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ABSTRACT. In this paper, we will prove several generalized versions,
dependent on different boundary conditions, of the classical Gaffney-
Friedrichs inequality for differential forms on Heisenberg groups. In the
first part of the paper, we will consider horizontal differential forms
and the horizontal differential. In the second part, we shall prove the
counterpart of these results in the context of Rumin’s complex.
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1. INTRODUCTION

Let M™ be a smooth compact manifold of dimension n with boundary
OM™. If u is a differential form of degree h on M™, 0 < h < n, we set

up = v (v Au), uy =v_lu,

where v denotes the (Riemannian) outward unit normal vector along OU.
Thus, one gets the orthogonal decomposition formula

U=1uy +VAuy.

Denote now by Wh2(M™, A" TM™) the Sobolev space of differential forms
on M™ of degree h. The classical Friedrichs-Gaffney inequality (see [28], [29],
[38], [45]) states that there exists a geometric constant C' > 0 such that

”uHWI:Q(M",/\h TM") S C(HdU”L2(Mn’/\h+1 TMTL)
Hl10ull p2agn pr1 pagmy + ||“”L2<M”7/\hTM”>)

for every differential h-form u € W12(M™, A" TM™) with vanishing either
the tangential component u; or the normal component u,, on dM"™. Here d
and 0 denote, respectively, the differential and the codifferential of the de
Rham complex in M™.

If F is a vector field in R”, then (1) reduces to the inequality

"Vﬁ|’L2(Rn)n2 < C(HdiV Fl 2y + llourl Fl| p2(gmyn + “ﬁ|’L2(Rn)n>a

under suitable boundary conditions on F such as the ones above.

Roughly speaking, the conditions uy = 0 or u, = 0 on dM"™ imply the
vanishing of some geometric quantities living on the boundary; see, [15],
[45]. Incidentally, we remark that these conditions can be replaced by more
complicated conditions, which can be written as linear combinations of the
previous ones; for more details, we refer to Section 5.3.2 of [15].

Several generalizations of (1) can be found in the literature. We mention
among others the Gaffney-Friedrichs inequality for Lipschitz domains proved
in [36] and, above all, from our point of view, the recent papers by Tseng
and Yau [46, 47] (see also [48]) for generalizations of the Gaffney-Friedrichs
inequality (associated with symplectic Laplacians) in compact symplectic
manifolds (thus of even dimension) with smooth boundaries of contact type.

The aim of the present paper is to prove a Gaffney-Friedrichs inequality
for differential forms in Heisenberg groups.

By Darboux’ theorem, Heisenberg groups are the prototype of contact
manifolds (necessarily of odd dimension). Therefore our result can be seen,
in some sense, as complementary of that in [46, 47].

Heisenberg groups will be presented in more detail in Section 2. Here
we just recall that the Heisenberg group H™ is the (2n + 1)-dimensional Lie
group with nilpotent, stratified Lie algebra § of step 2 given by

h=span{Xy,..., X, Y1,...,Y,} ®@span{T'} := b1 @ bo,

where the only nontrivial commutation rules are [X;,Y;| =T, j=1,...,n.
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It is well-known that H” can be identified with R?"*! through the (Lie
group) exponential map. The stratification of the algebra induces a family
of nonisotropic dilations in the group, again via the exponential map.

Since the Lie algebra b can be identified with the tangent space to H™ at
the identity e = 0 € H", there is a natural left-invariant Riemannian metric
in H" making the basis {X1,..., Xy, Y1,...,Y,, T} orthonormal.

In addition, by left translation of h; one obtains a tangent subbundle of
TH™ still denoted by h1. We refer to by as to the horizontal layer and to
Xq,..., X0, Y1,...,Y, as to the horizontal derivatives of H". Moreover, we
write

Viu:= (Xju,..., Xyu, Yiu,..., Yu)

whenever u is any smooth real function on H".

If 0 < h < 2n, the sections of A, b1 are called horizontal h-vectors, while
the sections of /\h by are called horizontal h-covectors.

Throughout this paper we shall denote by Q}}{, 0 < h < 2n, the space of
all horizontal h-forms and by 6 the 1-form on H" such that ker 6 = exp(h1)
and 0(T) = 1.

It is to mention that the horizontal differential dg := d — 9 A L acts
between horizontal differential forms in the sense that dpy : Q};I — QI;IH.
Unfortunately, (Q%,dy) is not a differential complex, since d% does not
vanish, in general, precisely because of the lack of commutativity in h. This
difficulty is overcome by introducing the Rumin complex (E§,d.), which
is a “natural” complex of differential forms, homotopycal to the de Rham
complex. We refer to [40] for the original definition, as well as to [7], [8, 9,
10, 12]. Even if d%, # 0, we shall denote by (Q%,dp) the family of spaces
23 with arrows dp;.

Precise definitions of the complex (Ej,d.) will be made in Section 8.1.
Here we discuss some motivations leading to its definition.

First, horizontal forms appear “naturally” from the stratification, thought
the construction of Rumin’s forms may appear very technical. Thus, let us
sketch how (Ef,d.) is in fact very “natural” in the light of more geometric
considerations, starting from the notion of intrinsic submanifolds of H" (see
[24]) and, above all, of linear submanifold in H".

In Heisenberg groups, as shown, for instance, in [23], [25], the counterpart
of linear manifolds is played by the homogeneous subgroups of H", i.e., in
exponential coordinates, by the homogeneous subalgebras of b.

Indeed, as proved in [19], Rumin’s forms are naturally associated with
homogeneous subalgebras of b, in the sense that homogeneous subalgebras
are more or less the annihilators of simple Rumin’s forms, precisely as in
Euclidean spaces, linear submanifolds are the annihilators of homogeneous
simple covectors. We refer to Section 8.1 and to [19], [12] for further details.

Another non-Euclidean feature arising typically from the geometry of H"
we have to deal with is the following. Let &/ C H" be a smooth, bounded
open set. We need to remark that in our paper we are dealing with different
“boundary measures” on OU. First, an intrinsic notion of perimeter measure
|OU|gn has been introduced in [30]; we refer the reader to [30, 20, 21, 22]
for a detailed presentation. For simplicity, we shall denote the H"-perimeter
measure by the symbol do. However, beside the H"-perimeter measure, we
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can actually consider both the 2n-dimensional Euclidean Hausdorff measure
dH?" and the Riemannian measure do, defined in terms of the Riemannian
structure in H" induced by the fixed inner product in . As a matter of
fact, our results will fail to be completely analogous to the classical ones
ultimately because do and dop are not equivalent. This problem will be
discussed later in this Introduction.

We can now describe the content of this paper. Our aim is to prove
Gaffney-Friedrichs-type inequalities for both the complexes (Q};,dy) and
(E§,de). If U € H™ is a smooth, bounded open set we are looking for
estimates of the form

etz a0y < (Il zzgup ) + izl g p ) + 1l 20t )

under suitable boundary conditions.

Here Wﬁf(u , A" B1) denotes the space of horizontal differential forms such
that all their coefficients with respect to some fixed basis belong to T/VH_IH’2 )
(that is, they belong to L?(U) together with all their horizontal derivatives).

Analogously, when dealing with forms of Rumin’s complex, we are looking
for estimates of the form

(2) HUHWH}IQ(M,E{}) < C(HdCUHLZ(u,EgH) + H&CUHLZ(“ESL*) + HUHL2(L{,E5L))’

under suitable boundary conditions.

If Zh = {¢l . 1 <i < dim E}'} is an orthonormal basis of El!, we denote
by W];HQ(Z/{,ES) the space of differential forms u = 3, ujﬁjh € L*(U,EY)
such that

IV aul? == (IXiu|* + [Yiug|?) € L' (W),
0]
endowed with its natural norm. In this case we restrict ourselves to degree
h # n,n + 1, in order to deal only with both the intrinsic differential d,
and codifferential d. of order 1. The remaining cases will be considered in a
future paper. If 4 = H", inequality (2) is well known (see, e.g.,[40]).

We can now state our main results, which correspond to the choice of
different boundary conditions. Our approach is largely inspired by that of
Csatd, Dacorogna and Kneuss in [15]. In fact, several delicate algebraic
manipulations we carry out in the present paper are the counterpart in our
setting of those presented in [15].

Denoting by ng the horizontal normal to OU, defined as the orthogonal
projection onto /\; b1 of the Riemannian outward unit normal n along o,
we can define a horizontal unit normal vector to OU by setting vy := ”E—g”

at each point p € OU where ng(p) # 0. These points are the so-called “non-
characteristic points” of OU and we write char (OU) to indicate the set of all
characteristic points of the boundary, i.e., the set of points p € 0U where
ng(p) = 0. We recall that if OU is of class C?, then char (0U) is “small”
(see, for more details, Remark 2.11 below). It is not surprising that the
presence of the characteristic set char (OU) is at the origin of most of the
“pathologies”, at least from the Riemannian point view, we are facing in the
context of Heisenberg groups. Unfortunately, in general char (0U) # (); for
instance, always the characteristic set fails to be empty when the topology
4



of U is trivial. Setting now
uy = vy (vg Au), Uy = v u,
we obtain the decomposition formula
U= Ut + Vg N Upy.

As a first thing, we need a counterpart of the condition “either w, = 0
or u; = 0” of the Riemannian case. When dealing with horizontal forms, it
becomes “either u,,, = 0 or u; = 0”, which will be called “condition (DN)”
later on. This boundary condition represents the natural generalization to
the horizontal geometry of OU of the classical Dirichlet-Neumann boundary
conditions. On the other hand, when dealing with the Rumin complex, if
J represents the linear operator known as almost complex structure of H™
(see Section 4), then it is possible to show that the condition “(Ju); = 0”
implies that “u,, = 07. Thus the condition “either u, = 0 or u; = 0”
becomes “either (Ju)y =0 or uy = 0”.

Nevertheless, it is worth observing that these conditions are not sufficient
in order to prove our main results. In fact, we will need to introduce further
boundary conditions, obtaining three different statements. -

In Propositions 5.14 and 5.17 we introduce conditions (Jrg) and (Jvg).
With these preliminaries in hand, our first formulation of the Gaffney-
Friedrichs inequality for horizontal forms, which is stated in Theorem 6.1,
reads basically as follows.

Theorem 1.1. LetU C H" be a domain (i.e., bounded, connected open set)
with boundary of class C?. If Q% (U) ®r C denotes the complezification of
Qi U), let u € Q% (U) @g C be a horizontal h-form, with 1 < h < n, and
assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);

(ii) w satisfies either condition (Jvg) (see Proposition 5.14) or

condition (J?;{) (see Proposition 5.17).

Let V be an open neighborhood of char(0U) (in the relative topology). Then,
there exist geometric constants Cy, C1 and Co such that

DH(U)+CO/8 ||| do

(3) Uy

>01/ HVHUHQCZV—CQ/ lull2dV,
u u

where

D) = gl g o, + i )

The constants Cy, Cq, Cy only depend onU, V, and on the integers h and n.
Furthermore, if u € Q% (U)®g C is a horizontal h-form withn+1 < h < 2n,
then (3) still holds provided that xpgu satisfies (i) and (ii); see Remark 8.1/.
For the case h = n,n + 1 we refer the reader to Theorem 6.7 in Section 6.

As a matter of fact, Theorem 1.1 is not completely satisfying because of
the presence of the boundary integral on the left-hand side of (3).
Roughly speaking, we had to cut-off a small region around char(0l/), and
this requires two comments. First of all, trivially, Theorem 1.1 yields the
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precise counterpart of the Riemannian inequality when char(oUf) = (0 (this
happens, for instance, when U is a thin torus; see, e.g., [14]). However, it is
more important, and less trivial, to observe that the boundary integral on
left-hand side of inequality (3) cannot be reabsorbed on the right-hand side,
as we do classically using Ehrling’s inequality. This is due to the presence
in the boundary term of the Riemannian measure do.

To be more precise, we would like to stress the following points:

- Functions in WISH’Q(Z/I) admit L?-continuous traces on the boundary
OU with respect to both the measure doy (see [16]) and the Rie-
mannian measure do on OU (see [4], [5]). However, in the first case,
the trace map is compact under mild assumptions on U (e.g., if OU
is assumed sufficiently “flat” at characteristic points) whereas com-
pactness fails to hold, in the second case, near characteristic points.
Away from the characteristic set, the second result follows from the
first one.

- Both sides of (3) are continuous with respect to the convergence in
W]}lﬂ’z(u ,/\" b1). The statement is trivial for the right-hand side, but
is quite delicate for the boundary term on the left-hand side, since
it relies on the trace theorems of [4], [5].

- Because of the lack of compactness of the trace operator from Wﬂ}ﬂ’z o)
to L?(0U,do), the L2-norm of the trace of u in the left-hand side
of (3) cannot be controlled with an arbitrary small constant § > 0
times the L?-norm of Vzu, and hence cannot be reabsorbed in the
right-hand side.

In order to obtain a statement closer to the classical Gaffney-Friedrichs
inequality, we have to make a geometric assumption on the characteristic
set of the boundary oU (see “condition (H)” in Definition 3.4). Roughly
speaking, condition (H) expresses the fact that characteristic points are iso-
lated and that JU is sufficiently flat at these points. In fact, this condition
is somehow related to the geometric conditions for trace theorems in [16],
[4], [5] (see also [37]).

Subsequently, to avoid the presence of the boundary integral on the left-
hand side of (3), in Proposition 5.14, we introduce the “condition (Jvg)”.
This is a geometric condition and is used in a second formulation of the
main inequality (see Theorem 6.3), which reads essentially as follows.

Theorem 1.2. LetUd C H" be a domain with boundary of class C? satisfying
condition (H) (see Definition 3.4). Let u € Q% (U) @r C be a horizontal h-
form with 1 < h < n, and assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);

(i) w satisfies condition (Jvy;) (see Remark 5.15).

Then, there exist geometric constants CN'l and 6’;, only dependent on U
and on the integers h and n, such that

@ Duw) = G [ |Vl av = s [ Julav.
u u
Furthermore, if u € Q% (U)®@g C is a horizontal h-form withn+1 < h < 2n,

then (4) still holds provided that xgu satisfies (1) and (i), where xg denotes
6



the Hodge duality operator between horizontal forms. Finally, under these
assumptions, Theorem 6.7 (see Section 6) still holds for the case h = n.

In Section 7 we introduce the two new conditions (44) and (45). These
conditions are then used in Theorem 7.1, which is our final formulation of
the main inequality.

Theorem 1.3. Let U C H" be a domain with smooth boundary of class
C? satisfying condition (H) (see Definition 3.4). Let u € Q% (U) @g C be a
horizontal h-form with 1 < h <n, and assume that either

(1) Uy = 0;
(ii) w satisfies the condition (44),

or

(-]) Uy = 07
(ji) u satisfies the condition (45).

Then, there exist geometric constants @vl and EZ’VQ, only dependent on U
and on the integers h and n, such that

(5) Dir(u) > Gy / IVl av — G / Jul]? V.
U U

Furthermore, if u € Q% (U)®g C is a horizontal h-form withn+1 < h < 2n,
then (5) still holds provided that xgu satisfies (1) and (ii). Finally, under
these assumptions, Theorem 6.7 (see Section 6) still holds for the case h = n.

Theorems 1.1, 1.2 and 1.3 have a natural counterpart in the setting of
Rumin’s complex: se Theorems 8.22, 8.24 and 8.25.

The three different boundary conditions just discussed naturally arise as
a consequence of an integration by parts that involves the (intrinsically 2nd
order) differential operator 7. When performing this computation, we carry
out some elementary, but not trivial, algebraic manipulations that, in a
sense, are modeled on the standard Kéahlerian structures of H".

It is worth observing that the first and third conditions cannot be easily
related one to another and that the second condition turns out to be stronger
than the other two.

Let us give an overview of the organization of this paper.

In Section 2 we gather the basic notions concerning Heisenberg groups
and differential forms. We also state some more or less known preliminary
results.

Section 3 is devoted to prove some trace theorems in H".

In Section 4 we collect some standard results of Kahler geometry in the
context of Heisenberg groups.

Section 5 contains the technical core of the paper, with estimates of the
boundary terms that occur by integrating by parts the so-called horizontal
Dirichlet integral Dp.

As a consequence of these estimates, in Sections 6 and 7, we state and
prove our Gaffney-Friedrichs-type inequalities in (2}, dg).

Finally, in Section 8, after providing a basic introduction to Rumin’s
complex, we state our Gaffney-Friedrichs-type inequalities in (Ef, d.).
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2. PRELIMINARIES ON HORIZONTAL FORMS

2.1. Heisenberg groups and horizontal forms. In this section we give
a quick overview of Heisenberg groups and we fix our notation. For more
details, the reader is referred to [6], [24], [31], [44]. Let H"™ be the n-th
Heisenberg group, identified with R?"*! through exponential coordinates of
the first kind. A point p € H" is written as a triple p = (z,y,t), where
z,y € R" and t € R.

If p = (z,y,t),p = (2,y,t') € H", then the Lie group operation is
defined as

1
p.p/;: x+;p”y+y/,t+t+52(a€jy§—ijg)
j=1

If p~! denotes the inverse of p € H", then p~! = (—z, —y, —t). Moreover, if

g € H" and r > 0, then left translations and intrinsic dilations are defined
by setting

TP i=q " P, opp = (raz, ry, rt).
We endow H" with the homogeneous norm

1
2 1
o(p) = ( (ol + llyllEe)” + )"

which is (up to a constant) the so-called Koranyi norm. In particular, the
associated gauge-distance is defined as d,(p, q) := o(p~! - q); see, e.g., [44].
We recall that the homogeneous dimension of (H",d,) (w.r.t. the dilations
d,) is the integer @ := 2n + 2, which coincides with its Hausdorff dimension
with respect to the metric d,. Notice that @ is strictly greater than the
topological dimension of H"™, which is 2n + 1.

Let h denote the Lie algebra of all left invariant vector fields of H". We
assume that the basis of b is given by

X; ::azi—%at, Y;::Byi—i—%ﬁt Vi=1,..n. T :=&.

The only non-trivial commutation relations are [X;,Y;] =T for i = 1,...,n.
The subspace h; of h generated by the vector fields {X1, Y1, ..., X, Yy, } is
called horizontal subspace. Denoting by ho the linear span of T, we have

b = b1 @ bo,

which simply means that the Lie algebra is stratified.

Throughout this paper, we endow b with the inner product (-,-) that
makes the basis {X1, Y7, ..., X,,, Y, T} orthonormal. We refer to (-, -) as the
Riemannian metric in h and we denote by || - || its associated norm. For
later use, we set

WQi—l = Xi WQZ‘ = Yz Vi= 1, ey N W2n+1 =T.

For any f : H® — R of class C! we denote by Vg f the horizontal
gradient of f (i.e., Vgf = ZfZI(VVZf)WZ) and by Vf the Riemannian
gradient of f (i.e., Vf := 2" P Wif)Wi = (Vi f, Tf)).

Furthermore, for any C! horizontal vector field ® = Zfﬁl Wi we denote
by divyg & := 2321 W;@; the horizontal divergence of ® and by Ax the non-
negative horizontal sub-Laplacian (i.e., the Kohn Laplacian) defined, for any
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function f of class C2, as follows:
2n
Agf=—divy (Vgf)=-Y W2
i=1

The dual space of b is denoted by /\1 h. The basis of /\1 b, which is
dual to the standard basis { X1, Y1, ..., Xp,, Yn, T'}, is the family of covectors
{dx1,dy1, ..., dxy, dy,, 9}, where ¥ denotes the contact form of H" given by
Y= dt — %Z?:l(xidyi — yidz;). The inner product on fh gives rise to an
inner product on /\1 b, denoted in the same way. In particular, (-,-) makes
the basis {dz1, dy1, ..., dzy, dy,, ¥} an orthonormal basis. In accordance with
our previous notation, we set

Yoi1 =dx;  poi=dy; Vi=1,..m; Yong1 = 7.
We clearly have v;(W,,) = §;" for every [,m = 1, ..., 2n+1, where §;" denotes
the Kronecker delta function. The volume form of H™ is, by definition, the
left-invariant (2n + 1)-form dV := 1 A ... A opi1.
Set N\ b := A’h =R and

/\kb = span{W; A ... AW, 11 <ip <..<ip<2n+1}=:span¥y,

k
/\ h = span{y;, A ... A 1<) <. <ip<2n+1} = span¥*,

for any k = 1,...,2n + 1. The action of a k-covector ¥ on a k-vector v is
denoted by (1|v). We observe that the inner product (-, -) can be canonically
extended to A, b and /\’C h in a way that U, and ¥* are both orthonormal
bases. In the sequel, we shall denote by wf the i-th element of the basis U¥,
whenever 1 <3 < (2”;1) (: dim \Ilk)

The above definitions can now be reformulated by replacing § with the

horizontal subspace h; and by setting

/\k hi = span{W; A...AW;, 1 <i; <..<i,<2n},

k
/\ hy = span{wil/\..../\wik:1§i1<...<z’k§2n},

for any k = 1,...,2n. Recall that by definition the symplectic 2-form of H"
is given by d = — > " dx; ANdy; € A% b1

If1 <k < 2n+ 1, the “Hodge star operator” and its dual operator
(denoted in the same way), i.e.,

*;/\ h(—)/\ h and *Z/\th/\Qn+1_kha
k 2n+1—k

are the isomorphisms defined, for any v,w € A, b and ¢, € /\k b, by
v Asxw = (v,w) Wi Ao AWapyr and @ Axh = (p,0) 1 A .ooo Abap .

For any v € A\, h we define v* € A" b by using the identity (v*lw) = (v, w)

for any w € A\, h. The inverse operator on covectors is denoted as v — .

It is well-known that the Lie algebra b can always be identified with the

tangent space at the identity e = 0 € H", i.e., h = T, H". In particular,
9



b1 can be identified with a subspace of T.H", denoted by A, h1. Moreover,
/A\; b1 defines by left translation a smooth subbundle of the tangent bundle
TH™ which, with a slight abuse of notation, is still denoted by A;bi. By
definition, the sections of A\, b1 are called horizontal vector fields.

Analogously, if 0 < h < 2n + 1, then /\hh defines by left translation a
vector bundle still denoted by /\h h, and if 0 < h < 2n, then /\h b1 defines
again by left translation a vector bundle still denoted by /\h b1.

If 0 < h < 2n-+1, we denote by Q" the vector space of differential h-forms
on H™ (i.e., the vector space of all smooth sections of A" ). Furthermore,
if 0 < h < 2n, we denote by Q’}g the vector space of horizontal differential

h-forms on H" (i.c., the vector space of all smooth sections of A" by).
Definition 2.1. Let a € Q}If] Throughout this paper, we shall set

dgo :=da — 9 N Lra,
where the symbol L7 stands for “Lie derivative” along the vector field T

Roughly speaking, the operator dy represents the exterior differential
along the horizontal distribution and is only defined for any h-form a € Q"
such that ir(a) = 0, where the symbol ir stands for “interior product” of
a with T'; see, for example, [35], p. 235.

We recall the following useful identity: If X, Y are vector fields, then

[Lx,iy] = ixy];

see Corollary 6.4.12 in [1].
Furthermore, we define the “horizontal Hodge star operator” and its dual
operator (again denoted in the same way), i.e.,

*pH /\k b1 — /\Qn_k b1 and *p: /\k b1 < /\Qn_k b1,

as v A xgw = (v,w) Wi A ... A Way, and g A xgtp := (@, 0) 1 A oo A by,
for every v,w € \;, b1 and every ¢, € A b

Notice that, under our current assumptions, we have
see, e.g., [33], p. 44, Remark 1.2.22.
The next identities follow from [40], p. 292.

@ — Wy Ao Athan;

Lemma 2.2. If k> n and 8 € /\k b1, with n < k < 2n, then
xpB = (0 A pB).
Ifo<k<n andae/\khl, then
sa = (—1)*0 A sga.

For the sake of completeness, we recall some standard results concerning
wedge product and interior multiplication; see, for instance, Definition 2.11,
Proposition 2.14, and Proposition 2.16 in [15].

Definition 2.3. If « € QF and p € Qf, with 1 </ < k < 2n+ 1, we set

pda= (=D % (uA (xa)).
10



Lemma 2.4. I[f 1 <k<2n+1, ac QF, € Q1 and pn € QF, then
plda=ipo.

Moreover, we have
(nda, B) = (a,p A B).
By using Lemma 2.2 we obtain the following.
Lemma 2.5. Ifa € Q’}{ and p € QY with 1 < £ < k < n, then
pta=xg(pAxga).
In addition, we recall the following useful result.

Lemma 2.6. Ifa € QF, B € QY and v € O, with 0 < k+¢ < r < 2n,
then

(@A B)dy= (=1 ad(Bd).
Moreover, if k + ¢ =r, then
(@nB,7) = (=) (Bady) = (=1)"a, BI7).
We also define the horizontal codifferential dgr : Q};I'H — Q}IL{ by setting
O = — *g dy *p .
Notice that

/ (o0, ) dV = / ) v

for all B € Q"~1. Finally, let Ag : Q’}I — Q]}{ be the horizontal sub-Laplacian
operator defined as

Ag :=dgdpg + dpdy.
Definition 2.7. [The operators L and A] From now on, we shall set
Lo == —dd A, A:=L"%
(i.e., L* denotes the adjoint of L w.r.t. the inner product (-,-)).
The following identity can be found in [40]; see also [46].
Lemma 2.8. If a € A" by, then we have [A, Lja = (n — h)ov.
Note that
(iza, B)y = <a, Z7 A 5>

for every a € A" by, Be A"y and Z € /\1 b1. Hence, it follows that

n
A= E 1Y, UX -
k=1

11



2.2. Decomposition of forms on the boundary of a domain I. We
begin with the definition of horizontal normal to the boundary of a domain
(i.e., bounded, connected open set).

Definition 2.9. Let £ C H" be an open set with boundary 0F of class C'.
We denote by ng the (non-unit) horizontal normal to OF defined as follows:
ng is the Riemannian orthogonal projection on /; by of the Riemannian
outward unit normal n to 0F. Thus we have n = ng + nypT.

In particular, if (locally) 0F = {f = 0}, where f : H®* — R is a C!
function with non-vanishing horizontal gradient, then ny = ||V f|| ™'V f,
where V f is the Riemannian gradient of f and ||V f]| its norm.

We define a horizontal unit normal vector to dF by setting vy := ”E—Z”
at each point p € OF where ng(p) # 0. These points are the so-called non-
characteristic points of OF and we usually write char (OF) to indicate the
characteristic set of OF (i.e., the set of points p € OF where ng(p) = 0).
We explicitly note that vy = 2321 (vy)iW;, where (vg); == (v, Ws).

To avoid cumbersome notation, in the sequel we will still denote by n, ng

and vy, their dual 1-forms n#, nﬁ and Vﬁ.

Besides, we adapt to our framework a standard notation; see, e.g., [15] or
[45]. More precisely, we shall set

ay =vy Jd(vg A a), ay, =vgpda VYae QyU).
We then obtain the useful decomposition formula
a=oq+vg Aoy, Vae Q4 U).
The following remark will be needed later: If o € Q% then
(6) v N ay, =0 if and only if ay,, =0.
Indeed, suppose that vy Ay, = 0. By Lemma 2.4 one has
0= (vg Ay, @) = (vg A (vg Ja),a) = (vg Ja,vg Ja) = |ay, [

The reverse implication is trivial.

We conclude this section by recalling the horizontal Green’s formulas valid
in our setting; for similar statements, see Theorem 4.9 in [10].
Here and elsewhere, we make use of the standard notation D = Cg°.

Definition 2.10. Let & C H" be a domain with boundary of class C?. For
every a, 3 € Q"(U) := DU, \"b), we set
<aaB>L2(U) = /Z/{ <Oé7,6> dv.

In addition, if « € Q% (U) := DU, A" b1) and 8 € Q% (U) := DU, \" b1)
are intrinsic forms, it follows that

(7) <dHOé,6>L2(M) = <a75H/3>L2(L{) + /81/{ <H/\OJ,B> do.

These formulas also hold when o € C*(U, A"~ 1), B € CLU, \" b1).
Note that the outward unit normal n(x) at any point p € U is given
by n(p) = ng(p) + np(p)T, where ngy(p) is the (orthogonal) projection of
12



n(p) onto the horizontal subspace A; b1 at p € OU. Thus, after the natural
identification n = n*, we get (n A o, 8) = (ng A, B), since both o and 3
are horizontal. Eventually, we obtain the formula

/au (nA«a, ) da:/&u (ng A a, ) dcr:/ (vg N, B) dog.

ou

2.3. Perimeter measure in Heisenberg groups. We briefly recall the
notion of intrinsic perimeter measure in Heisenberg groups and some related
facts.

As already said in the introduction, if £ C H" is a measurable set, an
intrinsic notion of H"-perimeter measure |0E|g» has been introduced in
[30]; we refer the reader to [30, 20, 21, 22| for a detailed presentation. Here,
we just have to recall that, if E has locally finite H"-perimeter (i.e., E is
a H™-Caccioppoli set), then |0E|g» is a Radon measure in H", which is
left-invariant and (2n + 1)-homogeneous (w.r.t. the dilations 4, ).

We recall that, by definition, the 2n-dimensional Riemannian measure of
OF, later denoted as o, is obtained by wedging together the elements of an
oriented orthonormal coframe for OF and, because of its role in integration,
we adopt the notation do, when it appears under the integral sign.

Remark 2.11. We observe that the characteristic set char (OF) turns out
to be “small” since both its H™-perimeter measure and its 2n-dimensional
Euclidean Hausdorff measure vanish.

For later purposes we need to mention that the Riemannian measure o is
equivalent (in the measure theoretic sense) to the Euclidean measure H?".
Hence, under our assumptions, o(char (0F)) = 0. For further properties of
char (OF), see, e.g., [18], [27], [17], [2, 3].

We also need the following representation formula; see [13].

Proposition 2.12. LetU C H" be a bounded open set with boundary OU of
class C. ThenU is a H"-Caccioppoli set. Furthermore, it turns out that the
H™-perimeter measure is absolutely continuous with respect to the Fuclidean
2n-dimensional Hausdorff measure H?". More precisely, if A C H" is an
open set, then

n

_ . 2 - 2 2n
|8Z/{|Hn (.A) = AMQA ; <<X7J, n>R2n+1 + <1/;, 7'L>R2n+1> dH

- / gl o,
oUNA

where n is the Fuclidean outward unit normal, and do is the 2n-dimensional
Riemannian measure along OU.
For the sake of simplicity, in this smooth setting we shall simply write

oy — ’au‘Hn
3. BOUNDARY TERMS AND THE TRACE MAP

3.1. Trace theorems in Heisenberg groups. From now on we assume
that I/ is a domain with boundary Ol of class C2. First of all, we state a
trace theorem away from the characteristic points of OU.

13



Theorem 3.1. LetUd C H" be a bounded open set with boundary of class C?.
Let V C OU be a neighborhood of char(OU). Then, there exists a geometric
constant Cy yy > 0 such that for any 0 < < 1 one has

4
® [ lPdon < (Cou5) [ laPav s [ (9ualav
BN 6) Ju u

for any u € CYU).

Proof. Let ¢ € C}(0U) be such that ¢ =1 on dU\V and ¢ =0on V' CC V.
Now let vp denote the extension of vy to OU defined as vy := prg. This
extension is a horizontal vector field of class C' on OU that coincides with
v out of V. With a slight abuse of notation, we denote by vg any C!
horizontal extension of v to the closure of U, i.e., vy € C1(U). It follows
that both ||| and divy (V) are continuous functions on I and hence they
are both bounded by some positive constant C'y i, only dependent on V and
U. By the previous assumptions we get

/ lull? dos

aU\Y

- / el (v, var) dors
AaU\Y

- / lall® (s — 75 + 737)  vir) dos
aU\Y

- / lull? (s — 772) s vir) dos + / lull? (73, var) don
oU\Y ouU\V

=0

< / |ul|? (v, vy) dog (since (vg,vg) = ¢ on VN OU)
ou

_ /W<(|yuu2;7g) ) do.

By the divergence theorem for C? hypersurfaces and the very definition of
the H"-perimeter measure oy, we can make the following calculations.

| (P o) dor

/ diviy (Jull?77) dv
u

= [ ulPdiva @) av + [ 2ul@nlul. i) v
U u

A

< Cou [ NP av+ [ Al V| av.
u 2

Finally, since

2 2
Alull|Zalul] < 4 4 @ < a7 4 5w,

the claim easily follows. U
14



Notice that (8) contains the “error term” [, [[ul* do, which depends
on the choice of V. This is a novelty with respect to the classical trace
theorems. The error is actually related to the presence of characteristic
points on OU, as somewhat shown by the following.

Example 3.2. In the Riemannian setting, a “global inequality” akin to (8)
follows by Ehrling’s theorem (see, e.g., [45], Lemma 1.5.3), provided that
the trace operator 7 : Wh2(U) — L?(0U,do) is compact. Let us anticipate
that our next Theorem 3.9 will imply that an Ehrling-type inequality for
the norm in L?(0U, dog) still holds for open sets U satisfying a geometric
assumption called “condition (H)”; see Definition 3.4 below.

As a matter of fact, an Ehrling-type inequality for the norm in L?(0U, do)
is true for general C? open sets U away from characteristic points, as we can
see using Theorem 3.9 and keeping in mind that do and dop are equivalent
away from char(OU). However, the example below shows that Ehrling’s
inequality (and hence compactness of the trace, which is still continuous
by [4], [5]) fails to hold for the norm in L?(0U, do), even for sets satisfying
condition (H).

1
Precisely, let o(p) = ((HmH%n + ||y||]%§n)2 + t2) * be the Koranyi-type norm,
let Bo(1) = {p = (z,y,t) € H" : p(p) < 1} and let U := {t > 0} N By(1).
The hyperplane {t = 0} has a unique isolated characteristic point at the
identity 0 € H". In particular, let Sy := o N {t = 0}, u € D(By(1)), and
denote by Twu the trace of u along the boundary.
Let us analyze the (possible) validity of the following statement:

(9) Ve>03C. / (Tu)Qdage/ HVHuHQdV—i—Ce/quV.
So u u
V2 2
=Tl =[|Vrull2y =lull?s,,,,

By a homogeneity argument, we now show that (9) cannot hold. To this
aim, set

ug = K"u(Kz, Ky, K*t)
for some K € R,, and suppose that u # 0 along Sy. It is elementary to
check the following identities:

hd HT“KH%Z(SO) = HTUH%z(SO)v
o [Viur gy = 1Vl Zag,
hd K2”UKH%2(Z4) = HU||2L2(14)'

By assuming the validity of (9), with u replaced by ug, we get

Ve>03C: ||TUK||%2(SO) < 5||VHUKH%2(14) + Cs||UK||%2(u)~
Hence
Ve>03C. : ||Tul? < ¢||Vgul? + %HUHQ
€ L2(So) = HENL2@) T g2 WLz @)

By the arbitrariness of ¢, K € R, (and since the L?-norm of u can be
assumed to be fixed) one readily obtains that the trace of u must be zero,
which is a contradiction.

15



In order to get rid of the “error term” in Theorem 3.1, we need a further
assumption on U, ensuring that the characteristic set char(0l) contains
only isolated points and in addition a certain amount of “flatness” at the
boundary, near char(0U).

Remark 3.3. Locally near any point pg € char(olf), the boundary of U is a
T-graph (i.e., Euclidean graph with respect to the hyperplane ¢t = 0). Hence
(locally around pg) there is a C? defining function g : H® — R of the form
g(z,y,t) =t — f(x,y) such that
x
Npp = Viag = Vit = f(w,9)) = (=5 = Val. 5 = V).
where we observe that ng = H@—’;H and vy = % By compactness, there
must exist a finite number {V; : ¢ = 1, ..., N} of open subsets of OU such that
char(oU) C U,]\i 1 Vi. Shrinking these sets, if necessary, we can assume that
each V; is a T-graph of class C2. In addition, note that any characteristic
point pp € V; N char(0U) can be thought of as standing at 0 € H". This
second claim easily follows by left translating the set V; by —po. Thus, if
fi 1 V; CR*™ — R is a C? function such that
Vi={p=(z,y,t) eH" : t = fi(z,y) V(w,y) € Vi},

we can always suppose that f;(0,0) = 0 and that Vgz. f;(0,0) = 0: In this

way, the point pg corresponds to 0 € H" (note that, here and elsewhere,
(0,0) denotes the null element in R™ x R" = R?"),

Below we shall assume the following condition prescribing the behavior
of OU near char(0U).

Definition 3.4 (Condition (H)). Let {V;:i =1,..., N} be a finite family of
open subsets of OU such that char(0U) C Ulj\il V; and V;NOU is the T-graph
of some function f; : V; C R?” — R of class C?, i.e.,

for any ¢ = 1,..., N. Then, we say that condition (H) holds if, and only if,
one has ||Hessgzn fi|| = O (HN&?H) for any ¢ = 1,..., N, where we have set

N = (4 = Vafi 5= Vi fo).

Below we shall set ||(z,y)| := \/||z|2. + [|y||3. for any (z,y) € R?".

Remark 3.5. The condition (H) implies that char(0l) is discrete. Without
loss of generality, by Remark 3.3, we suppose that 0 € H" is a characteristic
point of OU N'V;; in particular, we have f;(0,0) = 0 and Vg2 f;(0,0) = 0.
Hence ||NSZI) (z,y)|l] < C|l(x,y)| and as a consequence we have

|[Hessgan fi|| = O(||(x,%)|]) near (0,0) € R?".
Again, by mean value theorem

IVgan fill = O(ll(z,9)[I*)  near (0,0) € R*".
Then, at each point (z,y) # (0,0) we have

ING )l = |02 = Vi 2 [l - €l 1P >
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near (0,0) € R?", i.e., the characteristic point 0 € OU NV is isolated.

To better understand the above condition (H), we consider a special case
of domains in H"” satisfying it.

Remark 3.6. Suppose that, in a neighborhood of 0 € 0U/, the boundary oU
is the T-graph of the function f(z,y) = ||(z,y)|/** for some a > 3. One

checks that [Npz|| = O (|(z.y)]) and that [[Hessgan £ = O (|(z.3)[XeD).
Taken together, these facts show that condition (H) holds.

Now, we state a useful compactness criterion.

Theorem 3.7. Let U C H" be a bounded open set of class C?. Let X be a
Banach space and let L : WI?Z(U) — X be a continuous linear map. Then
L is compact if, and only if, the following property holds:

For any § > 0 there exists C(5) > 0 such that
[Lullx < 0V rull 2@y + CO)l[ullL2@)-

Proof. The “only if” part is the well-known Ehrling’s inequality (see, e.g.,
[45], Lemma 1.5.3). Thus we prove the “if” part by showing that L is
completely continuous. Let (u,)nen be a sequence in W}J’Q(L{) that weakly
converges to 0. Then there exists C' > 0 such that ”“””W};Q(u) < C for

all n € N. Moreover, by Rellich’s theorem (see, e.g., [30], Theorem 1.27)
un — 0 strongly in L?(U). Take now £ > 0 and set J. := % In addition,
choose n. € N such that

lunllL2@y < _°  foralln> Ne.
20(.)

Then
[Lunllx < 6 [IVaullp2@y + C0:)||lull 2@
E &
SO0 s = 2,
Cog tC0) 565y =°¢

which shows that Lu, — 0 strongly in X, as wished.
O

Lemma 3.8. Let U C H" be a bounded open set with boundary of class
C? and suppose that condition (H) holds. Then there erists a C! function
g : U — R?" such that:

(i) ‘275” = vy on U \ char (OU);
(i) divy iy = O(i )
(ii)) (@w, Vuliu|?) = O([fml?).

Proof. First of all, we notice that the problem can be localized near the
boundary by means of a cut-off function supported near OU. Indeed, if ng
satisfies (i) - (iii) in a neighborhood M of U, and if ¢ is a cut-off function
supported in M such that ¥ = 1 on a neighborhood of 0U/, then Yny is a
C! function on U that trivially satisfies (i). In addition

divg(Yig) = ¢divg(0g) + (Va, g),
17



which is still O(|[ng||). Analogously

(Wi, Vallvnul?) = vIagl* @, Viae) + %@, Valiul?)
= O(|fxl?)

when |[nig7|| — 0. Therefore also (iii) holds.

Now we have to define ny away from the characteristic points and in each
set V;, @ =1,...,N. Then the global extension ny is obtained by gluing up
the local extensions by means of a partition of unity.

Clearly, away from characteristic points we can take ny := vp, since
vy is a continuously differentiable function. Since iy never vanishes, (ii)
and (iii) can be replaced by divy iy = O(1) and (g, Vy|ig|?) = O(1),
respectively.

We are left with the case of one of the V;’s. So let ¢ € {1,..., N} be fixed
and, for simplicity, let us omit the index . For any point in the set V we put
ng(z,y,t) := Vg (f(z,y) —t). Since ngy(x,y,t) # 0 for (x,y,t) # 0 (recall
that 0 € H" is an isolated characteristic point of 9U), it follows that at any
point in V \ char (OU) one has

ﬁH(x7 Y, t)
vi(z,y,t) = 7= — o
||HH($‘, Y, t)”

This proves (i). Moreover, up to the sign, divgng equals the trace of the
Hessian of f;, hence it is locally bounded and (ii) follows.

Finally, we prove (iii). For any j,k = 1,...,n, one has
1 (Y "z &
~ k k
S0 Ral? =Y (5 + 00 f) 020 f + D (5 = O (; - azjykf>
k=1 k=1

= Z <%k + 8wkf) agjxkf - Z (% - 8ykf> 8§jykf - %@ﬁf + xzj
k=1 k=1

~ 1 T

= O(Inl?) ~ 52y, f + .
Analogously, it turns out that

1

~ ~ 1 Y;
508 ll* = O |*) + 504, f + -

Therefore, we get

i, Valin|?) = <ﬁH,8<HﬁHH2>>—;’Z(y;+axjf)+;€f(x;—ayjf)

1 Yi 1 T
ST (4 0u0) o (-
= (i, O ([5n]?)
= O(lful?),
as wished. O

We conclude this subsection with the following Ehrling-type inequality.
18



Theorem 3.9. Let U C H" be a bounded open set of class C? satisfying
condition (H). Then, for any 6 > 0 there exists C(6) > 0 such that

I Tull L2 out,dor) < OV HUllL200) + CO)[Jull 204
for any v € CYU). In particular, it follows from Theorem 3.7 that the map
T WEU) — LU, doy)
18 compact.

Proof. Let vy := — 4 where 7 € R. By Lemma 3.8 we have

VrHE# 2

ny
/ \u|2 dog = / u|2< — ,VH> doy
au au [0 ||

= lim lul? (v, vy) dog
T7—0 ou

= P—% MdivH(]u\Ql/IT{) av.
On the other hand
/ divy (jul’vf) dV = 2/ (uVgu,vg) dV +/ lu|?divy (vg) dV =: 1) + Is.
u U

By using (ii) and (iii) we get that

divyn 1 - Vulngl?

2  WvHUH 2 HI|NH

— dV —/ U <nH, — dVv
/| | V2 A+ [ 2 )" (72 + | [)3/2

< C/ lul? dV.
u

Moreover
2 C? 2
Il < 2C |uVHu| dV < ) |VHU| dV + — |u] d‘/v,
u u d u

completing the proof of the theorem.

4. KAHLER GEOMETRY H"

4.1. Basic notions of Kahler geometry in H". We first introduce the
Kéhlerian structures of H™ in order to make some explicit computations and
then recall some lemmata from [40] that will be used in sequel.

Notice preliminarily that we can always identify the base manifold of the
n-th Heisenberg group H" with C" x R, so that any point p = (z,y,t) € H"
is seen as a couple (z,t), where z = (21, ..., 2k, ..., 2n) € C" and z, = z) + iyg
for any £ = 1,...,n. Let J be the unique endomorphism of h; (“almost
complex structure”) such that

J?=—1d, d¥(Z1,JZs) = —dd(JZ1, Zs)

for all horizontal vector fields Z1, Zo € A\, b1 (in particular, one has ¥; = JX;
and X; = —JY; for any i = 1,...,n).
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It is not difficult to check that the inner product (-, -) that we have fixed
in by is precisely the Riemannian metric compatible with both the almost
complex structure J and the symplectic form df, since

d0(Z1,Zs) = (Z1,J Za) .

In particular, one has J* = —J, and hence (JZ,,JZ3) = (Zy, Zs) for any
Z1,Z5 € N\ b1

It is standard that an almost complex structure J induces a bigrading on
A1 h1®rC (i.e., the complexified horizontal subspace); see [33], p. 27. Thus,
we have A, h1®@r C = A\, o h1® /\;; h1. This bigrading naturally extends to
the complex of horizontal differential forms; see [40]. In particular, we have
O ®r C = > pia=n V', where we remark that Q' = QFF. The (real)
inner product on A, h; extends in the obvious way to a (complex valued)
Hermitian inner product on the complexification A, b @ C, still denoted as
(-,-). Clearly, one has (av,bw) = ab{v,w) for every v,w € /\; b1 and every
a,b € C. We now set

X, — iV X+ iV,

V2 o " V2

The family of (complex) horizontal vector fields {Z;, Zy, ..., Zy, Zn} turns
out to be an orthonormal basis of A; b1 ®r C (w.r.t. the Hermitian inner
product induced on the complexified horizontal subspace). Thus we set
ok = Z,fé, ok = Z%#, and hence, by duality, we get that {6%,6%,...,6™, 6"} is
an orthonormal basis of /\1 hrC = /\1’0 b /\0’1 h1. We notice explicitly
that 0% = Z] = 2 = dntidus anqg gF = 77 = S - dnddue

7 (=Z:) VYk=1,..n

V2 V2
It is easy to see that JZy = iZ) and JZ; = —iZz. Denoting still by J
the operator induced by J on differential forms, we have
Ja =" Vae QY

and if 1177 : Q% @r C — Q57 is the natural projection, we get

J = Z PTIIPY on QP
ptq=h
see [33], Definition 1.2.10.

Definition 4.1. On complex functiops we set Oy 1= Zy and 0 := Zy for
any k=1,...,n. Ifu=>,us 0" N0/, we set:

Oku = Z(ZkUI’J)QI A 67 and Opu = Z(ZEU[’J)QI NG,
I1,J 1,J

exu =60 Au and epu = 0% A,
ik = iZk and iE = iZE’
for any kK = 1,...,n. In Kéhler coordinates, it turns out that
n n
L=i Z erex and A=i Z iz
k=1 k=1
see Definition 2.7.

Just as in [40], p. 294, we can prove the following result.
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Proposition 4.2. Let 1 < p,q <n. We have

n n
Zekik =pld on QP1 and Ze,;i,; =qld on QP9
k=1 k=1
As a consequence

n n n

Zekik = zn:pﬂp’q and Zekik = Zqﬂp’q.
p=1

k=1 k=1 q=1

Again, one has A = L* (w.r.t. the Hermitian inner product). We use the
decomposition

1,0 , 40,1
L0, p.a p+1,q 0,1 . P4 D,q+1 :
where d;;” : Q' — Qf Tand dy : Q' — Q. Moreover, for notational
simplicity, we write 0 := d}f and 0 := d(l){’l, so that (10) reads as:
dg =0+ 0.
We stress that if u € Q°, then
(11) 10wl + 10wl = |V aul®.

Furthermore, on complex functions one has

O := 10 and O := 13,0 for every k=1,...,n.

In the sequel, we shall need the multi-index notation. More precisely, let
I, J be multi-indices such that pr := |I| and g := |J| (with pr,q; < n), so
that we can assume that I = (i1, ...,4,,) and J = (j1, ..., jq,)- Set now 6 :=
O A ... NG and 67 := 071 A .... A BIas. We observe that if h = pr + ¢, the
elements 67 A 07 form a basis of QSL{ ®r C. Hence, using Kéhler coordinates,
any u € Q% ®g C can be uniquely written as u = >, ur s07 A 07, |I| = py,
|J| = qy, with h = p; + q;. Finally, we set

dly == J Yy J, 6 = J topJ.
It is not difficult to see that the following identities hold:
(12) dfy = J YdgJ = —i(0—-0), 0 =J oS =i -9),

where 9* and 8" denote the L2-formal adjoints of the operators 0 and 0,
respectively.
The calculation below can be found, for instance, in [40].

Lemma 4.3. On complex functions the following chain of identities holds:
inT = 0 — 050k = — (Z awm) — (— Z@kik8>
k=1 k=1 k=1
=0'0-00.

In the next lemma we recall the so-called Kahler identities; see, e.g.,
Proposition 3.1.12 in [33].

Lemma 4.4. We have [A, 0] = i@ and [N, 9] = —i 9*. These identities in
turn imply that [0*, L] = —i0.
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For the next proposition, see, for instance, either formula (8) in [40], or
[49], pp. 41-43.

Proposition 4.5. The following identities hold:

(i) [A du) = —oy;
(ii) [A,d%] = 6m;
(iil) [A, 8] = 0.

4.2. Kahler geometry of domains in H". In Kéhler coordinates, we have

n
nyg = nfl = Z (nka + ngﬁk) = n}{’o + n%’l,

k=1
where n}i}o =Y p_y 00y and n%,l = 5y N0z Accordingly, we set
L0 L0
1,0 H 0,1 H
Vi and v
7 gl 7 gl

The operators d and 9, and their adjoints 8* and 9", satisfy the following
integration by parts formulas:

/u<8a,6> v = /u<a,a*/3> dV+/au <n}{’0/\a,ﬁ> do
(13) = /u<a,8*ﬁ> dv+/8u <1/111;0/\0z,ﬁ> dog

for every o € Q];{_l’q, B e Qb7 and

/u<aa,ﬁ> av. = /u<a,8*/3> ClV—l—/au <n2}1 /\a,ﬁ> do

(14) - /u<a,8*5> dV+/6u <u2;1 Aa,/3> doy

for every a € Q’I’f*l,ﬁ € O see, e.g., [39], Ch. 3. More generally, all
these formulas hold when o and § are horizontal differential forms of class
Clonl (ie., a € CHU,N'""h, @R C), B € CHU, NP1 b1 @R C)).

5. BOUNDARY CONDITIONS AND ESTIMATES OF THE BOUNDARY TERMS

5.1. Horizontal Dirichlet integral. Let &’/ C H" be a domain with smooth
boundary of class C2. Below, we introduce the notion of horizontal Dirichlet
integral.

Definition 5.1. Let either u € Q% (U) or u € Q% (U) ®g C be a differential
h-form, with 0 < h < 2n. We define the horizontal Dirichlet integral as

Dy (u) := / ((duu, dgu) + (dpu, dgu)) dV.
u
Furthermore, if 1 < h < n, we set

D7 (u) :== Dy (u) —



The main aim of this section is to write the horizontal Dirichlet integral
of u as the L?-norm of Vyu up to an error that will be estimated later in
Sections 5.2 and 5.3.

Proposition 5.2 (see [40], Proposition 2). We have
n
AH = AK —1 Z (ekik — eEiE)ET'
k=1
In particular, if u = ZLJU,LJGI/\GJ € QM (U)@rC, with |I| = py, |J| = q,
and h = p;r + qz, then

Agu=Y"(Agur )0’ n67,
1,J
where
Apury = Agurg —i(pr — q7)Tur,g.
Proposition 5.3. Let u € Q% (U) ®r C, with 0 < h < 2n. Then

(15) Dulw) = |

(Agu,u)dV —I—/ ((dgu,ng Au) — (0gu,ng 1 u)) do.
u

ou

In addition, if u = EI,J uy 07 A 9‘7, then
/(AHU,U> dV:/ |V grul|® dV
u u

- Z/ (dgur, g, np)ug, g do — iZ(pI —q7) / tr gTur ydV.
77 Jou u

1,J

(16)

Proof. Assertion (15) is just an integration by parts. We have to prove (16).
Keeping in mind that, if v € C1(U) is a (real or complex) 0-form we have

/(AKU,v>dV:/<de,de> dV—/ o(dgv,ng),
u u ou

we compute

/(AHu,u> av = /UI,JAHUI,JdV
u

1,074
Z/<dHu1,JdHu1,J> dV—/ (dgur,.g,ng)tr,do
77 Ju au

—iZ(pI—QJ)/UJ,JTUI,J dv

I.J u

= Z/ ”VHUI,J||2dV—/ (dgur,g,npg)ur,ydo
1,0 u ou

—i Y (pr—a7) / uy jTuy g dV
1,7 u
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= /’VHUHQdV—Z/ <dHuI7],nH>ﬂ[7L]dO'

—1 Z(pf - QJ)/ ar,gTur jdv.
1,7 u

Remark 5.4. Let us consider the following boundary integral

/ f(u, Vu, nH) do,
ou

where u € Q% (U) ®@g C and f is a (real-valued) continuous function that
is linear in the third argument ng. Let V. C JU be a family of open
neighborhoods of char(dlf) shrinking around char(0lU) as long as € — 0; in
particular, we assume that V., C Ve, if €1 < €9 and that o(V,) - 0ase — 0
(by Remark 2.11 we already know that o(char(0U)) = 0 = og(char(0U)).

By recalling that dog = ||lng|/do and that outside char(0U) we have
vy = ﬁ, we get

/ f(u, VHu,nH) do = lim f(u, VHu,nH) do
o =0 Jou\ v,

= lim f(u, Vau, VH) dog
e—0 au\ve

: / f(u, VHU,VH) dO’H.
AU\ char(0U)

Combining Proposition 5.3 and Remark 5.4 we get the following corollary.

Corollary 5.5. Let u € Q% (U) ®r C, with 0 < h < 2n, and let us set

A= — > (dgurg,vy)ur,;
OU\char(0U) LZJ
+ ((dHu, v ANu) — (Ogu, vy - u))) doy,

and

B:= iZ(p[ — QJ) /M @[’]TULJ dV =1 <£Tu, Z(ekik — EElE)u> .

1,0 k=1

Then, we have
(17) Du(u) = / IVaul2dV + A - B = / IVaul2dV + Re A — ReB.
u u

5.2. Estimate of the term A in (17). The aim of this subsection is to
show that we can write

A= —/ ((dpuyy, , ut) + (Opus, uy, ) dog + “error term”,
OU\char(0U)
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and to provide sufficient conditions on the traces of u on the boundary oU
that guarantee that

/ (st ) + (s, upy ) dosg = 0
OU\char(0U)

see Proposition 5.11 below.

Definition 5.6 (The maps Ry, Ry). Let U C H" be a domain of class C?,
let pup € C! (H, Al b1 @R C), with 0 < h < 2n. We define the maps

Ri,Ry: CO(H, /\h b1 ®r (C) — CO(Zj, /\h b1 Qr (C)

by setting

(18) Rl(u) = R’fH(u) = ZUI,JdH (/J,HJ ((9[ A 9j>) s
1,J

(19) Ro(u) = R (u) = ZULJ(;H <MH A (91 A 6’j>> ,
1,J

where u = ZLJU,LJGI/\QJ, |I| = pr, |J| = qj, and h = pr + q5. We also
set R (u) =01if h =0 and RY" (u) =0 if h = 2n.

Notice that these maps are both linear in v and py. The preceding
definition is inspired by [15]; see Definition 5.1, p. 103. As a matter of fact,
these maps turn out to be very useful because of well-known properties of
the Lie derivative and, in particular, of Cartan’s formula and of its dual
version.

Remark 5.7. Let u = ZI,J uLJGI A6G7. By using Cartan’s formula and its
dual version we get:

(1) Luy(u) = pp Jdpu+d(pm I u);
(ii) Z,:;(u) = (=) h) sy £, (kgu) = —pmg Adgu — Sg (g Aw).
In particular, one obtains R5H (u) = (—1)"27=h) s REH (xpru).
In addition, we have:
(iii) Loy (w) = 27 jldiurs, um)0" A 67 + R (u);
() Ly (w) = Yo g {drrur. g, p) 0" A 67 + BE¥ (u).
Hence, we get the following identities:
Z(dHuLJ,,uHWI A0 = pr ) dgu+ dy(pm - u) — R (u)
(20) 1,J
= —pup ANdgu — 8 (pp Au) — RE™ (u).

All these formulas can be checked by direct computations, exactly as in the
Euclidean case for which we refer the reader to Ch. 5 of [15].

If in Remark 5.7 we take py = v, we obtain the following result.
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Lemma 5.8. Let u=Y; ;us 0" A 07. Then

> g g{dpur,g,ve) + (RY (u),u) + (RY™ (u), vy A iy,
1,J
(21) = (vg Jddgu,us) — (Ogu, Uy ) + (dHUL, , Ut)
— (6 (v ANug) ,vE A Uyy)
at each point of OU \ char(OU).
Proof. Using Remark 5.7 yields
(22) (Lyyu,ug) = (v I du,ug) + (duy,, , ug)
= (vg Jdyu, ug) + (A, , u) -

Analogously, one has

<Zl\/1/{u7VH/\uVH>
(23) =—((vg Nogu,vg ANuyy) + (0 (Ve Au) ,ve Ay, ))
= — (0w, upy) + (0 (Ve Aue) , v A yy,)) -

Adding the left-hand sides of (22) and (23) and then using Remark 5.7 (see,
in particular, formula (20)) yields

<£VHu7ut> + <Zl\/:{u7 v A ul/H>
’ITL[7J<CZHU[’J, Z/H> + <R11/H (u), ut> + <R5H (u), vg N\ u,,H>.
J

I

)

Hence, by using (22) and (23), we deduce (21). O
We also need the following result (see [15], Lemma 5.5).

Lemma 5.9. Let u, pp, RI™ and RY™ be as in Definition 5.6. Then
1

Ry (i Aw) = Sdu (I [*) At pr AR (),
1
Ry (uir Su) = geu (l|*) Jw+ par I RE™ (w).
The above formulas greatly simplify if we take ||ug|| = 1 and this can

always be done, at least if both these quantities are restricted to the (non-
characteristic part of the) boundary and we take ug = vy (i.e., pug is the
horizontal unit normal to OU \ char(olf)).

Remark 5.10. For any a € Q% (U)®gC the following holds on U \ char(9U):
o If vy ANa =0, then vy Adyga = 0.
o If vy 1la=0, then vy 1 dga = 0.
These properties can be proved just as in the classical case, for which we
refer to Theorem 3.23 in [15]. Thus, at each point of U \ char(dU), we
deduce that:
o If u,, = vy Ju =0, then it follows that vy A (vg Ju) = 0. Hence
v Ndg(vg 1 u) =0 and so (dpuy,,ut) = 0.
o IfvyAu =0, then uy = vy (vgAu) = 0. Hence vy | dg(vgAu) =0
and so (0 (v Aut),ve Auy,) = 0.
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We summarize the above discussion in the next proposition.

Proposition 5.11. Let u € Q% (U) ®@r C, with 1 < h < 2n. Then

A= / (it , us) + (s, ) doss
AU\ char(0U)

- / <§(U), u> dop,
OU\char(0U)

<E(u), u> = (R{™ (u), ut) + (Ro™ (w), ve Aty ).
In addition, the first boundary integral vanishes if
either uy =0 or u,, =0 on OU \ char(OU) (condition (DN))

and, in this case, we get

(24)

where

25 A = —/ R(u ,u) dogy.

( ) au\char(al/{)< ( ) > "

Therefore

(26) Re A = —Re / <ﬁ(u),u> dop.
OU\char(0U)

Obviously, if uy = 0, then it follows that R(u) = (R5" (u),u). Finally, if
Uy = 0, then R(u) = (R{" (u),u).

Proof. Let us start from the identity of Corollary 5.5. For what concerns
the term A, by using (21) and Remark 5.4, we get

A= —/ > s g{duur,g,ve) — (ve d dgu,u) + (S, uy) | dog
OU\char(dU) 1.7

= —/ ((druyy,ue) — (0g (v ANug) ,vg ANy, ) dog
AU\ char(0U)

+ (Ri(w), ) + (Ra(u), v Ay)) dorg.
OU\char(OU)

Then (24) follows since g (v A ug) = (dgve) Auy — vg A dguy and
((0ve) N ug, v Ay, ) = 0.

Thus using Remark 5.10 yields (25). The remaining claims easily follow. [

Remark 5.12. If we look at identity (17) we see that ReA does not depend
on the coordinates. In fact, by its very definition, ReB is independent of
the coordinates and, in addition, a straightforward computation shows that
the same assertion holds for the quantity Dg(u) and for the L?-norm of
Vgu. Now, if condition (DN) holds, then both the quantities R{" and
Ry" are independent of the coordinates. In particular, their expressions in
Kahler coordinates (18) and (19) can be replaced, when convenient, by their
counterpart in different systems of coordinates.

Remark 5.13. It worth pointing out that, by Lemma 5.9 it follows that

<R2(u)7VH AuVH) = <R2(UVH)7UVH> and <R1(u)aut> = <R1(ut)vut>'
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5.3. Estimate of the term B in (17). The aim of this subsection is to
prove that we can write

1 _
ReB = S (s~ 1) [ (10w,

1,.J

1 — [|Our,s||*) dV

n
— —SQm Ly, Z(ekik —egip)u ) dog
n AU\ char(0U) k=1

+ “error term”.

At the same time, we provide sufficient conditions on the traces of u on U
that guarantee that

Sm

Ly u, Y (exir —egiz)u ) =0.
OU\char(0U) < " kgl h

Proposition 5.14. Let u € Q% (U) ®@r C, with 1 < h < 2n. Then

1 _
B =3 (e~ a) | (1wl = 19ur|)dv

T u

7: n
27 + - / Ly, U, (ekz’k — e-i-)u dog
(27) T J a4\ char(8U) < " kzl Wk

i T N, )

- — R{"™u, Y (egix — epig)u ) dog.
n /81/{\char(8u) < ! ; hk

In addition, suppose that the following “condition (Jvg)” holds:

Sm <£JVHU, Z ekiku> = QOm <£JVHu, Z ekiku> (condition (Jvg)).

k=1 k=1
Then we have

1 —_
ReB = 301 —a) [ (1wl = 0w, o1 av

1,J
(28) . n
+ Qm — RVHu, Z(ekik — egip)u ) dop.
T Jou\char(8U4) k—1

Proof. Let v € CY(U) be a (complex-valued) O-form and recall that

inT = (0k0f — Opoh).

k=1
By (13) and (14), we have
1 n
—i [ vTvdV = /17 0r0k — OrOR) vdV
/L{ n Jy ;( kVk k k)
= 1/17 —0"0+ 9*0)vdV
nJu
_ 1 5,12 _ 2 1 /5. 01\ 1,0
= = Lge—tooipyav - [ (o (o0aty) ~ o (oni)) do
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L[ a2 = 1ov)? 1/ ;
» [ ou = pooyav + 5 [ o (.

/(H5UH2 — H8v||2) dV + Z/ v {dgv, Jung) do,
u n Jou

1

n

Lo _ 01\ 4
IlH IlH g

1,0 01

where we have used the identity Jng = i(nH — Ny )

From these computations, by arguing as in Remark 5.4 and by applying
(iii) of Remark 5.7, we get that the term B can be rewritten as follows:

B

—1 Z(pI—QJ)/ ur gTur g dV
U

1,0

1 _
w3 =) [ (el = 9w dv
n u

i ) _
— > (pr—gqy) lim ur,g(duur.g, Jvg) dog
n 7 e—0 AUN\V.

1 _
LS o —an) / (|1ur s |2 — 0urs|)?) dV
n u

J
)

+= (1 - QJ)/ ur,y (dpur,y, Jvia) dog
n 1.7 U\ char(8U)

1 _

= a) [ (el = 9wy dv

n u
1,J
’L. n

+/ Lu, Y (exiry —epig)u ) dog
n 8Z/I\char(8u)< " ; Wk
1 Jv - . .

—— R{"™u, Y (egix — ezip)u ) dog.
n /81/{\char(8u) < ! ]; mk

This achieves the proof of the proposition.

Remark 5.15. From Remark 4.2 it follows that

Therefore, condition (Jvg) turns out to be a compatibility condition on the

n

D (erin —egiz) = >_(p— ) TP

k=1 psq

bidegree components of the trace of u in the (tangent) direction Jvy.

In addition, we stress that condition (Jvg) is written in a “geometric”
form on OU and it could be replaced by the following condition (Jv};) that

is written “in coordinates”:

(29)

> (pr = q5)Im (tr,g (drur.g, Jva))
7

n
=Jm <8JZ,HU, Z(ekik — e,;i,—c)u> =0
k=1
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at every point of OU \ char(olf). This alternative condition is perhaps less
“elegant” but has the advantage of not introducing an error term.
Typically, identity (29) holds, if the form u is “K&hler-symmetric”, i.e., if

179y = £119Py for all p,q with p+q = h.

Below, we analyze the meaning of condition (Jvg) in the special case of
horizontal 1-forms.

Example 5.16 (1-forms). Let u = Y 1, (uiei + u50i> be a 1-form, where
we assume that u; := f; +ig; for any ¢ = 1,...,n. Also recall that if u is real,
then u; = @; for any i = 1, ...,n. Note that Jvy = i(v}q’o - V%l) and that, in
this case, we have p; =1, ¢; =0and p; =0, ¢; =1, ¢ = 1,...,n. With these
preliminaries, we may reformulate condition (Jvg) as follows:

n n

30) Y {(fiVugi—g:Vufi),Jve) =Y ((iVug —gVuf:), Jva).

i=1 i=1
The proof of (30) is an elementary exercise. In addition, we observe that if
u is real, then (30) becomes

n

(31) Z (fiVu9i —9iVufi),Jva) =0
i1

or, equivalently, > 7" | (fiOjuy 9i — GiOguy fi) = 0.
By using (iv) in Remark 5.7 we obtain the following dual result.

Proposition 5.17. Let u € Q% (U) ®@r C, with 1 < h < 2n. Then

1 _
B=1Y(p—a) / (10ur |2 — D |2) dV
n 1.J u
’[: o n
32 + / [,JV u, ekik —epin)u dUH
( ) v Jau\char(8U4) < " ;( F k) >

i Jv - . .
- — Ry"™u, Y (egix — epig)u ) dog.
n /au\char(au) < 2 ; wk

In addition, suppose the following “condition (j;f/{)” holds:

Sm <Z;;{u, Z ekiku> = QOm <Z;;{u, Z ekiku> (condition (jVVH))

k=1 k=1
Then

1 _
ReB =31 —a) [ (10ur01? = our o) v

1,J

/l: Juv - . .
- — R u, E (exir — epip)u ) dog.
n /81/{\char(81/{) < 2 —1 o

Remark 5.18. Just as in Remark 5.15, we observe that condition (j;;I) is
written in a “geometric” form. Notice also that it could be replaced by
30
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condition (Jvy;). Again, this alternative condition has the advantage of not
introducing an error term.

6. GAFFNEY-FRIEDRICHS-TYPE INEQUALITIES FOR HORIZONTAL FORMS

We state now the first version of our main result.

Theorem 6.1 (Gaffney-Friedrichs Inequality). Let U ¢ H" be a domain
with smooth boundary of class C?. Let u € Q};I(Ll) ®r C be a horizontal
h-form with 1 < h <n, and assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);
(ii) w satisfies either condition (Jvg) (see Proposition 5.14) or

condition (Jvg ) (see Proposition 5.17).

Let {Ve}eso be a family of open neighborhoods of char(OU) (in the relative
topology) shrinking around char(OU) when € — 0. In addition, assume that
oc(Ve) = 0 as € — 0. Then, there exist geometric constants Cy,C1 and Co
such that

D) + co/ |l do
oUNVe

(34)
201/ HVHqudV—Cg/ |2 av.
u u

The constants Cy, C1,Co depend only on U, € and on the integers h and n.
Furthermore, if u € QO (U) ®@g Cis a horizontal h-form withn+1 < h < 2n,
then (34) still holds provided that *pu satisfies (i) and (ii).

Remark 6.2. The constant Cy may blow up as € tends to 07. Indeed, let us
define the following two constants:

o C1c:=2n {max;j—1,_. 2n (Supayry, IW;(nm)i — (va)iWjlnga|ll) },

o Oy == supgy, |Jacuvul,

where Jacgvy = [Wj(vu)ilij=1,....2n denotes the horizontal Jacobian matrix
of the unit horizontal normal vg. Since ngy is of class C!, the constant
(1, turns out to be globally bounded along OU. On the other hand, we

have Cy = O (ﬁ), and hence Uy, may diverge when ¢ — 0" (since

|lng| — 0% as e — 07). Below, we shall prove the result with the constants

Co = Cuim - Cre, C1:= l—qu;m'Cb,e'(S, Ca = Cim - C2,¢- <Cs,u + 3) ;
n

where

1
0<d<minil,——\
{ N CaimCa,e }

and Cy;,, denotes a fixed dimensional constant that only depends on n.
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Proof. Combining (17), (26) and (28) we obtain

1 _
D) = [ IVl dv =S s =) [ (10wl = [9us1) v

1,J u
- ?Re/ (R™u,u)doy
OU\char(0U)
1 J S _
—Qm — R:"H, erip — epiz)u ) dog,
n 8Z/I\Char(8u)< ! ;( g k) >

where i, j = 1,2. On the other hand, keeping in mind (11) and the fact that
((pr —as)| < h <n,

we get,
1 _
/llVHUH2 dv — = (pr —as) / ([Ourg|I” = [|0ur,s|?) dV
u " u
—h
> | Vlay,
noJu
so that
1
Dyt(u) > / IV |2 dv — me/ (R, u) doy
n Ju OU\char(0U)
(35) 1 )
—Qm — RIHu, > (epiy, — exiz)u ) dog.
n 8U\char(8u)< J ; W

By arguing as in [15], Chapter 5.2, it is not difficult to show that R (u)
and Rs" (u) satisfy the estimates
IR (W) < Cammll Tacavalllul - (i =1,2),

where Céim := C%h,n) is a positive constant that depends only on the

integers A and n. Analogously, we have
J i .
177 ()l < Cign | Tacuvalllull - (i=1,2).
Moreover, a straightforward computation shows that ||Jacyvyl is of class

C! out of char(0U) and that | Jacyvy| = O (ﬁ) near char(ol).

Hence, keeping in mind Theorem 8, we make the following computations:

1
Du(u) > + /u IV sl dV

v

—Cim / | Faczrv|ul? dox
OU\char(0U)

1
/ IV w2 dv
n Ju

~Cuom / | Facvs|||ul? dog
OUNVe

Y

~Com / | Faczvs|||ul? dog
U\ Ve
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Y

1
/ \vHuH?dV—CO/ |u||? do
n Ju AUNV.

—CimCae / lull? dos
AU\V.

1
/ \vHuH?dV—co/ |u||? do
n Ju UNVe
4
_Cdzm02’€<(C€’u+6)/ ||u|]2dV+5/ HVHU,HQdV>,
u u

and the assertion (34) follows.

AV

O

Theorem 6.3 (Gaffney-Friedrichs Inequality (2nd version)). Let U C H”
be a domain with smooth boundary of class C? satisfying condition (H) (see
Definition 3.4). Let u € Q" (U)®g C be a horizontal h-form with 1 < h < n,
and assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);
(i) w satisfies condition (Jvy;) (see Remark 5.15).

Then, there exist geometric constants a and éVQ, only dependent on U
and on the integers h and n, such that

(36) Di(u) > Gy / IV ul?av — G / ul?dv.
U U

Furthermore, if u € Q% (U)®g C is a horizontal h-form withn+1 < h < 2n,
then (46) still holds provided that xgu satisfies (i) and (ii).

For the case h = n we refer the reader to Theorem 6.7.

We start from the estimate (35) in the proof of Theorem 6.1, by proving a
more effective estimate of the remaining terms. By Remarks 5.15 and 5.18,
we are reduced to

1
(37)  Dpg(u) > / |V gul/*dV — §Re/ (R u,u) dog.
nJu OU\char(0U)

To this end, let us study the quantities R, (u,u), with i = 1,2.

Remark 6.4. Let py € C! (81/1 \ char(0U)), \' b1 @r (C) and assume that
lperr|| = 1. For any smooth function ¢ : OU \ char(0U) — R we have

R‘f“H(u) = ¢ (Z urdg (MHJ wl)> + ZuIdeﬂ\ (MHJ wl) ,

T T
= ¢R(u)+duo A (pgJu),

and

R (w) = ¢ (ZUI5H (MH/\WI)> =Y ur (dgod (pa Aw'))
T

1

= ¢RY"(u) —dudJ (nm Au).
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By condition (H), near the characteristic set, the boundary of U is a T-graph
(i.e., OU is a Euclidean graph w.r.t. the hyperplane ¢ = 0) and so there exists
a C? defining function g : H* — R of the form g(z,y,t) =t — f(x,y). Hence

Ni = Vg = Vit - f(e,9)) = (=5 = Vaf. 5 = Vuf)

Accordingly, we assume that vy = where Ny := Vg. Thus we get

IINHII’

Ry (u) < 1 >
+dyg | —— /\(NHJU),
[N || IN# ||

where the second term vanishes on U \ char(oU) when u,,, = vy Ju = 0.
Similarly we get

(38) Ry (u) =

Ny u
) Bw= RuzNH(n) ~ <|1N1H||> 4 Nar Aw),

and the second term vanishes on OU \ char(0U) when u = vy J(vg Au) = 0.

As we shall see below, formulas (38) and (39) are very important for our
purposes. In particular, under the hypothesis u,,, = 0 on OU \ char(oU),

N
we find that RY" (u) = RHNH(H) Furthermore, under the hypothesis u; = 0
on AU \ char(0U), the quantity R5” (u) can be obtained by duality (via the
horizontal Hodge star operator) from the computation of Ry” (u). Thus, let

u be a horizontal h-form and let us compute

dH NHJW ) J>
INg]

R (u,u) := (R{" (u Z UIUJ

_ZZuqu<dH (Nar), o, J o) 7

INz]|

_ - <wk/\(w,anI),wJ>
v R

— ”NIHH <Z Wi (Ng),) wi A (wr Ju) u>
r.k
. (Jacy (N )u, u)
INgll

Remark 6.5. More generally, let v be such that Jvg 1 v = 0. Now, arguing
as above yields

R{™ (v)
Nzl

Thus, with the obvious meaning of symbols and keeping in mind that J is
an isometry, our previous arguments show that
(jacH(JNH)v, 1)>

INg|

R (v) =

leyH ('U, U) =
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Analogously, let v be such that Jug A v = 0. Then, as above, we get
(Jacy (JNg)v,v)
Nl

Now going back to (40), we see by condition (H) that

Ré]UH (U7 U) =

1
Jacy(Npy) = QJ_ Hess gan f.
Thus, using the skew-symmetry of the linear operator J, we have

y Hesspan f
(a1 e () = 0 (Im 1 e,

and applying condition (H) yields O (W) =0(1).

Eventually, we resume the above discussion in the following.

Lemma 6.6. Let U C H" be a domain with smooth boundary of class c?
satisfying condition (H). Let u,v be horizontal h-forms defined on U, with
1 < h <n. Then, we have:

(1) If uy, = 0 on U, then Re RY" (u,u) = O(||ul|?).

(i) If uy = 0 on AU, then Re Ry (u,u) = O(|jul]?).
In addition, we have:

(iii) If (Jv),y =0 on OU, then Sm R} (v,v) = O(||v]|?).

(iv) If (Ju); = 0 on U, then Sm Ry (v,v) = O(||v]|?).
In particular, it follows from definitions that Re (R(u),u) = O(||ul|?).
Proof. The proof of (i) follows by using (41). Then (ii) follows from (i) by
duality (using the horizontal Hodge star operator); see Remark 5.7. The last
claim it is an immediate consequence of (i), (ii) and of the very definition
of R(u). Assertions (iii) and (iv) follow in the same way keeping in mind
Remark 6.5. O

Proof of Theorem 6.3. From (37) we know that

1
Dy (u) > / ||VHu||2dV—§Re/ (R{"u,u) dog.
nJu 8 \char(8U)

By appplying Lemma 6.6 and Theorem 3.9, it follows that

Dy (u)

v

1
/ IV gul2dv — C Tul? doy
nJu AU \char (1)

v

1
3 | IVl dv = Culel o,

The proof of the lemma easily follows.
O

Theorem 6.7. Let us suppose that the assumptions of either Theorem 6.1
or Theorem 6.3 are satisfied, where the condition 1 < h < n is replaced by

(42) h=n and u ¢ QZ’O U Q?{’n.

Then the conclusions of either Theorem 6.1 or Theorem 6.3 hold.
Moreover, if u € Q?}O U Q%’,n, then estimates like (34) and (46) fail to hold.
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Proof. The first assertion follows by noticing that, in the proofs of 6.1 and
Theorem 6.3, the assumption h < n was used only in deriving inequality
(35), where we used that, if u € Q}7, then |p — ¢| < n. But, trivially, the
same conclusion holds if h = n and u ¢ Q" U Q™.
As for the second assertion, we take, for instance, v = f 012" with
f € D(U). In such a case the estimates (34) and (46) coincide and represent
nothing but a maximal subelliptic estimate for the operator Ag +inT. But
then the operator Ax 4 inT would be hypoelliptic (see, e.g., [11], Theorem
4.1), contradicting the fact that the values +n are “forbidden values” for
the Kohn Laplacian in H" (see, e.g., [44], Chapter XIII, 2.3).
O

7. FURTHER GAFFNEY-FRIEDRICHS INEQUALITIES
FOR HORIZONTAL FORMS

As already pointed out in Remark 5.15, condition (Jvj;) of Theorem 6.3
is not “geometric”, in the sense that it is written “in coordinates”. Thus,
let us replace (Jvj;) by a slightly different “geometric” condition.

To this end, we stress first that, in the proof of Theorem 6.3, condition
(Jvj;) can be replaced by the following weaker condition:

(43) Sm <aJVHu, > (ewir — ekik)u> < C 32 o
k=1 Lz(au)

Let us still suppose that both conditions (DN) and (H) holds. If u,, =0,
we can argue as follows. By applying Remarks 5.7 and 5.15, we compute

<6JVHU, Z(ekik - ekz’k)u>

k=1

= <8JVHJu, Z(ekik — ekik)Ju>

k=1
= <([,J,,HJu - Rl‘]VHJu), Z(ekik - e,—ci,-g)Ju>

k=1

— <£JVHJu, Z(ekik - ekik)Ju> - <R‘1]”HJU, Z(ekik - ekik)Ju>

k=1 k=1
= <£J,,HJU, JZ(ekik — e,;i,;)u> — <R1‘]”HJu, Z(ekik — e,;i,;)Ju>

k=1 k=1
= <J_1£J,,HJU, Z(ekik — e,;i,;)u> — <R1JVHJU, Z(ekik — e,;i,;)Ju> .
k=1 k=1

Now suppose that the following geometric condition holds:

(44) Sm <J_1£J,,HJu, Z(ekik — e,;z',—c)u> =0.
k=1
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Under this assumption, let us show that (43) holds. We have

Sm <<R‘1]VH Ju, Z(ekik — ekik)Ju>

k=1
n
= SQm <R‘1]”Hv, Z (exir — efiz)v >
k=1
n
= Qm||Ng|I™* <R{NHU, > (ewin — e,;i,;)v>
k=1
n

= QSm|Ng| ™! <jacH(JNH)'U, Z(ekik — ekik)v>

k=1

h n
= Sm||Ng| ™! <<_2Id - J(Hesstnf)> v, Z(ekik — e,;i,;)v>
k=1
= —%mﬁnj\fyll‘1 v Zn:(ekz'k — egip)v
9 7k:1 k°k

k=1
n

J(Hessgzn f)v, Z(ekik; — egip)v

k=1

— SN[~

—Sm|| Ny |~ <J(HessR2nf)v, Z(ekik - ek,ik,)v>

since

<v, > (exir — e,;i,;)v> = (lixol® = lligoll?)

k=1 k=1

is a real number. Thus keeping in mind that ||v|| = ||Ju|| = ||u| yields (43).
Analogously, if in condition (DN) one has u; = 0, then we can argue in a
similar way by assuming that:

(45) Sm <J12JVHJU, Z(ekik — eEiE)u> = 0.

k=1
We summarize the previous arguments in the following.

Theorem 7.1 (Gaffney-Friedrichs Inequality (3rd version)). Let Y C H”
be a domain with smooth boundary of class C? satisfying condition (H) (see
Definition 8.4). Let u € Q" (U)®g C be a horizontal h-form with 1 < h < n,
and assume that either

(i) wy =0,

(ii) w satisfies the condition (44),

or
(.]) Ut = 07

(jj) w satisfies the condition (45).
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Then, there exist geometric constants @vl and EZ’VQ, only dependent on U
and on the integers h and n, such that

(46) Di(u) > Gy / IVl av - G / Jul® V.
U U

Furthermore, if u € Q% (U)®@g C is a horizontal h-form withn+1 < h < 2n,
then (46) still holds provided that xgu satisfies either (i) and (ii), or (j) and
(3j)- Finally, Theorem 6.7 still holds in this case.

8. RUMIN’S COMPLEX IN HEISENBERG GROUPS

8.1. Rumin’s complex. In this section we briefly sketch the main ideas
in Rumin’s construction of the intrinsic complex of differential forms in
Heisenberg groups; see [40]. For a more general approach we refer the reader,
for instance, to [42], [43], and [7].

First, we would like to show how Rumin’s complex appears naturally in
the Geometric Measure Theory of Heisenberg groups. The starting point
is the question “what is counterpart of a linear manifold in Heisenberg
groups?”. As shown in [23], [25], this role is played by the homogeneous
subgroups of H", that is, in exponential coordinates, by the homogeneous
subalgebras of h. It is well-known that, in Euclidean spaces, linear sub-
manifolds are the annihilators of homogeneous simple covectors, which are
invariant under translations. Thus, is it natural to look for left-invariant
homogeneous differential forms whose annihilator is a subalgebra of b.

By the Frobenius theorem, the annihilator of a left invariant differential
form w is a Lie subalgebra of § if and only if dw = 0. On the other hand,
when acting on left-invariant forms, the exterior differential d is nothing but
its “algebraic” part, which in the sequel will be denoted as dy; see below,
Definition 8.2.

A natural choice for a class of intrinsic differential forms in H” would be
to take ker dy as the ambient space. Nevertheless, this choice is not totally
satisfying, since it fails to take into account a crucial algebraic property of
linear manifolds in Euclidean spaces, which resides in the fact that they are
complemented. Indeed, also complementary subspaces of a fixed subspace
V can be viewed as annihilators of differential forms in the following sense:
If V is the annihilator of a simple form w, then a complementary subspace W
is the annihilator of the Hodge-dual form *w, where the Hodge duality must
be taken with respect to an inner product making V and W orthogonal.
Thus in order to obtain a satisfying notion of intrinsic h-covector in b, we
have to choose once for all an inner product in § and take

E! = ker do N ker(xdp).

Recall that b is endowed with the inner product that makes the basis
{X1,..., X, Y1,...,Y,, T} orthonormal.
The family of vector spaces (E(})Z)()S h<n can be equipped with an “exterior
differential operator”
de: Bl — By
making (E,d.) a complex that is homotopic to the de Rham complex. The

definition of d. is rather technical and will be given by Theorem 8.6 below.
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Essentially, d. is defined as
dc = HEO dHE,

where IIg is the projection onto a second complex (E*,d), again homotopic
to the de Rham complex, which is meant to take into account the lack of
commutativity of b, and where Ilg, is the orthogonal projection on Ej that
minimizes the number of compatibility conditions for a differential form to
be exact. We stress that d. is an operator of order 1 in the horizontal
derivatives, when acts on E} with h # n, but it is of order 2 on EJ.

Definition 8.1. If a € /\1 b1, o # 0, then we say that « has weight 1,
and write w(a) = 1. If a = ¥, then we say that a has weight 2, and
write w(a) = 2. More generally, we say that a € /\hh has pure weight
k when o is a linear combination of covectors v;, A .... A 1);, such that

w(Wiy) + o+ w(¥y,) = k.

Note that, if o, 3 € A" b and w(a) # w(B), then (a, 8) = 0. Moreover,
we have (see, e.g., formula (13) in [7]):

/\h b= /\h,h b /\h,h-i-l b,

where A"” b denotes the linear span of U7 := {o € UM : w(a) = p}.
The ordinary exterior differential d splits into the sum of its weighted
components. More precisely, we have the following definition.

Definition 8.2. Let a = 3 ncynap ;! be a smooth (simple) h-form of
pure weight p. Then we shall write

(47) da = doa + dia + daa,

where dgpa has pure weight p, dia has pure weight p + 1, and dsa has pure
weight p + 2.

When acting on left-invariant forms, one has d = dj, since d preserves the
weight. Notice also that d; = dy.

Using Cartan’s identity (see, for example, [32], formula (9) p.21) and the
left-invariance of the forms ¥ € U"P it follows that

doav = Z iyl
YheThp
Analogously, we have
dia = Z Wi(ag)j A 1/)?7 daov = Z T(0x)0 A wzh'
Prewhr Prevhe

We stress that dg is an algebraic operator, and therefore can be identified
with an operator acting on covectors.
The following important notion due to Rumin can be found in [41, 42].

Definition 8.3. For any 0 < h < 2n+1 we set B! := KerdgNR(do)*. The
elements of El! are called intrinsic h-forms on H".
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It is not difficult to see that *Eg = Eg”“fh . Observe that, since this
notion is invariant under left translations, the space E(’} can be seen as the
space of sections of a fiber subbundle of /\h b, generated by left translation
and still denoted as E(}}. Since dy is algebraic, there is no ambiguity if we
denote by E{ both the space of covectors and the spaces of the sections of
the associated linear bundle. We also note that E! inherits from /\hh the
inner product (-,-) on the fibers.

Theorem 8.4 (See [41]). With the notation of Definition 2.7, we have:

o Bj=A"bu
o If2<h<n, then El' = A" by NkerA.
o [fn<h<2n+1, thenE{}z@/\kerL.

We remark that a h-form in E[})‘ has either weight h, if 1 < h < n, or
weight h + 1, if n < h < 2n+ 1. Let Eg = {flh : 1 <4 < Ni} be an
orthonormal basis of Ef, where N} := dim E}. Notice that we can always
assume that 52-1 =; for any i =1, ..., 2n.

We have to define an “inverse” of the algebraic operator dy and this can
be done as follows (see, e.g., Lemma 2.11 in [7]).

Lemma 8.5. For any 8 € N b there exists a unique o € N" b (ker do)™
such that dya — 8 € (R(do))J‘. In the sequel, with a slight abuse of notation,
we shall set dalﬁ =aq.

By construction, the operator dy 1'is weight-preserving.

In the next theorem we summarize the main features of the intrinsic
exterior differential d.. For more details, we refer the reader to [41]; see also
[42] and [7].

Theorem 8.6. The de Rham complex (Q*,d) splits into the direct sum of
two sub-complexes (E*,d) and (F*,d), where we have set

E:=kerdy' Nker (dy'd),  F:=R(dy")+R(ddy").

Furthermore, the following assertions hold:

(i) Let Ilg denote the (non-orthogonal) projection on E along F. For
any o € Eg one has either llpa = o — daldla, if 1 < h<mn, or
[ga=a, if h > n.

(ii) g is a chain map, i.e., dllp = Igd.

(iii) Let Ilg, denote the orthogonal projection from N\* b onto E}. Then,
we have I, = 1d — dy 'do — dody " and T1 = dy*do — dody .

(iV) We have HEO = HEOHEHEO and HE = HEHEOHE~

Let 0 < h <2n and set d. := 1lg,dllg : E(})‘ — E(]}H. Then, we have:

(v) d? = 0.

(vi) The differential complex (Ej,d.) is ezact.

(vil) Ifh # n, thend, : E(})‘ — Eg“ 1s a homogeneous differential operator
in the horizontal derivatives of order 1. Moreover, d.. : By — Ej™
s a homogeneous differential operator of order 2.
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Notice that for any smooth function f € EJ we have

n

dof = (V)" = (Xifdw; + Yifdy:) .
1=1

We can also define a codifferential ., by taking the formal adjoint of d,
in L2(H", E). More precisely, we set 0. := d.
Proposition 8.7. On E} we have 6. = (—1)" x d.*.

For a proof, see, e.g., [26], Proposition 3.15.
Explicit calculations and further examples concerning Rumin’s complex
in Heisenberg groups can be found in [8].

Definition 8.8 (Sub-Laplacians on forms; see [40]). We define the operator
A.p on E(’} by setting

debe + 0.d, ifh#n,n+1;
Acp = (debe)? + 6ed.  ifh =n;
debe + (00dc)? ifh =n+1.

Notice that Ao = Ak is the usual sub-Laplacian on H".

Lemma 8.9. If a € E’(})‘, with h £ n + 1, then dga = d.a.

Proposition 8.10 ([40], Proposition 4). Let 1 < h <n and o € E}'. Then:
(i) deax = dpav;

1
——— LA .
n—h+1 (drc)

The next lemma follows from the Kéahler identities in Proposition 4.5.

(ii) dea = dgu —

Lemma 8.11. For any u € E}, with 0 < h < n, we have A(dyu) = —du.
Furthermore A“(dgu) = 0 for every £ > 2.

Proof. Keeping in mind that Au = 0 and using (i) of Proposition 4.5 yields
A(dgu) = dgAu — §fu = —6%u.
Moreover, by applying (iii) of Proposition 4.5 we obtain
A (dgu) = AdHu = 64 Au = 0.

U
Lemma 8.12. Letu € Eé‘, with 0 < h < n. Then
1

Moreover, the following identity holds:

ldeul® + 167 ul® = lldaul®.

n—h+1
Proof. By Proposition 8.10 and Lemma 8.11 we get

1
= ——— A
dcu dHu n—h T 1 (dH’LL)

1
=d — L&
Hu+n—h+1 Y
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In order to prove the second assertion we first remark that, by definition,
d.u is orthogonal to the range of L. Now since Ld% u = —LA(dgu) we get

IL6ul® = | LA(drw)|*
= (LA(dgu), LA(dgu))
= (A(dgu), ALA(dpu))
= (A(dgu), LA*(dgu)) + (n — h + 1) (A(dgu), A(dgu))  (by Lemma 2.8)
=(n—h+1)(A(dgu),A(dgu)) (by Lemma 8.11)
= (n— h+1)||Zpull?,

and the thesis easily follows.
O

8.2. Decomposition of forms on the boundary of a domain II. This
section is the counterpart of Section 2.2 and, roughly specking, the idea here
is to replace horizontal forms with intrinsic forms in Ej. We later assume
that &/ C H" is a domain with boundary of class C2.

With the notation of Section 2.2, if a € Eg, with n < h < 2n+1, we have

a=0ANag with age€ Q’;{_l.

Now, writing ag = (ag)t + vu A (am)y,, where we have set
(ap)t :==vug J(vag Nag) and  (ap)y, =vo - om,

we obtain the decomposition formula

a=0A ()i +0ANvyg A(aH)u,
Thus if « € E(’}, with n < h < 2n+ 1, we can set

oy =0A (ag)y and o, = —0 A (ar)uy,,
and again we obtain the identity
a= ot + Vg Ny,

Clearly, it turns out that ay L vg A ayy,.
The above definition is motivated by the following lemma.

Lemma 8.13. Ifa € E(}}, withn < h < 2n+ 1, then
say, = vy N (*)y,, and * (v N ayy) = (xa)s.
Proof. By Lemma 2.2 we have
sy = *p(ap)y = v A (xgam), = ve N (),
On the other hand, we have
(v Nowy,) = —*xwa ANON(ag)vy,)
(0 Aveg A (am)vy)
= xg(vg N (am)uy)
(*mam)s

= (xa).
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In particular, if @ € Q’;I, 1 < h < 2n, we can always write
ay = vy J(vg N a), Qyy =vEJa,
and, as above, we have the decomposition formula
a=a;+vg Nayy, VozGESL.

Remark 8.14. We stress that combining (6) and Lemma 8.13, we obtain a
very useful result: If 1 <A <2n+1and a € E[’)"”, then

ay = 0 if and only if (xa),, =0 and oy, =0 if and only if (xa); = 0.

Definition 8.15. From now on, we denote by Eg({/) the space of smooth
sections of Ej over . With a slight abuse of notation, we also denote by
E}(U) ®g C the corresponding space of complex forms I'(U, E} @ C).

We conclude this section by stating a Green-type identity for the Rumin
differential d. (compare with formula (7)).

Theorem 8.16 (Green identity in (Ej,d.)). LetU C H" be a domain with
boundary of class C2. If « € EL ' (U) ®g C and B € El(U) ®r C, with
h#n,n+1, then

<dcaaﬁ>L2(u) = <a75c5>L2(u) + /6u <n/\a76> do

= <a75€ﬁ>L2(L{) + /au <VH A Ol,ﬁ) doy.

8.3. Gaffney-Friedrichs-type inequalities: technical preliminaries.
Let 4/ C H" be a domain with smooth boundary of class C2. Below, we
generalize to E a classical definition which can be found in [38]; see, e.g.,
Definition 7.2.6, p. 291 (also compare with Definition 5.1).

Definition 8.17. Let u € El(i{) ®g C be an intrinsic differential h-form,
with 0 < h < 2n + 1; we define the C'C-Dirichlet integral by

Du(u) = /u (o, o) + (Bo1, 6,)) dV.

It is clear from the definition that all these quantities are positive real
numbers. Moreover, we remind the reader that D.(u) = D.(xu).

Finally, it is worth observing that our main results for the complex (Ef, d.)
(see, more precisely, Theorems 8.22, 8.24 and 8.25) only concern the case
h#n,n+ 1.

Proposition 8.18. Let u € E}NU) ®r C, with 1 < h < n. Then

D.(u) = DH(u)—n_;LH/u@}Qu,(S;Q@ av
(49) > D) — 7 DulJu) = Di(w)
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Proof. By using together Definition 8.17, identity (48) in Lemma 8.12 and
Proposition 8.10, we get

(deu, dew) + (deu, 0cu)

1
1 I s
1
= <dHu, dHu> + <5Hu,5Hu> - m <J715HJ’U,, J*léHJu>
where we have used that J2 = —Id. Now since

/<6HJU,5HJU> dV < Dy (Ju),
u

the proof follows. O

Moreover, by applying Proposition 5.11 to Ju and by keeping into account
that the first two integrals in (24) remain unchanged if we replace u with
Ju, we find the following proposition.

Proposition 8.19. Let u € Q% (U) ®r C and assume that either (Ju), = 0
or (Ju)y, =0 on OU \ char(OU). Then

DH(JU) = /quHuPdV_iZ(pI_q‘])/qu’JTUI’JdV
I,J

(50) <§J(u),u> o,

- /(9U\Char(82/{)
where we have set Ry(u) := J ' R(Ju).

Lemma 8.20. Let u € Eé‘(a) ®r C be an intrinsic h-form, with 1 < h < n.
Then, at every point of OU \ char(OU), the following implications hold:

(1) uy = 0 = (JU)VH =0,

(ii)) (Ju)y =0= u,, =0.

Proof. We just prove (i), since the proof of (ii) is similar. Let g : H* — R
be a defining function for U of class C2. We are assuming that:

e U ={xeH":g(zx) <0}

e g(x) =0 if and only if z € U;

e Vg # 0 for all x € U,
see, e.g., Ch.2 in [34]. Now observe that dg is parallel to vz and that the
hypothesis uy = 0 is equivalent to dy(gu) = 0 on OU. Indeed, if uy = 0,
then u = vy A (vg - u). On the other hand

dp(gu) =dgg ANu=dgg ANvg N (vgJu) =0.

Moreover, if dg(gu) = 0, then dgg Au = 0 and so v Au = 0, which implies
uy = vy (vg ANu) = 0.
On the other hand, by Lemma 8.11, if uy = 0, then

0=—Adg(gu) = 6I‘§(gu) = J_15HJ(gu),
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which implies

dr(gJu) = dpJ(gu) = 0.
From this we get dg(gJu) = 0 on OU and since dg(gJu) = — (dgg | Ju),
the proof of (i) follows. O

Combining Propositions 8.18, 5.11, 8.19, Lemma 8.20, and formula (17)
in Corollary 5.5, we obtain the next proposition.

Proposition 8.21. Let u € ElNU) ®r C, with 1 < h < n, and suppose that
either uy = 0 or (Ju)y =0 on OU \ char(0U). Then

1
J — —_
Dy (u) = Dp(u) n—h+1DH(Ju)
= n_h/ HVH’LL”2 —iZ(p[—QJ)a[ gTur ;| dV
n—h—i—l u 7 ’ ’
-/ (R(u),u) do
OU\char(0U)
n—nh n—~h
N n—h+1DH(u)_n—h+1§ReA
-/ (R(u),u) doy
OU\char(0U)
" D) ! ?Re/ (B — Ry)u,u)d
= — U) — ————— — u,u) doy,
n—h+1 " n—h+1 U\ char(9U) ’ 7
where R(u) := R(u) — n%hﬂé](u)

8.4. Gaffney-Friedrichs-type inequalities: the main results. At this
point, by using the estimates of the “error terms” proved in the preceding
sections, Theorems 6.1 can be stated in (Eg,d.) as follows.

Theorem 8.22 (Gaffney-Friedrichs Inequality in (EF) (1st version)). Let
U CH" be a domain with boundary of class C?. Let u € E}NU) ®r C, with
1 < h < n, and assume that:

(i) w satisfies either uy =0 or Juy = 0;

(ii) w satisfies either condition (Jvi) (see Proposition 5.14) or

condition (Jvg) (see Proposition 5.17).

Let {Ve}eso be a family of open neighborhoods of char(OU) (in the relative
topology) shrinking around char(OU) when € — 0. In addition, assume that
o(Ve) = 0 as € — 0. Then, there exist geometric constants Co,C1 and Co
such that

De(u) + Co / ul|? do
(51) oUNVe

e / IV sull?dV - Cy / Jul]2 V.
U u

The constants Cp, C1, Co_depend only on U, € and on the integers h and n.
Furthermore, if u € E}(U) ®r C with n +1 < h < 2n, then (51) still holds
provided that xu satisfies (i) and (ii).
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Remark 8.23. Just as in Remark 6.2, the constant Co may blow up as €
tends to 0.

Theorem 8.24 (Gaffney-Friedrichs Inequality in (Ef,d.) (2nd version)).
Let U C H" be a domain with boundary of class C? satisfying condition (H)
(see Definition 3.4). Let u € E}U)@g C, with 1 < h < n, and assume that:
(i) either ug =0 or Juy =0;
(ii) u satisfies condition (Jvy;) (see Remark 5.15).

Then, there exist geometric constants a'vl and é'vg, depending only on U
and on the integers h and n, such that

(52) De(u) > G / IVl dv — G / Jull? V.
U U

Furthermore, if u € E}(U)@r C with n+1 < h < 2n, then (52) still holds
provided that xu satisfies (1) and (ii).

Theorem 8.25 (Gaffney-Friedrichs Inequality in (Efj,d.) (3rd version)).
Let U C H" be a domain with boundary of class C? satisfying condition (H)
(see Definition 3.4). Let u € E}(U) ®g C with 1 < h < n, and assume that
either

(1) Jut = 0,
(ii) w satisfies the condition (44),
or

(.]) Ut = 07
(ji) u satisfies the condition (45).

Then, there exist geometric constants 6’1 and 6’;, depending only on U
and on the integers h and n, such that

(53) Du(u) za/ HvHuH?dv—Ez;/ ull2dV.
Uu u

Furthermore, if u € E}(U) @rC withn+1 < h < 2n, then (53) still holds
provided that xu satisfies either (1) and (ii), or (j) and (jj).
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