
Spatial Econometric Modeling of Farm Data 

1. Spatial Modeling of Farm Data 

Since the publication in 2002 of the Special Issue in Agricultural Economics entitled “Spatial 

Analysis for Agricultural Economists: Concepts, Topics, Tools and Examples” the number of 

applications of spatial econometric methods in agricultural economics has steadily increased 

over time. 

Spatial explicit models have been largely used to analyse the drivers of technology adoption 

(Case 1992; Florax, Voortman, and Brouwer 2002; Anselin, Bongiovanni, and Lowenberg-DeBoer 

2004; Abdulai and Huffman 2005; Krishna and Qaim 2012; Krishnan and Patnam 2013; Lapple 

and Kelley 2015; Fang and Richards 2018; Lapple et al. 2017), with specific attention to organic 

farming (Lapple and Kelley 2015; Schmidtner et al. 2012; Wollni and Andersson 2014), and 

spatial regimes in technologies (Billé, Salvioni, and Benedetti 2018). 

Another relevant stream of literature estimates spatial models that address both spatial 

dependence and spatial heterogeneity to explain variation in farmland values (Nickerson and 

Lynch 2001; Patton and McErlean 2003; Cavailhès and Wavresky 2003; Livanis et al. 2006; 

Kostov 2009; Maddison 2009; Wang 2018; Yang, Odening, and Ritter 2019). 

The importance of neighbourhood effects has been recognized in studies explaining market 

participation (Holloway and Lapar 2007), farm household diversification (Corral and Radchenko 

2017), farm survival (Saint-Cyr et al. 2018), land rental intention (Skevas, Skevas, and Swinton 

2018), pesticide use (Aida 2018) and in the analysis of policy intervention in agriculture (Grogan 



and Goodhue 2012; Storm, Mittenzwei, and Heckelei 2014; Marconi, Raggi, and Viaggi 2015; 

Feichtinger and Salhofer 2016; Fruh-Muller et al. 2019). 

Finally, an increasing group of studies analyses the issue of spatial dependence in the analysis of 

technical efficiency in the context of stochastic frontier (Druska and Horrace 2004; Areal, 

Balcombe, and Tiffin 2012; Fusco and Vidoli 2013; Tsionas and Michaelides 2016; Pede et al. 

2018). 

In section 2 we focus on the frontier production function. Before presenting the R codes to fit and 

test spatial production and spatial frontier functions, we describe the general formulation of the 

production function and that of the frontier production function. 

1.1. Production function and the frontier production function 

In agriculture there is a long tradition of statistics-gathering and it is one of the economic sectors 

with the deepest supply of micro data set on input and output from the production process. This 

explains the large amount of studies that estimate agricultural production functions, analyse 

productivity and measure the efficiency of farms. 

A production function describes the technical relationship that transforms inputs into output. For 

each level of input use, the function assigns a unique output level. A general way of writing a 

production function is 

𝑦 = 𝑓(𝑥1, … , 𝑥𝑛) 

where 𝑦 is an output and 𝑥𝑖  are the productive inputs that can include labour, capital, knowledge 

(human capital), energy consumption, raw materials, natural resources (land, water, minerals), 

and others. It is usually assumed that production functions fulfil some properties: essentiality of 



inputs, positive returns, diminishing returns and/or proportional returns to scale (see Chambers 

1998, 9). Many mathematical specifications can be used to estimate the production function 

(Griffin, Montgomery, and Rister 1987). The choice of functional form brings a series of 

implications with respect to the shape of the isoquants and the values of elasticities of factor 

demand and factor substitution. The simplest specification is the linear production function: 

𝑦 = 𝛼 +∑𝛽𝑖
𝑖

𝑥𝑖  

Despite its mathematical simplicity, this linear form is rarely used since it violates the property of 

essentiality.1 

A widely used form is the Cobb Douglas production technology 

𝑦 = 𝐴∏𝑥𝑖
𝛼𝑖

𝑁

𝑖=1

 

where 𝐴 represents the Hicksian neutral efficiency level of firm 𝑖, which is unobserved by the 

econometrician. The natural logs transformation of the previous equation can be expressed as a 

linear equation in the form: 

𝑙𝑛(𝑦) = 𝛼0 +∑𝛼𝑖

𝑁

𝑖=1

𝑙𝑛(𝑥𝑖) 

                                                        

1 Essentiality of inputs: If at least one 𝑥𝑖 = 0, then 𝑦 = 0, i.e., production is not possible without 

any of the inputs. 



The Cobb Douglas function is often chosen because it has economic properties (diminishing 

returns to each input and constant returns to scale) superior to the simple linear function and 

because its parameters are easy to obtain from real data. Another largely used functional form is 

the translog for one output and 𝐾 inputs 

𝑙𝑛(𝑦) = 𝛼0 +∑𝛼𝑖

𝑁

𝑖=1

𝑙𝑛(𝑥𝑖) +
1

2
∑ ∑𝛼𝑖𝑗

𝑗𝑖

𝑙𝑛(𝑥𝑖)𝑙𝑛(𝑥𝑗) 

This specification is a more flexible extension of the Cobb-Douglas function, it fulfils a set of 

desirable characteristics and it is easy to derive and allowing the imposition of homogeneity.  

Once a functional form is chosen, a key issue in the estimation of production functions is that 

direct OLS estimation of the production function is problematic because of endogeneity 

(Marschak and Andrews 1944; Ackerberg, Caves, and Frazer 2015). 

Endogeneity can arise when observed inputs are correlated with unobserved shock. Under such 

circumstances OLS will yield biased and inconsistent estimates. In a linear framework, the 

standard approach for addressing the potential endogeneity bias is to use instrumental variables 

or fixed effects. 

The estimated model of production is the means to the objective of measuring inefficiency. This is 

because the production function represents the maximum output attainable given a set of inputs. 

Measurement of (in)efficiency is, then, the empirical estimation of the extent to which observed 

agents (fail to) achieve the production frontier as originally argued by Debreu (1951) and Farrell 

(1957). 

One of the main approaches to study productivity and efficiency is the Stochastic Frontier Model 

(SFM), independently proposed by Aigner, Lovell, and Schmidt (1977) and Meeusen and Broeck 



(1977). The SFM is motivated by the theoretical idea that no economic agent can exceed the 

frontier and the deviations from this extreme represent the individual inefficiencies. For the 

description, implementation and testing of the non-spatial and spatial Stochastic Frontier 

Analysis models see section 2. 

For a review some of the most important developments in the econometric estimation of the 

stochastic frontier models (e.g. endogeneity issues, recent advances in generalized panel data 

stochastic frontier models, etc.) see for example Greene (2008) and Kumbhakar, Parmeter, and 

Zelenyuk (2017). 

In the stochastic production frontier estimation, the endogeneity of input problem has been 

neglected until recently. In such environment the endogeneity issue can be solved for example by 

using the semi-parametric approach proposed by Olley and Pakes (1996) and Levinsohn and 

Petrin (2003) (see for example Shee and Stefanou (2014), and Latruffe et al. (2017) for an 

application to agriculture). 

2. Fitting and Testing Spatial Stochastic Frontier Models 

In this section we explain how to fit and test spatial models with a specific focus on farm data. In 

particular, we define a spatial frontier model by making use of the stochastic frontier approach. 

Log-log transformations of the Cobb-Douglas production function can be used to implement the 

well-known spatial linear model specifications. For details on these types of models in the 

context of regional data, the reader is referred to Chapter 12. Note that in agricultural production 

function/stochastic frontier models a problem of potential endogenity of some inputs 

(regressors) is often present. In this section we assume the exogeneity of all the regressors in our 



model specifications. For details on the use of the spatial linear production function and potential 

endogeneity see e.g. Billé, Salvioni, and Benedetti (2018). 

In the following subsection, we consider the simulation setup for the definition of the true values 

of the parameters, the sample size, the generation of the spatial coordinates and the spatial 

weighting matrix used to assume a particular spatial process. The assumed weighting 

matrix/matrices is/are based on a 𝑘-nearest neighbour approach (𝑘-nn), i.e. we define a Boolean 

matrix with the same number 𝑘 ∈ ℕ of nearest neighbours for each random variable in space. Let 

𝑊 = {𝑤𝑖𝑗} be the spatial weighting matrix with elements equal to the weights among pairs of 

random variables (𝑦𝑖, 𝑦𝑗) for 𝑖, 𝑗 = 1, . . . , 𝑛, with 𝑛 the sample size, then 

{
𝑤𝑖𝑗 = 1  ⇔ 𝑦𝑗 ∈ 𝒩𝑘

𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝒩𝑘 is the set of nearest random variables 𝑦𝑗  to 𝑦𝑖 defined by 𝑘. Finally, 𝑊 is row-

normalized such that ∑ 𝑤𝑖𝑗𝑗 = 1, ∀𝑖. Discussions on the definition on different spatial weighting 

matrices as well as model specifications can now be found in several spatial book references, see 

e.g. Anselin (1988), LeSage and Pace (2009), Elhorst (2014), Arbia (2014), Kelejian and Piras 

(2017). 

To set the simulation setup, consider the following codes. We first load the following package 

library(spdep) 

in order to use some useful spatial functions inside, see Bivand and Piras (2015). Then we set the 

seed, the number of nearest neighbours 𝑘, the true values of the vector of parameters 𝛽 =

(𝛽0, 𝛽1, 𝛽2, 𝛽3)
′ for the constant, Land, Labour and Capital inputs, the true values of the vector of 

parameters 𝜃 = (𝜃1, 𝜃2, 𝜃3)
′ for spatially-lagged Land, Labour and Capital inputs, and the true 



values of the autoregressive coefficients, 𝜌 and 𝜆, in the dependent variables and among the error 

terms (or the inefficiencies), respectively, as follows 

set.seed(3) 
k      <- 30 
beta   <- c(10, 0.5, 0.3, 0.2) 
theta  <- c(0.6,0.2,0.2) 
rho    <- 0.6 
lambda <- 0.4 

We set the sample size 𝑛 and we generate the longitude and latitude coordinates by using two 

Uniform distributions from 0 to 50 and from −70 to 20, i.e. 𝒰(0,50) and 𝒰(−70,20), respectively, 

n      <- 500 
coords <- cbind(long = runif(n,0,50), lat = runif(n,-70,20)) 
head(coords) 

##           long       lat 

## [1,]  8.402076 -43.33272 

## [2,] 40.375820 -49.23735 

## [3,] 19.247118  12.29245 

## [4,] 16.386716 -40.08144 

## [5,] 30.105034 -19.92414 

## [6,] 30.219703 -17.64876 

and we generate an 𝑛-dimensional Identity matrix and the weighting matrix 𝑊 by using some 

functions into the spdep package as follows 

I_n  <- as(diag(n), "CsparseMatrix") 
nb   <- knn2nb(knearneigh(coords, k = k, longlat=TRUE)) 
W    <- as(nb2mat(nb, style="W"), "CsparseMatrix") 

In particular, the function knearneigh provides a list of class 𝑘𝑛𝑛 with the information into the 

first member of the region number ids to define the nearest neighbours for each random variable. 

The argument longlat=TRUE selects the Great Circle geographical distances among pairs of 

units in space. The knn2nb function transforms the object of class 𝑘𝑛𝑛 into an object of class 𝑛𝑏 

(neighbour list), while the nb2mat function transforms an object of class 𝑛𝑏 into an 𝑛-

dimensional weighting matrix. The argument style = "W" directly row-normalizes the weights. 



Both the Identity matrix 𝐼𝑛 and the weighting matrix 𝑊 are sparse by using the function 

as(,"CsparseMatrix"). 

Finally, we set the matrix of regressors which include the constant, Land, Labour and Capital 

inputs by drawing numbers from 𝒰(1.5,4) 

X <- cbind(constant = 1, A = runif(n,1.5,4), L = runif(n,1.5,4), K = 
runif(n,1.5,4)) 

This section is devoted to the description, implementation and testing of the Stochastic Frontier 

Analysis models (SFA) and of a recent extension of SFA, called Spatial Stochastic Frontier 

Analysis (SSFA). 

A caveat, however, is mandatory: the number of different techniques proposed in the literature 

for estimating production (or cost) efficiency is wide, differentiating among parametric (as SFA, 

Aigner, Lovell, and Schmidt (1977) and Meeusen and Broeck (1977), R packages Benchmarking, 

frontier), non-parametric (as Data Envelopment Analysis (DEA), Farrell (1957) and Charnes, 

Cooper, and Rhodes (1978), R packages Benchmarking, nonparaeff or FEAR Wilson (2008)) or 

semi-parametric techniques (Park and Simar (1994), Kuosmanen and Kortelainen (2012) and 

Ferrara and Vidoli (2017), R package semsfa). 

If, at first glance, non-parametric techniques seem to be particularly flexible and generalizable, 

the main disadvantage lies precisely in their deterministic nature, since it is not even possible to 

recognize if the difference in terms of efficiency among units is caused by technical inefficiency or 

by exogenous/accidental effects (Fried and Lovell 2008). The parametric model of stochastic 

frontier overcomes the main limits associated with deterministic models, providing a detailed 

analysis of the inefficiency sources that are not directly associated to farm policy and/or random 



disturbances, too. On the other hand, the most significant disadvantage associated with the SFA 

approach is the lack of of flexibility associated with the specification of a given functional form. 

The SFA approach implies the construction of the stochastic optimum frontier, based on an 

underlying production/cost function, identified through the relative comparison of the firm 

performance in a set economic system. The observed deviations from the optimum frontier may 

be split into the combination of two effects: the effect caused by the random noise and the 

technical/cost inefficiency. More formally, the stochastic frontier model can be written as: 

𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽) + 𝑣𝑖 − 𝑢𝑖 , 𝑖 = 1,… , 𝑛 

where 𝑌𝑖 ∈ 𝑅+ is the single output of unit 𝑖, 𝑋𝑖 ∈ 𝑅+
𝑝 is the vector of 𝑝 inputs, 𝑓(⋅) defines a 

production (frontier) relationship between inputs 𝑋 and the single output 𝑌, 𝑣𝑖  is a symmetric 

two-sided error representing random effects, usually assumed Normal 𝑣 ~ 𝑁(0, 𝜎𝑣
2), and 𝑢𝑖 > 0 is 

one-sided error term which represents technical inefficiency, usually assumed Half-Normal (𝑢 ~ 

𝑁+(0, 𝜎𝑢
2). Please note that (i) the inefficiency and the error terms must both be orthogonal to the 

input, output, or to the other variables used in the functional specification, and (ii) it is usually 

assumed that 𝑣 and 𝑢 are each identically independently distributed (i.i.d.). 

Starting from the DGP designed in the previous chapter (same simulation setup, sample size, 

spatial coordinates and spatial weighting matrix), the next step is merely to set up the 

inefficiency (positive) term 𝑢 using the rsn function (sn package) that generates a random 

sample of 𝑛 units from a skew-normal distribution with 1 as location parameter and 4 as the 

scale parameter. 

u  <- abs(rsn(n, 0, 1, 4))  



This hypothesis, namely the independence among production units, can be often violated 

especially in the regional applications where exogenous conditional factors or the different 

resiliencies of specific territories may lead to comparative advantages or disadvantages for units 

within the same region. For this reason, and to test different models of stochastic frontier, the 

inefficiency term 𝑢 has been simulated as dependent by two distinct effects (which in practical 

applications can be substitutive or complementary): (i) a global spatial spillover effect and (ii) a 

drift effect. 

From an economic point of view, therefore, 𝑢2 may catch the spillover effect from which 

neighbouring units may benefit, influencing each other and benefiting from the agglomeration or 

Marshallian atmospheric externalities or may grasp the different resilience of the territories as a 

consequence of an economic shock. More formally, 𝑢2 can be defined as: 𝑢2 = (𝐼𝑛 − 𝜆𝑊)−1 ∗ 𝑢. 

Practically in R, 𝑢2 can be expressed as: 

u2 <- solve(I_n - lambda * W)%*%u  

The second effect, can be found in some regional or agricultural applications, is the drift effect, 

that is linked not so much to the neighbourhood as to the physical position, in terms of latitude 

and longitude, of the units in the analysed region. A different impact on land productivity, for 

example, may be the result of a different spatial distribution of temperatures or rainfall. 

Obviously, the presence of the two spatial effects may or may not overlap depending on the 

application problem. 

Given these premises, we modify 𝑢2 in such a way that the inefficiency of the units is function of 

their absolute position in the region, too, multiplying 𝑢2, previously obtained, with drift 

normalized value function of latitude and longitude. 



drift = 1 - 0.5*(coords[,1] + mean(coords[,1]))*(coords[,2] + mean(coords[,2])) 
u2  <- u2 * drift/mean(drift) 

We have, therefore, all the elements to calculate a simulated 𝑦 (named y_sfa) that takes into 

account the covariates 𝑋 (Land, Labour and Capital inputs as defined in the previous section), the 

random error term, but also an inefficiency term that depends on the neighbourhood and the 

relative position of the single unit in the region. 

y_sfa  <- as.matrix(X%*%beta + eps - u2) 

It is so possible to assess how the standard SFA model help to estimate the simulated DGP and 

whether the basic assumptions regarding errors (i.i.d.) are respected even in the presence of a 

strong component linked to the economic space within which farms produce. Different packages 

are available on CRAN; in this application exercise, benchmarking package has been chosen for 

the large number of options and functions complementary to the main function sfa. Please note 

that, in this package, 𝑋 (first parameter) and 𝑦 (second parameter) must be passed as matrix. 

library(Benchmarking) 
x_sfa = as.matrix(cbind(df$A, df$L, df$K)) 
y_sfa = as.matrix(y_sfa) 
fit.sfa<- sfa(x_sfa,y_sfa) 
summary(fit.sfa) 

##             Parameters   Std.err   t-value  Pr(>|t|) 

## (Intercept)    10.7183   0.43005    24.924     0.000 

## x1              0.5646   0.08844     6.384     0.000 

## x2              0.1849   0.08545     2.164     0.030 

## x3              0.1223   0.08579     1.426     0.154 

## lambda          2.9148   0.43275     6.736     0.000 

## sigma2         5.1373  

## sigma2v =  0.5409906 ;  sigma2u =  4.596338  

## log likelihood =  -887.1153  

## Convergence =  4 ; number of evaluations of likelihood function 24  

## Max value of gradien: 7.733437e-06  

## Length of last step: 0  

## Final maximal allowed step length: 0.33075 

Standard diagnostics of the SFA function (obtained by the usual function summary) reports a 

good adaptation of the model to the data (the estimated 𝛽 are very similar to the simulated ones, 



the intercept is higher - as it must be for the estimation of the productive frontier); different from 

other non-frontier models two key values of this analysis are reported here: 𝜎𝑣
2 (equal to 0.719) 

and 𝜎𝑢
2 (equal to 3.367). They represent, respectively, the estimated variance of the random 

component and the inefficiency; if compared to the total estimated variance (𝜎2 = 4.087) it is 

possible to evaluate how the part of inefficiency (𝜎𝑢
2/𝜎2 = 3.367/4.087 = 82%) is greater than 

the random one (𝜎𝑣
2/𝜎2 = 0.719/4.087 = 18%), as proof of a good adaptation of the model to the 

data and a good differentiation of the units in terms of estimated inefficiency. Standard 

diagnostics, therefore, does not report any warning in the estimated model nor is there any 

standard test available on the basic assumptions. In other terms, the spatial dependence of 

inefficiency is not grasped and this issue may be all the more serious as environmental and 

contextual factors are important in explaining efficiency differentials among different territories. 

To test the spatial autocorrelation among the estimated efficiency, Geary test (through the 

function geary.test of the spdep package) can be used; please note that, in this simulation, 

testing the estimated efficiencies (estimated by the eff function, benchmarking package) or 

residues leads to very similar results since the simulated random part (𝑣) is not spatially 

autocorrelated. 

Wnb <- nb2listw(nb) 
geary.sfa.eff <- geary.test(as.vector(eff(fit.sfa)),listw = Wnb) 
geary.sfa.eff 

##  

##  Geary C test under randomisation 

##  

## data:  as.vector(eff(fit.sfa))  

## weights: Wnb  

##  

## Geary C statistic standard deviate = 21.235, p-value < 2.2e-16 

## alternative hypothesis: Expectation greater than statistic 

## sample estimates: 

## Geary C statistic       Expectation          Variance  

##      0.7468869459      1.0000000000      0.0001420774 



Geary test (equal to 0.743) and Figure 1 show, as expected, a strong spatial autocorrelation in 

efficiency estimates: in particular, the first two figures at the top show respectively the spatial 

distribution and the kernel distribution by quadrant of the efficiencies highlighting a strong 

difference among the quadrants themselves; the graph at the bottom shows the Moran plot. 

 

Figure 1 SFA efficiencies 

Once it has been demonstrated that it is the external conditions that led to greater or lesser 

efficiency and not so much the allocation of the single producer, what method can be used to split 

the territorial from the individual effect? An effective solution for cross-section data - and a 

generalization of the SFA - has been proposed by Fusco and Vidoli (2013) with a method called 

“Spatial Stochastic Frontier Analysis” (SSFA); they proposed to “split the inefficiency term into 

three parts: the first related to spatial peculiarities of the territory in which each single unit 

operates, the second related to the specific production features and the third the random error 



term”. More in deep, Fusco and Vidoli (2013) propose a maximum likelihood solution to this 

model:2 

𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽) + 𝑣𝑖 − (1 − 𝜌∑𝑤𝑖.

𝑖

)�̂�𝑖, 𝑖 = 1, … , 𝑛 

where �̂�𝑖  and 𝑣𝑖  are independently distributed of each other and of the regressors. R package 

ssfa provides the ssfa function that allows to estimate this specific model; please note, in 

particular, the need to indicate the spatial weight matrix in the data_w parameter. 

library(ssfa) 
fit.ssfa <-  ssfa(y_sfa ~ A+L+K , data_w=W, data=df, form = "production", 
par_rho=TRUE, intercept = TRUE) 
summary(fit.ssfa) 

## Spatial Stochastic frontier analysis model 

##  

##                Estimate  Std. Error  z value Pr(>|z|)     

## Intercept   1.04612e+01 1.98829e-01 52.61399  < 2e-16 *** 

## A           8.34315e-01 1.57974e-01  5.28134  < 2e-16 *** 

## L           4.76402e-01 1.51928e-01  3.13572 0.001714 **  

## K           8.18766e-01 1.90999e-01  4.28675  1.8e-05 *** 

## sigmau2_dmu 9.89902e+00 4.80903e-01 20.58426  < 2e-16 *** 

## sigmav2     2.38643e-06 1.58278e-06  1.50774 0.131620     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Pay attention: 

## 1 - classical SFA sigmau2 = sigmau2_dmu + sigmau2_sar: 10.312152 where 

sigmau2_sar: 0.413129 

## 2 - sigma2 = sigmau2_dmu + sigmau2_sar + sigmav2: 13.767977 

##  

## Inefficiency parameter Lambda = sigmau_dmu/sigmav: 4148044.355609 

##  

## Spatial parameter Rho: 0.303932 

##  

## Moran I statistic: 0.141358 

                                                        

2 For homogeneity with Fusco and Vidoli (2013) paper and the SSFA diagnostic, the 

autoregressive coefficient 𝜆 for the error term will be from now on renamed as 𝜌. 



##  

## Mean efficiency: 0.07876 

##  

## LR-test: sigmau2_dmu = 0 (inefficiency has no influence to the model) 

## H0: sigmau2_dmu = 0 (beta_ssfa = beta_ols) 

##  

##      Value Log-Lik 

## ssfa    -1041.3802 

## ols      -914.6648 

##  

## Value LR-Test: -253.431 p-value 0 

##  

## AIC: 2110.76, (AIC for lm: 1837.33) 

Even in this case, the 𝛽 parameters of the simulations have been estimated correctly3, but the 

most interesting issue to consider concerns the opportunity to split the inefficiency variance 𝜎𝑢
2 

into two terms: the individual part (named by authors 𝜎𝑑𝑚𝑢
2 ) and a neighbourhood related one 

(named 𝜎𝑠𝑎𝑟
2 ). 

In the specific simulation, please note how the individual effect (𝜎𝑑𝑚𝑢
2 = 1.417) is more 

important than the the spatial one (𝜎𝑠𝑎𝑟
2 = 0.353), but this part still represents about 25% of the 

individual effect. Another key parameter to take into account is the spatial parameter 𝜌 equal to 

0.857; in this case, therefore, SSFA diagnostic shows a strong spatial correlation between the 

inefficiency estimates (please note that the function eff.ssfa estimate the efficiency of each 

producer without spatial effects). Replicating the Geary test on the SSFA efficiency (equal to 

1.033) and analysing Figure 2, it can be noted how the SSFA model has succeeded in isolating the 

                                                        

3 Please note the higher value of the intercept; as stated by Vidoli et al. (2016) it may occur a 

“shift in the production curve with respect to the SFA as a consequence of the isolation of the spatial 

effect, transforming the average value of 𝛽0 into a multiplicity of individual effects”. 



territorial effect from the efficiency estimates; of course, the differences between the SFA and 

SSFA estimates may be of interest in the study of the determinants of local development. 

geary.ssfa.eff <- geary.test(as.vector(eff.ssfa(fit.ssfa)),listw = Wnb) 
geary.ssfa.eff 

##  

##  Geary C test under randomisation 

##  

## data:  as.vector(eff.ssfa(fit.ssfa))  

## weights: Wnb  

##  

## Geary C statistic standard deviate = 2.2942, p-value = 0.01089 

## alternative hypothesis: Expectation greater than statistic 

## sample estimates: 

## Geary C statistic       Expectation          Variance  

##      0.9443271280      1.0000000000      0.0005888975 

 

Figure 2 SSFA efficiencies 

 

 



3. Controlling for Unobserved Spatial Heterogeneity 

In this chapter we explain how to fit and test spatial production models when farm data exhibit 

spatial heterogeneity. The form of spatial heterogeneity is typically unknown, i.e. unobserved, 

and it can be ascribed either to mean instability or to heteroskedasticity. The omission of such 

spatial effects leads to biased inference (Anselin 1988; LeSage and Pace 2009; Le Gallo 2014). 

Mean instability may imply local clustering of the values of a variable. In the case of agricultural 

production, mean instability implies that the territory can be divided into clusters of farms each 

one using the same production technology. In other words, the production function coefficients 

differ according to a number of distinct unknown spatial production regimes (goupwise 

heterogeneity), see e.g. Anselin (2010). As explained in Billé, Salvioni, and Benedetti (2018), 

these local clusters in technology can emerge as a result of dynamic interactions among site-

specific environmental variables and farmer decision making about technology. For example, 

farmers usually choose to grow those varieties that are best suited to the environmental 

conditions in which the farm operates. In turn, the choice of a specific variety is often connected 

to specific management systems such as water management or timing of harvesting. The 

technology prevailing in each local technology cluster is the efficient solution to the specific 

techno-economic problem faced by farms operating in that portion of the territory. This view is 

consistent with evolutionary theories (Nelson and Winter 1982; Dosi 1988) according to which 

firms cannot be assumed to operate using a single common production function. 

The zoning of spatial regimes in farm technologies is largely unknown and their identification 

needs comprehensive spatial modelling of soil, agronomical and climatic properties, including 

their changes through time, hence the processing of large quantities of data acquired at a very 



fine spatial resolution, while researchers can usually rely only on a few control variables. An 

alternative way to identify the spatial regimes in farm technologies relies on the use of the Earth 

coordinates of latitude and longitude to proxy the micro-geographic determinants of production 

that are unknown to the econometrician. In subsection 3.1 we show a possible way to identify 

unobserved spatial regimes and then explain how to properly estimate more flexible spatial 

models, see Billé, Benedetti, and Postiglione (2017). 

Spatial heterogeneity may also arise due to heteroskedasticty, that is when the variances of error 

temrs vary over space causing the instability of the functional form. One solution to this problem 

has been recently proposed by Chasco, Le Gallo, and López (2018). Also in the case of 

heteroskedasticity, the territory can then be divided into clusters of farms characterized by 

significantly different groupwise variances, i.e. unobserved spatial groupwise heteroskedasticity. 

The identification of such clusters in the error terms is not considered in Billé, Salvioni, and 

Benedetti (2018). 

In subsection 3.2 we show how another possible solution to the problem of the identification of 

contiguous spatial clusters is to use a graph-based approach, which captures the adjacency 

relations between object, farms in our case. Differently from the previous case, in this section 

spatial homogeneous areas are not defined according to a functional relationship, rather on some 

farm or territorial characteristics likewise to the standard cluster methods. 

In both the following subsections we basically assume the same sample size 𝑛 = 500, generation 

of the spatial coordinates, spatial weighting matrices, generation of the regressors 𝑋 and of the 

innovations 𝜖 of section 3. By setting the same seed we can include in our new database the 

original 𝑋. We also consider the same simulation setup for the identification of the clusters as in 



the following. Let first define the dataframe with the coordinates of section 2 and with an 

indicator variable that associates each point to a cluster 

dataset   <- as.data.frame(coords) 
set.seed(3) 
dataset$A <- runif(n,1.5,4) 
dataset$L <- runif(n,1.5,4) 
dataset$K <- runif(n,1.5,4) 
dataset$clu <- ifelse(dataset$long < 20 & dataset$lat < -20 , 1, 0) 
dataset$clu <- ifelse(dataset$long > 20 & dataset$lat < -40 , 2, dataset$clu) 
dataset$clu <- ifelse(dataset$long < 20 & dataset$lat > -40 , 3, dataset$clu) 
dataset$clu <- ifelse(dataset$long > 20 & dataset$long < 40 & dataset$lat > -40 & 
dataset$lat < 10, 4, dataset$clu) 
dataset$clu <- ifelse(dataset$long > 20 & dataset$lat > 0   , 5, dataset$clu) 
dataset$clu <- ifelse(dataset$long > 40 & dataset$lat > -40 , 5, dataset$clu) 

Figure 1 shows the generated clusters/regimes in space. Note that these spatial regimes can be 

also not geographically well-defined, i.e. points that belong to the same cluster can be also 

sparsely-distributed in space. For each of them we need to assume a different spatial production 

function. 

 



Figure 1 Example of Spatial Regimes 

Suppose we have two different true DGPs: (i) an OLS model with regimes, (ii) a SARAR/SAC 

model with regimes. Then, the following codes generate different production functions for 

different clusters 

beta1 <- c(13,0.5,0.3,0.2) 
beta2 <- c(11,0.8,0.1,0.1) 
beta3 <- c(9,0.3,0.2,0.5) 
beta4 <- c(7,0.4,0.3,0.3) 
beta5 <- c(5,0.2,0.6,0.2) 
 

dataset$y_ols <- ifelse(dataset$clu==1,13 + 0.5*dataset$A + 0.3*dataset$L + 
0.2*dataset$K + eps, 0) 
dataset$y_ols <- ifelse(dataset$clu==2,11 + 0.8*dataset$A + 0.1*dataset$L + 
0.1*dataset$K + eps, dataset$y_ols) 
dataset$y_ols <- ifelse(dataset$clu==3,9 + 0.3*dataset$A + 0.2*dataset$L + 
0.5*dataset$K + eps, dataset$y_ols) 
dataset$y_ols <- ifelse(dataset$clu==4,7 + 0.4*dataset$A + 0.3*dataset$L + 
0.3*dataset$K + eps, dataset$y_ols) 
dataset$y_ols <- ifelse(dataset$clu==5,5 + 0.2*dataset$A + 0.6*dataset$L + 
0.2*dataset$K + eps, dataset$y_ols) 
dataset$y_sac <- ifelse(dataset$clu==1,as.matrix(A_rho_inv%*%(X%*%beta1 + 
B_lambda_inv%*%eps)), 0) 
dataset$y_sac <- ifelse(dataset$clu==2,as.matrix(A_rho_inv%*%(X%*%beta2 + 
B_lambda_inv%*%eps)), dataset$y_sac) 
dataset$y_sac <- ifelse(dataset$clu==3,as.matrix(A_rho_inv%*%(X%*%beta3 + 
B_lambda_inv%*%eps)), dataset$y_sac) 
dataset$y_sac <- ifelse(dataset$clu==4,as.matrix(A_rho_inv%*%(X%*%beta4 + 
B_lambda_inv%*%eps)), dataset$y_sac) 
dataset$y_sac <- ifelse(dataset$clu==5,as.matrix(A_rho_inv%*%(X%*%beta5 + 
B_lambda_inv%*%eps)), dataset$y_sac) 
head(dataset) 

##        long       lat        A        L        K clu    y_ols    y_sac 

## 1  8.402076 -43.33272 1.920104 2.240758 1.540459   1 12.80053 37.03793 

## 2 40.375820 -49.23735 3.518791 2.076740 1.891127   2 12.94834 33.57304 

## 3 19.247118  12.29245 2.462356 3.785901 1.758021   3 11.45821 29.45562 

## 4 16.386716 -40.08144 2.319336 2.331071 2.664323   1 15.58018 39.85193 

## 5 30.105034 -19.92414 3.005252 2.890996 2.832992   4 10.10911 24.67326 

## 6 30.219703 -17.64876 3.010985 2.954201 2.368872   4 10.01893 24.28573 

where the column “clu” refers to the specific cluster and the columns “y_ols” and “y_sac” to the 

generated dependent variables in the linear and spatial case, respectively. In the following 



subsection we formally define a SARAR/SAC model with regimes. Alternative spatial models with 

regimes can be straightforwardly specified. 

3.1. Spatial Regimes 

In this subsection we explain how to estimate spatial autoregressive models with pre-identified 

production regimes; the way in which we can identify unobserved spatial regimes can be made 

with different approaches, like e.g. mixture models, see e.g. Greene (2005) and Emvalomatis 

(2012), or iteratively locally weighted regressions, see Billé, Benedetti, and Postiglione (2017) 

and Billé, Salvioni, and Benedetti (2018). The procedure in Billé, Benedetti, and Postiglione 

(2017) and Billé, Salvioni, and Benedetti (2018) is based on a continuous smoothing updating 

algorithm of the weights used to repeated local estimations, by making use of the Wald test 

statistics to simultaneously compare vector of beta coefficients. The algorithm is available upon 

request. 

Let’s assume we know the form of the clusters in space. Then, a SARAR/SAC model with regimes 

can be defined in the following way 

�̇� = 𝜌𝑊1 �̇� + �̇� �̇� + �̇� �̇� = 𝜆𝑊2 �̇� + �̇� �̇� ∼ 𝒩(0, 𝜎�̇�
2𝐼) 

where �̇� = {�̇�
𝑗
} is a partitioned 𝑛-dimensional column vector of dependent variables with generic 

vector element �̇�
𝑗
 for 𝑗 = 1, … , 𝑐 and 𝑐 is the total number of regimes, �̇� = {�̇�𝑗} is an 𝑛 × (𝑘 × 𝑐) 

block-diagonal matrix with generic matrix element �̇�𝑗  for 𝑗 = 1,… , 𝑐, �̇� = {�̇�
𝑗
} is (𝑘 × 𝑐) 

partitioned column vector of parameters with generic vector element �̇�
𝑗
 for 𝑗 = 1,… , 𝑐, �̇� = {�̇�𝑗} 

is a partitioned 𝑛-dimensional column vector with generic element �̇�𝑗 ∼ 𝒩(0, 𝜎�̇�𝑗
2 𝐼𝑛𝑗) for 𝑗 =



1, … , 𝑐, while (𝜌, 𝜆) and (𝑊1,𝑊2) are defined in section 3. By letting 𝜌 = 𝜆 = 0 the model is 

defined as a linear model (OLS) with regimes. 

By using the clusters generated in Figure 1, we now estimate the OLS model with and without 

regimes and the SARAR/SAC model with and without regimes in the following way 

CLU <- as.factor(dataset$clu) 
fit.ols   <- lm(dataset$y_ols ~ dataset$A + dataset$L + dataset$K) 
fit.ols.r <- lm(dataset$y_ols ~ (CLU:(dataset$A + dataset$L + dataset$K + CLU)) + 
0) 
fit.sac <- sacsarlm(dataset$y_sac ~ dataset$A + dataset$L + dataset$K, 
                    data=dataset,listw=listw,type="sac",method="eigen") 
fit.sac.r <- sacsarlm(dataset$y_sac ~ (CLU:(dataset$A + dataset$L + dataset$K + 
CLU))  
                      + 0,data=dataset,listw=listw,type="sac",method="eigen") 

where 𝑓𝑖𝑡. 𝑜𝑙𝑠. 𝑟 and 𝑓𝑖𝑡. 𝑠𝑎𝑐. 𝑟 are the linear and spatial models with regimes, respectively. By 

using the function “summary” we can see e.g. the difference in the estimates between the spatial 

model with regimes (correct specification) and the spatial model without regimes as follows 

summary(fit.sac) 

##  

## Call: 

## sacsarlm(formula = dataset$y_sac ~ dataset$A + dataset$L + dataset$K,  

##     data = dataset, listw = listw, type = "sac", method = "eigen") 

##  

## Residuals: 

##       Min        1Q    Median        3Q       Max  

## -8.081323 -1.064716  0.097549  1.097462  7.355392  

##  

## Type: sac  

## Coefficients: (asymptotic standard errors)  

##             Estimate Std. Error z value Pr(>|z|) 

## (Intercept) 18.46596   14.81133  1.2467   0.2125 

## dataset$A   -0.82323    0.58894 -1.3978   0.1622 

## dataset$L   -2.53457    2.13584 -1.1867   0.2354 

## dataset$K   -0.18637    0.14083 -1.3234   0.1857 

##  

## Rho: 0.68998 

## Asymptotic standard error: 0.28374 

##     z-value: 2.4317, p-value: 0.015026 

## Lambda: 0.83349 

## Asymptotic standard error: 0.18597 

##     z-value: 4.4819, p-value: 7.3987e-06 



##  

## LR test value: 463.07, p-value: < 2.22e-16 

##  

## Log likelihood: -1116.847 for sac model 

## ML residual variance (sigma squared): 4.8025, (sigma: 2.1915) 

## Number of observations: 500  

## Number of parameters estimated: 7  

## AIC: 2247.7, (AIC for lm: 2706.8) 

summary(fit.sac.r) 

##  

## Call:sacsarlm(formula = dataset$y_sac ~ (CLU:(dataset$A + dataset$L +  

##     dataset$K + CLU)) + 0, data = dataset, listw = listw, type = "sac",  

##     method = "eigen") 

##  

## Residuals: 

##       Min        1Q    Median        3Q       Max  

## -3.331635 -0.714640  0.022138  0.723094  2.782272  

##  

## Type: sac  

## Coefficients: (asymptotic standard errors)  

##                  Estimate Std. Error z value  Pr(>|z|) 

## CLU1           36.5398258  3.6448095 10.0252 < 2.2e-16 

## CLU2           32.8433967  3.6672349  8.9559 < 2.2e-16 

## CLU3           29.2626066  2.8784764 10.1660 < 2.2e-16 

## CLU4           28.3887092  3.7131831  7.6454 2.087e-14 

## CLU5           18.6113983  3.5142146  5.2960 1.183e-07 

## CLU1:dataset$A -0.1747229  0.5781469 -0.3022   0.76249 

## CLU2:dataset$A -0.0168871  0.3791063 -0.0445   0.96447 

## CLU3:dataset$A -0.1388111  0.4762281 -0.2915   0.77068 

## CLU4:dataset$A -0.0886247  0.6568061 -0.1349   0.89267 

## CLU5:dataset$A  0.4818576  0.4812195  1.0013   0.31667 

## CLU1:dataset$L  0.9166597  0.9939641  0.9222   0.35641 

## CLU2:dataset$L  0.5052904  0.9412775  0.5368   0.59140 

## CLU3:dataset$L -0.0339779  0.4444444 -0.0765   0.93906 

## CLU4:dataset$L -1.3998376  0.6727553 -2.0808   0.03746 

## CLU5:dataset$L -0.2251711  0.5023752 -0.4482   0.65400 

## CLU1:dataset$K  0.0816411  0.1743796  0.4682   0.63966 

## CLU2:dataset$K -0.0144752  0.1528647 -0.0947   0.92456 

## CLU3:dataset$K  0.0105306  0.1235978  0.0852   0.93210 

## CLU4:dataset$K  0.0034255  0.1809109  0.0189   0.98489 

## CLU5:dataset$K -0.3080458  0.1398329 -2.2030   0.02760 

##  

## Rho: 0.017777 

## Asymptotic standard error: 0.054341 

##     z-value: 0.32714, p-value: 0.74356 

## Lambda: 0.71 

## Asymptotic standard error: 0.079216 

##     z-value: 8.9629, p-value: < 2.22e-16 

##  

## LR test value: 21.358, p-value: 2.3021e-05 

##  



## Log likelihood: -730.6234 for sac model 

## ML residual variance (sigma squared): 1.0628, (sigma: 1.0309) 

## Number of observations: 500  

## Number of parameters estimated: 23  

## AIC: 1507.2, (AIC for lm: 1524.6) 

As it can be observed, the significance of the estimated beta coefficients may change with respect 

to the type of cluster we consider. In this particular case, according to the results of the spatial 

model without regimes, only the variable Capital 𝐾 is significant in all the clusters considered, but 

the significance level depends on the different clusters. Interestingly, one or more spatial 

autocorrelation coefficients might be no more statistically significant, as 𝜌 in this case. Details on 

this aspect have been shown in Billé, Benedetti, and Postiglione (2017). 

To test if the partition of the spatial data, i.e. clusters/regimes, is statistically significant one can 

use the Chow test, see Chow (1960), and the Spatial Chow test, see Anselin (1990), for the 

presence of (spatial) structural breaks. Indeed, identifying clusters in space, by comparing e.g. the 

significance of the beta coefficients, is simply a way to econometrically finding structural breaks 

in a spatial process. The statistics of the Chow test and the Spatial Chow test are defined, 

respectively, as follows 

𝐶 =
(𝑒𝑟

′𝑒𝑟 − 𝑒𝑢
′ 𝑒𝑢)/𝑘

𝑒𝑢′ 𝑒𝑢/(𝑛 − 2𝑘)
∼ 𝐹𝑘,𝑛−2𝑘 

𝐶𝑠 =
(𝑒𝑟

′𝛹−1𝑒𝑟 − 𝑒𝑢
′𝛹−1𝑒𝑢)

𝜎2
∼ 𝜒𝑘 

where 𝑒𝑟 is the vector of residuals from the restricted model (model without regimes), 𝑒𝑢 is the 

vector of residuals from the unrestricted model (model with regimes), 𝛹 is the variance-

covariance matrix of the spatial model and 𝜎2 is the error variance for either the restricted 

model, the unrestricted model, or both. 



The functions of the Chow test and the Spatial Chow test in R, see Anselin (2005), are written as 

follows 

chow.test <- function(rest,unrest) 
{ 
  er <- residuals(rest) 
  eu <- residuals(unrest) 
  er2 <- sum(er^2) 
  eu2 <- sum(eu^2) 
  k <- rest$rank 
  n2k <- rest$df.residual - k 
  c <- ((er2 - eu2)/k) / (eu2 / n2k) 
  pc <- pf(c,k,n2k,lower.tail=FALSE) 
  list(c,pc,k,n2k) 
} 
spatialchow.test <- function(rest,unrest) 
{ 
  lrest <- rest$LL 
  lunrest <- unrest$LL 
  k <- rest$parameters - 2 
  spchow <- - 2.0 * (lrest - lunrest) 
  pchow <- pchisq(spchow,k,lower.tail=F) 
  list(spchow,pchow,k) 
} 

Both of them compare the restricted model (without regimes) with the unrestricted model (with 

regimes). The spatial version takes the spatial dependence into account. 

Ct.ols <- chow.test(fit.ols,fit.ols.r)[[2]] 
Ct.ols 

## [1] 3.837563e-126 

SCt.sac <- spatialchow.test(fit.sac,fit.sac.r)[[2]] 
SCt.sac 

## [1] 1.05556e-164 

As we can observe from the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠, both the tests reject the null hypothesis of absence of 

spatial regimes. 



3.2. Spatially Constrained Clustering 

In this section the Skater procedure (Spatial K’luster Analysis by TreeEdgeRemoval, Assuncao et 

al. (2006)) for the identification of homogeneous contiguous areas according to a spatial 

neighborhood is described; differently from the previous one, in this section a regressive 

relationship between the output and the inputs is not a priori assumed and therefore spatial 

homogeneous areas are not defined according to a functional relationship, but to some 

characteristics likewise to the standard cluster methods. 

In other terms, the described method can be useful in determining contiguous spatial clusters in 

which some contextual variables, exogenous to a given production process, describe a similar 

level of demand and/or supply of the territory. 

From an application point of view, starting from the DGP simulated in the previous section, we 

must therefore construct some contextual exogenous variables, correlated with E(Y|X), that 

represent some factors external to the farm (such as weather or different production areas). 

Given that, the variables Z1 and Z2 have been calculated according to the following steps: (1) Z1 

and Z2 are generated, (2) the contextual variables are centered and scaled, (3) the correlation 

among variables is removed according the Cholesky matrix transformation,4 (4) a variance-

covariance matrix is set and then (5) it’s used in order to transform the original Z1 and Z2; finally 

(6) the operation of centering and scale is removed. 

                                                        

4 Cholesky matrix transformation let to transform uncorrelated variables into correlated ones 

according to a set variance-covariance matrix, but it is also useful for reverse operation. 



### Step 1 
ZZ <- cbind(dataset$y_sac /dataset$L, 
            Z1=rnorm(dim(dataset)[1]), 
            Z2=rnorm(dim(dataset)[1])) 
### Step 2 
mns <- apply(ZZ, 2, mean) 
sds <- apply(ZZ, 2, sd) 
ZZ2 <- sweep(ZZ, 2, mns, FUN="-") 
ZZ2 <- sweep(ZZ2, 2, sds, FUN="/") 
### Step 3 
v.obs <- cor(ZZ2) 
ZZ3 <- ZZ2 %*% solve(chol(v.obs)) 
### Step 4 
r <- cbind( c(1, 0.7, 0.3), 
            c(0.7, 1, 0.03), 
            c(0.3, 0.03, 1)) 
### Step 5 
ZZ4 <- ZZ3 %*% chol(r) 
### Step 6 
ZZ4 <- sweep(ZZ4, 2, sds, FUN="*") 
ZZ4 <- sweep(ZZ4, 2, mns, FUN="+") 
dataset$Z1 = ZZ4[,2] 
dataset$Z2 = ZZ4[,3] 

Several analytical regionalisation methods (also known as “spatially constrained clustering”) have 

been proposed in literature (see e.g. (Murtagh 1985) and (Duque, Ramos, and Suriñach 2007)); 

Skater procedure, proposed in the spdep package, offers many advantages, including simplicity 

of application, the hierarchical nature of the method and the possibility of binding the minimum 

number of units within each cluster. 

So let’s use the simulated exogenous variables Z: 

datasetx <- dataset[,c("Z1","Z2")]  

and load the coordinates using the spdep library; from these coordinates, the neighbours list 

have been calculated thanks to tri2nb function. 

library(spdep) 
coords = coordinates(cbind(dataset$lon,dataset$lat)) 
neighbours = tri2nb(coords, row.names = NULL) 



We, therefore, have all the objects that allow us to practically estimate the contiguous 

homogeneous areas according to the Skater algorithm; first of all, a cost scheme has to be set 

given the neighbourhood using the nbcosts function 

lcosts <- nbcosts(neighbours, datasetx) 

After computed the cost of each edge - as the distance between it nodes - the neighbours list with 

spatial weights has to be set as: 

nb.w <- nb2listw(neighbours, lcosts, style="B") 

The weighted neighbours list (plotted in Figure 2, left plot) is often - in the practical applications - 

too complex to evaluate; the “minimum spanning tree” algorithm - as stated before - allows to 

simplify the structure of the initial graph with the aim of achieving a minimum path among 

units/nodes. 

mst.bh <- mstree(nb.w,5) 

Figure 2 (right plot) highlights how all units are always connected and how these links are 

reduced compared to the original neighbourhood ones. 

par(mar=c(0,0,0,0)) 
par(mfrow=c(1,2)) 
plot(nb.w, coords) 
plot(mst.bh, coords, col=2, cex.lab=.5, cex.circles=0.035, fg="blue", bty="n") 



 

Figure 2 Full weighted neighbours and minimum spanning tree 

It is now possible to apply the Skater clustering procedure; being a hierarchical procedure 

derived from the k-means algorithm, - in addition to the demand/supply variables and the 

neighbourhood structure - it requires the indication of the preferred number of homogeneous 

clusters in the ncuts argument. Other important options are available in the skater function: 

the most useful one - in our opinion for application purposes - is crit that allows to indicate the 

minimum number of units that must be present in each cluster in order to do not identify clusters 

too small or affected by outlier data in the demand/supply variables. For the sake of clarity, three 

thresholds/cuts have been chosen. 

ska1 <- skater(mst.bh[,1:2], datasetx, ncuts=4, crit=30) 
ska2 <- skater(mst.bh[,1:2], datasetx, ncuts=5, crit=30) 
ska3 <- skater(mst.bh[,1:2], datasetx, ncuts=6, crit=30) 
dataset$cluster_SKATER1 = ska1$groups 
dataset$cluster_SKATER2 = ska2$groups 
dataset$cluster_SKATER3 = ska3$groups 



Figure 3 shows the units attribution varying parameter k; a reasonable stability of the solutions 

can be noted. 

 

Figure 3 Skater cluster varying k 

The obtained spatial clusters can therefore be used to describe homogeneous demand areas or - 

for example - be prodromal to subsequent regressive or causal analyses. Similarly to the previous 

section, we have chosen to use these spatial clusters in a regressive model to better explain the 

spatial differences in the relationship between y and X among units. 

SKAT <- as.factor(dataset$cluster_SKATER1) 
ly = log(dataset$y_sac) 
lA = log(dataset$A) 
lL = log(dataset$L) 
lK = log(dataset$K) 
fit.ols    <- lm(ly ~ lA + lL + lK) 
fit.ols.sk <- lm(ly ~ (SKAT:(lA + lL + lK + SKAT)) + 0) 



Tables 1 and 2 and their relative fitting measures (Adjusted R2 respectively equal to 0.6494513 

and 0.9993578) show how - for construction - the augmented model can better describe the 

relationships between inputs and output. 

Table 1 OLS 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 4.217 0.037 112.457 0.000 
lA -0.378 0.021 -17.592 0.000 
lL -0.527 0.021 -25.184 0.000 
lK 0.004 0.022 0.193 0.847 
Table 2 OLS con cluster 

 Estimate Std. Error t value Pr(>|t|) 
SKAT1 3.722 0.087 42.625 0.000 
SKAT2 3.715 0.052 71.245 0.000 
SKAT3 3.636 0.186 19.507 0.000 
SKAT4 4.292 0.113 37.920 0.000 
SKAT5 3.291 0.206 15.989 0.000 
SKAT1:lA -0.544 0.029 -19.015 0.000 
SKAT2:lA -0.105 0.034 -3.071 0.002 
SKAT3:lA -0.468 0.035 -13.275 0.000 
SKAT4:lA 0.013 0.101 0.129 0.898 
SKAT5:lA 0.046 0.105 0.435 0.664 
SKAT1:lL 0.025 0.070 0.360 0.719 
SKAT2:lL -0.068 0.060 -1.127 0.260 
SKAT3:lL -0.025 0.135 -0.188 0.851 
SKAT4:lL -0.929 0.120 -7.731 0.000 
SKAT5:lL 0.048 0.176 0.270 0.787 
SKAT1:lK 0.020 0.026 0.785 0.433 
SKAT2:lK 0.011 0.027 0.401 0.688 
SKAT3:lK 0.043 0.030 1.417 0.157 
SKAT4:lK -0.032 0.046 -0.699 0.485 
SKAT5:lK 0.020 0.048 0.415 0.678 

What we are interested in is not only a better adaptation of the model to the data - as it is 

tautological to expect from our simulation - but also a lower spatial correlation in the estimation 

residuals. The Moran’s I test confirms that the spatial autocorrelation in residuals of the 

augmented model reduces by half respect to the linear production model (function 

lm.morantest). 



lm.morantest(fit.ols, nb2listw(neighbours, style="W")) 

##  

##  Global Moran I for regression residuals 

##  

## data:   

## model: lm(formula = ly ~ lA + lL + lK) 

## weights: nb2listw(neighbours, style = "W") 

##  

## Moran I statistic standard deviate = 24.608, p-value < 2.2e-16 

## alternative hypothesis: greater 

## sample estimates: 

## Observed Moran I      Expectation         Variance  

##     0.6320120827    -0.0060215765     0.0006722517 

lm.morantest(fit.ols.sk, nb2listw(neighbours, style="W")) 

##  

##  Global Moran I for regression residuals 

##  

## data:   

## model: lm(formula = ly ~ (SKAT:(lA + lL + lK + SKAT)) + 0) 

## weights: nb2listw(neighbours, style = "W") 

##  

## Moran I statistic standard deviate = 11.918, p-value < 2.2e-16 

## alternative hypothesis: greater 

## sample estimates: 

## Observed Moran I      Expectation         Variance  

##     0.2744713564    -0.0228614607     0.0006223683 
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