
Time–Critical Wireless Networked Embedded
Systems: feasibility and experimental

assessment
Francesco Branz∗, Riccardo Antonello, Luca Schenato, Fellow, IEEE, Federico Tramarin, Member, IEEE,

and Stefano Vitturi, Senior Member, IEEE

Abstract—In this paper we investigate an innovative so-
lution, to implement high sampling frequency industrial
control by means of networked embedded systems con-
nected via WiFi. The basic idea relies on a co–design
approach for the control application, which is then able
to adapt its sampling period, as well as to tune the Wi-
Fi parameters, according to the feedback coming from
the network. To this end, we implemented a cross–layer
architecture acting at both application and data–link layers,
that features a robust frame–delay state estimator, a time–
efficient communication policy, and a specific tuning of
the critical protocol parameters. Suitable hardware–in–the–
loop experiments have been carried out exploiting two
different embedded systems available off–the–shelf. The
preliminary results, obtained from an extensive experimen-
tal campaign, are encouraging since they show that the pro-
posed architecture enables industrial control applications
requiring a sampling rate up to 1000 Hz, even in presence
of communication impairments.

I. INTRODUCTION

NETWORKED embedded systems for industrial control,
that rely on wireless networks support, provide several

advantages over those based on wired counterparts, like im-
proved flexibility and mobility, reduced maintenance costs
and configuration efforts. Unfortunately, general–purpose and
best effort wireless networks, like the IEEE 802.11 Wireless
LANs widespread in home/office scenarios, revealed to be not
always able to deal with demanding applications, due to their
intrinsic unreliability and non–determinism. This has triggered
the design of new, better performing, protocols and/or the
modifications and tuning of the existing ones, to cope with
the specific application requirements.

Networked embedded systems find a straightforward field
of application in cyber–physical systems, that are character-
ized by an ever–growing interest, where several collaborating
computational devices have to handle time, safety or mission–
critical physical entities or processes [1]. This has become
even more evident with the efforts towards Industry 4.0 and
the rise of the Industrial Internet of Things (IIoT) paradigm

Francesco Branz, Riccardo Antonello and Luca Schenato are with the
Department of Information Engineering, University of Padova, Italy

Federico Tramarin is with the Department of Engineering “Enzo Fer-
rari”, University of Modena e Reggio Emilia, Modena, Italy

Stefano Vitturi is with the National Research Council of Italy, Padova,
Italy

This work is partially supported by University of Padova, projects
MAgIC SCHE SID17 01 and INTERACT TRAM SID19 01.

in smart manufacturing systems, to improve productivity,
efficiency, safety, and intelligence [2], [3].

In the above scenario, the advent of low–cost networked
embedded systems with steadily increasing computational
power and pervasive wireless connectivity has allowed to
tackle new industrial applications, such as the edge and fog
computing [4], characterized by a tight cooperation among
lightweight computing nodes. Within smart factory domains,
many control tasks are still critical, both in terms of timeliness
and reliability, having stringent computation and networking
requirements to ensure the adequate performance level. This
results even more demanding in case applications have to
be accomplished by networked computational nodes, possibly
distributed within the industrial site. Legacy wireless network
protocols may result inadequate for such applications, as
pointed out by several analyses and practical experiments, due
to their intrinsic unreliability and to the lack of determinism,
that may compromise performance indicators such as end–
to–end latency, network–wide synchronization and high–speed
information delivery.

A. Essential Related Work

To address the aforementioned issues, several industrial
wireless protocols have been proposed, based on the IEEE
802.15.4 and 802.15.1 physical layers, to support the required
performance figures also, and especially, for the case of
networked embedded systems. As an example, the widespread
WirelessHart [5], ISA100.11a [6], 6TiSCH [7] and WISA [8]
are all able to support real–time control applications, thanks to
the adoption of purposely designed time–slotted media access
policies (i.e. TDMA) and suitable transmission scheduling.
However, although they revealed effective typically in process
automation applications with modest sampling frequencies
[9]–[12], the intrinsic limitations of the underlying physical
layers make them unsuitable for the most demanding and
critical scenarios.

In this perspective, the widespread IEEE 802.11–based Wi-
Fi networks [13], are expected to be capable of sustaining
very high data–rates by design, theoretically allowing to tame
high–bandwidth control applications with sampling frequency
in the order of 1 kHz or more. Meaningful examples, in
this respect, are force/current control applications such as
those described in [14] and [15]. Moreover, WiFi networks
are widespread, and currently available even for low–cost

and low–resources embedded systems. For these networks,
however, shortcomings come from the legacy channel access
and frame delivery policies established by the IEEE 802.11
specifications, that rely on a distributed randomized algorithm
[16], which inherently undermine the implementation of time–
critical applications.

The Wi-Fi behavior has been comprehensively analyzed,
and the protocol potentialities to support demanding industrial
control applications can be found in [17]–[19]. For example, a
low frequency control application exploiting Wi-Fi is reported
in [20]. The scientific literature also provides suggestions
to overcome the unbounded delays and data losses experi-
enced with conventional Wi-Fi architectures [21]–[23]. Indeed,
several contributions have been developed to provide high
reliability and low latency over Wi–Fi, which include for
instance the EU funded project FlexWare [24]–[26], the recent
WIA-FA standard [27], and also the commercial solution
“industrial WLAN” (iWLAN) [28], [29].

More recently, the development of innovative rate selection
algorithms [30] have provided significant improvements to the
Wi–Fi performance, allowing to cope with variations of the
wireless link quality to maximize timeliness and reliability,
while strictly considering the deadline imposed by real–time
tasks. A further significant contribution is given by [31], where
the authors propose a new data–link layer protocol, based
on a TDMA technique conceived to meet demanding real–
time constraints, with an improved determinism in channel
access and data transfer. Unfortunately, this solution, although
appealing, is difficult to implement for commercially available
embedded systems, since these latter ones, usually, do not
allow to modify their protocol stacks. Moreover, the adoption
of a new data link layer protocol on such devices could
negatively impact on their computational capabilities.

II. CONTRIBUTION

The solutions described above imply significant tuning of
the lower protocol levels and/or the design of new data–link
layers to amend the legacy Wi-Fi standard, thus obtaining
bounded latency and low packet delivery time, as imposed by
the typical industrial applications. Indeed, many tasks executed
by industrial controllers rely on cyclic schedules, based on
constant static periods, regardless of data delivery and network
protocols constraints.

This work, conversely, exploits an innovative approach
somehow complementary to the aforementioned ones, based
on co–design methods, as theoretically presented and formally
described in [32]. The basic idea is to dynamically adapt both
the application sampling period and the main Wi-Fi parame-
ters, on the basis of the feedback received from the channel.
The proposed architecture clearly relies on the estimation of
the plant behavior by means of a digital twin approach, where
model–predictive control techniques are adopted [33], [34].
The still necessary real–time behavior is hence dealt with by
a joint effort of the cooperating system components. This issue
has been initially addressed by some recent research works,
as for instance in [35] where, however, the problem has only
been roughly outlined by the authors.

This paper presents a feasibility study based on the imple-
mentation and performance assessment of such a co–design
approach. As a meaningful application example of networked
systems, we address the real–time control of the balance
of a two–wheeled robot over Wi-Fi. This goal is achieved
by leveraging on the capabilities offered by off–the–shelf
available embedded computing systems, with built–in Wi-Fi
interfaces.

The industrial application is developed and implemented by
exploiting modern rapid control prototyping techniques on two
low–cost, widespread, embedded systems, namely Raspberry
Pi 3 mod. B and BeagleBone Black Wireless.

Experimental assessments are carried out by employing
hardware–in–the–loop techniques, where the plant is con-
trolled by an embedded system and the connection with
the simulated plant is achieved by means of a real wireless
communication link.

In detail, the paper is organized as follows. Section III
briefly outlines the multi–agent robotic system which repre-
sents the benchmark application. Section IV addresses the
cross–layer architecture we implemented, referring to both
the control system and the communication application. Sec-
tion V introduces the implementation strategies and describes
the conducted tests. Section VI deals with the experimental
assessment and reports the obtained results. Also, this section
provides a critical analysis of the results and discusses some
future perspectives. Section VII concludes the paper.

III. BENCHMARK APPLICATION

We take into account the representative case of multi–
agent robotic systems in complex environments controlled over
wireless links. Exploiting embedded boards in these systems
is a very appealing solution for the potential compactness,
modularity and resource efficiency. The considered benchmark
application is the balance control of a two–wheeled segway–
like vehicle (balancing robot, Fig. 1a) which can be seen as a
meaningful testbed to verify the feasibility of the proposed
cross–layer architecture for control at high sampling rates
of networked embedded systems over Wi-Fi. This choice is
motivated by the fact that keeping the correct upward vertical
balance of this, naturally unstable, vehicle requires fast and
continuous adjustments of wheels positions, according to the
observed state. A reliable and very low–latency communica-
tion between the controller and the robot is hence required to
successfully accomplish the control task.

As shown in Fig. 1b, the controller is connected to the
balancing robot via a Wi-Fi network. It is assumed that all the
“intelligence” runs on the controller which exchanges process
data, such as motor commands and sensor measurements,
with the robot over Wi-Fi. This application represents an
effective benchmark for the proposed co–design approach and
the designed cross–layer implementation, since it makes the
underlying Wi-Fi network crucial for any robot action.

The final control goal is the positioning of the robot base
towards a specified set–point, while maintaining the robot
balance. It is assumed that the robot only moves along a
straight path, so that the dynamics is constrained to its sagittal

#

�

(a)
C

om
m

an
ds

M
easures

Controller
Embedded

system

Plant
Balancing

robot

Wi-Fi

(b)

Fig. 1. Benchmark application: (a) balancing robot prototype; (b) control
system architecture.

plane. In this way, the robot can be analyzed as a planar
one, with generalized coordinates corresponding to the wheel
angle, W (proportional to the robot base position, under no
wheel slip conditions), and the robot body inclination, o, with
respect to the vertical position. The wheel angle is measured
by the magnetic encoders connected to the shaft of the two
DC gearmotors installed on the robot. The inclination can be
instead inferred from the inertial measurements provided by a
MEMS accelerometer/gyroscope pair, with the aid of a sensor
fusion algorithm (e.g. complementary filtering) running locally
on the embedded system installed onboard the robot. The
DC gearmotors are voltage–controlled with a PWM driver;
the PWM duty–cycle commands are received from the host
computer.

IV. CROSS–LAYER ARCHITECTURE

The following subsections will provide details about the
proposed co–design architecture addressing, specifically, both
the control system and the communication applications.

A. Control System

The overall control system is organized around the ar-
chitecture illustrated in Fig. 1b. We adopted the algorithm
proposed in [32], with the aim of minimizing the effects
of communication non–idealities on the control application
side. The controller implements both the balance and position
algorithms that estimate the system state through a modified
Kalman filter, exploiting measurement buffering to realize a
static feedback [36]. For the design of both the controller and
the estimator, the continuous–time nonlinear dynamics of the
robot is first linearized around the upward vertical equilibrium,
and then discretized with the exact discretization method with
a sampling time)B = 1 ms. The resulting linear model is of
the type: {

G:+1 = �G: + �D: + F:

H: = �G: + E:
(1)

where G: = [W: , o: , ¤W: , ¤o:]) ∈ R4 is the robot state, D: ∈ R
are the motor commands (PWM duty–cycle values, identical
for both motors), and H: are the measurements received from
the plant. Since the robot state is completely observable from

the wheel angle measurement W, in the following it will be
assumed that H: coincides with that quantity. Compared to a
solution involving a direct measurement of the whole robot
state (by exploiting also the onboard inertial sensors), this
design choice has the appreciable advantage of minimizing
the amount of information exchanged between the plant and
the controller over Wi-Fi. The symbols F: and E: denote two
gaussian noises that account for, respectively, modeling and
measurement errors.

Due to the stochastic behavior of the Wi-Fi network, the
measurements received by the controller can be affected by a
random delay, or they can even be lost. Therefore, the arrival
process can be modeled by the random variable X:C :

X:C =

{
1 if HC is available at estimator at : > C
0 otherwise.

(2)

whose distribution can be chosen, depending on the situation,
according to different models [37]–[40]. Based on the arrival
sequence, it is possible to define the measurement model at
the estimator on the host side as:

H:C = X:C HC . (3)

With these positions, we may state that the information set
available at the estimator at the time instant : is:

I: =
{
X:0 , X

:
1 , · · · , X

:
:−1, H

:
0 , H

:
1 , · · · , H

:
:−1,

D0, D1, · · · , D:−1
}
. (4)

Within this framework, it has been shown in [36] that the
optimal state estimate Ĝ:

: |:−1 given I: can be computed with
the following iterative scheme:

Ĝ:
C |C−1 = �Ĝ:

C−1 |C−1 + �DC−1 (5)

Ĝ:
C |C = Ĝ

:
C |C−1 + X

:
C !C (H:C − �Ĝ:C |C−1) (6)

!C = %
:
C |C−1�

′(�%:
C |C−1�

′ + ')−1 (7)

%:
C |C−1 = �%:

C−1 |C−1�
′ +& (8)

%:
C |C = %

:
C |C−1 − X

:
C %

:
C |C−1�

′(�%:
C |C−1�

′ + ')−1�%:
C |C−1 (9)

where & and ' denote the covariance matrices of, respectively,
the process noise F: and measurement noise E: in (1).

A key point of this approach is the availability of a finite
buffer at the estimator1, whose length is denoted by the integer
. Therefore, the iteration starts from

Ĝ:
:−# |:−#−1 = Ĝ:−1

:−# |:−#−1, %
:
:−# |:−#−1 = %:−1

:−# |:−#−1

if C > # or from

ĜC0 |−1 = Ĝ0, %C
0 |−1 = %0

otherwise.
The buffer is used to store all the relevant estimator quan-

tities, i.e. the state prediction Ĝ:
C |C−1 and estimate Ĝ:

C |C , the
covariance matrices %:

C |C−1 and %C
C |C (of the state prediction

and the estimation errors respectively), the plant inputs DC , the
received plant outputs HC , and the arrival sequence X:C .

1Indeed, the solution is optimal only if the buffer has an infinite length.
However, for implementation purposes, a finite buffer length version is
typically preferred, leading however to a sub–optimal solution (see [36]).

An important assumption is that # corresponds also to the
maximum allowable delay: any measurement older than #

estimator sampling periods (i.e. older than : − # + 1, since
: denotes the current estimator sampling instant) is neglected
by the estimator, that is, it is treated as a lost packet. Note
that, at each time instant, the estimator requires to be iterated
only from the oldest measurement received at that instant:
from such starting point, the iteration involves a prediction
(open–loop) step if a measurement is not available in the buffer
(i.e. X:C = 0), or an estimate (closed–loop) step otherwise (i.e.
X:C = 1). The obtained optimal estimator resembles a modified
Kalman filter endowed with a buffer.

The estimated state is used to implement a state feedback
controller of the type:

D: = Ĝ: |:−1 (10)

whose gain matrix ∈ R1×4 is computed with the LQ
optimality principle, namely to minimize the following infinite
horizon cost function:

� = lim
(→∞
E

[
1
(

(−1∑
:=0

G ′:,G: + D
′
:*D:

����� {D: }(−1
:=0

]
(11)

The weights * and , (semidefinite and definite matrices, re-
spectively) are selected according to the Bryson’s rule, namely
inversely proportional to the maximum allowed deviations of
the weighted quantities from their steady–state values. An
additional integral action is included in the control law to
achieve robust perfect tracking of a step position reference.

B. Communication application
The communication between controller and plant exploits

the Wi-Fi interfaces of off–the–shelf low–cost embedded sys-
tems, equipped with a Linux–based operating system. Given
the proposed architecture, we hence leverage on the common
TCP/IP stack of the Linux kernel. However, the utmost im-
portance of reducing any source of latency for critical and
time-sensitive data delivery fosters a careful protocol selection
and tuning. Thus, as a first design choice, the communications
involved in the considered industrial control system exploit the
User Datagram Protocol (UDP), following a common practice
of real–time industrial protocols [41].

The communication application is implemented in a time-
efficient manner, by exploiting non–blocking accesses to the
buffer of incoming data, and by extracting only the most
recently received packets, as detailed in Algorithm 1. Indeed,
is the estimator buffer size as described in Sec. IV-A; the
receiver routine reads the datagrams starting from the first
received (according to the UDP standard FIFO policy) and
holds them in an output array of # elements. Non–blocking
readings are repeated until the incoming buffer is empty. If
the number of incoming packets is greater than # , the 8-th
packet (with 8 > #) replaces the (8 − #)-th packet in the
output array and so on, until no more packets are available
at the incoming buffer. A check on the incoming packet size
ensures that the packet is not incomplete or the UDP buffer
is not empty, otherwise the reading loop is aborted. Also,
Algorithm 1 does not guarantee that the # packets in the

Control
applicationUSER SPACE

nl80211

cfg80211

Drivers

Wi-Fi interfaceHARDWARE

KERNEL
SPACE

Fig. 2. IEEE 802.11 management from user–space: implementation
details.

output buffer are ordered from last to first, but it guarantees
that the last # packets are not discarded.

Algorithm 1 Access policy to buffer of incoming UDP packets
Input: buffer of incoming packets
Output: buffer of last # received packets

1: 8%:C ← 0
2: expectedPktSize← size of expected packet
3: loop
4: extract packet (receivedPkt) from input buffer
5: if receivedPktSize = expectedPktSize then
6: outBuffer[8%:C] ← A4248E43%:C

7: 8%:C ← 8%:C + 1
8: if 8%:C ≥ # then
9: 8%:C ← 0

10: end if
11: else
12: exit loop
13: end if
14: end loop
15: return outBuffer

Some meaningful Wi-Fi features and parameters can be
managed to adequately support the cross–layer architecture. To
this regard, some special custom blocks have been developed
to implement the following functionalities

1) set the Wi-Fi communication standard (IEEE 802.11g/n)
and the related bitrate;

2) set the number of MAC transmission retries;
3) retrieve the signal power of the last received packet;
4) retrieve the noise level of the Wi-Fi channel;
5) enable/disable the IEEE 802.11 power–save mode.

Since all the embedded systems selected for the tests run
the GNU/Linux operating system, these functionalities are
implemented by resorting to the nl80211 library, that provides
a powerful interface to properly manage the IEEE 802.11
protocol features from the user space, as shown by the block
diagram reported in Fig. 2. Moreover, to further deepen the
control over the transmission policies, a set of customized
blocks to send and receive UDP packets have been developed,
leveraging on standard POSIX socket libraries.

V. IMPLEMENTATION

This section provides a description of the different building
blocks that realize the proposed architecture. The cross–layer
architecture described in the previous section is implemented
and enforced exploiting a Rapid Control Prototyping (RCP)
methodology. The experimental assessment is, instead, carried
out leveraging on a hardware–in–the–loop scheme.

A. Rapid Control Prototyping

The control system application has been developed as a
Simulink block–diagram model, which is then automatically
converted in a C–language code that can be compiled and
run in real–time on the embedded system. Code generation
is automatically managed either by the Simulink Coder for
general purpose conversions, or by the Embedded Coder for
optimized conversions targeted to embedded systems. Ad–
hoc Simulink blocks with custom functionalities can be easily
implemented by providing the instructions, in form of Target
Language Compiler (TLC) files, for the code generation
process. This feature is particularly useful for the development
of specific blocks that allow to interface the Simulink model
with the underlying embedded system hardware.

The code generated for real–time execution on a target
running a multitasking operating system has the structure
reported in Algorithm 2. A function (ModelExecutionTask at
line 1) is generated to repeatedly run the model code inside an
iterative loop. Each iteration is synchronized with a semaphore
(clockSem), and starts only when the semaphore is set to true
(line 6). The semaphore is periodically set to true (“semaphore
give” operation) by the interrupt service routine of a real–
time clock enabled at the beginning of the application (line
16). Once the iteration starts, the semaphore value is set to
false (“semaphore take” operation), and a single step of the
model is evaluated (lines 7–10). An overrun condition, namely
a situation when the execution of a single iteration exceeds the
specified sampling time (equal to the real–time clock period)
can be detected by verifying whether the semaphore is already
set when the iteration loop is restarted (line 3).

The advantages offered by the RCP methodology in the
design and development of a generic control systems are sig-
nificant. The intrinsic modularity of Simulink models allows
to rapidly set up prototype applications that can be promptly
tested in laboratory. In addition, the capability to implement
custom blocks boosts the possibilities of this technique, al-
lowing to create specific toolboxes focused on the purposes of
the research activity. Finally, the portability of the developed
software and the acquired know–how over different platforms
and projects is greatly enhanced, since blocks of code can be
reused just like traditional Simulink blocks.

B. Hardware–in–the–loop Testbed

A hardware–in–the–loop experiment has been conceived
and implemented in order to verify the performance of the
control at high sampling rates over Wi-Fi. The test setup
resembles exactly the configuration depicted in Fig. 1b, with
the only difference that the dynamics of the real plant, i.e. the

Algorithm 2 Auto-generated real–time single–tasking appli-
cation (using operating system multitasking primitives)

1: function MODELEXECUTIONTASK
2: loop
3: if 2;>2:(4< = true then
4: Overrun condition: perform suitable actions.
5: end if
6: wait on 2;>2:(4<
7: evaluate model step
8: - evaluate model blocks outputs
9: - update model blocks states

10: end evaluate
11: end loop
12: end function

13: procedure MAIN
14: Initialization
15: start MODELEXECUTIONTASK
16: start clock that periodically sets 2;>2:(4< ← true

17: end procedure

Host PC Linux–x64

BeagleBone Black Wireless

Raspberry Pi 3 mod. B+

Fig. 3. Test setup.

balancing robot, is numerically simulated in real–time on a
Personal Computer. The test setup is depicted in Fig. 3.

The control loop contains the real physical link between
controller and plant, thus allowing to carefully analyze the
effects of communication delays and packet losses on the
performance of the control system. In order to obtain realistic
and meaningful results from the experimental tests, particular
attention has been devoted to derive an accurate model of
the balancing robot, that accounts for both the non–linear
dynamics of the multi–body mechanism (obtained with a
lagrangian approach), and all the relevant non–idealities of the
sensors and actuators (such as actuator saturations, encoders
quantizations, sensors noises and finite bandwidths, etc.).
Some slightly simplifying assumptions have been introduced
in this model, to ensure the feasibility of the simulation at
high sampling rate. In particular, without loss of generality,
the robot has been described with a simplified planar model
[42].

C. Test Schemes

The tests have been performed by exploiting an IEEE
802.11n network, on the Channel 6 (2437 MHz) with 20 MHz
of bandwidth. Tests were conducted in an university laboratory
crowded with several Wi-Fi networks, some of them actually
operating on the same channel (Channel 6) selected for the
experiments. Background noise has been measured with a
GNU/Linux PC with the same hardware configuration of that
used in the tests (referred to as PC #1 in the following),
providing a measure of −95 dBm.

The experimental campaign involved different computing
devices, as listed below. Specifically, we used two embedded
systems and a classic desktop PC, as a reference to compare
the performance of the embedded systems.

1) Raspberry Pi 3 mod. B — Broadcom BCM2837 Wi-Fi
module;

2) BeagleBone Black Wireless — Texas Instruments WiL-
ink 1835 module.

3) GNU/Linux (PC #1) — Intel Core i5-6400, 2.70 GHz,
16 GB RAM, Ubuntu 17.04, TP-Link PCI Wi-Fi inter-
face based on the Qualcomm Atheros AR9227 chip;

Multiple tests, as listed below, have been carried out in
order to determine the performance of the involved devices,
as well as to assess the feasibility of a realistic control–over–
Wi-Fi experiment.

Test #1: Measurement of the execution times of the user–space
Wi-Fi management routines (based on the nl80211 library).

This test takes into account the nl80211–based
functionalities from 1) to 4) as listed in Sec V-A. All
routines are invoked with a period of 1 ms (i.e. sampling rate
1000 Hz). The execution times are recorded at each sample
time. The test, which is carried out on each machine, lasts
for 10 s, thus collecting a total of 10000 samples each.

Test #2: Assessment of the communication link.
This test is carried out to evaluate the ability to handle the

access policy described by Algorithm 1, that is implemented
by the controller. As shown in Fig. 4a, the tested machine
(A) is connected to the Wi-Fi network, and sends a sequence
of numbered UDP packets to a second machine (B). Machine
B is a Personal Computer set up as a communication relay
through the Netcat utility [43] that simply sends the data back
on the same network. Machine A receives the frame exploiting
the routine described in Algorithm 1. The number of MAC
transmission retries was set to one, in order to minimize time
delays due to multiple transmissions, whereas the bitrate is
not forced to a specific value in these experiments, since
each system exploits its own default rate adaptation algorithm.
Transmitted packets consist of a 8–byte payload and a 4–byte
header that holds a progressive packet identifier. The tests last
for 20 s and are carried out at different packet delivery rates
(0.1–1 kHz) for each tested device. The Wi-Fi antennas are
roughly 1 m apart from each other.

In order to correctly understand the outcomes of Test #2,
the communication performance and link quality are assessed
by means of both the packet error rate (PER) and the com-

munication latency 3. Based on the implementation of the
receiver in Fig. 4a, a lost packet is defined as a packet that
during communication is either not received, or discarded by
the receiver, since the number of new incoming packets at a
certain sampling instant exceeds the buffer length # . Thus,
the Packet Error Rate (PER) at the :-th packet is computed
as the moving average of the number of lost packets over the
previous " transmissions. The chosen value of " is equal to
the estimator buffer length # . Considering the definition of
X: given with the function in Eq. (2) to count packet arrivals,
then PER: at the :-th packet is computed as follows:

PER: = 1 −
:∑

8=:−"+1

X8

"
. (12)

The communication latency, is computed for each transmitted
packet. Each packet contains an identifier, equal to the
iteration step number : at which the packet was created and
sent. The same packet is received back (by the same device)
at the 9-th iteration step, with 9 > : . The delay of the :-th
packet, received at the 9-th time instant, is hence computed
as 3: = 9 − : . An infinite delay is assigned to lost packets, so
that their actual delay is ignored when computing cumulative
delay statistics. Evaluating delays in this way ensures an
independence on the exact value of the sampling time used
within an experiment, and allows a direct comparison among
relative latency values.

Test #3: Control–over–Wi-Fi simulation experiment
This test relies on the architecture shown in Fig. 4b). The

controller is the Raspberry Pi (this board has been chosen since
it performs better than the BeagleBone, as will be shown in
the next section). The plant is represented by the Linux PC #1
which, according to the classic hardware–in–the–loop policy,
executes the simulation of the plant dynamics. The controller
periodically executes the control algorithm and sends reference
signals to the plant from which it receives state measurements.
The initial conditions for angles are o0 = 5° and W0 = 0°,
whereas initial velocities are ¤o0 = ¤W0 = 0 deg/s. The reference
signal that the plant is required to track is zero for o (i.e.
hold to the vertical position) and a step change of 0.1 m for W,
occurring at C = 10 s (thus allowing the system to recover from
the initial transient due to nonzero initial conditions). Different
values of state estimator buffer length, # , have been tested,
showing that the optimal performance can be achieved with
a value between 4 and 20. Consequently, in the experiments,
the buffer length of the state estimator has been set as #=20.
The simulation time is 32 s.

VI. RESULTS AND DISCUSSION

A. Test #1: Execution Times
Table I presents the execution times of the routines imple-

menting the functionalities listed in Sec. V-A from 1) to 4).
Within the table, missing data refers to functionalities that are
either disabled or not available on the corresponding device.

Unsurprisingly, PC #1 proved the best performance, with
execution times under 100 µs for all considered functionalities.
On the Raspberry, only two functionalities were accessible.

UDP
Sender

Netcat

Machine A Machine B

UDP
Receiver

(a)

Controller

Controller Plant

Actuator Plant
u(k)

y(k)x̂(k|k−1)

r(k)

Estimator Sensor

(b)

Fig. 4. Experimental tests: (a) Wi-Fi performance experiment (Test #2); (b) control–over–Wi-Fi experiment (Test #3).

In particular, sensing the received power takes more than
2.5 ms, on average, whereas setting the number of transmission
retries is far less time-consuming. Finally, the BeagleBone
system showed the worst performance, taking hundreds of
microseconds for all enabled functionalities.

B. Test #2: Communication Performance

The plots in Fig. 5 report the Cumulative Distribution
Function (CDF) relevant to the latency with which packets
sent by Machine A are received back, in a typical polling
application. In particular, the left column shows the latency
in terms of absolute time (ms), whereas, on the right, the
same plots are shown with latency values scaled to the sample
time. The curves are averages over 100 runs (20 s of execution
for each run), and each of them is relevant to a different
value of sampling frequency in the range 100 Hz–1000 Hz. The
PER values, averaged over 100 test runs, and their standard
deviations are listed in Tab. II.

As in Test #1, PC #1 shows the best performance, with PERs
always below 10% and low latency. However, the performance
figures of the Raspberry board are also good, with PERs
comparable with those of PC #1.

Conversely, the BeagleBone board shows the worst per-
formance, with a behavior strongly dependent on the sam-
pling frequency. This is likely due to the limited processing
capability of such board, which does not cope adequately
with the increase of the computational burden caused by the
much more frequent execution of both Algorithm 1 and the
communication task. Also, data dispersion becomes greater at
the higher sampling frequencies, reflecting on high uncertainty,
particularly for the curve at 1000 Hz (as can be seen in Tab. II
the packet loss has the highest standard deviation at this

TABLE I
TEST #1: EXECUTION TIMES OF WI-FI MANAGEMENT ROUTINES

(AVERAGE OVER 10K SAMPLES)

Raspberry BeagleBone Linux-x64
mean std mean std mean std
[µs] [µs] [µs] [µs] [µs] [µs]

Set bitrate - - 221 121 49 6

Set # of retries 56 31 216 129 50 6

Get RX power 2506 393 661 181 90 7

Get noise - - - - 99 6

TABLE II
TEST #2: PACKET ERROR RATE (PER) VS SAMPLING FREQUENCY

(AVERAGE OVER 100 RUNS)

Raspberry BeagleBone Linux-x64
frequency PER std PER std PER std

[Hz] [%] [%] [%] [%] [%] [%]

100 5.8 3.7 14.8 1.8 2.5 1.4

200 4.5 2.5 23.6 2.0 3.0 1.7

250 4.1 1.9 26.2 1.6 3.4 1.5

400 4.9 2.3 28.9 3.0 5.3 1.8

500 7.8 2.7 28.7 5.7 6.2 2.6

1000 8.3 4.8 22.5 7.6 9.0 2.6

TABLE III
TEST #3: STEP RESPONSE PARAMETERS (AVERAGE OVER 10 RUNS)

Wi-Fi Ethernet
mean std mean std

"? [%] 84.18 12.10 72.88 8.41

CA [B] 0.69 0.04 0.71 0.001

CB [B] 9.29 5.91 4.17 0.47

frequency). As a consequence, the behavior of the packet
delay, in Fig. 5b, results highly dispersed, leading the curve
at 1000 Hz to cross curves relevant to other frequencies.

C. Test #3: Control–over–Wi-Fi

The results of Test #1 and #2 allow to identify the Raspberry
Pi 3 mod. B as the better embedded system for running the
control routine with the requirements imposed by the control–
over–Wi-Fi approach proposed in this paper. Thus, this section
presents the results of Test #3 with such an embedded system
as the control unit. All the results refer to a single simulation
run, which was selected as representative of the typical system
behavior.

The test is performed by evaluating the response of the con-
trol system to a step variation of the robot position reference.
The sampling rate was set to 1000 Hz. A typical outcome
is shown in Fig. 6, where both the wheel and tilt angles
are included. Tab. III reports the statistics on the main step
response parameters (overshoot, "? , rise time, CA , and settling
time, CB) obtained over 10 runs of same experiment. The same
table provides a comparison with the results obtained running
the same test over an Ethernet connection.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Packet Delay [ms]

C
D
F

100Hz

200Hz

250Hz

400Hz

500Hz

1000Hz

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Packet Delay [# of samples]

C
D
F

100Hz

200Hz

250Hz

400Hz

500Hz

1000Hz

(a) Raspberry Pi

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Packet Delay [ms]

C
D
F

100Hz

200Hz

250Hz

400Hz

500Hz

1000Hz

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Packet Delay [# of samples]

C
D
F

100Hz

200Hz

250Hz

400Hz

500Hz

1000Hz

(b) BeagleBone Black

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Packet Delay [ms]

C
D
F

100Hz

200Hz

250Hz

400Hz

500Hz

1000Hz

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Packet Delay [# of samples]

C
D
F

100Hz

200Hz

250Hz

400Hz

500Hz

1000Hz

(c) Linux-x64

Fig. 5. Wi-Fi performance tests (average over 100 runs); packet delay expressed in terms of absolute time (left) and number of sample times (right).

The execution times of both the control and plant simulation
routines are reported in Tab. IV (statistics over 10 runs). It can
be noticed that the execution time of the control routine on
the selected embedded system is, on average, well below the
1 ms sampling time threshold.

The communication performance for the step response test
of Fig. 6 is presented in Fig. 7a÷ 7b. For the single run test
of Fig. 6, the average packet delay, scaled to the sample
time, is equal to 2.95, whereas the packet loss is equal to
8.83%. The communication statistics, as computed over 10
runs, are summarized in Table V. The Table also reports
results obtained using a legacy Ethernet connection. They have
been derived from an additional experiment carried out to
provide a mean to compare the performance of the wireless
connection with that of a wired one, which can be considered
as a“reference communication system”. Actually, as can be
seen, some packets are lost even when Ethernet is used as,
likely an effect of the computational burden. Finally, it is worth
observing that the statistics of the Raspberry Pi show a certain
difference between Test #2 and Test #3. Again, we believe
this is due to the greater computation effort required during
Test #3 compared to Test #2, which is much simpler and does
not imply the execution of the control routine.

D. Discussion and future perspectives

The results of Test #3 are definitely encouraging, since they
show the ability of the system to ensure an adequate level
of performance, as well as to cope with the uncertainty of
the communication medium. However, since the Raspberry Pi
board did not allow to dynamically modify most of its commu-
nication parameters, the potentiality of the communication and
control co–design could not be adequately exploited. Thus, it
may be stated that the obtained results allowed to assess both
the feasibility and the effectiveness of the proposed control
scheme, paving the way to a complete implementation of the
co–design approach.

Hence, considerable improvements are legitimately ex-
pected concerning the co–design technique. Indeed, the avail-
ability of both the “Set bitrate” and “Get noise” features leads
to a twofold positive impact. On the one hand, it is possible to
implement effective adaptive rate control strategies, that ensure
the deadlines associated with packet transmission are met with
a given probability [30], [44]. This makes the underlying
communication system able to guarantee a predictable level
of performance to the control application, which can thus
be designed in a more straightforward and systematic way.
On the other hand, and more importantly from the co–design
perspective, the control law can be dynamically adapted as

a function of the communication channel status [45], [46].
For example, a more accurate knowledge of the probability
distribution of the transmission delays can be effectively
exploited to design the estimator buffer size (#), in such a
way to not exceed a tolerated level of packet dropouts. In the
same direction, in [32] it is shown how to continuously adjust
the LQ controller gains and transmission rate, based on of
the monitored SNR, to minimize the overall LQ cost function.
Although results are presented for a numerically simulated
scenario involving a single wireless communication link in the
control loop, the proposed strategy is intriguing and highlights
a research field that, to the best of the authors’ knowledge, is
still largely unexplored.

Other interesting developments are expected from the con-
tinuous evolution of industrial communication systems that
will provide further functionalities and better performance to
the control applications. Indeed, the Time Sensitive Network-
ing (TSN) family of standards [47], that natively enables real–
time and determinism properties on Ethernet networks will be
likely extended to wireless networks, such as WiFi and 5G
[48].

Particularly, the new features introduced by IEEE 802.11ax
(the most recent amendment to the IEEE 802.11 Wireless
LAN), as well as the forthcoming IEEE 802.11be amendment,
envisage a profitable coupling with TSN, that will lead to
definitely better WiFi performance in industrial scenarios.

TSN is an appealing opportunity for the arising 5G wireless
technologies as well. These are defined by a complex set
of specifications that aims to provide, besides the general–
purpose enhanced mobile broadband (eMBB) service, the sup-
port for other two service classes, namely massive machine-
type communications (mMTCs) and ultra–reliable low–latency
communications (URLLCs), characterized by diverse features
[49]. Specifically, mMTCs has been designed to support a
massive number of (possibly industrial) IoT devices sporadi-
cally sending small data payloads. Conversely, URLLCs (that
still adopts small payload packets) is meant for transmissions
with very low latency and high reliability, in agreement
with transmission patterns defined by the application, thus
clearly targeting industrial usage. In the described scenario,
some significant research works are dealing with the topic
of co–design of real–time wireless control over the URLLCs
provided by 5G [50]–[52]. However, the performance figures
of 5G technologies, to the best of the authors’ knowledge, have
not been yet adequately assessed in industrial environments,
especially in terms of both reliability and latency, at least from
an experimental point of view. Only some only simulation
studies are available. As highlighted in [53], the achievable
performance in terms of round–trip time and service time, that
are typical of industrial scenarios, are not (yet) able to cope
with the requirements of applications like those presented in
this work.

VII. CONCLUSIONS

This work addressed the control of time–critical industrial
systems at high sampling frequencies up to 1000 Hz over Wi-
Fi, in which both the increasing computing capabilities of

TABLE IV
TEST #3: EXECUTION TIMES (AVERAGE OVER 10 RUNS)

mean std max min
[µs] [µs] [µs] [µs]

RPi (control routine) 274 117 1006 102

PC #1 (plant simulation) 109 28 301 9

TABLE V
TEST #3: COMMUNICATION PERFORMANCE (AVERAGE OVER 10 RUNS)

Wi-Fi Ethernet
mean std mean std

packet delay [# steps] 2.68 0.69 1.37 0.36

PER [%] 10.88 12.94 1.90 9.84

0 5 10 15 20 25 30

0

100

200

300

γ
[d

e
g

]

reference

real

estimated

0 5 10 15 20 25 30
–10

–5

0

5

10

Time [s]

ϑ
[d

e
g

]

Fig. 6. Assessment of the control–over–Wi-Fi approach: step response.

low–cost networked embedded systems, and a suitable control
strategy are exploited to cope with unbounded latency and
non–determinism of Wi-Fi networks.

The feasibility of the proposed co–design approach has
been demonstrated and an extensive performance assessment
has been carried out. The outcomes of the experimental
campaign, although preliminary, highlighted the effectiveness
of the approach. As an immediate prosecution of the activities
described in this paper, we will focus on the implementation
of advanced hardware–in–the–loop experiments, like those in-
volving the real balancing robot. Furthermore, the opportunity
discussed in the previous section to improve the potentiality
of the proposed cross–layer approach, will allow to address
more complex applications in real industrial environments.

REFERENCES

[1] R. Poovendran, K. Sampigethaya, S. K. S. Gupta, I. Lee, K. V. Prasad,
D. Corman, and J. L. Paunicka, “Special issue on cyber - physical
systems [scanning the issue],” Proceedings of the IEEE, vol. 100, no. 1,
pp. 6–12, Jan 2012.

[2] S. Vitturi, C. Zunino, and T. Sauter, “Industrial Communication Systems
and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 944–961, June 2019.

[3] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
internet of things: A cyber-physical systems perspective,” IEEE Access,
vol. 6, pp. 78 238–78 259, 2018.

0 5 10 15 20 25 30
0

2

4

6

8

10

Mean = 2.95

Time [s]

P
a

c
k
e

t
d

e
la

y
[#

s
te

p
s
]

(a)

0 5 10 15 20 25 30
0

20

40

60

80

100
Mean = 8.83

Time [s]

P
a

c
k
e

t
e

rr
o

r
ra

te
[%

]

(b)

Fig. 7. Control over Wi-Fi test: communication performance.

[4] L. Chen, P. Zhou, L. Gao, and J. Xu, “Adaptive fog configuration for
the industrial internet of things,” IEEE Trans. Ind. Informat., vol. 14,
no. 10, pp. 4656–4664, Oct 2018.

[5] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,
“WirelessHART: Applying wireless technology in real-time industrial
process control,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2008, pp. 377–386.

[6] “ISA100,” http://www.isa.org/isa100.
[7] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6tisch:

deterministic ip-enabled industrial internet (of things),” IEEE Commun.
Mag., vol. 52, no. 12, pp. 36–41, 2014.

[8] R. Steigmann and J. Endresen, “Introduction to wisa: Wisa-wireless
interface for sensors and actuators,” White paper, ABB, 2006.

[9] X. Zhu, T. Lin, S. Han, A. Mok, D. Chen, M. Nixon, and E. Rotvold,
“Measuring wirelesshart against wired fieldbus for control,” in IEEE
10th International Conference on Industrial Informatics, July 2012, pp.
270–275.

[10] S. Petersen and S. Carlsen, “Wirelesshart versus isa100.11a: The format
war hits the factory floor,” IEEE Ind. Electron. Mag., vol. 5, no. 4, pp.
23–34, Dec 2011.

[11] G. Patti, G. Alderisi, and L. L. Bello, “Introducing multi-level com-
munication in the ieee 802.15.4e protocol: The multichannel-lldn,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), Sep. 2014, pp. 1–8.

[12] G. Alderisi, G. Patti, O. Mirabella, and L. L. Bello, “Simulative
assessments of the ieee 802.15.4e dsme and tsch in realistic process
automation scenarios,” in 2015 IEEE 13th International Conference on
Industrial Informatics (INDIN), July 2015, pp. 948–955.

[13] IEEE, “IEEE standard for information technology–telecommunications
and information exchange between systems local and metropolitan area
networks–specific requirements - part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications,” IEEE Std 802.11-
2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, Dec 2016.

[14] Q. Xu, “Design and Smooth Position/Force Switching Control of a
Miniature Gripper for Automated Microhandling,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 2, pp. 1023–1032, May 2014.

[15] S. Sakaino, T. Sato, and K. Ohnishi, “Precise Position/Force Hybrid
Control With Modal Mass Decoupling and Bilateral Communication
Between Different Structures,” IEEE Transactions on Industrial Infor-
matics, vol. 7, no. 2, pp. 266–276, May 2011.

[16] S. Vitturi, F. Tramarin, and L. Seno, “Industrial wireless networks:
The significance of timeliness in communication systems,” IEEE Ind.
Electron. Mag., vol. 7, no. 2, pp. 40–51, 2013.

[17] D. M. Anand, J. R. Moyne, and D. M. Tilbury, “Performance evaluation
of wireless networks for factory automation applications,” in Automa-
tion Science and Engineering, 2009. CASE 2009. IEEE International
Conference on. IEEE, 2009, pp. 340–346.

[18] F. Tramarin, S. Vitturi, M. Luvisotto, and A. Zanella, “On the use of ieee
802.11 n for industrial communications,” IEEE Trans. Ind. Informat.,
vol. 12, no. 5, pp. 1877–1886, 2016.

[19] F. Tramarin, A. K. Mok, and S. Han, “Real-time and reliable industrial
control over wireless lans: Algorithms, protocols, and future directions,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1027–1052, June 2019.

[20] S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, “Wi-fi enabled
sensors for internet of things: A practical approach,” IEEE Commun.
Mag., vol. 50, no. 6, 2012.

[21] I. Dominguez-Jaimes, L. Wisniewski, H. Trsek, and J. Jasperneite,
“Link-layer retransmissions in ieee 802.11g based industrial networks,”
in 2010 IEEE International Workshop on Factory Communication Sys-
tems Proceedings, May 2010, pp. 83–86.

[22] G. Patti, G. Alderisi, and L. Lo Bello, “Schedwifi: An innovative
approach to support scheduled traffic in ad-hoc industrial ieee 802.11
networks,” in 2015 IEEE 20th Conference on Emerging Technologies
Factory Automation (ETFA), Sep. 2015, pp. 1–9.

[23] R. Costa, P. Portugal, F. Vasques, C. Montez, and R. Moraes, “Lim-
itations of the ieee 802.11 dcf, pcf, edca and hcca to handle real-
time traffic,” in 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), July 2015, pp. 931–936.

[24] EU Funded FP7 Research Program. flexWARE. [Online]. Available:
http://www.flexware.at

[25] G. Gaderer, P. Loschmidt, and A. Mahmood, “A novel approach for
flexible wireless automation in real-time environments,” in 2008 IEEE
International Workshop on Factory Communication Systems, May 2008,
pp. 81–84.

[26] T. Sauter, J. Jasperneite, and L. L. Bello, “Towards new hybrid networks
for industrial automation,” in ETFA, vol. 9, 2009, pp. 1141–1148.

[27] W. Liang, M. Zheng, J. Zhang, H. Shi, H. Yu, Y. Yang, S. Liu, W. Yang,
and X. Zhao, “Wia-fa and its applications to digital factory: A wireless
network solution for factory automation,” Proceedings of the IEEE,
2019.

[28] G. Santandrea. A PROFINET IO application implemented on
Wireless LAN, WFCS 2006 Industry day. [Online]. Available:
http://wfcs2006.ieiit.cnr.it/indday/siemens.pdf

[29] N. Ormond, “Welcome to the wireless world,” Computing Control
Engineering Journal, vol. 17, no. 1, pp. 28–31, Feb 2006.

[30] M. Luvisotto, F. Tramarin, and S. Vitturi, “A learning algorithm for rate
selection in real-time wireless lans,” Computer Networks, vol. 126, pp.
114 – 124, 2017.

[31] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“Rt-wifi: Real-time high-speed communication protocol for wireless
cyber-physical control applications,” in Real-Time Systems Symposium
(RTSS), 2013 IEEE 34th. IEEE, 2013, pp. 140–149.

[32] M. Pezzutto, F. Tramarin, L. Schenato, and S. Dey, “SNR-triggered
Communication Rate for LQG Control over Wi-Fi,” in IEEE Conference
on Decision and Control (CDC’18), 2018.

[33] Q. Qi and F. Tao, “Digital twin and big data towards smart manufacturing
and industry 4.0: 360 degree comparison,” IEEE Access, vol. 6, pp.
3585–3593, 2018.

[34] G. S. Martı́nez, S. Sierla, T. Karhela, and V. Vyatkin, “Automatic
generation of a simulation-based digital twin of an industrial process
plant,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial
Electronics Society, Oct 2018, pp. 3084–3089.

[35] F. Branz, R. Antonello, F. Tramarin, T. Fedullo, S. Vitturi, and L. Schen-
ato, “Embedded systems for time–critical applications over Wi-Fi:
design and experimental assessment,” in Proceedings of the 2019 IEEE
Industrial Informatics (INDIN), 2019.

[36] L. Schenato, “Optimal estimation in networked control systems subject
to random delay and packet drop,” IEEE Trans. Autom. Control, vol. 53,
no. 5, pp. 1311–1317, 2008.

[37] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Trans. Autom. Control, vol. 49, no. 9, pp. 1453–1464, 2004.

[38] M. Huang and S. Dey, “Stability of kalman filtering with markovian
packet losses,” Automatica, vol. 43, no. 4, pp. 598–607, 2007.

[39] E. R. Rohr, D. Marelli, and M. Fu, “Kalman filtering with intermittent
observations: On the boundedness of the expected error covariance,”
IEEE Trans. Autom. Control, vol. 59, no. 10, pp. 2724–2738, 2014.

[40] H. Gao, X. Meng, and T. Chen, “Stabilization of networked control
systems with a new delay characterization,” IEEE Trans. Autom. Control,
vol. 53, no. 9, pp. 2142–2148, 2008.

[41] S. Vitturi, “On the use of Ethernet at low level of factory communication
systems,” Computer Standards & Interfaces, vol. 23, no. 4, pp. 267–277,
sep 2001.

[42] R. Antonello and L. Schenato, “Longitudinal state–space control of
the balancing robot,” University of Padova, Dept. of Information
Engineering, Tech. Rep., 2017. [Online]. Available: http://automatica.
dei.unipd.it/tl files/utenti/lucaschenato/SEGWAY GUIDE.pdf

[43] *Hobbit*. (2007) Netcat 1.10. [Online]. Available: http://nc110.
sourceforge.net/

[44] F. Tramarin, S. Vitturi, and M. Luvisotto, “A Dynamic Rate Selection
Algorithm for IEEE 802.11 Industrial Wireless LAN,” IEEE Transac-
tions on Industrial Informatics, vol. 13, no. 2, pp. 846–855, April 2017.

[45] A. Saifullah, C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen,
“Near optimal rate selection for wireless control systems,” ACM Trans.
Embed. Comput. Syst., vol. 13, no. 4s, Apr. 2014. [Online]. Available:
https://doi.org/10.1145/2584652

[46] P. Park, J. Araújo, and K. H. Johansson, “Wireless networked control
system co-design,” in 2011 International Conference on Networking,
Sensing and Control, April 2011, pp. 486–491.

[47] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, June 2019.

[48] D. Cavalcanti, J. Perez-Ramirez, M. M. Rashid, J. Fang, M. Galeev, and
K. B. Stanton, “Extending Accurate Time Distribution and Timeliness
Capabilities Over the Air to Enable Future Wireless Industrial Automa-
tion Systems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1132–1152,
June 2019.

[49] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5g
wireless network slicing for embb, urllc, and mmtc: A communication-
theoretic view,” IEEE Access, vol. 6, pp. 55 765–55 779, 2018.

[50] B. Chang, “Urllc design for real-time control in wireless control sys-
tems,” in 2018 IEEE 5G World Forum (5GWF), July 2018, pp. 437–439.

[51] B. Chang, G. Zhao, Z. Chen, L. Li, and M. A. Imran, “Packet-drop
design in urllc for real-time wireless control systems,” IEEE Access,
vol. 7, pp. 183 081–183 090, 2019.

[52] B. Chang, L. Zhang, L. Li, G. Zhao, and Z. Chen, “Optimizing
resource allocation in urllc for real-time wireless control systems,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8916–8927,
Sep. 2019.

[53] X. Jiang, M. Luvisotto, Z. Pang, and C. Fischione, “Latency performance
of 5g new radio for critical industrial control systems,” in 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep. 2019, pp. 1135–1142.

Francesco Branz held a post–doc position at
the Dept. of Information Engineering, Univ. of
Padova, Italy until Dec. 2019, with focus on the
implementation of control over Wi–Fi. He is cur-
rently a lecturer in Attitude Control of Satellites
and Aircraft Systems at the Dept. of Industrial
Engineering, Univ. of Padova. He received his
Ph.D. in 2016 at the Center of Studies and Ac-
tivities for Space “G. Colombo”, Univ. of Padova,
with a thesis on modelling and control of dielec-
tric elastomer actuators for space robotics. His

research interests include CubeSat technologies for attitude simulation
and control, close proximity navigation, docking mechanisms and minia-
ture pointing systems.

Riccardo Antonello received the Laurea De-
gree in Computer Engineering in 2002 and the
Ph.D. in Automatic Control in 2006 from the
University of Padova, Italy. He has been a Re-
search Associate at the Dept. of Mechanical
and Structural Engineering, University of Trento,
Italy, from 2006 to 2010, and then at the Dept.
of Management and Engineering, University of
Padova, Italy, from 2010 to 2015. Since 2015,
he joined the Dept. of Information Engineering,
University of Padova, Italy, as a Laboratory As-

sistant. His research interests lie in the areas of control systems, real-
time embedded systems, electric drives and mechatronics.

Luca Schenato received the Dr. Eng. degree
in electrical engineering from the University of
Padova in 1999 and the Ph.D. degree in Elec-
trical Engineering and Computer Sciences from
the UC Berkeley, in 2003. He held a post-
doctoral position in 2004 and a visiting professor
position in 2013-2014 at U.C. Berkeley. Currently
he is Associate Professor at the Information
Engineering Department at the University of
Padova. His interests include networked control
systems, multi-agent systems, wireless sensor

networks, smart grids and cooperative robotics. Luca Schenato has
been awarded the 2004 Researchers Mobility Fellowship by the Italian
Ministry of Education, University and Research (MIUR), the 2006 Eli
Jury Award in U.C. Berkeley and the EUCA European Control Award in
2014, and IEEE Fellow in 2017. He served as Associate Editor for IEEE
Trans. on Automatic Control from 2010 to 2014 and he is currently Senior
Editor for IEEE Trans. on Control of Network Systems and Associate
Editor for Automatica.

Federico Tramarin received the Dr. Eng. de-
gree in electronic engineering, in 2008, and
the Ph.D. degree in Information Engineering, in
2012, both from the University of Padova, Italy.
From 2013 to 2018 he held a post–doctoral posi-
tion at the Institute of Electronics and Computer
and Telecommunications (IEIIT) of the National
Research Council of Italy (CNR). He held an
Assistant Professor Position in 2018-2020 at the
Department of Management and Engineering at
the University of Padova, Italy. Currently, he is

an Associate Professor at the “Enzo Ferrari” Engineering Department
of the University of Modena and Reggio Emilia, Italy. His main fields
of interest are performance analysis and measurements on network
systems, with particular focus on real-time industrial systems, wired and
wireless communications, cyber-physical systems. He currently serves
in the Editorial Board of several renowned international journals. He is
a member of the IEEE Industrial Electronics Society (IES) Technical
Committee on Factory Automation, and a TPC member of several
IEEE international conferences. He was also actively involved in the
standardization activities of the IEEE 61158 standard for industrial hard
real–time communication.

Stefano Vitturi is a director of research with
the Institute of Electronics and Computer and
Telecommunications (IEIIT) of the National Re-
search Council of Italy (CNR). He received the
Laurea degree in Electronics Engineering from
the University of Padova, in 1984 (summa cum
laude). From 1985 to 1999 he has worked at
the control and data acquisition system of RFX,
a nuclear fusion experiment located in Padova,
Italy. From 1999 to 2000 he temporarily moved
to the ”Galileo Scientific Park”, a technological

transfer institution located in Padova, where he coordinated research
as well as industrial activities. In 2002, Stefano Vitturi joined the Insti-
tute of Electronics and Computer and Telecommunications Engineering
(IEIIT) of CNR, where he founded the Padova territorial site, located
at the Department of Information Engineering, University of Padova.
He is, currently, the responsible of the IEIIT Padova territorial site.
Stefano Vitturi has authored and co-authored more than 120 scientific
publications such as papers published in referred international journals,
papers published in the proceedings of international conferences and
book chapters. He is currently serving as Associate Editor for the IEEE
Transactions on Industrial Informatics. His research interests include
industrial communication systems, real time communication networks
(wired and wireless), implementation and performance analysis of de-
vices conforming to the most popular industrial communication proto-
cols.

