
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 11, Number 2, Summer 2019

JAFFARD FAMILIES AND
LOCALIZATIONS OF STAR OPERATIONS

DARIO SPIRITO

ABSTRACT. We generalize the concept of localization
of a star operation to flat overrings; subsequently, we
investigate the possibility of representing the set Star(R) of
star operations on R as the product of Star(T ), as T ranges
over a family of overrings of R with special properties. We
then apply this method to study the set of star operations
on a Prüfer domain R, in particular the set of stable star
operations and the star-class groups of R.

1. Introduction. Recently, the study of star operations, initiated
by the works of Krull [26] and Gilmer [16, Chapter 32], has focused on
studying the whole set Star(R) of star operations on R, and in particular
its cardinality. Using as a starting point the characterization of domains
with |Star(R)| = 1 due to Heinzer [19], Houston, Mimouni and Park
have devoted a series of papers [21, 22, 23, 24] to this study, obtaining,
among other results, a characterization of Prüfer domains with two star
operations [21, Theorem 3.3] and the precise determination of |Star(R)|
on some classes of one-dimensional Noetherian domains [22, 24]. Their
work is based — at least partly — on the concept of localization of finite-
type star operations to localizations of the ring.

The purpose of this paper is to generalize the concept of localization
of a star operation ∗, by avoiding (when possible) the hypothesis that ∗ is
of finite type and by considering, instead of localizations, flat overrings of
the base ring R. In particular, we will prove that, if R admits a family
of overrings with certain properties (precisely, a Jaffard family [13,
Section 6.3]) then Star(R) can be represented as a cartesian product
of Star(T ), as T ranges in this family, and that this representation
preserves the main properties of the star operations.
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We then specialize to the case of Prüfer domains, when this approach
is complemented by the possibility, in certain cases, to link star
operations on R with star operations on a quotient of R. This method
allows one to obtain a better grasp of several properties, like being a
stable operation (Proposition 6.11), and to describe the star-class group
of R in terms of the class groups of some localizations of R.

2. Preliminaries and notation. Let R be an integral domain with
quotient field K, and denote by F(R) the set of fractional ideals of R.
A star operation on R is a map ∗ :F(R)→F(R), I 7→ I∗ such that, for
every I, J ∈ F(R) and x ∈K,

(a) I ⊆ I∗;
(b) (I∗)∗ = I∗;
(c) if I ⊆ J , then I∗ ⊆ J∗;
(d) R∗ =R;
(e) (xI)∗ = x · I∗.

The set of star operations on R is denoted by Star(R). An ideal I is a
∗-ideal if I = I∗.

Similarly, a semistar operation on R is a map ∗ : F(R)→F(R) (where
F(R) is the set of R-submodules of K) satisfying the previous properties,
except for R∗ = R; if ∗ verifies also the latter, then it is said to be a
(semi)star operation. We indicate the sets of semistar and (semi)star
operations by SStar(R) and (S)Star(R), respectively. A semiprime
operation is a map c from the set of integral ideals of R to itself that
satisfies the first four properties of star operations and, moreover, such
that xI∗ ⊆ (xI)∗ for every x ∈R.

A star operation is said to be

• of finite type if, for every I,

I∗ =
⋃
{J∗ | J ⊆ I, J is finitely generated};

• semifinite if any proper ∗-ideal I is contained in a prime ∗-ideal;
• stable if (I ∩ J)∗ = I∗ ∩ J∗ for all ideals I, J ;
• spectral if it is in the form I∗ =

⋂
{IRP | P ∈ ∆} for some

∆⊆ Spec(R); equivalently, ∗ is spectral if and only if it is stable
and semifinite [1, Theorem 4];

• endlich arithmetisch brauchbar (eab for short) if, for all non-
zero finitely generated ideals F,G,H such that (FG)∗⊆ (FH)∗,
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we have G∗ ⊆H∗; if this property holds for arbitrary nonzero
fractional ideals G,H (but F still finitely generated) then ∗ is
said to be arithmetisch brauchbar (ab for short);

• Noetherian if any set {Iα | α ∈ A} of proper ∗-ideals has
a maximum, or equivalently if and only if every ascending
chain of ∗-closed ideals stabilizes. (More commonly, under this
hypothesis R is said to be ∗-Noetherian [33].)

The set of star operations has a natural order, such that ∗1 ≤ ∗2
if and only if I∗1 ⊆ I∗2 for every ideal I, or equivalently if and only
if every ∗2-closed ideal is also ∗1-closed. Under this order, Star(R)
becomes a complete lattice, where the minimum is the identity (usually
denoted by d) and the maximum the v-operation (or divisorial closure)
I 7→ (R : (R : I)).

If R is an integral domain, an overring of R is a ring T contained
between R and its quotient field K. A family Θ of overrings of R is
locally finite (or of finite character) if every x∈K \{0} (or, equivalently,
every x ∈R \{0}) is a nonunit in only finitely many T ∈Θ. The ring R
itself is said to be of finite character if {RM |M ∈Max(R)} is a family
of finite character.

A flat overring of R is an overring that is flat as an R-module. If
T is a flat overring, then (I1 ∩ · · · ∩ In)T = I1T ∩ · · · ∩ InT for every
I1, . . . , In ∈ F(R), and (I : J)T = (IT : JT ) for every I, J ∈ F(R) with
J finitely generated [27, Theorem 7.4] (see also [12, Proposition 2]).

3. Extendable star operations. The starting point is the notion
of localization of a star operation, originally defined in [21]. We shall
adopt a more general and more abstract approach.

Definition 3.1. Let R be an integral domain and T a flat overring
of R. We say that a star operation ∗ ∈ Star(R) is extendable to T if the
map

(1) ∗T : F(T )→F(T ), IT 7→ I∗T

is well-defined (where I is a fractional ideal of R).
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Remark 3.2. (1) If T is flat over R, then every fractional ideal of T is
an extension of a fractional ideal of R (since, if J is an integral ideal of
T , J = (J ∩R)T ); therefore, ∗T is (potentially) defined on all of F(T ).

(2) If T is flat over R and P is a prime of R such that PT 6= T , then PT
is a prime ideal of T . Indeed, let Q be a minimal prime of PT . By the
previous point, Q= (Q∩R)T ; suppose P (Q∩R. By [29, Theorem 2],
TQ = RQ∩R, and thus QTQ = (Q∩R)TQ is not minimal over PTQ, a
contradiction. Note that the equality TQ =RQ∩R also shows that there
is at most one Q ∈ Spec(T ) over any P ∈ Spec(R).

(3) When T = S−1R is a localization of R and ∗ is of finite type, Defini-
tion 3.1 coincides with the definition of ∗S given in [21, Proposition 2.4].

(4) If T =RP for some P ∈ Spec(R), we sometimes denote ∗T by ∗P .

The following proposition shows the basic properties of extendability.

Proposition 3.3. Let R be an integral domain, let ∗ ∈ Star(R) and let
T be a flat overring of R.

(a) If ∗ is extendable to T , then ∗T is a star operation.
(b) ∗ is extendable to T if and only if I∗T = J∗T whenever IT = JT .
(c) The identity star operation d is always extendable, and dT is the

identity on T .
(d) If ∗ is of finite type, then it is extendable to T , and ∗T is of finite

type.

Note that, if T is a localization of R, point (d) is proved in [21,
Proposition 2.4].

Proof. Points (a) and (c) are obvious, while (b) is just a reformulation
of Definition 3.1. For (d), by symmetry it is enough to show that
J∗T ⊆ I∗T , or equivalently that 1∈ (I∗T : J∗T ). Since ∗ is of finite type,

(I∗T : J∗T ) =

(
I∗T :

( ∑
L⊆J

L fin. gen.

L∗

)
T

)
=

(
I∗T :

∑
L⊆J

L fin. gen.

L∗T

)

=
⋂
L⊆J

L fin. gen.

(I∗T : L∗T )⊇
⋂
L⊆J

L fin. gen.

(I∗ : L∗)T.
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By properties of star operations, (I∗ : L∗) = (I∗ : L); since L is finitely
generated and T is flat, it follows that, for every L,

(I∗ : L∗)T = (I∗ : L)T = (I∗T : LT ),

which contains 1 since LT ⊆ JT = IT ⊆ I∗T . Hence, 1 ∈ (I∗T : J∗T ),
as requested. �

Example 3.4. Not every star operation is extendable. Let R be an
almost Dedekind domain which is not Dedekind (i.e., a one-dimensional
non-Noetherian domain such that RM is a discrete valuation ring
for every M ∈ Max(R)), and let P be a nonfinitely generated prime
ideal of R. Then P is not divisorial [15, Lemma 4.1.8], and thus
the v-operation is not extendable to RP , since otherwise (PRP )vP =
P vRP =RP , while the unique star operation on RP is the identity.

Beside being of finite type, extension preserves the main properties
of a star operation.

Proposition 3.5. Let R be a domain and T be a flat overring of R;
suppose ∗ ∈ Star(R) is extendable to T . If ∗ is stable (resp. spectral,
Noetherian) then so is ∗T .

Proof. Suppose ∗ is stable, and let I1 := J1T , I2 := J2T be ideals
of T , where J1 and J2 are ideals of R. Then

(I1 ∩ I2)∗T = (J1T ∩ J2T )∗T = [(J1 ∩ J2)T ]∗T

= (J1 ∩ J2)∗T = (J∗1 ∩ J∗2 )T = J∗1T ∩ J∗2T = I∗T1 ∩ I
∗T
2 ,

and thus ∗T is stable.

If ∗ is spectral, it is stable, and thus so is ∗T . Let now I be a proper
∗T -closed ideal of T , and let J := I ∩R; then, JT = (I ∩R)T = I, and
thus J∗ ⊆ I∗T ∩R = I ∩R = J , so that J is a ∗-ideal. By definition,
there is a ∆⊆ Spec(R) such that ∗= ∗∆; hence,

J = J∗ =
⋂
P∈∆

JRP =
⋂
P∈∆

(I ∩R)RP =
⋂
P∈∆

IRP ∩RP .

In particular, there is a P ∈∆ such that 1 /∈ IRP = ITRP ; hence, there
is a Q ∈ Spec(TRP ) such that ITRP ⊆Q. We claim that Q0 :=Q∩T
is a prime ∗T -ideal containing I. Indeed, I ⊆ ITRP ∩T ⊆Q∩T =Q0;
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moreover, since Q∩R=Q0 ∩R⊆ P , Q0 = LT for some prime ideal L
of T contained in P (Remark 3.2(2)), and thus

Q∗T0 = L∗T ⊆ (LRP ∩R)T = LT =Q0.

Therefore, ∗T is also semifinite, and by [1, Theorem 4] it is spectral.

Suppose ∗ is Noetherian, and let {IαT |α∈A} be an ascending chain
of ∗T -ideals. Then {I∗α | α ∈A} is an ascending chain of ∗-ideals, which
has to stabilize at Iα. Hence, the original chain stabilizes at IαT , and
∗T is Noetherian. �

Extendability works well with the order structure of Star(R).

Proposition 3.6. Let R be an integral domain and T be a flat overring
of R. Let ∗1, ∗2, {∗λ | λ ∈Λ} be star operations that are extendable to T .

(a) If ∗1 ≤ ∗2 ∈ Star(R), then (∗1)T ≤ (∗2)T .
(b) ∗1 ∧∗2 is extendable to T and (∗1 ∧∗2)T = (∗1)T ∧ (∗2)T .
(c) If each ∗λ is of finite type, then supλ ∗λ is extendable to T and

(supλ ∗λ)T = supλ(∗λ)T .

Proof. (a) If ∗1 ≤ ∗2, then I∗1 ⊆ I∗2 for every fractional ideal I, and
thus (I∗1T )⊆ (I∗2T ). Using the definition of ∗T , we get (∗1)T ≤ (∗2)T .

(b) Let I be an ideal of R. By definition, I∗1∧∗2 = I∗1 ∩ I∗2 , so that

(IT )(∗1∧∗2)T = (I∗1∧∗2)T = (I∗1 ∩ I∗2)T

= I∗1T ∩ I∗2T = (IT )(∗1)T ∩ (IT )(∗2)T = (IT )(∗1)T∧(∗2)T ,

and thus (∗1 ∧∗2)T = (∗1)T ∧ (∗2)T .

(c) Let ∗ := supλ ∗λ. Since each ∗λ is of finite type, so is ∗ [2, p. 1628],
and thus ∗ is extendable to T by Proposition 3.3(d). Moreover, again by
[2, p. 1628], I∗ =

∑
I∗1◦···◦∗n , as (∗1, . . . , ∗n) ranges among the finite

strings of elements of {∗λ | λ∈Λ} (here ∗1 ◦ · · · ◦∗n indicates simply the
composition of ∗1, . . . , ∗n); therefore,

I∗T =

(∑
I∗1◦···◦∗n

)
T =

∑
I∗1◦···◦∗nT.

We claim that I∗1◦···◦∗nT = (IT )(∗1)T ◦···◦(∗n)T ; we proceed by induction.
The case n= 1 is just the definition of the extension; suppose the claim
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holds for m< n. Then

I∗1◦···◦∗nT = (I∗1)∗2◦···◦∗nT = (I∗1T )(∗2)T ◦···◦(∗n)T = (IT )(∗1)T ◦···◦(∗n)T

as claimed. Thus,

I∗T =
∑

(IT )(∗1)T ◦···◦(∗n)T = (IT )supλ(∗λ)T ,

the last equality coming from [2, p. 1628] and Proposition 3.3(d). Hence,
∗= supλ(∗λ)T . �

Extendability is also transitive:

Proposition 3.7. Let R be a domain and T1 ⊆ T2 be two flat overrings
of R. If ∗ ∈ Star(R) is extendable to T1 and ∗T1 is extendable to T2,
then ∗ is extendable to T2, and ∗T2 = (∗T1)T2 .

Proof. Note first that if T2 is flat over R then it is flat over T1, and
thus it makes sense to speak of the extendability of ∗T1

. For every ideal
I of R, we have

I∗T2 = (I∗T1)T2 = (IT1)∗T1T2 = (IT1T2)(∗T1
)T2 = (IT2)(∗T1

)T2 ,

and thus if IT2 = JT2 then I∗T2 = J∗T2, so that ∗ is extendable to T2.
The previous calculation also shows that ∗T2

= (∗T1
)T2

. �

Proposition 3.8. Let R be an integral domain and T be a flat overring
of R. Let ∆ := {M ∩R |M ∈Max(T )}. If ∗ ∈ Star(R) is extendable
to RP for every P ∈∆, then it is extendable to T .

Proof. Let I, J be ideals of R such that IT = JT . Let P ∈∆ and let
M be the (necessarily unique — see Remark 3.2(2)) maximal ideal of T
such that M ∩R= P . Then TM =RP , and since ∗ is extendable to RP
we have I∗RP = J∗RP . It follows that

I∗T =
⋂
P∈∆

I∗RP =
⋂
P∈∆

J∗RP = J∗T,

and thus ∗ is extendable to T . �

Corollary 3.9. Let R be a domain, and let ∗ ∈ Star(R). The following
are equivalent:

(i) ∗ is extendable to RP for every P ∈ Spec(R);
(ii) ∗ is extendable to every flat overring of R.
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Note that condition (i) of the above corollary cannot be replaced
by the version that considers only maximal ideals of T . Indeed, if
(R,M) is local, then clearly every star operation is extendable to RM ,
but it would be implausible that every star operation is extendable to
every localization. We can build an explicit counterexample by slightly
tweaking [21, Remark 2.5(3)]. Let R := ZpZ +XQ(

√
2)[[X]] (where

p is a prime number). Then R is a two-dimensional local domain,
with maximal ideal M := pZpZ +XQ(

√
2)[[X]]; let P := XQ(

√
2)[[X]].

We claim that the v-operation is not extendable to RP = Q+P . Let
A :=X(Q+P ) and B := XR: then ARP = BRP = A, but AvRP = P
while BvRP = BRP 6= P .

4. Jaffard families. The concept of Jaffard family was introduced
and studied in [13, Section 6.3].

Definition 4.1. Let R be a domain and Θ a set of overrings of R such
that the quotient field of R is not in Θ. We say that Θ is a Jaffard
family on R if, for every integral ideal I of R,

• R=
⋂
T∈Θ T ;

• Θ is locally finite;
• I =

∏
T∈Θ(IT ∩R);

• if T 6= S are in Θ, then (IT ∩R) + (IS ∩R) =R.

We say that an overring T of R is a Jaffard overring of R if T belongs
to a Jaffard family of R.

Note that, by the second axiom, if I 6= (0) then IT = T for all but
finitely many T ∈Θ, so that the product I =

∏
T∈Θ(IT ∩R) is finite.

The next propositions collect the properties of Jaffard families that
we will be using.

Proposition 4.2 [13, Theorem 6.3.1]. Let R be an integral domain
with quotient field K, and let Θ be a Jaffard family on R. For each
T ∈Θ, let Θ⊥(T ) :=

⋂
{U ∈Θ | U 6= T}.

(a) Θ is complete (i.e., I =
⋂
{IT | T ∈Θ} for every ideal I of R).

(b) For each P ∈ Spec(R), P 6= (0), there is a unique T ∈Θ such
that PT 6= T .

(c) For each T ∈Θ, both T and Θ⊥(T ) are flat over R.
(d) For each T ∈Θ, we have T ·Θ⊥(T ) =K.
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Proposition 4.3. Let Θ be a family of flat overrings of the domain R,
and let K be the quotient field of R. Then Θ is a Jaffard family if and
only if it is complete and locally finite and TS =K for all T, S∈Θ, T 6=S.

Proof. If Θ is a Jaffard family, the properties follow by the definition
and Proposition 4.2. Conversely, suppose Θ verifies the three properties,
let I 6= (0) be an ideal of R and let T 6=S be members of Θ. If IT ∩R and
IS ∩R are not coprime, then there would be a prime P of R containing
both; since Θ is complete, it would follow that both IT ∩R and IS ∩R
survive in some A ∈Θ. In particular, without loss of generality, A 6= T ;
however,

(IT ∩R)A= ITA∩A= IK ∩A=A,

a contradiction. Therefore, (IT ∩R) + (IS ∩R) =R. Moreover,

I =
⋂
{IT ∩R | T ∈Θ}= (IT1 ∩R)∩ · · · ∩ (ITn ∩R)

by local finiteness; since the ITi ∩R are coprime, their intersection is
equal to their product, and thus I = (IT1 ∩R) · · · (ITn ∩R). �

Remark 4.4. Any Jaffard family Θ defines a partition on Max(R),
where each class is composed by the M ∈Max(R) such that MT 6= T
for some fixed T ∈Θ. In particular, T =

⋂
RM , as M ranges in the class

relative to T ; hence, different Jaffard families define different partitions.
In particular, a local domain has only one Jaffard family, namely {R},
and a semilocal domain has only a finite number of Jaffard families.

However, not every partition of Max(R) can arise in this way.
For example, let Θ be a Jaffard family and let M,N ∈ Max(R); by
Proposition 4.2(b), there are unique overrings T,U ∈ Θ such that
MT 6= T and NU 6= U . If there is a nonzero prime P ⊆ M ∩ N ,
then PT 6= T and PU 6= U ; therefore, again by Proposition 4.2(b), it
must be T = U .

An h-local domain is an integral domain R such that Max(R) is
locally finite and such that every prime ideal P is contained in only one
maximal ideal. In this case, {RM |M ∈Max(R)} is a Jaffard family
of R; conversely, if {RM |M ∈Max(R)} is a Jaffard family, then Max(R)
is locally finite (by definition) and each prime is contained in only one
maximal ideal (by Proposition 4.2(b)), and thus R is h-local. Many
properties of the Jaffard families can be seen as generalizations of the
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corresponding properties of h-local domains; the following proposition
is an example (compare [28, Proposition 3.1]).

Proposition 4.5. Let R be a domain and T a Jaffard overring of R.
Then

(a) for every family {Xα :α∈A} of R-submodules of K with nonzero
intersection, we have

(⋂
α∈AXα

)
T =

⋂
α∈AXαT ;

(b) if {Iα : α ∈A} is a family of integral ideals of R with nonzero
intersection such that

(⋂
α∈A Iα

)
T 6= T , then IαT 6= T for

some α ∈A.

Proof. (a) Let Θ be a Jaffard family of R such that T ∈ Θ. Then,
by the flatness of T ,( ⋂

α∈A
Xα

)
T =

( ⋂
α∈A

⋂
U∈Θ

XαU

)
T =

( ⋂
U∈Θ

⋂
α∈A

XαU

)
T

=

( ⋂
U∈Θ\{T}

⋂
α∈A

XαU

)
T ∩

⋂
α∈A

XαT =K ∩
⋂
α∈A

XαT,

since
⋂
U∈Θ\{T}

⋂
α∈AXαU is a Θ⊥(T )-module, and thus its product

with T is equal to K by Proposition 4.2(d).

(a⇒ b) Suppose
(⋂

α∈A Iα
)
T 6=T . Since

(⋂
α∈A Iα

)
T ⊆T , we find that

1 is not contained in the left-hand side. By (a), 1 is not contained in⋂
α∈A IαT , i.e., there is an α such that 1 /∈ IαT , and thus IαT 6= T . �

5. Jaffard families and star operations. The reason why we
introduced Jaffard families is that they provide a way to decompose
Star(R) as a product of spaces of star operations of overrings of T .
Before reaching this objective (Theorem 5.4) we show that weaker
properties can lead to a decomposition of at least a subset of Star(R).

Proposition 5.1. Let R be an integral domain with quotient field K.
Let Θ be a set of flat overrings of R such that R =

⋂
{T | T ∈Θ} and

such that AB = K whenever A,B ∈ Θ and A 6= B. Then there is an
injective order-preserving map

ρΘ :
∏
T∈Θ

Star(T )→ Star(R), (∗(T ))T∈Θ 7→
∧
T∈Θ

∗(T ),
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where
∧
T∈Θ ∗(T ) is the map such that

I 7→
⋂
T∈Θ

(IT )∗
(T )

for every fractional ideal I of R.

Proof. Let (∗T )T∈Θ ∈
∏
T∈Θ Star(T ), and let ∗ := ρΘ((∗(T ))T∈Θ).

Since
⋂
T∈Θ T =R, the map ∗ is a star operation; moreover, it is clear

that if
∗(T )

1 ≤ ∗(T )
2

for all T then
ρΘ(∗(T )

1 )≤ ρΘ(∗(T )
2 ).

Hence, ρΘ is well-defined and order-preserving; we need to show that it
is injective.

Suppose it is not. Then

∗ := ρΘ(∗(T )
1 ) = ρΘ(∗(T )

2 )

for some families of star operations such that ∗(U)
1 6= ∗(U)

2 for some U ∈Θ.
There is an integral ideal J of U such that

J∗
(U)
1 6= J∗

(U)
2 ;

let I := J ∩R. Since U is flat, for both i= 1 and i= 2 we have

I∗U =

[ ⋂
T∈Θ

(IT )∗
(T )
i

]
U = (IU)∗

(U)
i U ∩

[ ⋂
T∈Θ\{U}

(IT )∗
(T )
i

]
U.

If T 6= U , then since T is flat,

(IT )∗
(T )
i = ((J ∩R)T )∗

(T )
i = (JT ∩T )∗

(T )
i .

However, JT = JUT = K since UT = K (by hypothesis); therefore,
(IT )∗

(T )
i = T , and since I ⊆ U ,

I∗U = (IU)∗
(U)
i U ∩

[ ⋂
T∈Θ\{U}

T

]
U = (IU)∗

(U)
i U ∩

[ ⋂
T∈Θ

T

]
U

= (IU)∗
(U)
i ∩RU = (IU)∗

(U)
i = J∗

(U)
i

for both i = 1 and i = 2. However, this contradicts the choice of J ;
hence, ρΘ is injective. �
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If Θ is a Jaffard family, the previous proposition can be strengthened.
We need two lemmas.

Lemma 5.2. Let R be a domain with quotient field K, and let Θ be a
Jaffard family on R. For every U ∈Θ, let JU be a U -submodule of K,
and define J :=

⋂
U∈Θ JU . If J 6= (0), then for every T ∈ Θ we have

JT = JT .

Proof. By Proposition 4.5(a), we have

JT =

( ⋂
U∈Θ

JU

)
T =

⋂
U∈Θ

JUT.

If U 6=T , then JUT =JUUT =JUK=K; therefore, JT =JTT =JT . �

The next lemma can be seen as a generalization of [13, Theorem
6.2.2(2)] and [6, Lemma 2.3].

Lemma 5.3. Let R be an integral domain, T a Jaffard overring of R,
and I, J ∈ F(R) such that (I : J) 6= (0). Then (I : J)T = (IT : JT ).

Proof. It is enough to note that (I : J) =
⋂
j∈J j

−1I 6= (0), and apply

Proposition 4.5(a). �

Theorem 5.4. Let R be an integral domain and let Θ be a Jaffard
family on R. Then every ∗ ∈ Star(R) is extendable to every T ∈Θ, and
the maps

λΘ : Star(R)→
∏
T∈Θ

Star(T ), ∗ 7→ (∗T )T∈Θ,

ρΘ :
∏
T∈Θ

Star(T )→ Star(R), (∗(T ))T∈Θ 7→
∧
T∈Θ

∗(T )

(where
∧
T∈Θ ∗(T ) is defined as in Proposition 5.1) are order-preserving

bijections between Star(R) and
∏
{Star(T ) | T ∈Θ}.

Proof. We first show that every ∗ ∈ Star(R) is extendable. Let T ∈Θ
and let I, J be ideals of R such that IT = JT . Then, using Lemma 5.3,
we have

(I∗T : J∗T ) = (I∗ : J∗)T = (I∗ : J)T = (I∗T : JT )
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and, since JT = IT ⊆ I∗T , we have 1 ∈ (I∗T : J∗T ), so that J∗T ⊆ I∗T .
Symmetrically, I∗T ⊆J∗T , and hence J∗T =I∗T . By Proposition 3.3(b),
∗T is well-defined, and ∗ is extendable to T ; in particular, λΘ is well-
defined.

Moreover, for every ∗ ∈ Star(R), we have

I∗ =
⋂
T∈Θ

I∗T =
⋂
T∈Θ

(IT )∗T

using the completeness of Θ in the first equality and the definition of
extension in the second. Thus, ∗= ρΘ◦λΘ(∗), i.e., ρΘ◦λΘ is the identity.
It follows that λΘ is injective and ρΘ is surjective. But ρΘ is injective
by Proposition 5.1, so λΘ and ρΘ must be bijections. �

The second part of the following corollary is a generalization of [22,
Theorem 2.3].

Corollary 5.5. Let R be a one-dimensional integral domain.

(a) |Star(R)| ≥
∏
{|Star(RM )| :M ∈Max(R)};

(b) if R is of finite character (for example, if R is Noetherian),
then |Star(R)|=

∏
{|Star(RM )| :M ∈Max(R)}.

Proof. If M 6= N are maximal ideals of R, then RMRN = K, since
both M and N have height 1. By Proposition 5.1, there is an injective
map from Star(R) to the product

∏
Star(RM ), which in particular

implies the first inequality.

If, moreover, R is of finite character, then {RM |M ∈Max(R)} is a
Jaffard family, and the claim follows by applying Theorem 5.4. �

The bijections ρΘ and λΘ respect the properties of star operations;
see the following Proposition 5.10 for the eab case.

Theorem 5.6. Let R be a domain and Θ be a Jaffard family on R, and
let ∗ ∈ Star(R). Then ∗ is of finite type (resp. semifinite, stable, spectral,
Noetherian) if and only if ∗T is of finite type (resp. semifinite, stable,
spectral, Noetherian) for every T ∈Θ.

Proof. By Propositions 3.3(d) and 3.5, if ∗ is of finite type, stable,
spectral or Noetherian so is ∗T . If ∗ is semifinite, let I be a ∗T -closed
ideal of T , and let J := I∩R. Then JT = I, and J∗⊆ I∗T ∩R=J , so that
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there is a prime ideal Q⊇ J such that Q∗ =Q. For every U ∈Θ, U 6= T ,
we have JU = U ; hence QU = U , and thus QT 6= T . Moreover, since R
is flat, QT is prime (Remark 3.2(2)). Therefore, (QT )∗T =Q∗T =QT
is a proper prime ∗T -ideal containing I, and ∗T is semifinite.

Now let ∗ := ρΘ(∗(T )). If each ∗(T ) is of finite type, then ∗ is of finite
type by [2].

Suppose each ∗(T ) is semifinite and I = I∗ is a proper ideal of R.

Then 1 /∈ I, so there is a T ∈Θ such that (IT )∗
(T ) 6= T , and thus there is

a prime ideal P of T containing IT such that P = P ∗
(T )

. If Q := P ∩R,
then

Q∗ ⊆ (QT )∗
(T )

∩R⊆ P ∗
(T )

∩R=Q,

so that Q is a ∗-prime ideal of R containing I.

If each ∗(T ) is stable, then, given ideals I, J of R, we have

(I ∩ J)∗ =
⋂
T∈Θ

((I ∩ J)T )∗
(T )

=
⋂
T∈Θ

(IT )∗
(T )

∩
⋂
T∈Θ

(JT )∗
(T )

= I∗ ∩ J∗.

Hence, ∗ is stable. The case of spectral star operations follows since ∗
is spectral if and only if it is stable and semifinite [1, Theorem 4].

Suppose now ∗(T ) is Noetherian for every T ∈Θ and let {Iα : α ∈A}
be an ascending chain of ∗-ideals. If Iα = (0) for every α we are
done. Otherwise, there is an α such that Iα 6= (0), and thus Iα (and,
consequently, every Iα for α > α) survives in only a finite number of
elements of Θ, say T1, . . . , Tn. For each i ∈ {1, . . . , n}, the set {IαTi}
is an ascending chain of ∗(Ti)-ideals, and thus there is an αi such that
IαTi = IαiTi for every α≥ αi.

Therefore, let α̃ := max{α, αi : 1≤ i≤ n}. For every β ≥ α̃, we have
IβTi = IαiTi = Iα̃Ti, while if T 6= Ti for every i, then IβT = T = Iα̃T
since β ≥α. Therefore, Iβ =

⋂
T∈Θ IβT =

⋂
T∈Θ Iα̃T = Iα̃ and the chain

{Iα} stabilizes. �

Corollary 5.7. Let R be a domain and Θ a Jaffard family on R. If
every T ∈Θ is Noetherian, so is R.

Proof. A domain A is Noetherian if and only if the identity star
operation d(A) is Noetherian. If every T ∈ Θ is Noetherian, each dT
is a Noetherian star operation, and thus (by Theorem 5.6) ρΘ(dT ) is
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Noetherian. However, by Theorem 5.4, ρΘ(dT ) = dR, and thus R is a
Noetherian domain. �

Lemma 5.8. Let R be an integral domain and T a Jaffard overring
of R. For all nonzero integral ideals I, J of T ,

(I ∩R)(J ∩R) = IJ ∩R.

Proof. Let Θ be a Jaffard family containing T . Since Θ is complete,
it is enough to show that they are equal when localized on every U ∈Θ.
We have

(I ∩R)(J ∩R)U = (IU ∩U)(JU ∩U) =

{
IJ if U = T,

U if U 6= T,

while

(IJ ∩R)U = IJU ∩U =

{
IJ if U = T,

U if U 6= T,

and thus (I ∩R)(J ∩R) = IJ ∩R. �

Lemma 5.9. Let R be an integral domain, T a Jaffard overring of R,
and I a finitely generated integral ideal of T . Then I ∩R is finitely
generated (over R).

Proof. Let S := Θ⊥(T ), where Θ is a Jaffard family to which T
belongs. Then, by Proposition 4.2, (I ∩R)S = IS ∩S = ITS ∩S = S,
and thus there are i1, . . . , in ∈ I ∩ R and s1, . . . , sn ∈ S such that
1 = i1s1 + · · ·+ insn; let I0 := (i1, . . . , in).

Let x1, . . . , xm be the generators of I in T . Since (I ∩R)T = IT = I,
for every xi there are j1i, . . . , jnii ∈ I ∩R and t1i, . . . , tnii ∈ T such that
xi=j1it1i+· · ·+jniitnii; let Ii :=(j1i, . . . , jnii). Then J :=I0+I1+· · ·+In
is a finitely generated ideal contained in I ∩R (since it is generated by
elements of I ∩R) such that (I ∩R)T ⊆ JT and (I ∩R)S ⊆ JS; thus,
I ∩R⊆ J . Therefore, I ∩R= J is finitely generated, as claimed. �

Proposition 5.10. Let R be an integral domain and let Θ be a Jaffard
family on R. A star operation ∗ ∈ Star(R) is eab (resp. ab) if and only
if ∗T is eab (resp. ab) for every T ∈Θ.
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Proof. (=⇒) Suppose (IJ)∗T ⊆ (IL)∗T for some finitely generated
ideals I, J, L of T (which we can suppose contained in T ). Since

(IJ ∩R)∗T = ((IJ ∩R)T )∗T = (IJ)∗T

(and the same happens for IL), we have (IJ ∩R)∗T ⊆ (IL∩R)∗T , and
so

(IJ ∩R)∗T ∩R⊆ (IL∩R)∗T ∩R.

However, both IJ ∩R and IL∩R survive (among the ideals of Θ) only
in T , so that

(IJ ∩R)∗T ∩R= (IJ ∩R)∗ = ((I ∩R)(J ∩R))∗

by Lemma 5.8, and thus

((I ∩R)(J ∩R))∗ ⊆ ((I ∩R)(L∩R))∗.

Since I is finitely generated, by Lemma 5.9 so is I∩R; the same happens
for J ∩R and L∩R. Hence, since ∗ is eab, (J ∩R)∗ ⊆ (L∩R)∗, and
thus

J∗T = (J ∩R)∗T ⊆ (L∩R)∗T = L∗T .

Hence, ∗T is eab.

(⇐=) Suppose (IJ)∗ ⊆ (IL)∗. Then we have (IJ)∗T ⊆ (IL)∗T , i.e.,
(IJT )∗T ⊆ (ILT )∗T for every T ∈Θ. Since ∗T is eab, this implies that
(JT )∗T ⊆ (LT )∗T for every T ∈Θ; since H∗ =

⋂
T∈Θ(HT )∗T , it follows

that J∗ ⊆ L∗, and ∗ is eab.

The same reasoning applies for the ab case. �

Following [20], we say that an ideal A is m-canonical if I= (A : (A : I))
for every fractional ideal I of R. The following proposition can be seen as
a generalization of [20, Theorem 6.7] to domains that are not necessarily
integrally closed.

Proposition 5.11. Let R be a domain. Then R admits an m-canonical
ideal if and only if R is h-local, RM admits an m-canonical ideal for
every M ∈ Max(R) and |Star(RM )| 6= 1 for only a finite number of
maximal ideals of R.

Proof. Suppose A is m-canonical. Then R is h-local by [20, Propo-
sition 2.4]; moreover, if I is an RM -fractional ideal, then I = JRM for
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some R-fractional ideal, and thus

(ARM : (ARM : I)) = (ARM : (ARM : JRM )) = (ARM : (A : J)RM )

= (A : (A : J))RM = JRM = I,

applying Lemma 5.3 (which is applicable since R h-local implies that
RM is a Jaffard overring of R). If ARM =RM , it follows that RM is an
m-canonical ideal for RM , and thus that the v-operation on RM is the
identity, or equivalently that |Star(RM )|= 1; hence, if |Star(RM )| 6= 1
then ARM 6=RM . But this can happen only for a finite number of M ,
since R is h-local and thus of finite character.

Conversely, suppose that the three hypotheses hold. For every
M ∈Max(R), let JM be an m-canonical ideal of RM , and define

IM :=

{
RM if |Star(RM )|= 1,

JM if |Star(RM )|> 1.

Note that, if |Star(RM )|= 1, then RM is m-canonical for RM , and thus
IM is m-canonical for every M .

The ideal J :=
⋂
P∈Max(R) IP of R is nonzero, and by Lemma 5.2

JRM = IM for every maximal ideal M . If L is an ideal of R then, for
every maximal ideal M ,

(J : (J : L))RM = (JRM : (JRM : LRM )) = (IM : (IM : LRM )) = LRM ,

so that

(J : (J : L)) =
⋂

M∈Max(R)

(J : (J : L))RM =
⋂

M∈Max(R)

LRM = L.

Therefore, J is an m-canonical ideal of R. �

Remark 5.12. The results in Sections 3 and 5 can be generalized in
two different directions.

On the one hand, we can consider, instead of star operations,
other classes of closure operations, for example semiprime or semistar
operations. In both cases, the definitions of extendability and the results
in Section 3 carry over without modifications, noting that the equalities
(Ic : Jc) = (Ic : J) and (I∗ : J∗) = (I∗ : J) hold when c and ∗ are,
respectively, a semiprime or a semistar operation.
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However, the behaviour of these two classes differs when we come
to Jaffard families. In one case there is no problem: with the obvious
modifications, all results of Section 5 hold for the set Sp(R) of semiprime
operations. For example, this means that we can analyze the structure
of the semiprime operation on a Dedekind domain D almost directly
from the structure of Sp(V ), for V a discrete valuation ring, shortening
the analysis done in [32, Section 3].

The case of semistar operations is much more delicate. Indeed, the
result corresponding to Theorem 5.4 is not true for SStar(R), meaning
that a semistar operation on R may not be extendable to a Jaffard
overring T of R. For example, let ∗ be the semistar operation defined
by

I∗ =

{
I if I ∈ F(R),

K otherwise.

If T 6=R is a Jaffard overring of R, then it is not a fractional ideal of R
(for otherwise T ·Θ⊥(T ) = K would imply Θ⊥(T ) = K); however, we
have RT = TT , while

R∗T = T 6=K = T ∗T.

Hence, ∗ is not extendable to T . The exact point in which the proof
of Theorem 5.4 fails is the possibility of using Lemma 5.3, because the
equality IT = JT does not imply that (I : J) 6= (0). However, if we
restrict to finite-type semistar operations, the analogue of Theorem
5.4 does hold. Indeed, a proof analogous to that of Proposition 3.3(d)
shows that finite-type operations are extendable, and thus the proof of
Theorem 5.4 continues without problems.

A second way of generalizing these results is by considering, beyond
the order structure, also a topological structure on Star(R). Mimicking
the definition of the Zariski topology on SStar(R) given in [11], we can
define a topology on Star(R) by declaring open the sets of the form

VI := {∗ ∈ Star(R) | 1 ∈ I∗},

as I ranges among the fractional ideals of R. In particular, Theorem 5.4
can be interpreted at the topological level: if Θ is a Jaffard family of R,
then λΘ and ρΘ are homeomorphisms between Star(R) and the space∏
T∈Θ Star(T ) endowed with the product topology.
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6. Application to Prüfer domains. Theorem 5.4 allows one to
split the study of the set Star(R) of star operations on R into the
study of the sets Star(T ), as T ranges among the members of a Jaffard
family Θ. Obviously, this result isn’t quite useful if we don’t know how
to find Jaffard families, or if studying Star(T ) is as complex as studying
Star(R). The purpose of this section is to show that, in the case of
(some classes of) Prüfer domains, we can resolve the first question, and
we can at least make some progress on the second, proving more explicit
results on Star(R). We shall employ a method similar to the one used
in [23, Sections 3–5].

Let now R be a Prüfer domain with quotient field K. We say that two
maximal ideals M,N are dependent if RMRN 6=K, or equivalently if
M∩N contains a nonzero prime ideal. Since the spectrum of R is a tree,
being dependent is an equivalence relation; we indicate the equivalence
classes by ∆λ, as λ ranges over Λ. We also define Tλ :=

⋂
{RP |P ∈∆λ}.

We call the set Θ := {Tλ | λ ∈ Λ} the standard decomposition of R.

Lemma 6.1. Let R be a finite-dimensional Prüfer domain. Then
∆⊆Max(R) is an equivalence class with respect to dependence if and
only if ∆ = V (P )∩Max(R) for some height-1 prime P of R.

Proof. Suppose ∆ = V (P )∩Max(R). If M,N ∈∆, then P ⊆M ∩N ;
conversely, since P has height 1, M ∈ ∆ and Q ⊆M ∩N imply that
P ⊆Q (since the spectrum of R is a tree).

On the other hand, suppose ∆ = ∆λ for some λ, and let M,N ∈∆.
Since Spec(R) is a tree and dim(R) <∞, both M and N contain a
unique height-1 prime, say PM and PN respectively. If PM 6= PN ,
then M ∩ N cannot contain a nonzero prime, and thus M and N
are not dependent, against the hypothesis M,N ∈ ∆. Therefore,
the height-1 prime contained in the members of ∆ is unique, and
∆ = V (P )∩Max(R). �

Proposition 6.2. Let R be a Prüfer domain, and suppose that

(a) Spec(R) is a Noetherian space, or
(b) R is semilocal.

Then the standard decomposition Θ of R is a Jaffard family of R.
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Proof. Since R is Prüfer, every overring of R is flat [15, Theorem
1.1.1], and this in particular applies to the T ∈Θ.

We claim that, under both hypotheses, if T = Tλ ∈ Θ, then
Spec(T ) = {PT | P ⊆ M for some M ∈ ∆λ}. Indeed, in both cases
every ∆λ is compact: if Spec(R) is Noetherian this is immediate, while
if R is semilocal they are finite and thus compact. Hence, the semistar
operation ∗∆ is of finite type [14, Corollary 4.6], and R∗∆ = T ; since
the unique finite-type (semi)star operation on a Prüfer domain is the
identity (since all finitely generated ideals are invertible), it follows that
∗∆ is just the map I 7→ IT , and thus QT = T if Q is not contained in
any M ∈∆. Therefore, no prime ideal P of R survives in two different
members of Θ; thus, PTλTµ = TλTµ if λ 6= µ are in Λ. Hence, TλTµ =K.

We need to show that Θ is locally finite. If R is semilocal then Θ is
finite, and in particular locally finite. Suppose Spec(R) is Noetherian.
For every x∈R, x 6= 0, the ideal xR has only a finite number of minimal
primes (this follows, for example, from the proof of [7, Chapter 4, Corol-
lary 3, p. 102] or [5, Chapter 6, Exercises 5 and 7]); in particular, since
each prime survives in only one T ∈Θ, the family Θ is of finite character.

Hence, in both cases Θ is a Jaffard family by Proposition 4.3. �

Remark 6.3. (1) If R is a Prüfer domain that is both of finite character
and finite-dimensional, then Spec(R) is Noetherian. Indeed, if I is a
nonzero radical ideal of R, then V (I) is finite, and thus every ascending
chain of radical ideals must stop; by [5, Chapter 6, Exercise 5], this
implies Noetherianity.

(2) The standard decomposition Θ of R is the “finest” Jaffard family
of R, in the sense that the partition of Max(R) determined by Θ
(see Remark 4.4) is the finest partition that can be induced by a
Jaffard family; this follows exactly from the definition of the dependence
relation.

(3) In general, the standard decomposition of R need not be a Jaffard
family of R. For example, let R be an almost Dedekind domain which
is not Dedekind. Since R is one-dimensional, no two maximal ideals
are dependent, and thus each Tλ has the form RM for some maximal
ideal M . However, Θ is not a Jaffard family, since it is not locally finite
(if it were, R would be a Dedekind domain). Indeed, Example 3.4 shows
that not every star operation is extendable to every RM .
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Cutting the branch. Let R be a finite-dimensional Prüfer domain
whose standard decomposition Θ is a Jaffard family. By Lemma 6.1,
every T ∈ Θ will have a nonzero prime ideal P contained in all its
maximal ideals; moreover, by Remark 6.3(2), T does not admit a
further decomposition. On the other hand, it may be possible that T/P
has a nontrivial standard decomposition that is still a Jaffard family;
thus, if we could relate Star(T ) with Star(T/P ), we could (in principle)
simplify the study of Star(T ).

Lemma 6.4. Let R be a Prüfer domain whose Jacobson radical Jac(R)
contains a nonzero prime ideal. Then there is a prime ideal Q⊆ Jac(R)
such that Jac(R/Q) does not contain nonzero prime ideals.

Proof. Let ∆ := {P ∈ Spec(R) | P ⊆ Jac(R)}. By hypothesis, ∆
contains nonzero prime ideals. Let Q :=

⋃
P∈∆ P .

Since R is a tree, ∆ is a chain; hence, Q is itself a prime ideal, and it
is contained in every maximal ideal of R. Suppose Jac(R/Q) contains
a nonzero prime ideal Q. Then Q = Q′/P for some prime ideal Q′

of R, and Q′ is contained in every maximal ideal of R. It follows that
Q(Q′ ⊆ Jac(R), against the construction of Q. �

Suppose now that R is a Prüfer domain with quotient field K, and
suppose there is a nonzero prime ideal P contained in every maximal
ideal of R. Then we have a quotient map φ :RP →RP /PRP = k that,
for every star operation ∗ on R, induces a semistar operation ∗φ on
D :=R/P defined by

I∗φ := φ(φ−1(I)∗),

such that D∗φ =D. Conversely, if ] is a star operation on D, then we
can construct a star operation ]φ on R. Indeed, if I is a fractional ideal

of R, then I is either divisorial (and so we define I]
φ

:= I) or there is
an α ∈K such that R⊆ αI ⊆RP [23, Proposition 2.2(5)]. In the latter
case, we define

I]
φ

:= α−1φ−1(φ(αI)]).

Proposition 6.5. Let R,P,D, φ be as above. Then the maps

Star(R)→ (S)Star(R/P ), ∗ 7→ ∗φ,
(S)Star(R/P )→ Star(R), ∗ 7→ ∗φ,

are well-defined order-preserving bijections.
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Proof. The fact that they are well-defined and bijections follows from
[23, Lemmas 2.3 and 2.4]; the fact that they are order-preserving is
immediate from the definitions. �

Star operations on h-local Prüfer domains. If R is both a
Prüfer domain and a h-local domain, then its standard decomposi-
tion Θ := {RM |M ∈Max(R)} is composed by valuation domains, and
star operations behave particularly well. We start by reproving [21,
Theorem 3.1] using our general theory.

Proposition 6.6. Let R be an h-local Prüfer domain, and let M be
the set of nondivisorial maximal ideals of R. Then |Star(R)|= 2|M|.

Proof. By Theorem 5.4, there is an order-preserving bijection between
Star(R) and

∏
{Star(RM ) |M ∈Max(R)}, and a maximal ideal M is

divisorial (in R) if and only if MRM is divisorial (in RM ). Since RM is
a valuation domain, |Star(RM )| is equal to 1 if MRM is divisorial, and
to 2 if MRM is not; the claim follows. �

It is noted in the proof of [28, Theorem 3.10] that, if R is an h-local
Prüfer domain and I, J are divisorial ideals of R, then I + J is also
divisorial. We can extend this result to arbitrary star operations; we
shall see a similar result in Proposition 7.8.

Proposition 6.7. Let R be an h-local Prüfer domain, let ∗ ∈ Star(R)
and let I, J be ∗-closed ideals. Then I + J is ∗-closed.

Proof. Since R is h-local, I +J is ∗-closed if and only if (I +J)RM
is ∗M -closed for every M ∈Max(R). However, since RM is a valuation
domain, either IRM ⊆ JRM or JRM ⊆ IRM ; hence, (I + J)RM =
IRM + JRM is equal either to IRM or to JRM , both of which are
∗M -closed. �

This result does not hold if we drop the hypothesis that R is h-local;
in fact, let R = Z+XQ[[X]] and let Rp := Z[1/p] +XQ[[X]] for each
prime number p. Consider the star operation

∗ : I 7→ (R : (R : I))∩ (R2 : (R2 : I))∩ (R3 : (R3 : I)).

Then R2 and R3 are ∗-closed; we claim that R2 +R3 is not. Indeed, if
T is equal to R, R2 or R3, then (T : (R2 +R3)) = XQ[[X]], and thus
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(R2 +R3)∗ = Q[[X]]; however, R2 +R3 = (Z[1/2] +Z[1/3]) +XQ[[X]]
does not contain rational numbers with denominator not divisible by 2
or 3 (for example, 1/5 /∈R2 +R3), and thus R2 +R3 6= Q[[X]].

The following can be seen as a sort of converse to Proposition 6.7.

Proposition 6.8. Let R be a Prüfer domain and suppose that R is
either semilocal, or locally finite and finite-dimensional. Then the
following are equivalent:

(i) R is h-local;
(ii) for every ∗ ∈ Star(R), I ∈F(R)\F∗(R) and J ∈F(R), at least

one of I ∩ J and I + J is not ∗-closed;
(iii) for every I ∈ F(R)\Fv(R) and J ∈ F(R), at least one of I ∩J

and I + J is not divisorial.

Proof. (i ⇒ ii) For every M ∈Max(R), (I +J)RM = IRM + JRM =
max{IRM , JRM}, while (I ∩ J)RM = IRM ∩ JRM = min{IRM , JRM}.
Since I is not ∗-closed, and {RM |M ∈Max(R)} is a Jaffard family of R,
there is a maximal ideal N such that IRN is not ∗N -closed; however,
at least one of (I +J)RN and (I ∩J)RN is equal to IRN , and thus at
least one is not ∗N -closed. Therefore, at least one between I + J and
I ∩ J is not ∗-closed.

(ii ⇒ iii) This is obvious.

(iii ⇒ i) Consider the standard decomposition Θ of R; then, (iii) holds
for every member of Θ but, if R is not h-local, there must be a T ∈Θ
that is not local. By Lemma 6.4, there is a prime ideal P of T such
that Jac(T/P ) does not contain nonzero primes. Let Λ be the standard
decomposition of D := T/P , let Z ∈ Λ, and define

Z ′ :=
⋂

W∈Λ\{Z}

W = Λ⊥(Z).

We have Z∩Z ′=D, and for every maximal idealM ofD, either ZDM =K
or Z ′DM =K. Therefore, Z +Z ′ =

⋂
M∈Max(D)(Z +Z ′)DM =K.

By Proposition 6.5, the v-operation on T corresponds to a (semi)star
operation on D such that A∗ = K if A is not a fractional ideal
of D; therefore, both φ−1(Z) and φ−1(Z ′) are not divisorial, but both
φ−1(Z ∩Z ′) = T and φ−1(Z +Z ′) = TP are (where φ : T → D is the
quotient map). This is a contradiction, and R must be h-local. �
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Stability. Recall that a star operation ∗ is stable if it distributes over
finite intersections, i.e., if (I ∩ J)∗ = I∗ ∩ J∗ for every I, J . In this
section, we study stable operations on Prüfer domains; we start with
an analogue of Proposition 6.5.

Proposition 6.9. Preserve the notation and the hypotheses of Propo-
sition 6.5. There is a bijection between Starst(R) and Starst(R/P ).

Proof. We first show that the bijections of Proposition 6.5 become
bijections on the subsets of stable operations; let thus ∗ be a semistar
operation in the first set and ] be the corresponding operation on
(S)Star(R/P ). Let φ :R→R/P be the quotient map.

Suppose that ∗ is stable and let I, J ∈ F(R/P ). Then, since φ is a
bijection between the ideal comprised between P and RP and F(R/P ),

(I ∩ J)] = φ[φ−1(I ∩ J)∗] = φ
[
(φ−1(I)∩φ−1(J))∗

]
= φ[φ−1(I)∗ ∩φ−1(J)∗] = φ(φ−1(I)∗)∩φ(φ−1(J)∗)

= I] ∩ J].

Therefore, ] is stable.

Conversely, suppose ] is stable and let I, J ∈ F(R). If I and J are
divisorial, so is I∩J ; hence, (I∩J)∗= I∩J = I∗∩J∗. Suppose (without
loss of generality) that I 6= Iv. Then there is an α such that P ⊆αI⊆RP .
Moreover, since R is Prüfer and P is contained in every maximal ideal
of R, every fractional ideal must be comparable with both P and RP .
More precisely, if v is the valuation relative to RP , and L is an ideal,
then either inf v(L) = 0 (so that P ⊆L⊆RP ), inf v(L) exists and has a
sign (if positive, L⊆P , if negative, RP ⊆L) or inf v(L) has no infimum
(so that if v(L) contains negative values then RP ⊆ L, while L⊆ P in
the other case). Therefore, we can distinguish three cases:

• αJ ⊆ P : then αJ ⊆ αI, and thus (I ∩ J)∗ = J∗ = I∗ ∩ J∗;
• RP ⊆ αJ : then αI ⊆ αJ , and thus (I ∩ J)∗ = I∗ = I∗ ∩ J∗;
• P ⊆ αJ ⊆RP . Let I0 := αI and J0 := αJ . Then

(I0 ∩ J0)∗ = φ−1(φ(I0 ∩ J0)]) = φ−1(φ(I0)] ∩φ(J0)])

= φ−1(φ(I0)])∩φ−1(φ(J0)]) = I∗0 ∩ J∗0 .
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Hence,

(I ∩ J)∗ = α−1(α(I ∩ J)∗) = α−1(I0 ∩ J0)∗

= α−1(I∗0 ∩ J∗0 ) = α−1I∗0 ∩α−1J∗0 = I∗ ∩ J∗.

In all cases, ∗ distributes over finite intersection, and thus ∗ is stable.

Therefore, there is an order-preserving bijection between Starst(R)
and (S)Starst(R/P ). However, for every domain D, the restriction map
(S)Starst(D)→ Starst(D) is a bijection (see [9, discussion after Propo-
sition 3.10] or [10, Proposition 3.4]), and thus Starst(R) corresponds
bijectively with Starst(R/P ). The claim follows. �

We say that a star (or semistar) operation ∗ distributes over arbitrary
intersections if, whenever {Iα}α∈A is a family of ideals with nonzero

intersection, we have
(⋂

α∈A Iα
)∗

=
⋂
α∈A I

∗
α.

Lemma 6.10. If V is a valuation domain, the v-operation distributes
over arbitrary intersections.

Proof. Let A := {Iα}α∈A be a family of ideals of V with nonzero
intersection. If A has a minimum Iα, then Ivα ⊆ Ivβ for every β ∈A, and
thus ( ⋂

α∈A
Iα

)v
= Ivα =

⋂
α∈A

Ivα.

Suppose A does not have a minimum. Since
(⋂

α∈A Iα
)v ⊆ Ivα for

every α ∈A, we have
(⋂

α∈A Iα
)v ⊆⋂α∈A Ivα.

Let x ∈
⋂
α∈A I

v
α. If x ∈

⋂
α∈A Iα then x ∈

(⋂
α∈A Iα

)v
. On the

other hand, if x /∈
⋂
α∈A Iα, then there is an α such that x ∈ Ivα \ Iα,

i.e., v(x) = inf v(Iα) (where v is the valuation associated to V and
v(J) := {v(j) | j ∈ J}). However, since A has no minimum, there are
β, γ ∈ A such that Iα ) Iβ ) Iγ ; in particular, v(x) > inf v(Iγ), and
thus x /∈ Ivγ , which is absurd. Therefore, x ∈

⋂
α∈A Iα. �

The following proposition may also be proved, in a slightly more
generalized setting, using a different, more direct, approach; see [31].

Proposition 6.11. Let R be a Prüfer domain and suppose that R is
either semilocal, or locally finite and finite-dimensional. Then every
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stable star operation ∗ on R is in the form

(2) I 7→
⋂

P∈Max(R)

(IRP )∗
(P )

,

where each ∗(P )∈Star(RP ). In particular, Starst(R) is order-isomorphic
to
∏
{Star(RP ) | P ∈Max(R)}.

Proof. For any ring A, let MA be the set of maximal ideals of A
that are not divisorial.

Suppose first that R is semilocal, and let ∆ be the set of star
operations defined as in (2). By Lemma 6.10, every star operation
in ∆ is stable; moreover, a maximal ideal P is ∗-closed if and only
if ∗(P ) is the identity, and thus |∆| = 2|MR|. Since Star(R) is finite
[23, Theorem 5.3], it is enough to show that the cardinalities of ∆ and
Starst(R) are equal.

We proceed by induction on n := |Max(R)|; if n= 1, the claim follows
from Lemma 6.10. Suppose it holds up to n− 1.

Let Θ be the standard decomposition of R. If Θ is not trivial,
then by the inductive hypothesis the claim holds for every member
of Θ; by Theorem 5.4, M ∈ Max(R) is divisorial over R if and only
if MT is divisorial over T (where T ∈ Θ is such that MT 6= T ),
and thus |MR| =

∑
T∈Θ |MT |. Since, by Theorem 5.6, we have

Starst(R)'
∏
{Starst(T ) | T ∈Θ}, it follows that the claim holds also

for R.

Suppose Θ is trivial. Then Jac(R) must contain a nonzero prime
ideal P (and, by Lemma 6.4, we can suppose P is maximal with
these properties). By Proposition 6.9, |Starst(R)| = |Starst(R/P )|;
moreover, by Proposition 6.5, MR and MR/P have the same car-
dinality. By the maximality of P , R/P has a nontrivial standard
decomposition; by induction, the claim holds for every member of the
decomposition, and thus, with the same reasoning as above, we see
that |Starst(R/P )| = 2|MR/P |. Putting all of this together we have
|Starst(R)| = 2|MR| and so Starst(R) = ∆ holds for every semilocal
Prüfer domain.

If R is locally finite and finite-dimensional, then Starst(R) =∏
{Starst(T ) | T ∈ Θ}, where Θ is the standard decomposition of R.
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Each T ∈ Θ is semilocal, and thus we can apply the previous part of
the proof; the claim follows. �

Proposition 6.12. Let R be a Prüfer domain and suppose that R
is either semilocal, or locally finite and finite-dimensional. Then the
following are equivalent:

(i) R is h-local;
(ii) every star operation on R distributes over arbitrary intersec-

tions;
(iii) every star operation on R distributes over finite intersections;
(iv) the v-operation on R distributes over arbitrary intersections;
(v) the v-operation on R distributes over finite intersections;

(vi) for every fractional ideal I of R,

Iv =
⋂
{(IRM )v

(RM )

|M ∈Max(R)}.

Proof. The implication (i⇒ ii) follows from Theorem 5.4, Lemma 5.2
and Lemma 6.10, since {RM |M ∈Max(R)} is a Jaffard family if R is
h-local. The implications (ii ⇒ iii ⇒ v) and (ii ⇒ iv ⇒ v) are clear,
while (v ⇐⇒ vi) follows from Proposition 6.11; we only have to show
that (v ⇒ i).

Suppose (v) holds and let Θ be the standard decomposition of R.
If R is not h-local, then a branch T ∈ Θ is not local; the hypotheses
on R guarantee that there is a nonzero prime ideal of T contained in
every maximal ideal. Therefore, we can apply Lemma 6.4 and find
a prime ideal Q such that Jac(T/Q) contains no prime ideals. By
Proposition 6.5, there is an order-preserving bijection between Star(T )
and (S)Star(T/Q), where the v-operation on T corresponds to the
semistar operation ∗ which is the trivial extension of the v-operation
on T/Q.

Since Jac(T/Q) does not contain nonzero primes, T/Q admits a
nontrivial Jaffard family Λ; let Z ∈ Λ, and define

Z ′ :=
⋂

W∈Λ\{Z}

W = Λ⊥(Z).

Then Z and Z ′ are not fractional ideals of T/Q, and thus Z∗ =Z ′∗ =F ,
where F is the quotient field of T/Q; on the other hand, Z ∩Z ′ = T/Q
and thus (Z ∩Z ′)∗ = T/Q.
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If π : TQ → TQ/QTQ is the canonical quotient, it follows that
π−1(Z)v = π−1(Z ′)v = TQ, while π−1(Z ∩Z ′)v = π−1(T/Q)v = T v = T .
Since T is not local, T 6= TQ, and thus v does not distribute over finite
intersections, against the hypothesis. �

7. The class group. Let ∗ be a star operation on R. An ideal I of
R is ∗-invertible if (I(R : I))∗ = R; the set of ∗-invertible ∗-ideals,
indicated with Inv∗(R), is a group under the natural “∗-product”
I ×∗ J 7→ (IJ)∗ [25, 17, 34, 18]. Any ∗-invertible ∗-ideal is divisorial
[34, Theorem 1.1 and Observation C] and, if ∗1 ≤ ∗2, there is a natural
inclusion Inv∗1(R)⊆ Inv∗2(R).

Proposition 7.1. Let R be an integral domain and Θ a Jaffard family
on R. The map

Γ: Inv∗(R)→
⊕
T∈Θ

Inv∗T (T ), I 7→ (IT )T∈Θ

is well-defined and a group isomorphism.

Proof. Define a map

Γ̂ : F(R)→
∏
T∈Θ

F(T ), I 7→ (IT )T∈Θ.

For every ∗-ideal I, Γ̂(I) = (IT ) is a sequence such that IT is
∗T -closed. Moreover, if I is ∗-invertible, then (I(R : I))∗ = R and
thus (I(R : I)T )∗T = T , so that IT is ∗T -invertible. We therefore have
Γ̂(Inv∗(R))⊆

∏
T∈Θ Inv∗T (T ), and indeed Γ̂(Inv∗(R))⊆

⊕
T∈Θ Inv∗T (T )

since Θ is locally finite by Theorem 5.4. Hence, Γ is well-defined, since
it is the restriction of Γ̂ to Inv∗(R).

It is straightforward to verify that Γ is a group homomorphism, and

since I =
⋂
T∈Θ IT , we have that Γ (or even Γ̂) is injective.

We need only to show that Γ is surjective. Let (IT )∈
⊕

T∈Θ Inv∗T (T ),
and define I :=

⋂
IT . Since IT = T for all but a finite number

of elements of Θ, say T1, . . . , Tn, there are d1, . . . , dn ∈ R such that
diITi ⊆ Ti. Defining d := d1 · · · dn, we have dIT ⊆ T for every T , and
thus dI ⊆

⋂
T∈Θ T = R, so that I is indeed a fractional ideal of R.

Moreover, since IT is ∗T -closed, IT ∩R is ∗-closed, and thus I, being
the intersection of a family of ∗-closed ideals, is ∗-closed. It is also
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∗-invertible, since

(I(R : I))∗ =
⋂
T∈Θ

(I(R : I)T )∗T =
⋂
T∈Θ

(IT (T : IT ))∗T =
⋂
T∈Θ

T =R.

Therefore, (IT ) = Γ(I)∈ Γ(Inv∗(R)), and thus Γ is an isomorphism. �

The set of nonzero principal fractional ideals forms a subgroup
of Inv∗(R), denoted by Prin(R). The quotient between Inv∗(R) and
Prin(R) is called the ∗-class group of R [3], and it is denoted by Cl∗(R).
If ∗1 ≤ ∗2, there is an injective homomorphism Cl∗1(R)⊆ Cl∗2(R). Of
particular interest are the class group of the identity star operation
(usually called the Picard group of R, denoted by Pic(R)) and the t-class
group, which is linked to the factorization properties of the group (see
for example [30, 8, 34]). The quotient between Cl∗(R) and Pic(R) is
called the ∗-local class group of R, and it is indicated by G∗(R) [3].

Theorem 7.2. Let R be an integral domain and let Θ be a Jaffard
family on R. Then the map

Λ: G∗(R)→
⊕
T∈Θ

G∗T (T ), [I] 7→ ([IT ])T∈Θ

is well-defined and a group isomorphism.

Proof. By Proposition 7.1, there are two isomorphisms

Γ∗ : Inv∗(R)→
⊕
T∈Θ

Inv∗T (T ) and Γd : Invd(R)→
⊕
T∈Θ

InvdT (T ).

Consider the chain of maps

Inv∗(R)
Γ∗−→

⊕
T∈Θ

Inv∗T (T )
π−→
⊕
T∈Θ

Inv∗T (T )

InvdT (T )
,

where π is the componentwise quotient; then the kernel of π is exactly⊕
T∈Θ InvdT (T ). However, Γ∗ and Γd coincide on Invd(R) ⊆ Inv∗(R);

hence,
ker(π ◦Γ∗) = (Γd)−1(kerπ) = Invd(R).

Therefore, there is an isomorphism

Inv∗(R)

Invd(R)
'
⊕
T∈Θ

Inv∗T (T )

InvdT (T )
.
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However, for an arbitrary domain A and an arbitrary ] ∈ Star(A), we
have

Prin(A)⊆ Invd(A)⊆ Inv](A),
and thus

Inv](A)

Invd(A)
' Inv](A)/Prin(A)

Invd(A)/Prin(A)
' Cl](A)

Pic(A)
=G](A),

so that Λ becomes an isomorphism between G∗(R) and
⊕

T∈ΘG∗T (T ),
as claimed. �

The class group of a Prüfer domain. If ∗ is a (semi)star operation,
we can define the ∗-class group by mirroring the definition of the case
of star operations: we say that I is ∗-invertible if (I(R : I))∗ =R, and
we define Cl∗(R) as the quotient between the group of the ∗-invertible
∗-ideals (endowed with the ∗-product) and the subgroup of principal
ideals. Since (R : I) = (0) if I ∈ F(R) \F(R), every ∗-invertible ideal

is a fractional ideal, and thus Cl∗(R) coincides with Cl∗
′
(R), where

∗′ := ∗|F(R) is the restriction of ∗.
The first result of this section is that Proposition 6.5 can be extended

to the class group.

Proposition 7.3. Let R be a Prüfer domain and let P be a nonzero
prime ideal of R contained in every maximal ideal. Suppose also that
P /∈Max(R). Let ∗ ∈ Star(R) and let ] be the corresponding (semi)star

operation on D :=R/P . Then Cl∗(R) is naturally isomorphic to Cl](D).

Proof. Let π : RP → F = Q(D) be the quotient map, and let I be
a fractional ideal of R contained between P and RP . We claim that
π((R : I)) = (D : π(I)). In fact, if y ∈ π((R : I)) then y = π(x) for some
x ∈ (R : I), and thus yπ(I) = π(x)π(I) = π(xI)⊆ π(R) =D, and thus
x∈ (D :π(I)). Conversely, if y ∈ (D :π(I)) and y=π(x) then yπ(I)⊆D,
i.e., π(xI)⊆D. By the correspondence between R-submodules of RP
and D-submodules of F we have xI ⊆R and y ∈ π((R : I)).

Let J = π(I) be a ]-invertible ideal of D. Then (J(D : J))] =D, and
thus

R= π−1((J(D : J))]) = π−1(J(D : J))∗

= (π−1(J)π−1(D : J))∗ = (I(R : I))∗.

So I is ∗-invertible, and there is an injective map θ : Inv](D)→ Inv∗(R).
It is also straightforward to see that θ is a group homomorphism.
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The well-definedness of the map ∗ 7→ ∗φ implies that, if J, J ′ are
D-submodules of F , and I := π−1(J), I ′ := π−1(J ′), then J = zJ ′

for some z ∈ F if and only if I = wI ′ for some w ∈ K. Therefore, θ
induces an injective map θ : Cl](D)→ Cl∗(R) that is clearly a group
homomorphism.

Now let I be a ∗-invertible ideal of R. Then I is v-invertible, and
thus (I : I) = R [16, Proposition 34.2(2)]. In particular, I is not a
RP -module, and thus the set v(I) has an infimum α, where v is the
valuation associated to RP . If a is an element of valuation α, then
P ( a−1I ( RP ; hence, a−1I = φ−1(φ(a−1I)) and [I] = θ([π(a−1I)]),
and in particular [I] is in the image of θ. Since I was arbitrary, θ is

surjective and Cl](D)' Cl∗(R). �

Theorem 7.4. Let R be a Prüfer domain, and suppose that R is either
semilocal, or locally finite and finite-dimensional. Consider a star
operation ∗ on R. Then

G∗(R)'
⊕

M∈Max(R)
M 6=M∗

Clv(RM ).

Proof. We start by considering the case of R semilocal, and we
proceed by induction on the number n of maximal ideals of R. Note
that, in this case, Pic(R) = (0) and so G∗(R) = Cl∗(R). If n = 1, the
conclusion is trivial, since ∗ 6= v if and only if M 6=M∗.

Suppose n > 1 and let Θ be the standard decomposition of R
(which is a Jaffard family by Proposition 6.2). By Theorem 7.2, and
using the fact that Pic(R) = (0) = Pic(T ) for every T ∈ Θ, we have
Cl∗(R)'

⊕
T∈Θ Cl∗T (T ). Moreover, since a maximal ideal M of R is

∗-closed if and only if MT is ∗T -closed, by induction it suffices to prove
the theorem when the standard decomposition of R is {R}.

In this case, Jac(R) contains nonzero primes, and by Lemma 6.4 we
can find a prime ideal Q⊆ Jac(R) such that Jac(R/Q) does not contain
nonzero prime ideals. Let A :=R/Q.

The standard decomposition Θ′ of A is nontrivial, and thus every
B ∈Θ′ is a semilocal Prüfer domain with less than n maximal ideals.
Moreover, by Proposition 7.3, Cl∗(R)'Cl](A), where ] is the restriction
to F(A) of the (semi)star operation corresponding to ∗. Therefore, by
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the inductive hypothesis,

Cl](A)'
⊕
B∈Θ′

Clv(B)'
⊕
B∈Θ′

⊕
N∈Max(B)

N 6=N]B

Clv(BN )'
⊕

N∈Max(A)

N 6=N]

Clv(AN ).

Thus,

Cl∗(R)' Cl](A)'
⊕

N∈Max(A)

N 6=N]

Clv(AN ).

However, if M is the maximal ideal of R which corresponds to
the maximal ideal N of A, then RM/QRM ' AN , and thus by [4,
Theorem 3.5] we have Clv(RM )' Clv(AN ); the claim follows.

Suppose now R is finite-dimensional and of finite character, and let Θ
be the standard decomposition of R. By Lemma 6.1, there is a bijective
correspondence between Θ and the height-1 prime ideals of R, and every
T ∈Θ is semilocal. Hence, by Proposition 6.2 and by the previous case,

G∗(R)'
⊕
T∈Θ

G∗T (T )'
⊕
T∈Θ

Cl∗T (T )'
⊕
T∈Θ

⊕
M∈Max(T )
M 6=M∗T

Clv(TM ).

The conclusion now follows since TM = RN (where N := M ∩R) and
N =N∗ if and only if M =M∗T . �

Corollary 7.5. Let R be a Bézout domain, and suppose that R is either
semilocal, or finite-dimensional and of finite character. Let ∗ be a star
operation on R. Then

Cl∗(R)'
⊕

M∈Max(R)
M 6=M∗

Clv(RM ).

Proof. It is enough to note that Pic(R) = 0 if R is a Bézout
domain, so that G∗(R) = Cl∗(R) for every ∗ ∈ Star(R), and then apply
Theorem 7.4. �

Corollary 7.6. Let R be a Bézout domain, and suppose that R is
either semilocal, or finite-dimensional and of finite character. Let S be
a multiplicatively closed subset of R. Then there is a natural surjective
group homomorphism Clv(R)→ Clv(S−1R), [I] 7→ [S−1I].



JAFFARD FAMILIES AND STAR OPERATIONS 297

Proof. Let ∆ := {M ∈Max(R) |M ∩S = ∅}. Then for every M ∈∆,
RM = (S−1R)S−1M , and thus the isomorphism of Theorem 7.4 reduces
to a surjective map Clv(R)→

⊕
M∈∆ Clv(RM )'Clv(S−1R), where the

last equality comes from the fact that the maximal ideals of S−1R are
the extensions of the ideals belonging to ∆. �

Therefore, under each case of Theorem 7.4, the determination of
G∗(R) is reduced to the calculation of Clv(V ), where V is a valuation
domain. In the case where the maximal ideal M of V is branched (that
is, if there is an M -primary ideal of V different from R, or equivalently
if there is a prime ideal P ( M such that there are no prime ideals
properly contained between P and M [16, Theorem 17.3]), this group
has been calculated in [4, Corollaries 3.6 and 3.7]. Indeed, if P is
the prime ideal directly below M , and H is the value group of V/P
(represented as a subgroup of R), then

Clv(V )'

{
0 if G' Z,
R/H otherwise.

In particular, we have the following.

Corollary 7.7. Let R be a Bézout domain, and suppose that R is
either semilocal, or finite-dimensional and of finite character. For every
∗ ∈ Star(R), Cl∗(R) is an injective group (equivalently, an injective
Z-module).

Proof. By Corollary 7.5 and the above discussion, Cl∗(R)'
⊕

R/Hα

for a family {Hα : α ∈ A} of additive subgroups of R. Each R/Hα is
a divisible group, and thus so is their direct sum; however, a divisible
group is injective, and thus so is Cl∗(R). �

We end with a result similar in spirit to Proposition 6.7.

Proposition 7.8. Let R be a Prüfer domain and suppose that R is
either semilocal, or finite-dimensional and of finite character. Let
∗ ∈ Star(R). If I, J ∈ Inv∗(R), then I + J ∈ Inv∗(R).

Proof. Suppose first that R is semilocal, and proceed by induction
on n := |Max(R)|. If n= 1, then R is a valuation domain and I +J is
equal either to I or to J , and the claim is proved.
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Suppose the claim is true up to rings with n− 1 maximal ideals, let
|Max(R)| = n and consider the standard decomposition Θ of R. By
Proposition 7.1, I + J ∈ Inv∗(R) if and only if (I + J)T ∈ Inv∗T (T ) for
every T ∈ Θ; therefore, if Θ is not trivial, we can use the inductive
hypothesis. Suppose Θ is trivial. Then Jac(R) contains nonzero prime
ideals, and by Lemma 6.4 there is a nonzero prime ideal Q⊆Jac(R) such
that Jac(R/Q) does not contain nonzero primes. By Proposition 7.3,
I/Q and J/Q are ]-invertible ]-ideals of R/Q (where ] is the (semi)star
operation induced by ∗), and in particular I/Q and J/Q are fractional
ideals of R/Q.

By construction, R/Q admits a nontrivial Jaffard family Λ: for every
U ∈Λ, (I/Q)U and (J/Q)U are ]U -invertible ]U -ideals, and thus by the
inductive hypothesis so is (I/Q)U + (J/Q)U = ((I + J)/Q)U . Hence
(I + J)/Q is a ]-invertible ]-ideal, and so I + J is a ∗-invertible ∗-ideal,
i.e., I + J ∈ Inv∗(R).

If now R is locally finite and finite-dimensional, we see that if Θ is
the standard decomposition of R then every T ∈Θ is semilocal. The
ideal I + J is ∗-invertible if and only if (I + J)T is ∗T -invertible for
every T ∈ Θ; however, since IT and JT are ∗T -invertible ∗T -ideals,
the previous part of the proof shows that so is IT + JT = (I + J)T .
Therefore, I + J ∈ Inv∗(R). �

Acknowledgements. The author would like to thank the referee for
his/her careful reading of the manuscript and his/her suggestions.

REFERENCES

1. D. D. Anderson, Star-operations induced by overrings, Comm. Algebra 16
(1988), no. 12, 2535–2553.

2. D. D. Anderson and David F. Anderson, Examples of star operations on integral

domains, Comm. Algebra 18 (1990), no. 5, 1621–1643.

3. David F. Anderson, A general theory of class groups, Comm. Algebra 16 (1988),
no. 4, 805–847.

4. David F. Anderson, Marco Fontana, and Muhammad Zafrullah, Some remarks
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