which is correlated to the former one. Some of
the financial models discussed in ([7, 11, 23] and the references therein) involve stochastic processes Xt with
degenerate diffusions. On the other hand, the volatility Yt may also be a stochastic process with a degenerate
diffusion, see for example the models of Feller and Cox-Ingersoll-Ross ([11], p. 42).

The main issue of this paper is to tackle this problem when the coefficients are not periodic in y and the
diffusion matrices σ̃σ̃T and σσT may be degenerate and unbounded. For the sake of simplicity, we shall focus
our attention to the model case where σ̃σ̃T is bounded and the diffusion matrix σ is the one associated to the
Heisenberg group in R3

σ(y) =

 1 0
0 1

2y2 −2y1

, for y = (y1, y2, y3).

We note that σσT is degenerate and with unbounded coefficients.
It is well known that the ergodicity of the fast variable cannot be expected for general drift b. In order to

overcome this issue, we consider a drift b in the Ornstein-Uhlenbeck form

b(y) = −(k1y1, k2y2, k3y3) for some k1 > 4, k2 > 4, k3 > 0

(see A2)). This choice of the drift is reminiscent of other similar conditions about recurrence of diffusion processes
in the whole space (see for example [12,13] and references therein).

By standard theory (see [10]), the value function V ε is the unique (viscosity) solution to the following Cauchy
problem for an Hamilton–Jacobi–Bellman equation−∂tV

ε +H

(
x, y,DxV

ε,D2
xxV

ε,
D2
xyV

ε

√
ε

)
− 1

ε
L(y,DyV

ε,DyyV
ε) + aV ε = 0 in (0, T )× Rn × R3

V ε(T, x, y) = g(x, y) on Rn × R3

(1.1)

where

H(x, y, p,X,Z) := min
u∈U

{
− tr (σ̃σ̃TX)− φ̃ · p− 2 tr (σ̃σTZ)− f(x, y, u)

}
L(y, q, Y ) := tr (σσTY ) + b · q.

For the sake of completeness, in order to exhibit the degeneracy and the unboundedness of the operator, we
write explicitly the second order term of L:

tr (σσTD2U) = Uy1y1 + Uy2y2 + 4(y2
1 + y2

2)Uy3y3 + 4y2Uy1y3 − 4y1Uy2y3 . (1.2)

We assume without any loss of generality that a is strictly positive; actually, for a ≤ 0, the function W ε(t, x, y) =
e−A(T−t)V ε(t, x, y), with A > −a, satisfies the same Cauchy problem but with a positive coefficient of the 0-th
order term.

Our aim is to establish that, as ε→ 0+, the function V ε converges locally uniformly to a function V = V (t, x)
(namely, independent of y) which can be characterized as the unique (viscosity) solution to the effective Cauchy
problem {

−∂tV +H
(
x,DxV,D

2
xxV

)
+ aV = 0 in (0, T )× Rn

V (T, x) = g(x) on Rn
(1.3)
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where, for every (x, p,X), the effective Hamiltonian H(x, p,X) and the effective terminal datum are given by

H(x, p,X) :=

∫
R3

H(x, y, p,X, 0)dµ(y) (1.4)

g(x) :=

∫
R3

g(x, y)dµ(y) (1.5)

and µ is the invariant measure of the diffusion process with infinitesimal generator −L. As a matter of facts,
H(x, p,X) is the ergodic constant λ of the cell problem

− tr (σ(y)σT (y)D2w(y))− b(y)Dw(y) +H(x, y, p,X, 0) = λ y ∈ R3, (1.6)

while g(x) is the constant obtained in the long time behaviour of the parabolic Cauchy problem

∂tw
′ − Lw′ = 0 in (0,∞)× R3, w′(0, y) = g(x, y) on R3.

There is a large literature on singular perturbation problems: see [1, 14, 15] and references therein. We shall
follow a pure PDE-approach. In this framework, the singular perturbation problems are strictly related to
homogenization problems (see also [22]): Alvarez and Bardi [1, 2] extended to singular perturbation problems
with periodic fast variables the celebrated perturbed test function method by Evans (see also [3] for some cases in
hypoelliptic periodic setting). Let us also recall that, the papers [5,6,13] studied singular perturbation problems
of uniformly elliptic operators on the whole space.

The novelties of our results are that the fast variable y is unbounded and its diffusion matrix may be
degenerate and unbounded. In other words, the main issues to overcome are the lack of periodicity and the
degeneracy and unboundedness of the operator. The proof of our main Theorem 2.3 is not an adaptation to
the subelliptic case of some arguments already known for the nondegenerate case. Indeed our proof is based on
the perturbed test function method suitably adapted with a Lyapunov function. Moreover our techniques shed
some light on some difficult points in the literature on the whole space.

Let us recall that existence and uniqueness of the ergodic constant λ for (1.6) (namely, that δuδ locally
converge to λ, where uδ solves the approximated cell problem (3.1) below) and the stabilization to a constant
have been established in our previous paper [20] (inspired by [18,19]). Unfortunately, by the lack of compactness
for y, these properties seem to be not sufficient for applying the usual semilimits method for the convergence
of V ε. In order to overcome this issue:

• we shall prove that the cell problem admits a corrector w which is globally Lipschitz continuous and it has
at most a logarithmic type growth at infinity;

• under some additional assumptions we get that the corrector w is C2,α(R3);
• we take advantage of the existence and uniqueness of the invariant measure and a superlinear Lyapunov

function for the operator −L (see [20]).

Let us stress that the Hörmander’s condition is crucial in the proof of the last two issues (for instance, see
Lem. 3.10 and [20], Thm. 5.1).

In our opinion, the proof of the global Lipschitz continuity of the corrector has its own interest because it
can be extended to many other operators in unbounded domains. In this direction, let us quote the papers [13]
and [17] where similar results are obtained for strictly elliptic operators.
Moreover the C2-regularity of the corrector is not straightforward because our operator contains second order
horizontal derivatives and Euclidean first derivatives as well and such a second order part of the operator does
not immediately regularize the first order one.

The paper is organized as follows: in Section 2 we state the perturbation problem and our main convergence
result. Section 3 is devoted to the solution of the cell problem and its properties. In Section 4, by means of these
result we prove the convergence of V ε to V .
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2. The convergence result

Throughout this paper unless otherwise explicitly stated, we assume:

(A1) The diffusion matrix σ has the following form:

σ(y) =

 1 0
0 1

2y2 −2y1

 , for y = (y1, y2, y3).

(A2) The drift is b(y) = −(k1y1, k2y2, k3y3) with k1 > 4, k2 > 4, k3 > 0;

(A3) The function f = f(x, y, u) is Lipschitz continuous in (x, y) uniformly in u and, for some Cf > 0, it
satisfies

|f(x, y, u)| ≤ Cf (1 + |x|) ∀(x, y, u) ∈ Rn × R3 × U ;

(A4) The function g is continuous in (x, y) and there exits a constant Cg such that

|g(x, y)| ≤ Cg(1 + |x|) ∀(x, y) ∈ Rn × R3;

(A5) φ̃(x, y, u) and σ̃(x, y, u) are Lipschitz continuous and bounded in (x, y) uniformly on u: |φ̃(x, y, u)| ≤ Cφ̃,
|σ̃(x, y, u)| ≤ Cσ̃;

(A6) For any (x, p,X) the function F (y) = −H(x, y, p,X, 0) is such that F , ∂F
∂y3

and ∂2F
∂y23

are bounded and

globally Lipschitz.

Remark 2.1.
• Let us underline that condition (A2) is linked with the form of the second order operator given in (1.2). This

assumption will play a crucial role in several main points, for instance in (3.4), Theorem 3.6, Theorem 3.11
and in (4.9).

• We note also that there holds:

|H(x, y, p,X,Z)−H(x′, y, p′, X ′, Z)| ≤ C (|p− p′|+ |X −X ′|) + C|x− x′| (1 + |p|+ |X|) . (2.1)

• We stress that assumption (A6) will be only used for obtaining the regularity of the corrector.

We state now that the problem (1.1) is well posed and the solution V ε has a sublinear growth in the slow
variable.

Proposition 2.2. Under Assumptions (A1)–(A5), for any ε > 0 there exists a unique continuous viscosity
solution V ε to problem (1.1) such that

|V ε(t, x, y)| ≤ C0(1 + |x|), ∀(t, x, y) ∈ (0, T )× Rn × R3 (2.2)

for some positive constant C0 independent of ε. In particular {V ε}ε is a family of locally equibounded functions.

Proof. The uniqueness follows from the comparison principle proved by Da Lio–Ley [9] (recall that they require
that the diffusion matrix and the drift grow at most quadratically and respectively linearly with respect to the
state). We now claim that there exist a supersolution w+ and a subsolution w− such that |w±(x)| ≤ C(1 + |x|)
for |x| sufficiently large. We shall prove the existence of w+ and we shall omit the analogous arguments for w−.
Let w0 ∈ C∞(Rn) be a function in x such that

w0 = C1(1 + |x|) for |x| ≥ R ≥ 1, w0(x) ≥ g(x, y) ∀(x, y),
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for some positive constants C1 and R to be chosen later. For |x| ≥ R, there holds

− ∂tw0 +H

(
x, y,Dxw0,D

2
xxw0,

D2
xyw0√
ε

)
− 1

ε
L(y,Dyw0,Dyyw0) + aw0 = H(x, y,Dw0,D

2w0, 0) + aw0

= min
u∈U

{
− tr (σ̃σ̃TD2w0)− φ̃ ·Dw0 − f(x, y)

}
+ aw0(x)

≥ −C2C1 + aC1(1 + |x|)− Cf (1 + |x|)

where C2 depends on Cφ̃ and Cσ̃. Choosing C1 big enough (for instance C1 ≥ Cf+1
a ) and R big enough (for

instance R ≥ C2C1) the function w0 is a supersolution of (1.1) for |x| > R. Eventually adding a new positive
constant C3 big enough, w+ = w0 +C3 is a supersolution in the whole (0, T )×Rn ×R3 which amounts to our
claim. In conclusion, applying Perron’s method, we infer the existence of a solution to (1.1) verifying (2.2). �

The main purpose of this paper is to prove the following

Theorem 2.3. Under assumptions (A1)–(A6), the solution V ε of (1.1) converges uniformly on the compact
subsets of (0, T )× Rn × R3 to the unique viscosity solution V of (1.3) where H and g are defined in (1.4) and
respectively in (1.5).

3. The cell problem

In this section we prove that there exists an unique constant λ such that the cell problem (1.6) admits
solutions. We shall also prove the existence of a solution w which is globally Lipschitz continuous and with
log-growth at infinity. Assuming also A6) we prove that w ∈ C2. This solution w will play a crucial role in the
proof of Theorem 2.3.

3.1. Approximated cell problems

In order to solve the cell problem (1.6), it is expedient to introduce the approximated problems

δuδ − tr (σ(y)σT (y)D2uδ)− b(y)Duδ = F (y) in R3, (3.1)

where δ > 0 and F (y) = −H(x, y, p,X, 0) with (x, p,X) fixed. In this section the results are obtained for a
general function F (y) which satisfies:

F (y) is continuous and bounded in R3. (3.2)

Note that under assumptions (A1)–(A5), for (x, p,X) fixed, the function F (·) = −H(x, ·, p,X, 0) satisfies
Assumption (3.2).

Let us recall from [20] some properties of the operator L and functions uδ (and we refer the reader to this
paper for the detailed proof).

Lemma 3.1. There exists a unique invariant measure µ associated to the operator −L; moreover

L∗µ = 0, µ > 0, µ ∈ C∞(R3)

where L∗ is the adjoint operator of −L.

Remark 3.2. As a byproduct of [20], we have the following estimate on the decay of µ at infinity:∫
R3

(y4
1 + y4

2 + y2
3)dµ(y) < +∞.

Actually, by [20] (proof of Prop. 2.1), the function w(y) := (y4
1 + y4

2)/12 + y2
3/2 satisfies [20], (Eq. (2.10)) with

φ > k(y4
1 +y4

2 +y2
3) (for k > 0 sufficiently small). Hence, for this choice of φ, relations [20], (Eq. (2.14)) and [20],

(Eq. (2.18)) hold true. Letting ρ→ 0+ we get:
∫
R3 φdµ < +∞.
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Lemma 3.3. Under assumptions (A1), (A2), (3.2), there exists an unique smooth solution uδ of the approxi-
mating problem (3.1) such that

|uδ(y)| ≤ C

δ
∀y ∈ R3

for some positive constant C independent of δ. Moreover the functions δuδ are locally uniformly Hölder contin-
uous, i.e. there exists α ∈ (0, 1) such that for every compact K ⊂ R3 there exists a constant N such that

|δuδ(y1)− δuδ(y2)| ≤ N |y1 − y2|α, ∀y1, y2 ∈ K, ∀δ ∈ (0, 1).

The constant N only depends on K and on the data of the problem (in particular is independent of δ).

Theorem 3.4. The solution uδ of problem (3.1) given in Lemma 3.3 satisfies

lim
δ→0

δuδ =

∫
R3

F (y)dµ(y),

where µ is the invariant measure of −L established in Lemma 3.1.

3.2. Global Lipschitz continuity

In this section we derive the global Lipschitz continuity of the solution uδ of (3.1) from its continuity under
the weaker assumption of an at most linear growth of F . In our opinion, this result has its own interest. We
assume: 

(A1)− (A2)

F Lipschitz continuous in R3 with Lipschitz constant L

|F (y)| ≤ CF (|y|+ 1) ∀y ∈ R3

(3.3)

It is clear that the globally Lipschitz continuity implies that |F (y)| ≤ L(|y|+ 1) ∀y ∈ R3, but in the following
proof we want to underline separately the dependence on the Lipschitz continuity and the linear behaviour at
infinity.

Lemma 3.5. Under assumptions (3.3) there exists a constant C such that

|uδ(y)| ≤ C
(
|y|+ 1

δ

)
, y ∈ R3. (3.4)

Proof. The comparison principle for equation (3.1) comes from Da Lio–Ley [9] (this is true also for elliptic
operators, see [6]). The existence of a continuous viscosity solution uδ in R3 comes from Perron Theorem, by
finding sub- and supersolution in R3. We remark that, in the case when F is bounded by a constant CF in R3,
a trivial supersolution is CF

δ (a subsolution −CFδ ) and the result easily follows.
In the more general, sublinear case, let us introduce some constants:

l : = min{k1 − 4, k2 − 4, k3} > 0 (3.5)

Cl : = max

{
1,

2CF
l

}
(3.6)

r0 : = 1 +
2Cl
CF
· (3.7)

Let U0 be any regular function U0 ∈ C2(R3) such that U0(y) = |y| + 1 in R3 \ Br0 . (For instance U0(r) =
C0 + C2r

2 + C4r
4 in B(0, r0) and U0(r) = r + 1 in R3 \Br0 , for r = |y|).

There exists a constant M0 independent of δ ∈ [0, 1] such that

δU0 − LU0 − F (y) ≥ −M0 in Br0 . (3.8)
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Let us define the function U ∈ C2(R3) as

U(·) = Cl

(
U0(·) +

2M0

δ

)
·

We claim that U is a supersolution to (3.1). Let us test the supersolution property first in Br0 then in R3 \Br0 .
For y ∈ Br0 , thanks to Cl ≥ 1 (see (3.6)) and the definition of M0 in (3.8), we have:

δU − LU − F (y) = Cl(δU0 + 2M0 − LU0)− F (y) ≥ (Cl − 1)F (y) + ClM0 ≥ 0

if M0 is sufficiently large. For y ∈ R3 \Br0 , denote r = |y|

δU(y)− L(y,DU(y),D2U(y))− F (y)

= Cl

(
δ(|y|+ 1 +

2M0

δ
)− 2 + 4(y2

1 + y2
2)

r
+

(k1y
2
1 + k2y

2
2 + k3y

2
3)

r

)
+ Cl

1

r3

(
y2

1 + y2
2

)
(1 + 4y2

3)− F (y)

≥ Cl
(
−2

r
+

(k1 − 4)y2
1 + (k2 − 4)y2

2 + k3y
2
3)

r

)
− F (y) ≥ Cl

(
−2

r
+ lr

)
− CF (r + 1) ≥ 0

where we used (3.5), (3.6) and (3.7). From the comparison principle then uδ ≤ U(y) = Cl
(
U0 + 2M0

δ

)
≤

C(|y|+ 1
δ ). The same method applies to define a subsolution and to prove that uδ ≥ −C(|y|+ 1

δ ). �

Theorem 3.6. Under assumptions (3.3), let uδ be the unique continuous solution of (3.1) which satisfies (3.4).
There holds

|uδ(y′)− uδ(y)| ≤ ψ(|y′ − y|) ∀y, y′ ∈ R3,

where ψ ∈ C2(R) is a concave increasing function with ψ(0) = 0 and ψ′ > max{ L
k1−4 ,

L
k2−4 ,

L
k3
} (recall that L

is the Lipschitz constant of F ) and it is independent of δ. In particular there holds

|uδ(y′)− uδ(y)| ≤ L|y′ − y| ∀y, y′ ∈ R3,∀δ > 0 (3.9)

for L > L
l , where l is defined in (3.5).

Proof. For each η > 0, we introduce the function

Ψ(x, y) = u(x)− u(y)− ψ(|x− y|)− η|x|2 − η|y|2

where ψ is a function as in the statement and for simplicity we take u := uδ.
Assume for the moment that there holds

Ψ(x, y) ≤ 8η

δ
∀x, y ∈ R3, η ∈ (0, 1); (3.10)

then, for any x, y ∈ R3, as η → 0+, we obtain the following inequality

u(x)− u(y) ≤ ψ(|x− y|)

which is equivalent to the statement because of the arbitrariness of x and y.
Let us now prove inequality (3.10); to this end, we shall proceed by contradiction. Let (x, y) be a maximum

point of function Ψ in R3 × R3. This maximum does exist since from (3.4) we have that lim|x|→+∞
u(x)
|x|2 = 0.

Let us assume by contradiction that

Ψ(x, y) = u(x)− u(y)− ψ(|x− y|)− η|x|2 − η|y|2 > 8η

δ
· (3.11)
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Clearly, the points x and y cannot coincide, otherwise (3.11) is false. We set ψ̃(x, y) := ψ(|x−y|)+η(|x|2 + |y|2)
and we invoke [8], (Thm. 3.2): for every ρ > 0 there exist two symmetric 3× 3 matrices X and Y such that

(px, X) ∈ J 2,+u(x), (py, Y ) ∈ J 2,−u(y), (3.12)(
X 0
0 −Y

)
≤ A+ ρA2, (3.13)

where

px := Dxψ̃(x, y), py := −Dyψ̃(x, y), A :=

D2
xxψ̃(x, y) D2

xyψ̃(x, y)

D2
yxψ̃(x, y) D2

yyψ̃(x, y)

 .

We write explicitly px, py and A:

px = ψ′(|x− y|) x− y
|x− y|

+ 2ηx = ψ′(|x− y|)q + 2ηx (3.14)

py = ψ′(|x− y|) x− y
|x− y|

− 2ηy = ψ′(|x− y|)q − 2ηy (3.15)

where we defined

q :=
x− y
|x− y|

· (3.16)

Defining B := I−q⊗q
|x−y| , the matrix A assumes the following form

A = ψ′(|x− y|)

(
B −B
−B B

)
+ ψ′′(|x− y|)

(
q ⊗ q −q ⊗ q
−q ⊗ q q ⊗ q

)
+ 2η

(
I 0
0 I

)
. (3.17)

From the definition of sub and supersolution and (px, X), (py, Y ), we have

δu(x)− tr (σ(x)σT (x)X)− b(x)px ≤ F (x),

δu(y)− tr (σ(y)σT (y)Y )− b(y)py ≥ F (y).

Subtracting the latter inequality from the former, we infer

δ(u(x)− u(y))− tr
(
σ(x)σT (x)X − σ(y)σT (y)Y

)
+

(
− b(x)px + b(y)py

)
≤ F (x)− F (y). (3.18)

We want to estimate from below the three terms on the left hand side of (3.18):

(i) U := δ(u(x)− u(y)),
(ii) T := − tr

(
σ(x)σT (x)X − σ(y)σT (y)Y

)
,

(iii) G := −b(x)px + b(y)py.

(i) The assumption by contradiction (3.11) yields

U := δ(u(x)− u(y)) ≥ δψ(|x− y|) + δ(η|x|2 + η|y|2) + 8η ≥ 8η. (3.19)

(ii) Multiplying relation (3.13) by (ζ, ξ) where ζ and ξ are vectors in R3 we obtain

(ζ, ξ)

(
X 0
0 −Y

)
(ζ, ξ)T ≤ (ζ, ξ)A(ζ, ξ)T + ρ(ζ, ξ)A2(ζ, ξ)T .
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Then, using (3.17), we have

ζXζT − ξY ξT ≤ ψ′(|x− y|)
(
ζBζT − ξBζT − ζBξT + ξBξT

)
+ ψ′′(|x− y|)(〈ζ − ξ, q〉)2 + 2η(|ζ|2 + |ξ|2) + ρa(ζ, ξ) (3.20)

where we denoted a(ζ, ξ) := (ζ, ξ)A2(ζ, ξ)T and q is defined in (3.16).
Recall that, for any choice of two orthonormal basis {ei}i=1,2 and {ẽi}i=1,2 in R2, (if ei is a orthonormal

basis, tr M =

2∑
i=1

eiMeTi ) we have

tr (σσTX) = tr (σTXσ) =

2∑
i=1

eiσ
TXσeTi , tr (σσTY ) = tr (σTY σ) =

2∑
i=1

ẽiσ
TXσẽTi .

We choose
ζi = eiσ

T (x), ξi = ẽiσ
T (y); (3.21)

hence, we get

T = −
2∑
i=1

eiσ
T (x)Xσ(x)eTi +

2∑
i=1

ẽiσ
T (y)Y σ(y)ẽTi = −

(
2∑
i=1

ζiXζ
T
i −

2∑
i=1

ξiY ξ
T
i

)
.

Then from inequality (3.20) we obtain

T ≥ −ψ′(|x− y|)
2∑
i=1

(ζi − ξi)B(ζi − ξi)T − ψ′′(|x− y|)
2∑
i=1

(< ζi − ξi, q >)2

− 2η

2∑
i=1

(|ζi|2 + |ξi|2)− ρ
2∑
i=1

a(ζi, ξi).

From the definition of the matrix B we have

T ≥ − ψ′

|x− y|

2∑
i=1

(
|ζi − ξi|2

)
+

(
ψ′

|x− y|
− ψ′′

) 2∑
i=1

(〈ζi − ξi, q〉)2

− 2η

2∑
i=1

(
|ζi|2 + |ξi|2

)
− ρ

2∑
i=1

a (ζi, ξi)

≥ − ψ′

|x− y|

2∑
i=1

(|ζi − ξi|)2 − 2η

2∑
i=1

(|ζi|2 + |ξi|2)− ρ
2∑
i=1

a(ζi, ξi), (3.22)

where the last inequality was obtained taking into account that ψ is increasing and concave, so ψ′

|x−y| −
ψ′′ ≥ 0.

(iii) From expressions (3.14) and (3.15) of px and py, we have

G = (−b(x) + b(y))ψ′(|x− y|)q + 2η (−b(x)x− b(y)y) .

By our choice of b (recall: b(x) = (−k1x1,−k2x2,−k3x3)), G becomes

G =

(
k1(x1 − y1)2 + k2(x2 − y2)2 + k3(x3 − y3)2

)
ψ′(|x− y|)
|x− y|

+ 2η
(
k1(x2

1 + y2
1) + k2(x2

2 + y2
2) + k3(x2

3 + y2
3)
)
. (3.23)
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Now, replacing inequalities (3.19), (3.22) and (3.23) in (3.18), we obtain

L|x− y| ≥ F (x)− F (y) ≥ U + T + G

≥ 8 η − ψ′

|x− y|

2∑
i=1

(|ζi − ξi|)2 − 2η

2∑
i=1

(|ζi|2 + |ξi|2)− ρ
2∑
i=1

a(ζi, ξi)

+
(
k1(x1 − y1)2 + k2(x2 − y2)2 + k3(x3 − y3)2

) ψ′

|x− y|
+ 2η

(
k1(x2

1 + y2
1) + k2(x2

2 + y2
2) + k3(x2

3 + y2
3)
)
.

Passing to the limit as ρ→ 0+, we obtain

L|x− y| ≥ η

(
8− 2

2∑
i=1

(|ζi|2 + |ξi|2) + 2k1(x2
1 + y2

1) + 2k2(x2
2 + y2

2) + 2k3(x2
3 + y2

3)

)

+
ψ′

|x− y|

[
−

2∑
i=1

(|ζi − ξi|)2 + k1(x1 − y1)2 + k2(x2 − y2)2 + k3(x3 − y3)2)

]
. (3.24)

The contradiction is easily obtained choosing as the two orthonormal basis the canonical basis in R2, e1 = ẽ1 =
(1, 0) and e2 = ẽ2 = (0, 1). Then the vectors ζi and ξi (see (3.21)), with x = (x1, x2, x3) and y = (y1, y2, y3)
become ζ1 = (1, 0, 2x2), ζ2 = (0, 1,−2x1), ξ1 = (1, 0, 2y2), ξ2 = (0, 1,−2y1), and

|ζ1|2 = 1 + 4x2
2, |ζ2|2 = 1 + 4x2

1, |ξ1|2 = 1 + 4y2
2, |ξ2|2 = 1 + 4y2

1,

|ζ1 − ξ1|2 = 4(x2 − y2)2, |ζ2 − ξ2|2 = 4(x1 − y1)2.

Hence, relation (3.24) becomes

L|x− y| ≥ η
[
8− 8− 8(x2

1 + y2
1 + x2

2 + y2
2) + 2k1(x2

1 + y2
1) + 2k2(x2

2 + y2
2) + 2k3

(
x2

3 + y2
3

)]
+

ψ′

|x− y|
[
(k1 − 4)(x1 − y1)2 + (k2 − 4)(x2 − y2)2) + k3(x3 − y3)2

]
≥ 2η

[
(k1 − 4)(x2

1 + y2
1) + (k2 − 4)(x2

2 + y2
2) + k3(x2

3 + y2
3)
]

+
ψ′

|x− y|
[
(k1 − 4)(x1 − y1)2 + (k2 − 4)(x2 − y2)2 + k3(x3 − y3)2

]
·

By our choice of k1, k2 and k3 in (A2) (namely, k1, k2 > 4, k3 > 0) we get

L|x− y|2 ≥ ψ′(|x− y|)
[
(k1 − 4)(x1 − y1)2 + (k2 − 4)(x2 − y2)2 + k3(x3 − y3)2

]
,

thus we obtain a contradiction provided that we choose a function ψ such that

ψ′ > max

{
L

k1 − 4
,

L

k2 − 4
,
L

k3

}
.

Hence, the proof of our claim (3.10) is accomplished. The second statement of the theorem easily follows by
taking ψ(z) = Lz, with L > max{ L

k1−4 ,
L

k2−4 ,
L
k3
}. �

Remark 3.7. Similar arguments can be applied to other matrices still related to degenerate elliptic operators
as, for example, in dimension 2:

σ(y) := (σij(y))i,j with σij(y) = aijy1 + bijy2 + cij
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which in particular encompasses the Ornstein-Uhlenbeck operator and Grushin operator, respectively

σOU =

(
1 0
0 0

)
, σG =

(
1 0
0 y1

)
.

For the Grushin operator in a forthcoming paper [21] we will obtain a local Hölder continuity uniform in δ using
a technique introduced in [12].

3.3. A key estimate on the growth of the approximate corrector

The aim of this section is to establish that the solution to the approximating cell problem has a logarithmic
growth at infinity. Our arguments are borrowed from [13], (Prop. 3.2).

Lemma 3.8. Assume (A1) and (A2). Let uδ(y) be the solution of equation (3.1) with (3.2). There exists C > 0
such that

|uδ(y)− uδ(0)| ≤ C
[
1 + log((y2

1 + y2
2)2 + y2

3 + 1)
]

∀y ∈ R3, δ ∈ (0, 1).

Proof. We can argue as in [13], (Prop. 3.2), replacing its [13], (Lem. 3.3) with our Theorem 3.6; to this end,
our first step is to claim that, for C1 and R sufficiently large, the function g(y) := C1 log((y2

1 + y2
2)2 + y2

3) is a
supersolution to (3.1) in R3 \BR. Indeed, by equality (1.2) there holds:

tr (σσTD2g(y)) =
8C1(y2

1 + y2
2)

(y2
1 + y2

2)2 + y2
3

b(y) ·Dg(y) = −C1
4(y2

1 + y2
2)(k1y

2
1 + k2y

2
2) + 2k3y

2
3

(y2
1 + y2

2)2 + y2
3

·

By these identities, we get

δg(y)− tr (σ(y)σT (y)D2g(y))− b(y)Dg(y) ≥ F (y), y ∈ R3 \BR,

provided that C and R are sufficiently large. Now if maxBR uδ ≤ 0 then we have maxBR uδ ≤ g(y) for any

y ∈ ∂BR. By the comparison principle established in [9], we obtain uδ ≤ g in R3. If maxBR uδ > 0, we note that
g1(·) := g(·)+maxBR uδ is still a supersolution of (3.1) in R3 \BR. Hence, again by the comparison principle we

have uδ ≤ g1 in R3. By Theorem 3.6 we infer: uδ(y)−uδ(0) ≤ g1(y)+LR which gives one of the two inequalities
of the statement. The proof of the other one is similar and we shall omit it. �

3.4. The cell problem

Theorem 3.9. Under assumptions (A1)–(A6) of Section 2, for every (x, p,X) the constant

λ = −
∫
R3

H(x, y, p,X, 0)dµ(y)

(µ is the invariant measure defined in Lem. 3.1) is the unique constant such that the cell problem (1.6) admits
a solution w(y) which is globally Lipschitz continuous and satisfies the following estimate:

|w(y)− w(0)| ≤ C
[
1 + log((y2

1 + y2
2)2 + y2

3 + 1)
]

∀y ∈ R3. (3.25)

Moreover, the solution w is unique up to an additive constant.

Proof. To prove the existence of such a λ we argue as in [13], (Prop. 3.2), replacing its [13], (Lem. 3.3) with
our Theorem 3.6 and using Lemma 3.8. We consider the solution uδ of the approximated cell problem (3.1),
recalling that, from (A3), F (y) is bounded in R3; then wδ(y) := uδ(y)− uδ(0) satisfies

δwδ(y)− tr (σ(y)σT (y)D2wδ)− b(y)Dwδ = F (y)− δuδ(0).
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From the Lipschitz continuity of uδ(y) in (3.9) we have that

|wδ(y)| = |uδ(y)− uδ(0)| ≤ L̄|y|

and

|wδ(y)− wδ(z)| = |uδ(y)− uδ(z)| ≤ L̄|y − z|

hence wδ(y) are locally equibounded and equicontinuous. Then by Ascoli-Arzela theorem and standard diagonal
argument we can conclude that there exists a function w with the desired properties. Estimate (3.25) follows
from Lemma 3.8. Moreover from Theorem 3.4 we know that

δuδ →
∫
H(x, y, p,X, 0)dµ(y) = −λ.

To prove the uniqueness of λ and the uniqueness up to a constant of w, we use the arguments of [12], (Thm. 4.5).
For the sake of completeness, let us recall them briefly.

First of all we assume that any solution w of (1.6) is regular and this is not restrictive because the smoothness
will be proved in Theorem 3.11 in the next section.

Assume by contradiction that there exist two constants λ1 6= λ2 and two regular functions w1, w2 such that
(λ1, w1) and (λ2, w2) are both solutions to problem (1.6). Without any loss of generality we assume λ1 < λ2.
We set u(·) := w1(·) − w2(·) and U1(y) := y4

1 + y4
2 + y2

3 . Without any loss of generality (eventually adding a
constant), we assume supR3 u > 0. We observe that, for γ > 0 sufficiently small and β > 0 sufficiently large,
there hold

− tr (σσTD2u)− bDu = λ1 − λ2 in R3 (3.26)

− tr (σσTD2U1)− bDU1 ≥ γU1 − β in R3. (3.27)

(For instance an explicit and tedious calculation gives: γ < 2k3, γ < 4k1, γ < 4k2, β ≥ 100
4k1−γ + 100

4k2−γ ).

Consider ρ > 0 so small to have ρβ < λ2 − λ1 and set U(·) := ρU1(·). By the global Lipschitz continuity of
w1 and w2, we have

lim
|y|→∞

(u(y)− U(y)) = −∞. (3.28)

Hence, there exists an open bounded set Ω ⊂ R3 such that u ≤ U in R3 \ Ω. By linearity of the operator,
relations (3.26) and (3.27) entail that the function η(·) := u(·)− U(·) satisfies

− tr (σσTD2η)− bDη ≤ −ργU1 − (λ2 − λ1 − ρβ) < 0 in R3

where the last inequality is due to our choice of ρ and to U1 ≥ 0. Applying the maximum principle to η on the
domain Ω we obtain: η ≤ 0 in Ω. Hence, we have: η ≤ 0 in R3, namely

u(y) ≤ ρU1(y) ∀y ∈ R3.

Letting ρ→ 0+, we get u ≤ 0 in R3 which gives the desired contradiction.
Let us now pass to prove that if (λ,w1) and (λ,w2) are both solutions to (1.6) then w1 = w2 + C, for some

constant C. By (3.27), there exists R > 0 such that

− tr (σσTD2U1)− bDU1 > 0 for |y| > R.

For u = w1 − w2 as before, we claim that there holds

sup
R3

u = max
B(0,R)

u. (3.29)
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Actually, for any ρ > 0, for η(·) = u(·)− ρU1(·),

− tr (σσTD2η)− bDη < 0 for |y| > R.

As before (see (3.28)) lim
|y|→∞

η(y) = −∞ and this implies that η attains his maximum on R3.

By the maximum principle, η cannot attain its maximum over B(0, R)
C

at any point in its interior. Then

u(y)− ρU1(y) ≤ max
|y′|=R

(u(y′)− ρU1(y′)) ∀|y| ≥ R;

letting ρ→ 0+, we obtain our claim (3.29).
By (3.29), for any r > R, the strong maximum principle on u over B(0, r) ensures that u is a constant

function on B(0, r). By the arbitrariness of r, we obtain the desired result. �

3.5. Regularity of the corrector w

In this subsection we prove the C2-regularity of the corrector w. This result seems not straightforward.
Actually, since our operator L contains second order horizontal derivatives and Euclidean first derivatives as
well, the second order part of the operator does not immediately regularize the first order one. On the other
hand is worth to observe that, for H(x, ·, p,X, 0) ∈ C∞, the solution w of (1.6) is C∞ by hypoellipticity.

We start with a lemma which states the equivalence between solution in the sense of distributions and
continuous viscosity solutions, under a growth condition at infinity.

Lemma 3.10. Consider the equation

− tr (σ(y)σT (y)D2χ)− b(y)Dχ+Kχ = R(y), y ∈ R3, (3.30)

where R is a bounded globally Lipschitz continuous function and K is a strictly positive constant. Then

(1) there exists a unique bounded and globally Lipschitz continuous viscosity solution χ;
(2) χ is a solution in the sense of distributions;
(3) any bounded solution of (3.30) in the sense of distributions coincides with χ.

Proof.
(1) Follows from Lemma 3.3 and Theorem 3.6.
(2) Follows from [16], (Thm. 1).
(3) If χ1 is a solution of (3.30) in the sense of distributions, we define χ := χ1−χ, (χ is bounded). By linearity,

χ solves in the sense of distributions

− tr (σσTD2χ)− bDχ+Kχ = 0.

By the hypoellipticity of the operator, χ is smooth. Hence χ1 = χ+ χ is continuous and, by [16], (Thm. 2)
is also a viscosity solution. By the uniqueness of sublinear viscosity solutions of (3.30), we get χ1 = χ.

�

Theorem 3.11. Under assumptions (A1)–(A6), let w be the solution of the cell problem (1.6) found in Theo-
rem 3.9. Then w ∈ C2,α

loc (R3), for some α ∈ (0, 1).

Proof. Let us denote by X1 := (∂y1 + 2y2∂y3) and X2 := (∂y2 − 2y1∂y3) the two vector fields associated to the
two columns of the matrix σ. Recall that these two vectors are the generators of the Heisenberg group and span
all R3 because their commutator is [X1, X2] = −4 ∂

∂y3
.

Along the proof α is a strictly positive constant which may change from line to line.
The corrector w solves

− tr (σ(y)σT (y)D2w(y))− b(y)Dw(y) = G(y) (3.31)
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with
G(y) := λ−H(x, y, p,X, 0).

First let us get the Lipschitz continuity of ∂w
∂y3

. Deriving equation (3.31) with respect to y3 we obtain that the

function u := ∂w
∂y3

solves in the sense of distributions

− tr (σσTD2u)− bDu+ k3u =
∂G

∂y3
, (3.32)

with k3 > 0 by assumption (A2). Note that u is bounded by Theorem 3.6, then by Lemma 3.10 we get that u
is Lipschitz continuous and it is also a viscosity solution; hence

u =
∂w

∂y3
∈ BLip(R3). (3.33)

Deriving equation (3.32) with respect to y3, we get that the function z := ∂2w/∂y2
3 solves

− tr (σσTD2z)− bDz + 2k3z =
∂2G

∂y2
3

· (3.34)

By assumption (A6), we can apply Lemma 3.10 also to (3.34) and we get that the function z is globally Lipschitz
continuous, i.e.

∂2w

∂y2
3

∈ BLip(R3). (3.35)

Now we study the regularity of w with respect to y1 and y2; to this end, let us come back to (3.31). From the
Lipschitz continuity of w (see Th. 3.6), we get

− tr (σσTD2w) ∈ L∞loc(R3).

By (3.33), we have
∂2w

∂y1∂y3
,
∂2w

∂y2∂y3
,
∂2w

∂y2
3

∈ L∞(R3).

Taking into account the explicit expression of − tr (σσTD2w) we have that

∂2w

∂y2
1

+
∂2w

∂y2
2

∈ L∞loc(R3).

This relation and (3.35) imply ∆w ∈ L∞loc(R3), (∆ is the Euclidean Laplacian). Hence from classical results on
uniformly elliptic equations we obtain

Dw ∈ C0,α
loc (R3).

Now we can replace w with u, (3.33) with (3.35) and (3.31) with (3.32), using the same arguments we get:

Du ∈ C0,α
loc (R3). (3.36)

In particular
∂2w

∂y1∂y3
,
∂2w

∂y2∂y3
,
∂2w

∂y2
3

∈ C0,α
loc (R3).

As before we have that ∆w ∈ C0,α
loc (R3). Hence, from classical results on uniformly elliptic equations we obtain

the statement. �

Remark 3.12. We remark that in this proof the structure of the operator L and Theorem 3.6 play a crucial
role; this allows us to overcome the application of some deep results on the hypoelliptic theory.
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4. Proof of Theorem 2.3

In this section we prove the convergence of the solution V ε of (1.1) to the solution of the effective equa-
tion (1.3).

Let us recall from Proposition 2.2 that, for every compact K ⊂ Rn, the solutions V ε are equibounded in
(0, T )×K × R3, hence the following semilimits

V (t, x, y) = lim sup
ε→0+,t′→t,x′→x,y′→y

V ε(t′, x′, y′) for t < T

V (T, x, y) = lim sup
t′→T−,x′→x,y′→y

V (t′, x′, y′) for t = T ;

(and similarly for V replacing lim sup by lim inf) are well defined. This two step definition of V is needed to
overcome an expected initial layer.

For the sake of clarity we shall divide the proof in several steps, as follows:

Step 1. V and V are independent of y;
Step 2. V and V are respectively a subsolution and a supersolution of the parabolic equation (1.3);
Step 3. V (T, x) ≤ g(x) ≤ V (T, x), where g(x) is defined in (1.4);
Step 4. V = V =: V and V ε → V locally uniformly.

4.1. Step 1

Lemma 4.1. Under assumptions (A1)–(A5), V and V are independent of y.

Proof. Let us observe that V (t, x, y) and V (t, x, y) are respectively BUSC and BLSC. We prove that V (t, x, y)
is independent of y; being similar, the proof for V (t, x, y) is omitted.

We claim that for (t0, x0) ∈ (0, T )× Rn fixed, V (t0, x0, y) is a subsolution for y ∈ R3 to equation

− tr (σσTDyyV )− b ·DyV = 0. (4.1)

Assuming for the moment that is true, since V (t0, x0, y) is BUSC in y, we can apply the Liouville theorem
proved in [20], (Prop. 3.1) to deduce that the function V (t0, x0, y) does not depend on y.

In order to prove that V (t0, x0, y) is a subsolution to equation (4.1) we follow the same arguments as in
Step 2 of [5], (Thm. 3.2), which we write for the sake of completeness.

First of all we prove that V (t, x, y) is a subsolution to equation (4.1) for (t, x, y) ∈ (0, T )×Rn×R3. To do this
we fix a point (t, x, y) and a smooth function ψ such that V − ψ has a local strict maximum at (t, x, y) = P in

B(P , r) = {(t, x, y) : |(t, x, y)−(t, x, y)| ≤ r}, for some r > 0. Using the definition of the half relaxed semilimit it

is possible to prove (see [4]) that there exists εn → 0 and (tn, xn, yn) ∈ B(P , r) such that (tn, xn, yn)→ (t, x, y),

(tn, xn, yn) are maxima for V εn − ψ in B(P , r) and V εn(tn, xn, yn)→ V (t, x, y). Since V εn solves (1.1) then

−∂tψ +H

(
xn, yn,Dxψ,D

2
xxψ,

D2
xyψ√
εn

)
− 1

εn
tr (σ(yn)σ(yn)TDyyψ)− 1

εn
b(yn) ·Dyψ + aV εn(tn, xn, yn) ≤ 0.

Then

− tr (σ(yn)σ(yn)TDyyψ)− b(yn) ·Dyψ ≤ εn

[
∂tψ −H

(
xn, yn,Dxψ,D

2
xxψ,

D2
xyψ√
ε

)
− aV εn

]
.

From the regularity of ψ, the continuity of H (obtained from A1), A3), A5)) and the local uniform boundedness
of V εn , the part in the brackets on the right hand side is uniformly bounded with respect to n in B(P , r), then
passing to the limit as εn → 0 we get

− tr (σ(y)σ(y)TDyyψ)− b(y) ·Dyψ ≤ 0,

i.e. V (t, x, y) is a subsolution to equation (4.1) for (t, x, y) ∈ (0, T )× Rn × R3.
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We now show that, arguing as in [4], (Lem. II.5.17), for every fixed (t0, x0) ∈ (0, T ) × Rn the function
V (t0, x0, y) is a subsolution to equation (4.1). We fix y and φ(y), a smooth function such that V (t0, x0, y)−φ(y)
has a strict local maximum at y in B(y, δ) and such that φ(y) ≥ 1 in B(y, δ). Let us chose δ > 0 small enough
s.t. t0 − δ > 0. We define, for η > 0

φη(t, x, y) = φ(y)

(
1 +
|x− x0|2 + |t− t0|2

η

)
and we consider (tη, xη, yη) a maximum point of V − φη in B((t0, x0, y), δ). We remark that

V (tη, xη, yη)− φη(tη, xη, yη) ≥ V (t0, x0, y)− φ(y) (4.2)

V (tη, xη, yη)− φ(yη) ≥ V (t0, x0, y)− φ(y)

and we can prove that, eventually passing to subsequences (as η → 0) first that (tη, xη) → (t0, x0), then that
yη → y using the strict maximum property of y.

Using (4.2) and the upper semicontinuity of V

Kη :=

(
1 +
|xη − x0|2 + |tη − t0|2

η

)
→ K > 0.

Now, using the fact that V (t, x, y) is a subsolution of (4.1) in (tη, xη, yη) we get

− tr (σ(yη)σ(yη)TD2
yyφη)− b(yη) ·Dyφη ≤ 0,

which gives, passing to the limit as η → 0

− tr (σ(y)σ(y)TD2
yyφ)− b(y) ·Dyφ ≤ 0. �

Remark 4.2. Using (4.2) and the upper semicontinuity of V it is possible to prove that Kη → 1. This property
in not used in our proof but can be useful in more general and nonlinear cases.

4.2. Step 2

Proposition 4.3. Under the assumptions (A1)–(A5), V and V are respectively a subsolution and a supersolu-
tion of the parabolic equation in (1.3).

Proof. We prove that V is a viscosity subsolution of (1.3) in ]0, T [×Rn. The proof that V is a viscosity super-
solution is analogous, so we shall omit it.

We take a smooth test function ψ(t, x) such that (t, x) ∈]0, T [×Rn is a strict local maximum point for V −ψ.
We have to prove that

−∂tψ(t, x) +H
(
x,Dxψ(t, x),D2

xxψ(t, x)
)

+ aψ(t, x) ≤ 0.

Without any loss of generality we can assume that:

(1) V (t, x) = ψ(t, x);
(2) ψ is coercive in x uniformly in t, i.e.

lim
|x|→∞

inf
t∈[0,T ]

ψ(t, x) = +∞; (4.3)

(3) there holds

inf
x∈Rn

ψ(
t̄

2
, x) > M + 1, inf

x∈Rn
ψ

(
t̄+ T

2
, x

)
> M + 1 (4.4)

where M is a constant such that |V ε(t, x, y)| ≤M ;
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(4) sup
(t,x)∈K

|∂tψ(t, x)| ≤ CK for any K compact in [0, T ]× Rn.

For any fixed η ∈]0, 1], let us consider now the “perturbed test function”:

ψεη(t, x, y) := ψ(t, x) + ε(w(y) + ηχ(y))

where w(y) is the viscosity solution of the cell problem (1.6) founded in Theorem 3.9 associated to (x, p,X) =
(x,Dxψ(t, x),D2

xxψ(t, x)) and χ(y) is the Lyapunov function

χ(y) = y2
1 + y2

2 + y2
3 . (4.5)

Note that, from (3.25) and the definition of χ in (4.5), we have

w(y) + ηχ(y)→ +∞, if |y| → +∞, (4.6)

and there exists a constant k0 independent of η such that

w(y) + ηχ(y) ≥ −k0(1 + log(η)). (4.7)

Let consider the function
Ψ(t, x, y) := V ε(t, x, y)− ψεη(t, x, y).

Thanks to the equi-boundedness of V ε, (4.6) and (4.3) we have:

Ψ(t, x, y)→ −∞, if (x, y)→ +∞

and there exists a point (tε,η, xε,η, yε,η) ∈ [
t̄

2
,
t̄+ T

2
] × Rn × R3 which is a global maximum point of Ψ

in [
t̄

2
,
t̄+ T

2
]× Rn × R3.

Claim 1. (tε,η, xε,η) is bounded uniformly in ε.

The points tε,η are obviously bounded. Now using the maximum property of (tε,η, xε,η, yε,η), we have:

V ε(tε,η, xε,η, yε,η)− ψεη(tε,η, xε,η, yε,η) ≥ V ε(t̄, 0, 0)− ψ(t̄, 0)− ε(w(0) + ηχ(0));

then from (4.7)

K ≥ V ε(tε,η, xε,η, yε,η)− V ε(t̄, 0, 0) + ψ(t̄, 0) + ε(w(0) + ηχ(0)) ≥
ψ(tε,η, xε,η) + ε(w(yε,η) + ηχ(yε,η)) ≥ ψ(tε,η, xε,η)− εk0(1 + log(η))

and we end the proof of Claim 1 using and (4.3).

Claim 2. If tε,η =
t̄

2
or tε,η =

t̄+ T

2
, then for any (t′, x′, y′) ∈ [ t̄2 ,

t̄+T
2 ]× Rn × R3

Ψ(t′, x′, y′) ≤ −1 + εk0(1 + log(η)).

Thanks to (4.7)
Ψ(t′, x′, y′) ≤ V ε(tε,η, xε,η, yε,η)− ψ(tε,η, xε,η) + εk0(1 + log(η)).

Using now (4.4) and the definition of M

Ψ(t′, x′, y′) ≤ V ε(tε,η, xε,η, yε,η)− (M + 1) + εk0(1 + log(η))

≤ −1 + εk0(1 + log(η)).
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Claim 3. If tε,η ∈]
t̄

2
,
t̄+ T

2
[, then

− ∂tψ(tε,η, xε,η) + H̄
(
x,Dxψ(t, x),D2

xxψ(t, x)
)
− ηL(yε,η,Dyχ(yε,η),D2

yyχ(yε,η)) + Fε,η
+ aV ε(tε,η, xεη, yε,η) ≤ 0, (4.8)

where

Fε,η := H(xε,η, yε,η,Dxψ(tε,η, xε,η),D2
xxψ(tε,η, xε,η), 0)−H(x, yε,η,Dxψ(t, x),D2

xxψ(t, x), 0).

By definition of subsolution of (1.1) and using the regularity of w (proved in Thm. 3.11), ψ and χ:

−∂tψ(tε,η, xε,η) +H(xε,η, yε,η,Dxψ(tε,η, xε,η),D2
xxψ(tε,η, xε,η), 0)

− L(yε,η,Dyw(yε,η),D2
yyw(yε,η))− ηL(yε,η,Dyχ(yε,η),D2

yyχ(yε,η)) + aV ε(tε,η, xεη, yε,η) ≤ 0

Now we use (1.6) for y = yε,η

−∂tψ(tε,η, xε,η) +H(xε,η, yε,η,Dxψ(tε,η, xε,η),D2
xxψ(tε,η, xε,η), 0)

+H(x,Dxψ(t, x),D2
xxψ(t, x))−H(x, yε,η,Dxψ(t, x),D2

xxψ(t, x), 0)

− ηL(yε,η,Dyχ(yε,η),D2
yyχ(yε,η)) + aV ε(tε,η, xεη, yε,η) ≤ 0

which is equivalent to (4.8).

Claim 4. If tε,η ∈]
t̄

2
,
t̄+ T

2
[, then {yε,η}ε is uniformly bounded.

By contradiction, let us assume that there exists a sequence {εn}n with εn → 0 such that

tεn,η ∈
] t̄

2
,
t̄+ T

2

[
, |yεn,η| → ∞ for n→∞.

Then, there holds, calling yεn,η = (yεn,η,1, yεn,η,2, yεn,η,3):

−L(yεn,η,Dyχ(yεn,η),Dyyχ(yεn,η)) = 2(−2 + (k1 − 4)y2
εn,η,1 + (k2 − 4)y2

εn,η,2 + k3y
2
εn,η,3)→∞. (4.9)

Moreover, by Claim 1 and (2.1) we get
|Fεn,η| ≤ K(η) = K.

Coming back to (4.8), using again Claim 1 and the uniform boundedness of V ε we have a contradiction.

Claim 5. There holds
(tε,η, xε,η)→ (t̄, x̄) as ε→ 0.

There exists (t̃, x̃) ∈ [
t̄

2
,
t̄+ T

2
]× Rn such that (possibly passing to a subsequence)

(tε,η, xε,η)→ (t̃, x̃) as ε→ 0.

By definition of (tε,η, xε,η, yε,η) we have: ∀(t′, x′, y′) ∈ [
t̄

2
,
t̄+ T

2
]× Rn × R3

V ε(tε,η, xε,η, yε,η)− ψ(tε,η, xε,η)− ε(w(yε,η) + ηχ(yε,η)) ≥ V ε(t′, x′, y′)− ψ(t′, x′)− ε(w(y′) + ηχ(y′)). (4.10)
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Let (t, x, y) ∈ [
t̄

2
,
t̄+ T

2
]× Rn × R3. Passing to lim sup

(ε,t′,x′,y′)→(0,t,x,y)

in the previous inequality (4.10):

lim sup
(ε,t′,x′,y′)→(0,t,x,y)

[V ε(tε,η, xε,η, yε,η)− ψ(tε,η, xε,η)− ε(w(yε,η) + ηχ(yε,η))] ≥ V (t, x)− ψ(t, x). (4.11)

Moreover there is a sequence εn → 0 such that

lim sup
(ε,t′,x′,y′)→(0,t,x,y)

[V ε(tε,η, xε,η, yε,η)− ψ(tε,η, xε,η)− ε(w(yε,η) + ηχ(yε,η))]

= lim
n→∞

[V εn(tεn,η, xεn,η, yεn,η)− ψ(tεn,η, xε,η)− εn(w(yε,η) + ηχ(yεn,η))] . (4.12)

We split the argument according to the case that tεn,η belongs to the interior or to the boundary of [ t̄2 ,
t̄+T

2 ].

• If tεn,η =
t̄

2
or tεn,η =

t̄+ T

2
we apply claim 2

V εn(tεn,η, xεn,η, yεn,η)− ψ(tεn,η, xε,η)− εn(w(yε,η) + ηχ(yεn,η))

= Ψ(tεn,η, xεn,η, yεn,η) ≤ −1 + εnk0(1 + log(η))

If tεn,η =
t̄

2
or tεn,η =

t̄+ T

2
for an infinite sequence of indices εn we have:

−1 ≥ V (t, x)− ψ(t, x)

and this is a contradiction since, for (t, x) = (t̄, x̄), V (t̄, x̄)− ψ(t̄, x̄) = 0.

• If tε,η ∈]
t̄

2
,
t̄+ T

2
[, then by Claim 4 {yε,η}ε is uniformly bounded and we can assume (possibly passing to a

subsequence) that
yεn,η → ỹη.

Using (4.11), (4.12) and the upper-semicontinuity of V

V (t̃, x̃)− ψ(t̃, x̃) ≥ lim sup
(ε′,t′,x′,y′)→(0,t̃,x̃,ỹη)

[
V ε
′
(t′, x′, y′)− ψ(t′, x′)− ε′(w(y′) + ηχ(y′))

]
≥ lim

n→∞
[V εn(tεn,η, xεn,η, yεn,η)− ψ(tεn,η, xε,η)− εn(w(yε,η) + ηχ(yεn,η))]

≥ V (t, x)− ψ(t, x).

Using the strict maximum property of (t̄, x̄), we get (t̄, x̄) = (t̃, x̃).

Let us remark that the previous inequalities imply also:

lim
n→∞

V εn(tεn,η, xεn,η, yεn,η) = V (t̄, x̄). (4.13)

Claim 6. There holds

−∂tψ(t, x) +H
(
x,Dxψ(t, x),D2

xxψ(t, x)
)
− ηL(ỹη,Dyχ(ỹη),D2χ(ỹη)) + aV (t̄, x̄) ≤ 0. (4.14)

Using Claim 3, we get

− ∂tψ(tεn,η, xεn,η) +H
(
x,Dxψ(t, x),D2

xxψ(t, x)
)

− ηL(ỹη,Dyχ(yεn,η),D2
yyχ(yεn,η)) + Fεn,η + aV εn(tεn,η, xεn,η, yεn,η) ≤ 0.

Thanks to the regularity properties of H (see (2.1)) and ψ, it is easy to get

Fεn,η → 0.

From (4.13), the statement follows easily.
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Claim 7. There holds

−∂tψ(t, x) +H
(
x,Dxψ(t, x),D2

xxψ(t, x)
)

+ aV (t̄, x̄) ≤ 0.

We split the argument according to the fact that {ỹη}η is uniformly bounded or not. If {ỹη}η is uniformly
bounded, then passing to the limit as η → 0 in inequality (4.14) we get the statement. If {ỹη}η is unbounded,
eventually passing to a subsequence, we can assume that |ỹη| → +∞ as η → 0. Arguing as in (4.9), we get

−L(ỹη,Dyχ(ỹη),D2
yyχ(ỹη))→ +∞ as η → 0.

In particular, for η sufficiently small, there holds

−L(ỹη,Dyχ(ỹη),D2
yyχ(ỹη)) ≥ 0.

Replacing this inequality in relation (4.14), we get the statement.

Conclusion of the proof. By the arbitrariness of the test function ψ and of the point (t, x), we obtain that
V is a (viscosity) subsolution of the parabolic equation in (1.3). �

4.3. Step 3

Proposition 4.4. There holds
V (T, x) ≤ g(x) ≤ V (T, x) ∀x ∈ Rn.

Proof. We shall prove only the former inequality since the latter is analogous using the techniques introduced
by Alvarez–Bardi [2], (Thm. 3). We first recall from Lemma 4.1 that, for t > 0, the function V is independent
of y; hence, also V (T, x, y) is independent of y. Fix x̄ ∈ Rn; for every r > 0 sufficiently small, we define

gr(y) := sup
|x−x̄|≤r

g(x, y)

and we observe that assumption (A4) ensures that gr is a continuous bounded function with

|gr(y)− g(x, y)| ≤ ω(r) ∀x ∈ Br(x̄).

This implies that
−ω(r) + gr(y) ≤ g(x̄, y) ≤ ω(r) + gr(y) ∀y ∈ R3. (4.15)

We also introduce the parabolic Cauchy problem{
∂tw

r − tr (σσTD2
yyw

r)− b ·Dyw
r = 0 in (0,∞)× R3

wr(0, y) = gr(y) on R3;
(4.16)

by standard arguments, it admits exactly one bounded solution. On the other hand, let us also consider the
problem {

∂tw
′ − tr (σσTD2

yyw
′)− b ·Dyw

′ = 0 in (0,∞)× R3

w′(0, y) = g(x̄, y) on R3;
(4.17)

we recall from [20], (Thm. 4.2) that there holds lim
t→∞

w′(t, y) = g(x̄) locally uniformly in y; in particular, for

every η > 0 and R > 1, there exists τ > 0 such that

|w′(t, y)− g(x̄)| ≤ η ∀(t, y) ∈ (τ,∞)×BR(0). (4.18)

Moreover, by relation (4.15), one can easily show that wr(t, y) ± ω(r) are respectively a supersolution and a
subsolution to problem (4.17); hence, the comparison principle yields

|w′(t, y)− wr(t, y)| ≤ ω(r) ∀(t, y) ∈ (0,∞)× R3.
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By the last inequality and (4.18) we deduce that: for every η > 0 and R > 1, there exists τ > 0 such that

|wr(t, y)− g(x̄)| ≤ η + ω(r) ∀(t, y) ∈ (τ,∞)×BR(0). (4.19)

For later use, we introduce some notations; we set Qr := (T − r, T )×Br(x̄) and let M ∈ R be sufficiently large
that for every (t, x, y) ∈ (0, T )×Br(x̄)× R3:

‖w′‖∞ ≤M (4.20)

‖wr‖∞ ≤M (4.21)

|V ε(t, x, y)| ≤M. (4.22)

Consider also a smooth function ψ0 = ψ0(x) (namely, it is independent of t and of y) such that
ψ0(x̄) = 0,

ψ0(x) ≥ 0 ∀x ∈ Br(x̄),

ψ0(x) ≥M − inf
(z,y)∈Br(x̄)×R3

g(z, y) ∀x ∈ ∂Br(x̄).

(4.23)

Let C > 0 be a constant such that

|H(x, y,Dxψ0(x),D2
xxψ0(x), 0)| ≤ C ∀(x, y) ∈ Br(x̄)× R3. (4.24)

For (t, x, y) ∈ Qr × R3, we define

ψε(t, x, y) := wr
(
T − t
ε

, y

)
+ ψ0(x) + C1(T − t)

with C1 := C + aM . We claim that the function ψε is a supersolution to the following initial-boundary value
problem

(i) − ∂tΨ +H(x, y,DxΨ,D
2
xxΨ,D

2
xyΨ/

√
ε)− 1

εL(y,DyΨ,D
2
yyΨ) + aΨ = 0 in Qr × R3

(ii) Ψ(T, x, y) = g(x, y) on Br(x̄)× R3

(iii) Ψ(t, x, y) = M on (T − r, T )× ∂Br(x̄)× R3.

(4.25)

Assume for the moment that this claim is true. On the other hand, the function V ε is a subsolution to prob-
lem (4.25); therefore, by comparison principle (see, for instance, [2], (proof of Prop. 1)), we get

V ε(t, x, y) ≤ ψε(t, x, y) ∀(t, x, y) ∈ (T − r, T )×Br(x̄)× R3.

For y ∈ BR/2(0) (R is defined in (4.19)) and t ∈ (T − r, T ), we get

V (t, x, y) = lim sup
ε→0+,t′→t,x′→x,y′→y

V ε(t′, x′, y′)

≤ lim sup
ε→0+,t′→t,x′→x,y′→y

ψε(t′, x′, y′)

≤ lim sup
ε→0+,t′→t,y′→y

wr
(
T − t′

ε
, y′
)

+ lim sup
t′→t,x′→x

[ψ0(x′) + C1(T − t′)]

≤ ḡ(x̄) + η + ω(r) + ψ0(x) + C1(T − t)
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where the last inequality is due to relation (4.19) (observe that definitely y′ ∈ BR(0) and T−t′
ε > τ) and to the

continuity of ψ0. Since V is independent of y, we deduce

V (t, x) ≤ g(x̄) + η + ω(r) + ψ0(x) + C1(T − t).

Passing to the lim sup
t′→T−,x′→x̄,y′→y

(recall ψ0(x̄) = 0), we infer

V (T, x̄) ≤ g(x̄) + η + ω(r).

By the arbitrariness of η and of r, we get

V (T, x̄) ≤ g(x̄)

which is equivalent to our statement.

Let us now pass to prove the claim: ψε is a supersolution to problem (4.25). First we check the initial-boundary
conditions (ii) and (iii). In order to prove (ii), it suffices to note that the definition of gr and the second property
in (4.23) entail

ψε(T, x, y) = wr(0, y) + ψ0(x) ≥ wr(0, y) ≥ g(x, y) ∀(x, y) ∈ Br(x̄)× R3.

In order to prove (iii), we observe that gr(y) ≥ inf
(x,z)∈Br(x̄)×R3

g(x, z); hence, the comparison principle for (4.16)

yields

wr(t, y) ≥ inf
(x,y)∈Br(x̄)×R3

g(x, y) ∀(t, y) ∈ (0,∞)× R3.

Taking also into account the third property in (4.23), we conclude

ψε(t, x, y) = wr
(
T − t
ε

, y

)
+ ψ0(x) + C1(T − t) ≥M

for every (t, x, y) ∈ (T − r, T )× ∂Br(x̄)× R3.

Now we prove (i). Let us assume that wr is a classical solution to (4.16). In this case, in (T−r, T )×Br(x̄)×R3

there holds

− ∂tψε +H(x, y,Dxψ
ε,D2

xxψ
ε,D2

xyψ
ε/
√
ε)− 1

ε
L(y,Dyψ

ε,D2
yyψ

ε) + aψε

=
1

ε

[
∂tw

r − L(y,Dyw
r,D2

yyw
r)
]

+ C1 +H(x, y,Dxψ0,D
2
xxψ0, 0) + aψε

= C1 +H(x, y,Dxψ0,D
2
xxψ0, 0) + awr

(
T − t
ε

, y

)
+ aψ0(x) + aC1(T − t)

= C1 + awr
(
T − t
ε

, y

)
+H(x, y,Dxψ0,D

2
xxψ0, 0)

≥ C1 − C − aM
≥ 0.

where we used the definition of C1 := C + aM , the definition of C in (4.24) and the definition of M (4.20).
In the case when wr is only a viscosity solution to (4.16), we can accomplish the proof following the same
arguments of [2] (Thm. 3). �
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4.4. Step 4

We proved that V and V are respectively a subsolution and a supersolution of (1.3). We can apply the
comparison principle to equation (1.3) that holds since H defines a degenerate elliptic equation and H is
Lipschitz continuous on x (see (2.1)). Then V (t, x) ≤ V (t, x); by definition the reverse inequality is obvious.
Then V = V (t, x) = V (t, x) is the unique continuous solution of the parabolic equation (1.3) and the local
uniform convergence follows from standards arguments.
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