
GAFFNEY-FRIEDRICHS INEQUALITY FOR

DIFFERENTIAL FORMS ON HEISENBERG GROUPS

B. FRANCHI, F. MONTEFALCONE & E. SERRA

Abstract. In this paper, we will prove several generalized versions,
dependent on different boundary conditions, of the classical Gaffney-
Friedrichs inequality for differential forms on Heisenberg groups. In the
first part of the paper, we will consider horizontal differential forms
and the horizontal differential. In the second part, we shall prove the
counterpart of these results in the context of Rumin’s complex.
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1. Introduction

Let Mn be a smooth compact manifold of dimension n with boundary
∂Mn. If u is a differential form of degree h on Mn, 0 ≤ h ≤ n, we set

ut := ν (ν ∧ u), uν := ν u,

where ν denotes the (Riemannian) outward unit normal vector along ∂U .
Thus, one gets the orthogonal decomposition formula

u = ut + ν ∧ uν .

Denote now by W 1,2(Mn,
∧h TMn) the Sobolev space of differential forms

on Mn of degree h. The classical Friedrichs-Gaffney inequality (see [28], [29],
[38], [45]) states that there exists a geometric constant C > 0 such that

‖u‖W 1,2(Mn,
∧h TMn) ≤ C

(
‖du‖L2(Mn,

∧h+1 TMn)

+ ‖δu‖L2(Mn,
∧h−1 TMn) + ‖u‖L2(Mn,

∧h TMn)

)(1)

for every differential h-form u ∈ W 1,2(Mn,
∧h TMn) with vanishing either

the tangential component ut or the normal component uν on ∂Mn. Here d
and δ denote, respectively, the differential and the codifferential of the de
Rham complex in Mn.

If ~F is a vector field in Rn, then (1) reduces to the inequality

‖∇~F‖
L2(Rn)n2

≤ C
(
‖div ~F‖L2(Rn) + ‖curl ~F‖L2(Rn)n + ‖~F‖L2(Rn)n

)
,

under suitable boundary conditions on ~F such as the ones above.
Roughly speaking, the conditions ut = 0 or uν = 0 on ∂Mn imply the

vanishing of some geometric quantities living on the boundary; see, [15],
[45]. Incidentally, we remark that these conditions can be replaced by more
complicated conditions, which can be written as linear combinations of the
previous ones; for more details, we refer to Section 5.3.2 of [15].

Several generalizations of (1) can be found in the literature. We mention
among others the Gaffney-Friedrichs inequality for Lipschitz domains proved
in [36] and, above all, from our point of view, the recent papers by Tseng
and Yau [46, 47] (see also [48]) for generalizations of the Gaffney-Friedrichs
inequality (associated with symplectic Laplacians) in compact symplectic
manifolds (thus of even dimension) with smooth boundaries of contact type.

The aim of the present paper is to prove a Gaffney-Friedrichs inequality
for differential forms in Heisenberg groups.

By Darboux’ theorem, Heisenberg groups are the prototype of contact
manifolds (necessarily of odd dimension). Therefore our result can be seen,
in some sense, as complementary of that in [46, 47].

Heisenberg groups will be presented in more detail in Section 2. Here
we just recall that the Heisenberg group Hn is the (2n+ 1)-dimensional Lie
group with nilpotent, stratified Lie algebra h of step 2 given by

h = span {X1, . . . , Xn, Y1, . . . , Yn} ⊕ span {T} := h1 ⊕ h2,

where the only nontrivial commutation rules are [Xj , Yj ] = T , j = 1, . . . , n.
2



It is well-known that Hn can be identified with R2n+1 through the (Lie
group) exponential map. The stratification of the algebra induces a family
of nonisotropic dilations in the group, again via the exponential map.

Since the Lie algebra h can be identified with the tangent space to Hn at
the identity e = 0 ∈ Hn, there is a natural left-invariant Riemannian metric
in Hn making the basis {X1, . . . , Xn, Y1, . . . , Yn, T} orthonormal.

In addition, by left translation of h1 one obtains a tangent subbundle of
THn still denoted by h1. We refer to h1 as to the horizontal layer and to
X1, . . . , Xn, Y1, . . . , Yn as to the horizontal derivatives of Hn. Moreover, we
write

∇Hu := (X1u, . . . ,Xnu, Y1u, . . . , Ynu)

whenever u is any smooth real function on Hn.
If 0 ≤ h ≤ 2n, the sections of

∧
h h1 are called horizontal h-vectors, while

the sections of
∧h h1 are called horizontal h-covectors.

Throughout this paper we shall denote by Ωh
H , 0 ≤ h ≤ 2n, the space of

all horizontal h-forms and by θ the 1-form on Hn such that ker θ = exp(h1)
and θ(T ) = 1.

It is to mention that the horizontal differential dH := d − ϑ ∧ LT acts
between horizontal differential forms in the sense that dH : Ωh

H → Ωh+1
H .

Unfortunately, (Ω∗H , dH) is not a differential complex, since d2
H does not

vanish, in general, precisely because of the lack of commutativity in h. This
difficulty is overcome by introducing the Rumin complex (E∗0 , dc), which
is a “natural” complex of differential forms, homotopycal to the de Rham
complex. We refer to [40] for the original definition, as well as to [7], [8, 9,
10, 12]. Even if d2

H 6= 0, we shall denote by (Ω∗H , dH) the family of spaces
Ω∗H with arrows dH .

Precise definitions of the complex (E∗0 , dc) will be made in Section 8.1.
Here we discuss some motivations leading to its definition.

First, horizontal forms appear “naturally” from the stratification, thought
the construction of Rumin’s forms may appear very technical. Thus, let us
sketch how (E∗0 , dc) is in fact very “natural” in the light of more geometric
considerations, starting from the notion of intrinsic submanifolds of Hn (see
[24]) and, above all, of linear submanifold in Hn.

In Heisenberg groups, as shown, for instance, in [23], [25], the counterpart
of linear manifolds is played by the homogeneous subgroups of Hn, i.e., in
exponential coordinates, by the homogeneous subalgebras of h.

Indeed, as proved in [19], Rumin’s forms are naturally associated with
homogeneous subalgebras of h, in the sense that homogeneous subalgebras
are more or less the annihilators of simple Rumin’s forms, precisely as in
Euclidean spaces, linear submanifolds are the annihilators of homogeneous
simple covectors. We refer to Section 8.1 and to [19], [12] for further details.

Another non-Euclidean feature arising typically from the geometry of Hn

we have to deal with is the following. Let U ( Hn be a smooth, bounded
open set. We need to remark that in our paper we are dealing with different
“boundary measures” on ∂U . First, an intrinsic notion of perimeter measure
|∂U|Hn has been introduced in [30]; we refer the reader to [30, 20, 21, 22]
for a detailed presentation. For simplicity, we shall denote the Hn-perimeter
measure by the symbol dσH . However, beside the Hn-perimeter measure, we
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can actually consider both the 2n-dimensional Euclidean Hausdorff measure
dH2n and the Riemannian measure dσ, defined in terms of the Riemannian
structure in Hn induced by the fixed inner product in h. As a matter of
fact, our results will fail to be completely analogous to the classical ones
ultimately because dσ and dσH are not equivalent. This problem will be
discussed later in this Introduction.

We can now describe the content of this paper. Our aim is to prove
Gaffney-Friedrichs-type inequalities for both the complexes (Ω∗H , dH) and
(E∗0 , dc). If U ( Hn is a smooth, bounded open set we are looking for
estimates of the form

‖u‖
W 1,2

H (U ,
∧h h1)

≤ C
(
‖dHu‖L2(U ,

∧h h1) + ‖d∗Hu‖L2(U ,
∧h h1) + ‖u‖L2(U ,

∧h h1)

)
,

under suitable boundary conditions.

HereW 1,2
H (U ,

∧h h1) denotes the space of horizontal differential forms such

that all their coefficients with respect to some fixed basis belong to W 1,2
H (U)

(that is, they belong to L2(U) together with all their horizontal derivatives).
Analogously, when dealing with forms of Rumin’s complex, we are looking

for estimates of the form

(2) ‖u‖
W 1,2

H (U ,Eh0 )
≤ C

(
‖dcu‖L2(U ,Eh+1

0 ) + ‖δcu‖L2(U ,Eh−1
0 ) + ‖u‖L2(U ,Eh0 )

)
,

under suitable boundary conditions.
If Ξh0 = {ξhi : 1 ≤ i ≤ dimEh0 } is an orthonormal basis of Eh0 , we denote

by W 1,2
H (U , Eh0 ) the space of differential forms u =

∑
j ujξ

h
j ∈ L2(U , Eh0 )

such that

‖∇Hu‖2 :=
∑
i,j

(
|Xiuj |2 + |Yiuj |2

)
∈ L1(U),

endowed with its natural norm. In this case we restrict ourselves to degree
h 6= n, n + 1, in order to deal only with both the intrinsic differential dc
and codifferential δc of order 1. The remaining cases will be considered in a
future paper. If U = Hn, inequality (2) is well known (see, e.g.,[40]).

We can now state our main results, which correspond to the choice of
different boundary conditions. Our approach is largely inspired by that of
Csató, Dacorogna and Kneuss in [15]. In fact, several delicate algebraic
manipulations we carry out in the present paper are the counterpart in our
setting of those presented in [15].

Denoting by nH the horizontal normal to ∂U , defined as the orthogonal
projection onto

∧
1 h1 of the Riemannian outward unit normal n along ∂U ,

we can define a horizontal unit normal vector to ∂U by setting νH := nH
‖nH‖

at each point p ∈ ∂U where nH(p) 6= 0. These points are the so-called “non-
characteristic points” of ∂U and we write char (∂U) to indicate the set of all
characteristic points of the boundary, i.e., the set of points p ∈ ∂U where
nH(p) = 0. We recall that if ∂U is of class C2, then char (∂U) is “small”
(see, for more details, Remark 2.11 below). It is not surprising that the
presence of the characteristic set char (∂U) is at the origin of most of the
“pathologies”, at least from the Riemannian point view, we are facing in the
context of Heisenberg groups. Unfortunately, in general char (∂U) 6= ∅; for
instance, always the characteristic set fails to be empty when the topology
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of U is trivial. Setting now

ut := νH (νH ∧ u), uνH := νH u,

we obtain the decomposition formula

u = ut + νH ∧ uνH .
As a first thing, we need a counterpart of the condition “either un = 0

or ut = 0” of the Riemannian case. When dealing with horizontal forms, it
becomes “either uνH = 0 or ut = 0”, which will be called “condition (DN)”
later on. This boundary condition represents the natural generalization to
the horizontal geometry of ∂U of the classical Dirichlet-Neumann boundary
conditions. On the other hand, when dealing with the Rumin complex, if
J represents the linear operator known as almost complex structure of Hn

(see Section 4), then it is possible to show that the condition “(Ju)t = 0”
implies that “uνH = 0”. Thus the condition “either un = 0 or ut = 0”
becomes “either (Ju)t = 0 or ut = 0”.

Nevertheless, it is worth observing that these conditions are not sufficient
in order to prove our main results. In fact, we will need to introduce further
boundary conditions, obtaining three different statements.

In Propositions 5.14 and 5.17 we introduce conditions (JνH) and (J̃νH).
With these preliminaries in hand, our first formulation of the Gaffney-
Friedrichs inequality for horizontal forms, which is stated in Theorem 6.1,
reads basically as follows.

Theorem 1.1. Let U ( Hn be a domain (i.e., bounded, connected open set)
with boundary of class C2. If Ω∗H(U) ⊗R C denotes the complexification of

Ω∗H(U), let u ∈ Ωh
H(U) ⊗R C be a horizontal h-form, with 1 ≤ h < n, and

assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);
(ii) u satisfies either condition (JνH) (see Proposition 5.14) or

condition (J̃νH) (see Proposition 5.17).

Let V be an open neighborhood of char(∂U) (in the relative topology). Then,
there exist geometric constants C0, C1 and C2 such that

DH(u) + C0

∫
∂U∩V

‖u‖2 dσ

≥ C1

∫
U
‖∇Hu‖2 dV − C2

∫
U
‖u‖2 dV,

(3)

where

DH(u) = ‖dHu‖2L2(U ,Ωh+1
H )

+ ‖d∗Hu‖2L2(U ,Ωh−1
H )

.

The constants C0, C1, C2 only depend on U , V, and on the integers h and n.
Furthermore, if u ∈ Ωh

H(U)⊗RC is a horizontal h-form with n+1 < h ≤ 2n,
then (3) still holds provided that ∗Hu satisfies (i) and (ii); see Remark 8.14.
For the case h = n, n+ 1 we refer the reader to Theorem 6.7 in Section 6.

As a matter of fact, Theorem 1.1 is not completely satisfying because of
the presence of the boundary integral on the left-hand side of (3).

Roughly speaking, we had to cut-off a small region around char(∂U), and
this requires two comments. First of all, trivially, Theorem 1.1 yields the
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precise counterpart of the Riemannian inequality when char(∂U) = ∅ (this
happens, for instance, when U is a thin torus; see, e.g., [14]). However, it is
more important, and less trivial, to observe that the boundary integral on
left-hand side of inequality (3) cannot be reabsorbed on the right-hand side,
as we do classically using Ehrling’s inequality. This is due to the presence
in the boundary term of the Riemannian measure dσ.

To be more precise, we would like to stress the following points:

- Functions in W 1,2
H (U) admit L2-continuous traces on the boundary

∂U with respect to both the measure dσH (see [16]) and the Rie-
mannian measure dσ on ∂U (see [4], [5]). However, in the first case,
the trace map is compact under mild assumptions on ∂U (e.g., if ∂U
is assumed sufficiently “flat” at characteristic points) whereas com-
pactness fails to hold, in the second case, near characteristic points.
Away from the characteristic set, the second result follows from the
first one.

- Both sides of (3) are continuous with respect to the convergence in

W 1,2
H (U ,

∧∗ h1). The statement is trivial for the right-hand side, but
is quite delicate for the boundary term on the left-hand side, since
it relies on the trace theorems of [4], [5].

- Because of the lack of compactness of the trace operator fromW 1,2
H (U)

to L2(∂U , dσ), the L2-norm of the trace of u in the left-hand side
of (3) cannot be controlled with an arbitrary small constant δ > 0
times the L2-norm of ∇Hu, and hence cannot be reabsorbed in the
right-hand side.

In order to obtain a statement closer to the classical Gaffney-Friedrichs
inequality, we have to make a geometric assumption on the characteristic
set of the boundary ∂U (see “condition (H)” in Definition 3.4). Roughly
speaking, condition (H) expresses the fact that characteristic points are iso-
lated and that ∂U is sufficiently flat at these points. In fact, this condition
is somehow related to the geometric conditions for trace theorems in [16],
[4], [5] (see also [37]).

Subsequently, to avoid the presence of the boundary integral on the left-
hand side of (3), in Proposition 5.14, we introduce the “condition (JνH)”.
This is a geometric condition and is used in a second formulation of the
main inequality (see Theorem 6.3), which reads essentially as follows.

Theorem 1.2. Let U ( Hn be a domain with boundary of class C2 satisfying
condition (H) (see Definition 3.4). Let u ∈ Ωh

H(U)⊗R C be a horizontal h-
form with 1 ≤ h < n, and assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);
(ii) u satisfies condition (Jν∗H) (see Remark 5.15).

Then, there exist geometric constants C̃1 and C̃2, only dependent on U
and on the integers h and n, such that

DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(4)

Furthermore, if u ∈ Ωh
H(U)⊗RC is a horizontal h-form with n+1 ≤ h ≤ 2n,

then (4) still holds provided that ∗Hu satisfies (i) and (ii), where ∗H denotes
6



the Hodge duality operator between horizontal forms. Finally, under these
assumptions, Theorem 6.7 (see Section 6) still holds for the case h = n.

In Section 7 we introduce the two new conditions (44) and (45). These
conditions are then used in Theorem 7.1, which is our final formulation of
the main inequality.

Theorem 1.3. Let U ( Hn be a domain with smooth boundary of class
C2 satisfying condition (H) (see Definition 3.4). Let u ∈ Ωh

H(U)⊗R C be a
horizontal h-form with 1 ≤ h < n, and assume that either

(i) uνH = 0,
(ii) u satisfies the condition (44),

or

(j) ut = 0,
(jj) u satisfies the condition (45).

Then, there exist geometric constants C̃1 and C̃2, only dependent on U
and on the integers h and n, such that

DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(5)

Furthermore, if u ∈ Ωh
H(U)⊗RC is a horizontal h-form with n+1 ≤ h ≤ 2n,

then (5) still holds provided that ∗Hu satisfies (i) and (ii). Finally, under
these assumptions, Theorem 6.7 (see Section 6) still holds for the case h = n.

Theorems 1.1, 1.2 and 1.3 have a natural counterpart in the setting of
Rumin’s complex: se Theorems 8.22, 8.24 and 8.25.

The three different boundary conditions just discussed naturally arise as
a consequence of an integration by parts that involves the (intrinsically 2nd
order) differential operator T . When performing this computation, we carry
out some elementary, but not trivial, algebraic manipulations that, in a
sense, are modeled on the standard Kählerian structures of Hn.

It is worth observing that the first and third conditions cannot be easily
related one to another and that the second condition turns out to be stronger
than the other two.

Let us give an overview of the organization of this paper.
In Section 2 we gather the basic notions concerning Heisenberg groups

and differential forms. We also state some more or less known preliminary
results.

Section 3 is devoted to prove some trace theorems in Hn.
In Section 4 we collect some standard results of Kähler geometry in the

context of Heisenberg groups.
Section 5 contains the technical core of the paper, with estimates of the

boundary terms that occur by integrating by parts the so-called horizontal
Dirichlet integral DH .

As a consequence of these estimates, in Sections 6 and 7, we state and
prove our Gaffney-Friedrichs-type inequalities in (Ω∗H , dH).

Finally, in Section 8, after providing a basic introduction to Rumin’s
complex, we state our Gaffney-Friedrichs-type inequalities in (E∗0 , dc).
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2. Preliminaries on horizontal forms

2.1. Heisenberg groups and horizontal forms. In this section we give
a quick overview of Heisenberg groups and we fix our notation. For more
details, the reader is referred to [6], [24], [31], [44]. Let Hn be the n-th
Heisenberg group, identified with R2n+1 through exponential coordinates of
the first kind. A point p ∈ Hn is written as a triple p = (x, y, t), where
x, y ∈ Rn and t ∈ R.

If p = (x, y, t), p′ = (x′, y′, t′) ∈ Hn, then the Lie group operation is
defined as

p · p′ :=

x+ x′, y + y′, t+ t+
1

2

n∑
j=1

(
xjy
′
j − yjx′j

) .

If p−1 denotes the inverse of p ∈ Hn, then p−1 = (−x,−y,−t). Moreover, if
q ∈ Hn and r > 0, then left translations and intrinsic dilations are defined
by setting

τqp := q · p, δrp := (rx, ry, r2t).

We endow Hn with the homogeneous norm

%(p) :=
((
‖x‖2Rn + ‖y‖2Rn

)2
+ t2

) 1
4
,

which is (up to a constant) the so-called Koranyi norm. In particular, the
associated gauge-distance is defined as d%(p, q) := %(p−1 · q); see, e.g., [44].
We recall that the homogeneous dimension of (Hn, d%) (w.r.t. the dilations
δr) is the integer Q := 2n+ 2, which coincides with its Hausdorff dimension
with respect to the metric d%. Notice that Q is strictly greater than the
topological dimension of Hn, which is 2n+ 1.

Let h denote the Lie algebra of all left invariant vector fields of Hn. We
assume that the basis of h is given by

Xi := ∂xi −
yi
2
∂t, Yi := ∂yi +

xi
2
∂t ∀ i = 1, ..., n; T := ∂t.

The only non-trivial commutation relations are [Xi, Yi] = T for i = 1, ..., n.
The subspace h1 of h generated by the vector fields {X1, Y1, ..., Xn, Yn} is
called horizontal subspace. Denoting by h2 the linear span of T , we have

h = h1 ⊕ h2,

which simply means that the Lie algebra is stratified.
Throughout this paper, we endow h with the inner product 〈·, ·〉 that

makes the basis {X1, Y1, ..., Xn, Yn, T} orthonormal. We refer to 〈·, ·〉 as the
Riemannian metric in h and we denote by ‖ · ‖ its associated norm. For
later use, we set

W2i−1 := Xi W2i := Yi ∀ i = 1, ..., n; W2n+1 := T.

For any f : Hn −→ R of class C1 we denote by ∇Hf the horizontal
gradient of f (i.e., ∇Hf :=

∑2n
i=1(Wif)Wi) and by ∇f the Riemannian

gradient of f (i.e., ∇f :=
∑2n+1

i=1 (Wif)Wi ≡ (∇Hf, Tf)).

Furthermore, for any C1 horizontal vector field Φ =
∑2n

i=1 φiWi we denote

by divH Φ :=
∑2n

i=1Wiφi the horizontal divergence of Φ and by ∆K the non-
negative horizontal sub-Laplacian (i.e., the Kohn Laplacian) defined, for any
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function f of class C2, as follows:

∆Kf := −divH (∇Hf) = −
2n∑
i=1

W 2
i f.

The dual space of h is denoted by
∧1 h. The basis of

∧1 h, which is
dual to the standard basis {X1, Y1, ..., Xn, Yn, T}, is the family of covectors
{dx1, dy1, ..., dxn, dyn, ϑ}, where ϑ denotes the contact form of Hn given by
ϑ := dt − 1

2

∑n
i=1(xidyi − yidxi). The inner product on h gives rise to an

inner product on
∧1 h, denoted in the same way. In particular, 〈·, ·〉 makes

the basis {dx1, dy1, ..., dxn, dyn, ϑ} an orthonormal basis. In accordance with
our previous notation, we set

ψ2i−1 := dxi ψ2i := dyi ∀ i = 1, ....n; ψ2n+1 := ϑ.

We clearly have ψl(Wm) = δml for every l,m = 1, ..., 2n+1, where δml denotes
the Kronecker delta function. The volume form of Hn is, by definition, the
left-invariant (2n+ 1)-form dV := ψ1 ∧ ... ∧ ψ2n+1.

Set
∧

0 h :=
∧0 h = R and

∧
k
h := span {Wi1 ∧ .... ∧Wik : 1 ≤ i1 < ... < ik ≤ 2n+ 1} =: spanΨk,∧k
h := span {ψi1 ∧ .... ∧ ψik : 1 ≤ i1 < ... < ik ≤ 2n+ 1} =: spanΨk,

for any k = 1, ..., 2n + 1. The action of a k-covector ψ on a k-vector v is
denoted by 〈ψ|v〉. We observe that the inner product 〈·, ·〉 can be canonically

extended to
∧
k h and

∧k h in a way that Ψk and Ψk are both orthonormal

bases. In the sequel, we shall denote by ψki the i-th element of the basis Ψk,

whenever 1 ≤ i ≤
(

2n+1
k

) (
= dim Ψk

)
.

The above definitions can now be reformulated by replacing h with the
horizontal subspace h1 and by setting

∧
k
h1 := span {Wi1 ∧ .... ∧Wik : 1 ≤ i1 < ... < ik ≤ 2n} ,∧k
h1 := span {ψi1 ∧ .... ∧ ψik : 1 ≤ i1 < ... < ik ≤ 2n} ,

for any k = 1, ..., 2n. Recall that by definition the symplectic 2-form of Hn

is given by dϑ = −
∑n

i=1 dxi ∧ dyi ∈
∧2 h1.

If 1 ≤ k ≤ 2n + 1, the “Hodge star operator” and its dual operator
(denoted in the same way), i.e.,

∗ :
∧

k
h↔

∧
2n+1−k

h and ∗ :
∧k

h↔
∧2n+1−k

h,

are the isomorphisms defined, for any v, w ∈
∧
k h and ϕ,ψ ∈

∧k h, by

v ∧ ∗w := 〈v, w〉W1 ∧ .... ∧W2n+1 and ϕ ∧ ∗ψ := 〈ϕ,ψ〉ψ1 ∧ .... ∧ ψ2n+1.

For any v ∈
∧
k h we define v] ∈

∧k h by using the identity
〈
v]|w

〉
= 〈v, w〉

for any w ∈
∧
k h. The inverse operator on covectors is denoted as α→ α[.

It is well-known that the Lie algebra h can always be identified with the
tangent space at the identity e = 0 ∈ Hn, i.e., h ∼= TeHn. In particular,
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h1 can be identified with a subspace of TeHn, denoted by
∧

1 h1. Moreover,∧
1 h1 defines by left translation a smooth subbundle of the tangent bundle

THn which, with a slight abuse of notation, is still denoted by
∧

1 h1. By
definition, the sections of

∧
1 h1 are called horizontal vector fields.

Analogously, if 0 ≤ h ≤ 2n + 1, then
∧h h defines by left translation a

vector bundle still denoted by
∧h h, and if 0 ≤ h ≤ 2n, then

∧h h1 defines

again by left translation a vector bundle still denoted by
∧h h1.

If 0 ≤ h ≤ 2n+1, we denote by Ωh the vector space of differential h-forms

on Hn (i.e., the vector space of all smooth sections of
∧h h). Furthermore,

if 0 ≤ h ≤ 2n, we denote by Ωh
H the vector space of horizontal differential

h-forms on Hn (i.e., the vector space of all smooth sections of
∧h h1).

Definition 2.1. Let α ∈ Ωh
H . Throughout this paper, we shall set

dHα := dα− ϑ ∧ LTα,

where the symbol LT stands for “Lie derivative” along the vector field T .

Roughly speaking, the operator dH represents the exterior differential
along the horizontal distribution and is only defined for any h-form α ∈ Ωh

such that iT (α) = 0, where the symbol iT stands for “interior product” of
α with T ; see, for example, [35], p. 235.

We recall the following useful identity: If X,Y are vector fields, then

[LX , iY ] = i[X,Y ];

see Corollary 6.4.12 in [1].
Furthermore, we define the “horizontal Hodge star operator” and its dual

operator (again denoted in the same way), i.e.,

∗H :
∧k

h1 →
∧2n−k

h1 and ∗H :
∧k

h1 ↔
∧2n−k

h1,

as v ∧ ∗Hw := 〈v, w〉W1 ∧ .... ∧W2n and ϕH ∧ ∗Hψ := 〈ϕ,ψ〉ψ1 ∧ .... ∧ ψ2n

for every v, w ∈
∧
k h1 and every ϕ,ψ ∈

∧k h1.

Notice that, under our current assumptions, we have (dϑ)n

n! = ψ1∧...∧ψ2n;
see, e.g., [33], p. 44, Remark 1.2.22.

The next identities follow from [40], p. 292.

Lemma 2.2. If k ≥ n and β ∈
∧k h1, with n ≤ k ≤ 2n, then

∗Hβ = ∗(θ ∧ β).

If 0 ≤ k ≤ n and α ∈
∧k h1, then

∗α = (−1)kθ ∧ ∗Hα.

For the sake of completeness, we recall some standard results concerning
wedge product and interior multiplication; see, for instance, Definition 2.11,
Proposition 2.14, and Proposition 2.16 in [15].

Definition 2.3. If α ∈ Ωk and µ ∈ Ω`, with 1 ≤ ` < k ≤ 2n+ 1, we set

µ α := (−1)k−` ∗ (µ ∧ (∗α)) .

10



Lemma 2.4. If 1 ≤ k ≤ 2n+ 1, α ∈ Ωk, β ∈ Ωk−1 and µ ∈ Ω1, then

µ α = iµ[α.

Moreover, we have

〈µ α, β〉 = 〈α, µ ∧ β〉.

By using Lemma 2.2 we obtain the following.

Lemma 2.5. If α ∈ Ωk
H and µ ∈ Ω`

H , with 1 ≤ ` < k ≤ n, then

µ α = ∗H(µ ∧ ∗Hα).

In addition, we recall the following useful result.

Lemma 2.6. If α ∈ Ωk
H , β ∈ Ω`

H and γ ∈ Ωr
H , with 0 ≤ k + ` ≤ r ≤ 2n,

then

(α ∧ β) γ = (−1)k+`α (β γ).

Moreover, if k + ` = r, then

〈α ∧ β, γ〉 = (−1)`(k+1)〈β, α γ〉 = (−1)k〈α, β γ〉.

We also define the horizontal codifferential δH : Ωh+1
H → Ωh

H by setting

δH := − ∗H dH ∗H .

Notice that ∫
Hn
〈δHα, β〉 dV =

∫
Hn
〈α, dHβ〉 dV

for all β ∈ Ωh−1. Finally, let ∆H : Ωh
H → Ωh

H be the horizontal sub-Laplacian
operator defined as

∆H := dHδH + δHdH .

Definition 2.7. [The operators L and Λ] From now on, we shall set

Lα := −dϑ ∧ α, Λ := L∗,

(i.e., L∗ denotes the adjoint of L w.r.t. the inner product 〈·, ·〉).

The following identity can be found in [40]; see also [46].

Lemma 2.8. If α ∈
∧h h1, then we have [Λ, L]α = (n− h)α.

Note that

〈iZα, β〉 =
〈
α,Z# ∧ β

〉
for every α ∈

∧h+1 h1, β ∈
∧h h1 and Z ∈

∧
1 h1. Hence, it follows that

Λ =
n∑
k=1

iYkiXk .

11



2.2. Decomposition of forms on the boundary of a domain I. We
begin with the definition of horizontal normal to the boundary of a domain
(i.e., bounded, connected open set).

Definition 2.9. Let E ⊂ Hn be an open set with boundary ∂E of class C1.
We denote by nH the (non-unit) horizontal normal to ∂E defined as follows:
nH is the Riemannian orthogonal projection on

∧
1 h1 of the Riemannian

outward unit normal n to ∂E. Thus we have n = nH + nTT .
In particular, if (locally) ∂E = {f = 0}, where f : Hn → R is a C1

function with non-vanishing horizontal gradient, then nH = ‖∇f‖−1∇Hf ,
where ∇f is the Riemannian gradient of f and ‖∇f‖ its norm.

We define a horizontal unit normal vector to ∂E by setting νH := nH
‖nH‖

at each point p ∈ ∂E where nH(p) 6= 0. These points are the so-called non-
characteristic points of ∂E and we usually write char (∂E) to indicate the
characteristic set of ∂E (i.e., the set of points p ∈ ∂E where nH(p) = 0).

We explicitly note that νH =
∑2n

i=1(νH)iWi, where (νH)i := 〈νH ,Wi〉.
To avoid cumbersome notation, in the sequel we will still denote by n, nH

and νH , their dual 1-forms n#, n#
H and ν#

H .

Besides, we adapt to our framework a standard notation; see, e.g., [15] or
[45]. More precisely, we shall set

αt := νH (νH ∧ α), ανH := νH α ∀α ∈ Ωh
H(U).

We then obtain the useful decomposition formula

α = αt + νH ∧ ανH ∀α ∈ Ωh
H(U).

The following remark will be needed later: If α ∈ Ωh
H , then

(6) νH ∧ ανH = 0 if and only if ανH = 0.

Indeed, suppose that νH ∧ ανH = 0. By Lemma 2.4 one has

0 = 〈νH ∧ ανH , α〉 = 〈νH ∧ (νH α), α〉 = 〈νH α, νH α〉 = |ανH |
2.

The reverse implication is trivial.

We conclude this section by recalling the horizontal Green’s formulas valid
in our setting; for similar statements, see Theorem 4.9 in [10].

Here and elsewhere, we make use of the standard notation D ≡ C∞0 .

Definition 2.10. Let U ( Hn be a domain with boundary of class C2. For

every α, β ∈ Ωh(U) := D(U ,
∧h h), we set

〈α, β〉L2(U) :=

∫
U
〈α, β〉 dV.

In addition, if α ∈ Ωh−1
H (U) := D(U ,

∧h−1 h1) and β ∈ Ωh
H(U) := D(U ,

∧h h1)
are intrinsic forms, it follows that

(7) 〈dHα, β〉L2(U) = 〈α, δHβ〉L2(U) +

∫
∂U
〈n ∧ α, β〉 dσ.

These formulas also hold when α ∈ C1(U ,
∧h−1 h1), β ∈ C1(U ,

∧h h1).
Note that the outward unit normal n(x) at any point p ∈ ∂U is given

by n(p) = nH(p) + nT (p)T , where nH(p) is the (orthogonal) projection of
12



n(p) onto the horizontal subspace
∧

1 h1 at p ∈ ∂U . Thus, after the natural

identification n ∼= n#, we get 〈n ∧ α, β〉 = 〈nH ∧ α, β〉 , since both α and β
are horizontal. Eventually, we obtain the formula∫

∂U
〈n ∧ α, β〉 dσ =

∫
∂U
〈nH ∧ α, β〉 dσ =

∫
∂U
〈νH ∧ α, β〉 dσH .

2.3. Perimeter measure in Heisenberg groups. We briefly recall the
notion of intrinsic perimeter measure in Heisenberg groups and some related
facts.

As already said in the introduction, if E ⊂ Hn is a measurable set, an
intrinsic notion of Hn-perimeter measure |∂E|Hn has been introduced in
[30]; we refer the reader to [30, 20, 21, 22] for a detailed presentation. Here,
we just have to recall that, if E has locally finite Hn-perimeter (i.e., E is
a Hn-Caccioppoli set), then |∂E|Hn is a Radon measure in Hn, which is
left-invariant and (2n+ 1)-homogeneous (w.r.t. the dilations δr).

We recall that, by definition, the 2n-dimensional Riemannian measure of
∂E, later denoted as σ, is obtained by wedging together the elements of an
oriented orthonormal coframe for ∂E and, because of its role in integration,
we adopt the notation dσ, when it appears under the integral sign.

Remark 2.11. We observe that the characteristic set char (∂E) turns out
to be “small” since both its Hn-perimeter measure and its 2n-dimensional
Euclidean Hausdorff measure vanish.

For later purposes we need to mention that the Riemannian measure σ is
equivalent (in the measure theoretic sense) to the Euclidean measure H2n.
Hence, under our assumptions, σ(char (∂E)) = 0. For further properties of
char (∂E), see, e.g., [18], [27], [17], [2, 3].

We also need the following representation formula; see [13].

Proposition 2.12. Let U ( Hn be a bounded open set with boundary ∂U of
class C1. Then U is a Hn-Caccioppoli set. Furthermore, it turns out that the
Hn-perimeter measure is absolutely continuous with respect to the Euclidean
2n-dimensional Hausdorff measure H2n. More precisely, if A ⊆ Hn is an
open set, then

|∂U|Hn(A) =

∫
∂U∩A

√√√√ n∑
i=1

(
〈Xi, n〉2R2n+1 + 〈Yi, n〉2R2n+1

)
dH2n

=

∫
∂U∩A

‖nH‖ dσ,

where n is the Euclidean outward unit normal, and dσ is the 2n-dimensional
Riemannian measure along ∂U .

For the sake of simplicity, in this smooth setting we shall simply write

σH := |∂U|Hn

3. Boundary terms and the trace map

3.1. Trace theorems in Heisenberg groups. From now on we assume
that U is a domain with boundary ∂U of class C2. First of all, we state a
trace theorem away from the characteristic points of ∂U .
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Theorem 3.1. Let U ( Hn be a bounded open set with boundary of class C2.
Let V ⊂ ∂U be a neighborhood of char(∂U). Then, there exists a geometric
constant CV,U > 0 such that for any 0 < δ < 1 one has

(8)

∫
∂U\V

‖u‖2 dσH ≤
(
CV,U +

4

δ

)∫
U
‖u‖2 dV + δ

∫
U
‖∇Hu‖2 dV.

for any u ∈ C1(U).

Proof. Let ϕ ∈ C1
0(∂U) be such that ϕ = 1 on ∂U \V and ϕ = 0 on V ′ ⊂⊂ V.

Now let ν̃H denote the extension of νH to ∂U defined as ν̃H := ϕνH . This
extension is a horizontal vector field of class C1 on ∂U that coincides with
νH out of V. With a slight abuse of notation, we denote by ν̃H any C1

horizontal extension of ν̃H to the closure of U , i.e., ν̃H ∈ C1(U). It follows
that both ‖ν̃H‖ and divH (ν̃H) are continuous functions on U and hence they
are both bounded by some positive constant CV,U , only dependent on V and
U . By the previous assumptions we get∫

∂U\V
‖u‖2 dσH

=

∫
∂U\V

‖u‖2 〈νH , νH〉 dσH

=

∫
∂U\V

‖u‖2 〈(νH − ν̃H + ν̃H) , νH〉 dσH

=

∫
∂U\V

‖u‖2 〈(νH − ν̃H) , νH〉 dσH︸ ︷︷ ︸
=0

+

∫
∂U\V

‖u‖2 〈ν̃H , νH〉 dσH

≤
∫
∂U
‖u‖2 〈ν̃H , νH〉 dσH (since 〈ν̃H , νH〉 = ϕ on V ∩ ∂U)

=

∫
∂U

〈(
‖u‖2ν̃H

)
, νH

〉
dσH .

By the divergence theorem for C2 hypersurfaces and the very definition of
the Hn-perimeter measure σH , we can make the following calculations.∫

∂U

〈(
‖u‖2ν̃H

)
, νH

〉
dσH

=

∫
U

divH
(
‖u‖2ν̃H

)
dV

=

∫
U
‖u‖2divH (ν̃H) dV +

∫
U

2‖u‖〈∇H‖u‖, ν̃H〉 dV

≤ CV,U

∫
U
‖u‖2 dV +

∫
U

4‖u‖
∥∥∇H‖u‖∥∥ dV.

Finally, since

4‖u‖
∥∥∇H‖u‖∥∥ ≤ 4

‖u‖2

δ
+ δ
∥∥∇H‖u‖∥∥2 ≤ 4

‖u‖2

δ
+ δ
∥∥∇Hu∥∥2

,

the claim easily follows. �
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Notice that (8) contains the “error term”
∫
∂U∩V ‖u‖

2 dσ, which depends
on the choice of V. This is a novelty with respect to the classical trace
theorems. The error is actually related to the presence of characteristic
points on ∂U , as somewhat shown by the following.

Example 3.2. In the Riemannian setting, a “global inequality” akin to (8)
follows by Ehrling’s theorem (see, e.g., [45], Lemma 1.5.3), provided that
the trace operator T : W 1,2(U)→ L2(∂U , dσ) is compact. Let us anticipate
that our next Theorem 3.9 will imply that an Ehrling-type inequality for
the norm in L2(∂U , dσH) still holds for open sets U satisfying a geometric
assumption called “condition (H)”; see Definition 3.4 below.

As a matter of fact, an Ehrling-type inequality for the norm in L2(∂U , dσ)
is true for general C2 open sets U away from characteristic points, as we can
see using Theorem 3.9 and keeping in mind that dσ and dσH are equivalent
away from char(∂U). However, the example below shows that Ehrling’s
inequality (and hence compactness of the trace, which is still continuous
by [4], [5]) fails to hold for the norm in L2(∂U , dσ), even for sets satisfying
condition (H).

Precisely, let %(p) =
((
‖x‖2Rn + ‖y‖2Rn

)2
+ t2

) 1
4

be the Koranyi-type norm,

let B0(1) = {p = (x, y, t) ∈ Hn : %(p) ≤ 1} and let U := {t ≥ 0} ∩ B0(1).
The hyperplane {t = 0} has a unique isolated characteristic point at the
identity 0 ∈ Hn. In particular, let S0 := ∂U ∩ {t = 0}, u ∈ D(B0(1)), and
denote by T u the trace of u along the boundary.

Let us analyze the (possible) validity of the following statement:

(9) ∀ ε > 0 ∃Cε :

∫
S0

(T u)2 dσ︸ ︷︷ ︸
=:‖T u‖2

L2(S0)

≤ ε
∫
U
‖∇Hu‖2 dV︸ ︷︷ ︸

=:‖∇Hu‖2L2(U)

+Cε

∫
U
u2 dV︸ ︷︷ ︸

=:‖u‖2
L2(U)

.

By a homogeneity argument, we now show that (9) cannot hold. To this
aim, set

uK := Knu(Kx,Ky,K2t)

for some K ∈ R+, and suppose that u 6= 0 along S0. It is elementary to
check the following identities:

• ‖T uK‖2L2(S0) = ‖T u‖2L2(S0),

• ‖∇HuK‖2L2(U) = ‖∇Hu‖2L2(U),

• K2‖uK‖2L2(U) = ‖u‖2L2(U).

By assuming the validity of (9), with u replaced by uK , we get

∀ ε > 0 ∃Cε : ‖T uK‖2L2(S0) ≤ ε‖∇HuK‖
2
L2(U) + Cε‖uK‖2L2(U).

Hence

∀ ε > 0 ∃Cε : ‖T u‖2L2(S0) ≤ ε‖∇Hu‖
2
L2(U) +

Cε
K2
‖u‖2L2(U).

By the arbitrariness of ε, K ∈ R+ (and since the L2-norm of u can be
assumed to be fixed) one readily obtains that the trace of u must be zero,
which is a contradiction.
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In order to get rid of the “error term” in Theorem 3.1, we need a further
assumption on U , ensuring that the characteristic set char(∂U) contains
only isolated points and in addition a certain amount of “flatness” at the
boundary, near char(∂U).

Remark 3.3. Locally near any point p0 ∈ char(∂U), the boundary of U is a
T -graph (i.e., Euclidean graph with respect to the hyperplane t = 0). Hence
(locally around p0) there is a C2 defining function g : Hn → R of the form
g(x, y, t) = t− f(x, y) such that

NH := ∇Hg = ∇H(t− f(x, y)) =
(
−y

2
−∇xf,

x

2
−∇yf

)
,

where we observe that nH = NH
‖∇g‖ and νH = NH

‖NH‖ . By compactness, there

must exist a finite number {Vi : i = 1, ..., N} of open subsets of ∂U such that

char(∂U) ⊂
⋃N
i=1 Vi. Shrinking these sets, if necessary, we can assume that

each Vi is a T -graph of class C2. In addition, note that any characteristic
point p0 ∈ Vi ∩ char(∂U) can be thought of as standing at 0 ∈ Hn. This
second claim easily follows by left translating the set Vi by −p0. Thus, if
fi : Vi ⊂ R2n → R is a C2 function such that

Vi = {p = (x, y, t) ∈ Hn : t = fi(x, y) ∀ (x, y) ∈ V i},
we can always suppose that fi(0, 0) = 0 and that ∇R2nfi(0, 0) = 0: In this
way, the point p0 corresponds to 0 ∈ Hn (note that, here and elsewhere,
(0, 0) denotes the null element in Rn × Rn ∼= R2n).

Below we shall assume the following condition prescribing the behavior
of ∂U near char(∂U).

Definition 3.4 (Condition (H)). Let {Vi : i = 1, ..., N} be a finite family of

open subsets of ∂U such that char(∂U) ⊂
⋃N
i=1 Vi and Vi∩∂U is the T -graph

of some function fi : V i ⊂ R2n → R of class C2, i.e.,

Vi ∩ ∂U = {p = (x, y, t) ∈ Hn : t = fi(x, y) ∀ (x, y) ∈ V i}
for any i = 1, ..., N . Then, we say that condition (H) holds if, and only if,

one has ‖HessR2nfi‖ = O
(∥∥∥N

(i)
H

∥∥∥) for any i = 1, ..., N , where we have set

N
(i)
H :=

(
−y

2 −∇xfi,
x
2 −∇yfi

)
.

Below we shall set ‖(x, y)‖ :=
√
‖x‖2Rn + ‖y‖2Rn for any (x, y) ∈ R2n.

Remark 3.5. The condition (H) implies that char(∂U) is discrete. Without
loss of generality, by Remark 3.3, we suppose that 0 ∈ Hn is a characteristic
point of ∂U ∩ Vi; in particular, we have fi(0, 0) = 0 and ∇R2nfi(0, 0) = 0.

Hence ‖N(i)
H (x, y)‖| ≤ C‖(x, y)‖ and as a consequence we have

‖HessR2nfi‖ = O(‖(x, y)‖) near (0, 0) ∈ R2n.

Again, by mean value theorem

‖∇R2nfi‖ = O(‖(x, y)‖2) near (0, 0) ∈ R2n.

Then, at each point (x, y) 6= (0, 0) we have

‖N(i)
H (x, y)‖ =

∥∥∥∥1

2
(−y, x))−∇R2nfi

∥∥∥∥ ≥ ∣∣‖(x, y)‖ − C(‖(x, y)‖2
∣∣ > 0
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near (0, 0) ∈ R2n, i.e., the characteristic point 0 ∈ ∂U ∩ V is isolated.

To better understand the above condition (H), we consider a special case
of domains in Hn satisfying it.

Remark 3.6. Suppose that, in a neighborhood of 0 ∈ ∂U , the boundary ∂U
is the T -graph of the function f(x, y) = ‖(x, y)‖2α for some α ≥ 3

2 . One

checks that ‖NH‖ = O (‖(x, y)‖) and that ‖HessR2nf‖ = O
(
‖(x, y)‖2(α−1)

)
.

Taken together, these facts show that condition (H) holds.

Now, we state a useful compactness criterion.

Theorem 3.7. Let U ( Hn be a bounded open set of class C2. Let X be a
Banach space and let L : W 1,2

H (U) → X be a continuous linear map. Then
L is compact if, and only if, the following property holds:

For any δ > 0 there exists C(δ) > 0 such that

‖Lu‖X ≤ δ‖∇Hu‖L2(U) + C(δ)‖u‖L2(U).

Proof. The “only if” part is the well-known Ehrling’s inequality (see, e.g.,
[45], Lemma 1.5.3). Thus we prove the “if” part by showing that L is

completely continuous. Let (un)n∈N be a sequence in W 1,2
H (U) that weakly

converges to 0. Then there exists C > 0 such that ‖un‖W 1,2
H (U)

≤ C for

all n ∈ N. Moreover, by Rellich’s theorem (see, e.g., [30], Theorem 1.27)

un → 0 strongly in L2(U). Take now ε > 0 and set δε :=
ε

2C
. In addition,

choose nε ∈ N such that

‖un‖L2(U) <
ε

2C(δε)
for all n > nε.

Then

‖Lun‖X ≤ δε ‖∇Hu‖L2(U) + C(δε)‖u‖L2(U)

< C
ε

2C
+ C(δε)

ε

2C(δε)
= ε,

which shows that Lun → 0 strongly in X, as wished.
�

Lemma 3.8. Let U ( Hn be a bounded open set with boundary of class
C2 and suppose that condition (H) holds. Then there exists a C1 function
ñH : Ū → R2n such that:

(i) ñH
‖ñH‖ ≡ νH on ∂U \ char (∂U);

(ii) divH ñH = O(‖ñH‖);
(iii) 〈ñH ,∇H‖ñH‖2〉 = O(‖ñH‖3).

Proof. First of all, we notice that the problem can be localized near the
boundary by means of a cut-off function supported near ∂U . Indeed, if ñH
satisfies (i) - (iii) in a neighborhood M of ∂U , and if ψ is a cut-off function
supported in M such that ψ ≡ 1 on a neighborhood of ∂U , then ψñH is a
C1 function on U that trivially satisfies (i). In addition

divH(ψñH) = ψdivH(ñH) + 〈∇Hψ, ñH〉,
17



which is still O(‖ñH‖). Analogously

〈ψñH ,∇H‖ψñH‖2〉 = ψ‖ñH‖2〈ñH ,∇Hψ〉+ ψ2〈ñH ,∇H‖ñH‖2〉
= O(‖ñH‖3)

when ‖ñH‖ → 0. Therefore also (iii) holds.
Now we have to define ñH away from the characteristic points and in each

set Vi, i = 1, . . . , N . Then the global extension ñH is obtained by gluing up
the local extensions by means of a partition of unity.

Clearly, away from characteristic points we can take ñH := νH , since
νH is a continuously differentiable function. Since ñH never vanishes, (ii)
and (iii) can be replaced by divH ñH = O(1) and 〈ñH ,∇H‖ñH‖2〉 = O(1),
respectively.

We are left with the case of one of the Vi’s. So let i ∈ {1, ..., N} be fixed
and, for simplicity, let us omit the index i. For any point in the set V we put
ñH(x, y, t) := ∇H(f(x, y) − t). Since ñH(x, y, t) 6= 0 for (x, y, t) 6= 0 (recall
that 0 ∈ Hn is an isolated characteristic point of ∂U), it follows that at any
point in V \ char (∂U) one has

νH(x, y, t) =
ñH(x, y, t)

‖ñH(x, y, t)‖
.

This proves (i). Moreover, up to the sign, divH ñH equals the trace of the
Hessian of fi, hence it is locally bounded and (ii) follows.

Finally, we prove (iii). For any j, k = 1, . . . , n, one has

1

2
∂xj‖ñH‖2 =

n∑
k=1

(yk
2

+ ∂xkf
)
∂2
xjxk

f +

n∑
k=1

(xk
2
− ∂ykf

)(δjk
2
− ∂2

xjyk
f

)

=

n∑
k=1

(yk
2

+ ∂xkf
)
∂2
xjxk

f −
n∑
k=1

(xk
2
− ∂ykf

)
∂2
xjyk

f − 1

2
∂yjf +

xj
4

= O(‖ñH‖2)− 1

2
∂yjf +

xj
4
.

Analogously, it turns out that

1

2
∂yj‖ñH‖2 = O(‖ñH‖2) +

1

2
∂xjf +

yj
4
.

Therefore, we get

1

2
〈ñH ,∇H‖ñH‖2〉 = 〈ñH ,

−→
O (‖ñH‖2)〉 −

∑
j

xj
4

(yj
2

+ ∂xjf
)

+
∑
j

yj
4

(xj
2
− ∂yjf

)
+
∑
j

1

2
∂yjf

(yj
2

+ ∂xjf
)

+
∑
j

1

2
∂xjf

(xj
2
− ∂yjf

)
= 〈ñH ,

−→
O (‖ñH‖2)〉

= O(‖ñH‖3),

as wished. �

We conclude this subsection with the following Ehrling-type inequality.
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Theorem 3.9. Let U ( Hn be a bounded open set of class C2 satisfying
condition (H). Then, for any δ > 0 there exists C(δ) > 0 such that

‖T u‖L2(∂U ,dσH) ≤ δ‖∇Hu‖L2(U) + C(δ)‖u‖L2(U)

for any u ∈ C1(U). In particular, it follows from Theorem 3.7 that the map

T : W 1,2
H (U)→ L2(∂U , dσH)

is compact.

Proof. Let ντH := ñH√
τ2+‖ñH‖2

, where τ ∈ R. By Lemma 3.8 we have∫
∂U
|u|2 dσH =

∫
∂U
|u|2

〈
ñH
‖ñH‖

, νH

〉
dσH

= lim
τ→0

∫
∂U
|u|2 〈ντH , νH〉 dσH

= lim
τ→0

∫
U

divH(|u|2ντH) dV.

On the other hand∫
U

divH(|u|2ντH) dV = 2

∫
U
〈u∇Hu, ντH〉 dV +

∫
U
|u|2divH(ντH) dV =: I1 + I2.

By using (ii) and (iii) we get that

I2 =

∫
U
|u|2 divH ñH√

τ2 + ‖ñH‖2
dV − 1

2

∫
U
|u|2

〈
ñH ,

∇H‖ñH‖2

(τ2 + ‖ñH‖2)3/2

〉
dV

≤ C
∫
U
|u|2 dV.

Moreover

I1 ≤ 2C

∫
U
|u∇Hu| dV ≤ δ

∫
U
|∇Hu|2 dV +

C2

δ

∫
U
|u|2 dV,

completing the proof of the theorem.
�

4. Kähler geometry Hn

4.1. Basic notions of Kähler geometry in Hn. We first introduce the
Kählerian structures of Hn in order to make some explicit computations and
then recall some lemmata from [40] that will be used in sequel.

Notice preliminarily that we can always identify the base manifold of the
n-th Heisenberg group Hn with Cn×R, so that any point p = (x, y, t) ∈ Hn

is seen as a couple (z, t), where z = (z1, ..., zk, ..., zn) ∈ Cn and zk = xk + iyk
for any k = 1, ..., n. Let J be the unique endomorphism of h1 (“almost
complex structure”) such that

J2 = −Id, dϑ(Z1, JZ2) = −dϑ(JZ1, Z2)

for all horizontal vector fields Z1, Z2 ∈
∧

1 h1 (in particular, one has Yi = JXi

and Xi = −JYi for any i = 1, ..., n).
19



It is not difficult to check that the inner product 〈·, ·〉 that we have fixed
in h1 is precisely the Riemannian metric compatible with both the almost
complex structure J and the symplectic form dθ, since

dθ(Z1, Z2) = 〈Z1, JZ2〉 .
In particular, one has J∗ = −J , and hence 〈JZ1, JZ2〉 = 〈Z1, Z2〉 for any
Z1, Z2 ∈

∧
1 h1.

It is standard that an almost complex structure J induces a bigrading on∧
1 h1⊗RC (i.e., the complexified horizontal subspace); see [33], p. 27. Thus,

we have
∧

1 h1⊗RC =
∧

1,0 h1⊕
∧

0,1 h1. This bigrading naturally extends to

the complex of horizontal differential forms; see [40]. In particular, we have

Ωh
H ⊗R C =

∑
p+q=h Ωp,q

H , where we remark that Ωp,q
H = Ωq,p

H . The (real)

inner product on
∧

1 h1 extends in the obvious way to a (complex valued)
Hermitian inner product on the complexification

∧
1 h1⊗RC, still denoted as

〈·, ·〉. Clearly, one has 〈av, bw〉 = ab〈v, w〉 for every v, w ∈
∧

1 h1 and every
a, b ∈ C. We now set

Zk :=
Xk − iYk√

2
, Zk :=

Xk + iYk√
2

(
= Zk

)
∀ k = 1, ..., n.

The family of (complex) horizontal vector fields {Z1, Z1, ..., Zn, Zn} turns
out to be an orthonormal basis of

∧
1 h1 ⊗R C (w.r.t. the Hermitian inner

product induced on the complexified horizontal subspace). Thus we set

θk := Z#
k , θk := Z#

k
, and hence, by duality, we get that {θ1, θ1, ..., θn, θn} is

an orthonormal basis of
∧1 h1⊗RC =

∧1,0 h1⊕
∧0,1 h1. We notice explicitly

that θk = Z#
k = dzk√

2
= dxk+idyk√

2
and θk = Z#

k
= dzk√

2
= dxk−idyk√

2
.

It is easy to see that JZk = iZk and JZk = −iZk. Denoting still by J
the operator induced by J on differential forms, we have

Jα = ip−qα ∀α ∈ Ωp,q
H ,

and if Πp,q : Ωh
H ⊗R C→ Ωp,q

H is the natural projection, we get

J =
∑
p+q=h

ip−q Πp,q on Ωh
H ;

see [33], Definition 1.2.10.

Definition 4.1. On complex functions we set ∂k := Zk and ∂k := Zk for

any k = 1, ..., n. If u =
∑

I uI,Jθ
I ∧ θJ̄ , we set:

∂ku :=
∑
I,J

(ZkuI,J)θI ∧ θJ̄ and ∂ku :=
∑
I,J

(ZkuI,J)θI ∧ θJ̄ ,

eku = θk ∧ u and eku = θk ∧ u,
ik := iZk and ik := iZk ,

for any k = 1, ..., n. In Kähler coordinates, it turns out that

L = i

n∑
k=1

ekek and Λ = i

n∑
k=1

ikik;

see Definition 2.7.

Just as in [40], p. 294, we can prove the following result.
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Proposition 4.2. Let 1 ≤ p, q ≤ n. We have
n∑
k=1

ekik = p Id on Ωp,q and

n∑
k=1

ek̄ik̄ = q Id on Ωp,q.

As a consequence
n∑
k=1

ekik =
n∑
p=1

pΠp,q and
n∑
k=1

ek̄ik̄ =
n∑
q=1

qΠp,q.

Again, one has Λ = L∗ (w.r.t. the Hermitian inner product). We use the
decomposition

(10) dH := d1,0
H + d0,1

H ,

where d1,0
H : Ωp,q

H → Ωp+1,q
H and d0,1

H : Ωp,q
H → Ωp,q+1

H . Moreover, for notational

simplicity, we write ∂ := d1,0
H and ∂ := d0,1

H , so that (10) reads as:

dH = ∂ + ∂.

We stress that if u ∈ Ω0, then

(11) ‖∂̄u‖2 + ‖∂u‖2 = ‖∇Hu‖2.
Furthermore, on complex functions one has

∂k := ik∂ and ∂k := ik∂ for every k = 1, ..., n.

In the sequel, we shall need the multi-index notation. More precisely, let
I, J be multi-indices such that pI := |I| and qJ := |J | (with pI , qJ ≤ n), so
that we can assume that I = (i1, ..., ipI ) and J = (j1, ..., jqJ ). Set now θI :=

θi1 ∧ ....∧ θipI and θJ̄ := θj̄1 ∧ ....∧ θj̄qJ . We observe that if h = pI + qJ , the

elements θI ∧ θJ̄ form a basis of Ωh
H ⊗RC. Hence, using Kähler coordinates,

any u ∈ Ωh
H ⊗R C can be uniquely written as u =

∑
I uI,Jθ

I ∧ θJ̄ , |I| = pI ,
|J | = qJ , with h = pI + qJ . Finally, we set

dJH := J−1dHJ, δJH := J−1δHJ.

It is not difficult to see that the following identities hold:

(12) dJH = J−1dHJ = −i(∂ − ∂), δJH = J−1δHJ = i(∂∗ − ∂∗),

where ∂∗ and ∂
∗

denote the L2-formal adjoints of the operators ∂ and ∂,
respectively.

The calculation below can be found, for instance, in [40].

Lemma 4.3. On complex functions the following chain of identities holds:

i n T =

n∑
k=1

∂k∂k − ∂k∂k = −

(
n∑
k=1

∂kik∂

)
−

(
−

n∑
k=1

∂kik∂

)
= ∂∗∂ − ∂∗∂.

In the next lemma we recall the so-called Kähler identities; see, e.g.,
Proposition 3.1.12 in [33].

Lemma 4.4. We have [Λ, ∂] = i∂
∗

and [Λ, ∂] = −i ∂∗. These identities in
turn imply that [∂∗, L] = −i∂.
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For the next proposition, see, for instance, either formula (8) in [40], or
[49], pp. 41-43.

Proposition 4.5. The following identities hold:

(i) [Λ, dH ] = −δJH ;
(ii) [Λ, dJH ] = δH ;
(iii) [Λ, δJH ] = 0.

4.2. Kähler geometry of domains in Hn. In Kähler coordinates, we have

nH ≡ n#
H =

n∑
k=1

(
nkθ

k + nkθ
k
)

= n1,0
H + n0,1

H ,

where n1,0
H :=

∑n
k=1 nkθk and n0,1

H :=
∑n

k=1 nkθk. Accordingly, we set

ν1,0
H :=

n1,0
H

‖nH‖
and ν0,1

H :=
n0,1
H

‖nH‖
.

The operators ∂ and ∂, and their adjoints ∂∗ and ∂
∗
, satisfy the following

integration by parts formulas:

∫
U
〈∂α, β〉 dV =

∫
U
〈α, ∂∗β〉 dV +

∫
∂U

〈
n1,0
H ∧ α, β

〉
dσ

=

∫
U
〈α, ∂∗β〉 dV +

∫
∂U

〈
ν1,0
H ∧ α, β

〉
dσH(13)

for every α ∈ Ωp−1,q
H , β ∈ Ωp,q

H , and∫
U

〈
∂α, β

〉
dV =

∫
U

〈
α, ∂

∗
β
〉
dV +

∫
∂U

〈
n0,1
H ∧ α, β

〉
dσ

=

∫
U

〈
α, ∂

∗
β
〉
dV +

∫
∂U

〈
ν0,1
H ∧ α, β

〉
dσH(14)

for every α ∈ Ωp,q−1
H , β ∈ Ωp,q

H ; see, e.g., [39], Ch. 3. More generally, all
these formulas hold when α and β are horizontal differential forms of class
C1 on U (i.e., α ∈ C1(U ,

∧p−1,q h1 ⊗R C), β ∈ C1(U ,
∧p,q h1 ⊗R C)).

5. Boundary conditions and estimates of the boundary terms

5.1. Horizontal Dirichlet integral. Let U ( Hn be a domain with smooth
boundary of class C2. Below, we introduce the notion of horizontal Dirichlet
integral.

Definition 5.1. Let either u ∈ Ωh
H(U) or u ∈ Ωh

H(U)⊗R C be a differential
h-form, with 0 ≤ h ≤ 2n. We define the horizontal Dirichlet integral as

DH(u) :=

∫
U

(〈dHu, dHu〉+ 〈δHu, δHu〉) dV.

Furthermore, if 1 ≤ h < n, we set

DJ
H(u) := DH(u)− 1

n− h+ 1
DH(Ju).
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The main aim of this section is to write the horizontal Dirichlet integral
of u as the L2-norm of ∇Hu up to an error that will be estimated later in
Sections 5.2 and 5.3.

Proposition 5.2 (see [40], Proposition 2). We have

∆H = ∆K − i
n∑
k=1

(
ekik − ek̄ik̄

)
LT .

In particular, if u =
∑

I,J uI,Jθ
I ∧θJ̄ ∈ Ωh

H(U)⊗RC, with |I| = pI , |J | = qJ ,
and h = pI + qJ , then

∆Hu =
∑
I,J

(∆HuI,J)θI ∧ θJ̄ ,

where

∆HuI,J = ∆KuI,J − i(pI − qJ)TuI,J .

Proposition 5.3. Let u ∈ Ωh
H(U)⊗R C, with 0 ≤ h ≤ 2n. Then

(15) DH(u) =

∫
U
〈∆Hu, u〉 dV +

∫
∂U

(〈dHu,nH ∧ u〉 − 〈δHu,nH u〉) dσ.

In addition, if u =
∑

I,J uI,Jθ
I ∧ θJ̄ , then∫

U
〈∆Hu, u〉 dV =

∫
U
‖∇Hu‖2 dV

−
∑
I,J

∫
∂U
〈dHuI,J ,nH〉ūI,J dσ − i

∑
I,J

(pI − qJ)

∫
U
ūI,JTuI,J dV.

(16)

Proof. Assertion (15) is just an integration by parts. We have to prove (16).
Keeping in mind that, if v ∈ C1(U) is a (real or complex) 0-form we have∫

U
〈∆Kv, v〉 dV =

∫
U
〈dHv, dHv〉 dV −

∫
∂U
v̄〈dHv,nH〉,

we compute∫
U
〈∆Hu, u〉 dV =

∑
I,J

∫
U
ūI,J∆HuI,J dV

=
∑
I,J

∫
U
〈dHuI,JdHuI,J〉 dV −

∫
∂U
〈dHuI,J ,nH〉ūI,J dσ

−i
∑
I,J

(pI − qJ)

∫
U
uI,JTuI,J dV

=
∑
I,J

∫
U
‖∇HuI,J‖2 dV −

∫
∂U
〈dHuI,J , nH〉ūI,J dσ

−i
∑
I,J

(pI − qJ)

∫
U
ūI,JTuI,J dV
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=

∫
U
‖∇Hu‖2 dV −

∑
I,J

∫
∂U
〈dHuI,J ,nH〉ūI,J dσ

−i
∑
I,J

(pI − qJ)

∫
U
ūI,JTuI,J dV.

�

Remark 5.4. Let us consider the following boundary integral∫
∂U
f
(
u,∇Hu,nH

)
dσ,

where u ∈ Ωh
H(U) ⊗R C and f is a (real-valued) continuous function that

is linear in the third argument nH . Let Vε ⊂ ∂U be a family of open
neighborhoods of char(∂U) shrinking around char(∂U) as long as ε → 0; in
particular, we assume that Vε1 ( Vε2 if ε1 < ε2 and that σ(Vε)→ 0 as ε→ 0
(by Remark 2.11 we already know that σ(char(∂U)) = 0 = σH(char(∂U)).

By recalling that dσH = ‖nH‖dσ and that outside char(∂U) we have
νH = nH

‖nH‖ , we get

∫
∂U
f
(
u,∇Hu,nH

)
dσ = lim

ε→0

∫
∂U\Vε

f
(
u,∇Hu,nH

)
dσ

= lim
ε→0

∫
∂U\Vε

f
(
u,∇Hu, νH

)
dσH

=:

∫
∂U\char(∂U)

f
(
u,∇Hu, νH

)
dσH .

Combining Proposition 5.3 and Remark 5.4 we get the following corollary.

Corollary 5.5. Let u ∈ Ωh
H(U)⊗R C, with 0 ≤ h ≤ 2n, and let us set

A :=

∫
∂U\char(∂U)

(
−
∑
I,J

〈dHuI,J , νH〉ūI,J

+
(
〈dHu, νH ∧ u〉 − 〈δHu, νH u〉

))
dσH ,

and

B := i
∑
I,J

(pI − qJ)

∫
U
ūI,JTuI,J dV = i

〈
LTu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
.

Then, we have

(17) DH(u) =

∫
U
‖∇Hu‖2 dV + A−B =

∫
U
‖∇Hu‖2 dV + <e A−<e B.

5.2. Estimate of the term A in (17). The aim of this subsection is to
show that we can write

A = −
∫
∂U\char(∂U)

(〈dHuνH , ut〉+ 〈δHut, uνH 〉) dσH + “error term”,
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and to provide sufficient conditions on the traces of u on the boundary ∂U
that guarantee that∫

∂U\char(∂U)
(〈dHuνH , ut〉+ 〈δHut, uνH 〉) dσH = 0;

see Proposition 5.11 below.

Definition 5.6 (The maps R1, R2). Let U ( Hn be a domain of class C2,

let µH ∈ C1
(
U ,
∧1 h1 ⊗R C

)
, with 0 ≤ h ≤ 2n. We define the maps

R1, R2 : C0
(
U ,
∧h

h1 ⊗R C
)
−→ C0

(
U ,
∧h

h1 ⊗R C
)

by setting

R1(u) ≡ RµH1 (u) :=
∑
I,J

uI,JdH

(
µH

(
θI ∧ θJ̄

))
,(18)

R2(u) ≡ RµH2 (u) :=
∑
I,J

uI,JδH

(
µH ∧

(
θI ∧ θJ̄

))
,(19)

where u =
∑

I,J uI,Jθ
I ∧ θJ̄ , |I| = pI , |J | = qJ , and h = pI + qJ . We also

set RµH1 (u) = 0 if h = 0 and RµH2 (u) = 0 if h = 2n.

Notice that these maps are both linear in u and µH . The preceding
definition is inspired by [15]; see Definition 5.1, p. 103. As a matter of fact,
these maps turn out to be very useful because of well-known properties of
the Lie derivative and, in particular, of Cartan’s formula and of its dual
version.

Remark 5.7. Let u =
∑

I,J uI,Jθ
I ∧ θJ̄ . By using Cartan’s formula and its

dual version we get:

(i) LµH (u) = µH dHu+ dH(µH u);

(ii) L̃µH (u) := (−1)h(2n−h) ∗H LµH (∗Hu) = −µH ∧ δHu− δH(µH ∧ u).

In particular, one obtains RµH2 (u) = (−1)h(2n−h) ∗H RµH1 (∗Hu).
In addition, we have:

(iii) LµH (u) =
∑

I,J〈dHuI,J , µH〉θI ∧ θJ̄ +RµH1 (u);

(iv) L̃µH (u) =
∑

I,J〈dHuI,J , µH〉θI ∧ θJ̄ +RµH2 (u).

Hence, we get the following identities:∑
I,J

〈dHuI,J , µH〉θI ∧ θJ̄ = µH dHu+ dH(µH u)−RµH1 (u)

= −µH ∧ δHu− δH(µH ∧ u)−RµH2 (u).

(20)

All these formulas can be checked by direct computations, exactly as in the
Euclidean case for which we refer the reader to Ch. 5 of [15].

If in Remark 5.7 we take µH = νH , we obtain the following result.
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Lemma 5.8. Let u =
∑

I,J uI,Jθ
I ∧ θJ̄ . Then∑

I,J

ūI,J〈dHuI,J , νH〉+ 〈RνH1 (u), ut〉+ 〈RνH2 (u), νH ∧ uνH 〉

= 〈νH dHu, ut〉 − 〈δHu, uνH 〉+ 〈dHuνH , ut〉
− 〈δH (νH ∧ ut) , νH ∧ uνH 〉

(21)

at each point of ∂U \ char(∂U).

Proof. Using Remark 5.7 yields

〈LνHu, ut〉 = 〈νH du, ut〉+ 〈duνH , ut〉
= 〈νH dHu, ut〉+ 〈dHuνH , ut〉 .

(22)

Analogously, one has〈
L̃νHu, νH ∧ uνH

〉
= − (〈νH ∧ δHu, νH ∧ uνH 〉+ 〈δH (νH ∧ u) , νH ∧ uνH 〉)
= − (〈δHu, uνH 〉+ 〈δH (νH ∧ ut) , νH ∧ uνH 〉) .

(23)

Adding the left-hand sides of (22) and (23) and then using Remark 5.7 (see,
in particular, formula (20)) yields

〈LνHu, ut〉+
〈
L̃νHu, νH ∧ uνH

〉
=
∑
I,J

ūI,J〈dHuI,J , νH〉+ 〈RνH1 (u), ut〉+ 〈RνH2 (u), νH ∧ uνH 〉.

Hence, by using (22) and (23), we deduce (21). �

We also need the following result (see [15], Lemma 5.5).

Lemma 5.9. Let u, µH , RµH1 and RµH2 be as in Definition 5.6. Then

RµH1 (µH ∧ u) =
1

2
dH
(
‖µH‖2

)
∧ u+ µH ∧RµH1 (u),

RµH2 (µH u) =
1

2
dH
(
‖µH‖2

)
u+ µH RµH2 (u).

The above formulas greatly simplify if we take ‖µH‖ = 1 and this can
always be done, at least if both these quantities are restricted to the (non-
characteristic part of the) boundary and we take µH = νH (i.e., µH is the
horizontal unit normal to ∂U \ char(∂U)).

Remark 5.10. For any α ∈ Ωh
H(U)⊗RC the following holds on ∂U \ char(∂U):

• If νH ∧ α = 0, then νH ∧ dHα = 0.
• If νH α = 0, then νH δHα = 0.

These properties can be proved just as in the classical case, for which we
refer to Theorem 3.23 in [15]. Thus, at each point of ∂U \ char(∂U), we
deduce that:

• If uνH = νH u = 0, then it follows that νH ∧ (νH u) = 0. Hence
νH ∧ dH(νH u) = 0 and so 〈dHuνH , ut〉 = 0.
• If νH∧u = 0, then ut = νH (νH∧u) = 0. Hence νH δH(νH∧u) = 0

and so 〈δH (νH ∧ ut) , νH ∧ uνH 〉 = 0.
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We summarize the above discussion in the next proposition.

Proposition 5.11. Let u ∈ Ωh
H(U)⊗R C, with 1 ≤ h ≤ 2n. Then

A = −
∫
∂U\char(∂U)

(〈dHuνH , ut〉+ 〈δHut, uνH 〉) dσH

−
∫
∂U\char(∂U)

〈
R̃(u), u

〉
dσH ,

(24)

where 〈
R̃(u), u

〉
:= 〈RνH1 (u), ut〉+ 〈RνH2 (u), νH ∧ uνH 〉 .

In addition, the first boundary integral vanishes if

either ut = 0 or uνH = 0 on ∂U \ char(∂U) (condition (DN))

and, in this case, we get

A = −
∫
∂U\char(∂U)

〈
R̃(u), u

〉
dσH .(25)

Therefore

<e A = −<e

∫
∂U\char(∂U)

〈
R̃(u), u

〉
dσH .(26)

Obviously, if ut = 0, then it follows that R̃(u) = 〈RνH2 (u), u〉. Finally, if

uνH = 0, then R̃(u) = 〈RνH1 (u), u〉.

Proof. Let us start from the identity of Corollary 5.5. For what concerns
the term A, by using (21) and Remark 5.4, we get

A = −
∫
∂U\char(∂U)

∑
I,J

ūI,J〈dHuI,J , νH〉 − 〈νH dHu, ut〉+ 〈δHu, uνH 〉

 dσH

= −
∫
∂U\char(∂U)

(〈dHuνH , ut〉 − 〈δH (νH ∧ ut) , νH ∧ uνH 〉) dσH

+

∫
∂U\char(∂U)

(〈R1(u), ut〉+ 〈R2(u), νH ∧ uνH 〉) dσH .

Then (24) follows since δH (νH ∧ ut) = (δHνH) ∧ ut − νH ∧ δHut and

〈(δHνH) ∧ ut, νH ∧ uνH 〉 = 0.

Thus using Remark 5.10 yields (25). The remaining claims easily follow. �

Remark 5.12. If we look at identity (17) we see that <eA does not depend
on the coordinates. In fact, by its very definition, <eB is independent of
the coordinates and, in addition, a straightforward computation shows that
the same assertion holds for the quantity DH(u) and for the L2-norm of
∇Hu. Now, if condition (DN) holds, then both the quantities RνH1 and
RνH2 are independent of the coordinates. In particular, their expressions in
Kähler coordinates (18) and (19) can be replaced, when convenient, by their
counterpart in different systems of coordinates.

Remark 5.13. It worth pointing out that, by Lemma 5.9 it follows that

〈R2(u), νH ∧ uνH 〉 = 〈R2(uνH ), uνH 〉 and 〈R1(u), ut〉 = 〈R1(ut), ut〉.
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5.3. Estimate of the term B in (17). The aim of this subsection is to
prove that we can write

<e B =
1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

− 1

n
=m

∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH

+ “error term”.

At the same time, we provide sufficient conditions on the traces of u on ∂U
that guarantee that

=m

∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
= 0.

Proposition 5.14. Let u ∈ Ωh
H(U)⊗R C, with 1 ≤ h ≤ 2n. Then

B =
1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH

− i

n

∫
∂U\char(∂U)

〈
RJνH1 u,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH .

(27)

In addition, suppose that the following “condition (JνH)” holds:

=m

〈
LJνHu,

n∑
k=1

ekiku

〉
= =m

〈
LJνHu,

n∑
k=1

ek̄ik̄u

〉
(condition (JνH)).

Then we have

<e B =
1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+ =m
1

n

∫
∂U\char(∂U)

〈
RJνH1 u,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH .

(28)

Proof. Let v ∈ C1(U) be a (complex-valued) 0-form and recall that

i n T =

n∑
k=1

(∂k∂k̄ − ∂k̄∂k).

By (13) and (14), we have

−i
∫
U
v̄T v dV =

1

n

∫
U
v̄

n∑
k=1

(∂k̄∂k − ∂k∂k̄) v dV

=
1

n

∫
U
v̄
(
−∂∗∂ + ∂̄∗∂̄

)
v dV

=
1

n

∫
U

(‖∂̄v‖2 − ‖∂v‖2) dV − 1

n

∫
∂U

(
v̄
〈
∂̄v, n0,1

H

〉
− v̄

〈
∂v, n1,0

H

〉)
dσ
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=
1

n

∫
U

(‖∂̄v‖2 − ‖∂v‖2) dV +
1

n

∫
∂U
v̄
〈
dHv,

(
n1,0
H − n0,1

H

)〉
dσ

=
1

n

∫
U

(‖∂̄v‖2 − ‖∂v‖2) dV +
i

n

∫
∂U
v̄ 〈dHv, JnH〉 dσ,

where we have used the identity JnH = i
(
n1,0
H − n0,1

H

)
.

From these computations, by arguing as in Remark 5.4 and by applying
(iii) of Remark 5.7, we get that the term B can be rewritten as follows:

B = −i
∑
I,J

(pI − qJ)

∫
U
ūI,JTuI,J dV

=
1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∑
I,J

(pI − qJ) lim
ε→0

∫
∂U\Vε

ūI,J 〈dHuI,J , JνH〉 dσH

=
1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∑
I,J

(pI − qJ)

∫
∂U\char(∂U)

ūI,J 〈dHuI,J , JνH〉 dσH

=
1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH

− i
n

∫
∂U\char(∂U)

〈
RJνH1 u,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH .

This achieves the proof of the proposition.
�

Remark 5.15. From Remark 4.2 it follows that
n∑
k=1

(ekik − ek̄ik̄) =
∑
p,q

(p− q) Πp,q.

Therefore, condition (JνH) turns out to be a compatibility condition on the
bidegree components of the trace of u in the (tangent) direction JνH .

In addition, we stress that condition (JνH) is written in a “geometric”
form on ∂U and it could be replaced by the following condition (Jν∗H) that
is written “in coordinates”:∑

I,J

(pI − qJ)Im (ūI,J 〈dHuI,J , JνH〉)

= Im

〈
∂JνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
= 0

(29)
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at every point of ∂U \ char(∂U). This alternative condition is perhaps less
“elegant” but has the advantage of not introducing an error term.

Typically, identity (29) holds, if the form u is “Kähler-symmetric”, i.e., if

Πp,qu = ±Πq,pu for all p, q with p+ q = h.

Below, we analyze the meaning of condition (JνH) in the special case of
horizontal 1-forms.

Example 5.16 (1-forms). Let u =
∑n

i=1

(
uiθ

i + uīθ
ī
)

be a 1-form, where

we assume that ui := fi+ igi for any i = 1, ..., n. Also recall that if u is real,
then uī = ūi for any i = 1, ..., n. Note that JνH = i(ν1,0

H − ν
0,1
H ) and that, in

this case, we have pi = 1, qi = 0 and pī = 0, qī = 1, i = 1, ..., n. With these
preliminaries, we may reformulate condition (JνH) as follows:

n∑
i=1

〈(fi∇Hgi − gi∇Hfi) , JνH〉 =
n∑
ī=1

〈(fī∇Hgī − gī∇Hfī) , JνH〉 .(30)

The proof of (30) is an elementary exercise. In addition, we observe that if
u is real, then (30) becomes

(31)

n∑
i=1

〈(fi∇Hgi − gi∇Hfi) , JνH〉 = 0

or, equivalently,
∑n

i=1 (fi∂JνH gi − gi∂JνH fi) = 0.

By using (iv) in Remark 5.7 we obtain the following dual result.

Proposition 5.17. Let u ∈ Ωh
H(U)⊗R C, with 1 ≤ h ≤ 2n. Then

B =
1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∫
∂U\char(∂U)

〈
L̃JνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH

− i

n

∫
∂U\char(∂U)

〈
RJνH2 u,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH .

(32)

In addition, suppose the following “condition (J̃νH)” holds:

=m

〈
L̃JνHu,

n∑
k=1

ekiku

〉
= =m

〈
L̃JνHu,

n∑
k=1

ek̄ik̄u

〉
(condition (J̃νH)).

Then

<e B =
1

n

∑
I,J

(pI − qJ)

∫
U

(
‖∂̄uI,J‖2 − ‖∂uI,J‖2

)
dV

− i

n

∫
∂U\char(∂U)

〈
RJνH2 u,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH .

(33)

Remark 5.18. Just as in Remark 5.15, we observe that condition (J̃νH) is
written in a “geometric” form. Notice also that it could be replaced by
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condition (Jν∗H). Again, this alternative condition has the advantage of not
introducing an error term.

6. Gaffney-Friedrichs-type inequalities for horizontal forms

We state now the first version of our main result.

Theorem 6.1 (Gaffney-Friedrichs Inequality). Let U ( Hn be a domain
with smooth boundary of class C2. Let u ∈ Ωh

H(U) ⊗R C be a horizontal
h-form with 1 ≤ h < n, and assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);
(ii) u satisfies either condition (JνH) (see Proposition 5.14) or

condition (J̃νH) (see Proposition 5.17).

Let {Vε}ε>0 be a family of open neighborhoods of char(∂U) (in the relative
topology) shrinking around char(∂U) when ε→ 0. In addition, assume that
σ(Vε) → 0 as ε → 0. Then, there exist geometric constants C0, C1 and C2

such that

DH(u) + C0

∫
∂U∩Vε

‖u‖2 dσ

≥ C1

∫
U
‖∇Hu‖2 dV − C2

∫
U
‖u‖2 dV.

(34)

The constants C0, C1, C2 depend only on U , ε and on the integers h and n.
Furthermore, if u ∈ Ωh

H(U)⊗RCis a horizontal h-form with n+ 1 ≤ h ≤ 2n,
then (34) still holds provided that ∗Hu satisfies (i) and (ii).

Remark 6.2. The constant C2 may blow up as ε tends to 0+. Indeed, let us
define the following two constants:

• C1,ε := 2n
{

maxi,j=1,...,2n

(
sup∂U∩Vε |Wj(nH)i − (νH)iWj‖nH‖|

)}
,

• C2,ε := sup∂U\Vε ‖JacHνH‖,

where JacHνH = [Wj(νH)i]i,j=1,...,2n denotes the horizontal Jacobian matrix
of the unit horizontal normal νH . Since nH is of class C1, the constant
C1,ε turns out to be globally bounded along ∂U . On the other hand, we

have C2,ε = O
(

1
‖nH‖

)
, and hence C2,ε may diverge when ε → 0+ (since

‖nH‖ → 0+ as ε→ 0+). Below, we shall prove the result with the constants

C0 := Cdim ·C1,ε, C1 :=
1

n
−Cdim ·C2,ε ·δ, C2 := Cdim ·C2,ε ·

(
Cε,U +

4

δ

)
,

where

0 < δ < min

{
1,

1

nCdimC2,ε

}
,

and Cdim denotes a fixed dimensional constant that only depends on n.
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Proof. Combining (17), (26) and (28) we obtain

DH(u) =

∫
U
‖∇Hu‖2 dV −

1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

−<e

∫
∂U\char(∂U)

〈RνHi u, u〉 dσH

−=m
1

n

∫
∂U\char(∂U)

〈
RJνHj u,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH ,

where i, j = 1, 2. On the other hand, keeping in mind (11) and the fact that

|(pI − qJ)| ≤ h < n,

we get ∫
U
‖∇Hu‖2 dV −

1

n

∑
I,J

(pI − qJ)

∫
U

(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

≥ n− h
n

∫
U
‖∇Hu‖2 dV,

so that

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV −<e

∫
∂U\char(∂U)

〈RνHi u, u〉 dσH

−=m
1

n

∫
∂U\char(∂U)

〈
RJνHj u,

n∑
k=1

(ekik − ek̄ik̄)u

〉
dσH .

(35)

By arguing as in [15], Chapter 5.2, it is not difficult to show that RνH1 (u)
and RνH2 (u) satisfy the estimates

‖RνHi (u)‖ ≤ Cidim‖JacHνH‖‖u‖ (i = 1, 2),

where Cidim := Ci(h, n) is a positive constant that depends only on the
integers h and n. Analogously, we have

‖RJνHi (u)‖ ≤ Cidim‖JacHνH‖‖u‖ (i = 1, 2).

Moreover, a straightforward computation shows that ‖JacHνH‖ is of class

C1 out of char(∂U) and that ‖JacHνH‖ = O
(

1
‖nH‖

)
near char(∂U).

Hence, keeping in mind Theorem 8, we make the following computations:

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV

−Cdim
∫
∂U\char(∂U)

‖JacHνH‖‖u‖2 dσH

≥ 1

n

∫
U
‖∇Hu‖2 dV

−Cdim
∫
∂U∩Vε

‖JacHνH‖‖u‖2 dσH

−Cdim
∫
∂U\Vε

‖JacHνH‖‖u‖2 dσH
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≥ 1

n

∫
U
‖∇Hu‖2 dV − C0

∫
∂U∩Vε

‖u‖2 dσ

−CdimC2,ε

∫
∂U\Vε

‖u‖2 dσH

≥ 1

n

∫
U
‖∇Hu‖2 dV − C0

∫
∂U∩Vε

‖u‖2 dσ

−CdimC2,ε

((
Cε,U +

4

δ

) ∫
U
‖u‖2 dV + δ

∫
U
‖∇Hu‖2 dV

)
,

and the assertion (34) follows.
�

Theorem 6.3 (Gaffney-Friedrichs Inequality (2nd version)). Let U ( Hn

be a domain with smooth boundary of class C2 satisfying condition (H) (see
Definition 3.4). Let u ∈ Ωh

H(U)⊗RC be a horizontal h-form with 1 ≤ h < n,
and assume that:

(i) u satisfies condition (DN) (see Proposition 5.11);
(ii) u satisfies condition (Jν∗H) (see Remark 5.15).

Then, there exist geometric constants C̃1 and C̃2, only dependent on U
and on the integers h and n, such that

DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(36)

Furthermore, if u ∈ Ωh
H(U)⊗RC is a horizontal h-form with n+1 ≤ h ≤ 2n,

then (46) still holds provided that ∗Hu satisfies (i) and (ii).

For the case h = n we refer the reader to Theorem 6.7.

We start from the estimate (35) in the proof of Theorem 6.1, by proving a
more effective estimate of the remaining terms. By Remarks 5.15 and 5.18,
we are reduced to

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV −<e

∫
∂U\char(∂U)

〈RνHi u, u〉 dσH .(37)

To this end, let us study the quantities RνHi (u, u), with i = 1, 2.

Remark 6.4. Let µH ∈ C1
(
∂U \ char(∂U)),

∧1 h1 ⊗R C
)

and assume that

‖µH‖ = 1. For any smooth function φ : ∂U \ char(∂U)→ R we have

RφµH1 (u) = φ

(∑
I

uIdH
(
µH ωI

))
+
∑
I

uIdHφ ∧
(
µH ωI

)
,

= φRµH1 (u) + dHφ ∧ (µH u) ,

and

RφµH2 (u) = φ

(∑
I

uIδH
(
µH ∧ ωI

))
−
∑
I

uI
(
dHφ

(
µH ∧ ωI

))
= φRµH2 (u)− dHφ (µH ∧ u) .
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By condition (H), near the characteristic set, the boundary of U is a T -graph
(i.e., ∂U is a Euclidean graph w.r.t. the hyperplane t = 0) and so there exists
a C2 defining function g : Hn → R of the form g(x, y, t) = t−f(x, y). Hence

NH = ∇Hg = ∇H(t− f(x, y)) =
(
−y

2
−∇xf,

x

2
−∇yf

)
.

Accordingly, we assume that νH = NH
‖NH‖ , where NH := ∇Hg. Thus we get

RνH1 (u) =
RNH

1 (u)

‖NH‖
+ dH

(
1

‖NH‖

)
∧ (NH u) ,(38)

where the second term vanishes on ∂U \ char(∂U) when uνH = νH u = 0.
Similarly we get

RνH2 (u) =
RNH

2 (u)

‖NH‖
− dH

(
1

‖NH‖

)
(NH ∧ u) ,(39)

and the second term vanishes on ∂U \char(∂U) when ut = νH (νH∧u) = 0.

As we shall see below, formulas (38) and (39) are very important for our
purposes. In particular, under the hypothesis uνH = 0 on ∂U \ char(∂U),

we find that RνH1 (u) =
R

NH
1 (u)
‖NH‖ . Furthermore, under the hypothesis ut = 0

on ∂U \ char(∂U), the quantity RνH2 (u) can be obtained by duality (via the
horizontal Hodge star operator) from the computation of RνH1 (u). Thus, let
u be a horizontal h-form and let us compute

RνH1 (u, u) := 〈RνH1 (u), u〉 =
∑
I,J

uIuJ

〈
dH
(
NH ωI

)
, ωJ

〉
‖NH‖

=
∑
I,J

∑
r

uIuJ

〈
dH
(
(NH)r ωr ωI

)
, ωJ

〉
‖NH‖

=
∑
I,J

∑
r,k

Wk ((NH)r)uIuJ

〈
ωk ∧

(
ωr ωI

)
, ωJ

〉
‖NH‖

=
1

‖NH‖

〈∑
r,k

Wk ((NH)r)ωk ∧ (ωr u) , u

〉

=:
〈JacH(NH)u, u〉

‖NH‖
.

(40)

Remark 6.5. More generally, let v be such that JνH v = 0. Now, arguing
as above yields

RJνH1 (v) =
RJNH

1 (v)

‖NH‖
.

Thus, with the obvious meaning of symbols and keeping in mind that J is
an isometry, our previous arguments show that

RJνH1 (v, v) =
〈JacH(JNH)v, v〉

‖NH‖
.
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Analogously, let v be such that JνH ∧ v = 0. Then, as above, we get

RJνH2 (v, v) =
〈JacH(JNH)v, v〉

‖NH‖
.

Now going back to (40), we see by condition (H) that

JacH(NH) =
1

2
J −HessR2nf.

Thus, using the skew-symmetry of the linear operator J , we have

(41) <e RνH1 (u, u) = O

(
‖HessR2nf‖
‖NH‖

)
‖u‖2,

and applying condition (H) yields O
(
‖HessR2nf‖
‖NH‖

)
= O(1).

Eventually, we resume the above discussion in the following.

Lemma 6.6. Let U ( Hn be a domain with smooth boundary of class C2

satisfying condition (H). Let u, v be horizontal h-forms defined on U , with
1 ≤ h ≤ n. Then, we have:

(i) If uνH = 0 on ∂U , then <e RνH1 (u, u) = O(‖u‖2).
(ii) If ut = 0 on ∂U , then <e RνH2 (u, u) = O(‖u‖2).

In addition, we have:

(iii) If (Jv)νH = 0 on ∂U , then =m RJνH1 (v, v) = O(‖v‖2).

(iv) If (Jv)t = 0 on ∂U , then =m RJνH2 (v, v) = O(‖v‖2).

In particular, it follows from definitions that <e 〈R(u), u〉 = O(‖u‖2).

Proof. The proof of (i) follows by using (41). Then (ii) follows from (i) by
duality (using the horizontal Hodge star operator); see Remark 5.7. The last
claim it is an immediate consequence of (i), (ii) and of the very definition
of R(u). Assertions (iii) and (iv) follow in the same way keeping in mind
Remark 6.5. �

Proof of Theorem 6.3. From (37) we know that

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV −<e

∫
∂U\char(∂U)

〈RνHi u, u〉 dσH .

By appplying Lemma 6.6 and Theorem 3.9, it follows that

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV − C

∫
∂U\char(∂U)

|T u|2 dσH

≥ 1

2n

∫
U
‖∇Hu‖2 dV − Cn‖u‖L2(U).

The proof of the lemma easily follows.
�

Theorem 6.7. Let us suppose that the assumptions of either Theorem 6.1
or Theorem 6.3 are satisfied, where the condition 1 ≤ h < n is replaced by

(42) h = n and u 6∈ Ωn,0
H ∪ Ω0,n

H .

Then the conclusions of either Theorem 6.1 or Theorem 6.3 hold.
Moreover, if u ∈ Ωn,0

H ∪ Ω0,n
H , then estimates like (34) and (46) fail to hold.
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Proof. The first assertion follows by noticing that, in the proofs of 6.1 and
Theorem 6.3, the assumption h < n was used only in deriving inequality
(35), where we used that, if u ∈ Ωp,q

H , then |p − q| < n. But, trivially, the

same conclusion holds if h = n and u /∈ Ωn,0
H ∪ Ω0,n

H .

As for the second assertion, we take, for instance, u = f θ(1,2,...,n), with
f ∈ D(U). In such a case the estimates (34) and (46) coincide and represent
nothing but a maximal subelliptic estimate for the operator ∆K± in T . But
then the operator ∆K ± in T would be hypoelliptic (see, e.g., [11], Theorem
4.1), contradicting the fact that the values ±n are “forbidden values” for
the Kohn Laplacian in Hn (see, e.g., [44], Chapter XIII, 2.3).

�

7. Further Gaffney-Friedrichs inequalities
for horizontal forms

As already pointed out in Remark 5.15, condition (Jν∗H) of Theorem 6.3
is not “geometric”, in the sense that it is written “in coordinates”. Thus,
let us replace (Jν∗H) by a slightly different “geometric” condition.

To this end, we stress first that, in the proof of Theorem 6.3, condition
(Jν∗H) can be replaced by the following weaker condition:

(43)

∣∣∣∣∣∣=m

〈
∂JνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
L2(∂U)

∣∣∣∣∣∣ ≤ C ‖u‖2L2(∂U).

Let us still suppose that both conditions (DN) and (H) holds. If uνH = 0,
we can argue as follows. By applying Remarks 5.7 and 5.15, we compute

〈
∂JνHu,

n∑
k=1

(ekik − ek̄ik̄)u

〉

=

〈
∂JνHJu,

n∑
k=1

(ekik − ek̄ik̄)Ju

〉

=

〈(
LJνHJu−R

JνH
1 Ju

)
,
n∑
k=1

(ekik − ek̄ik̄)Ju

〉

=

〈
LJνHJu,

n∑
k=1

(ekik − ek̄ik̄)Ju

〉
−

〈
RJνH1 Ju,

n∑
k=1

(ekik − ek̄ik̄)Ju

〉

=

〈
LJνHJu, J

n∑
k=1

(ekik − ek̄ik̄)u

〉
−

〈
RJνH1 Ju,

n∑
k=1

(ekik − ek̄ik̄)Ju

〉

=

〈
J−1LJνHJu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
−

〈
RJνH1 Ju,

n∑
k=1

(ekik − ek̄ik̄)Ju

〉
.

Now suppose that the following geometric condition holds:

(44) =m

〈
J−1LJνHJu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
= 0.
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Under this assumption, let us show that (43) holds. We have

=m

〈
〈RJνH1 Ju,

n∑
k=1

(ekik − ek̄ik̄)Ju

〉

= =m

〈
RJνH1 v,

n∑
k=1

(ekik − ek̄ik̄)v

〉

= =m‖NH‖−1

〈
RJNH1 v,

n∑
k=1

(ekik − ek̄ik̄)v

〉

= =m‖NH‖−1

〈
J acH(JNH)v,

n∑
k=1

(ekik − ek̄ik̄)v

〉

= =m‖NH‖−1

〈(
−h

2
Id− J(HessR2nf)

)
v,

n∑
k=1

(ekik − ek̄ik̄)v

〉

= −=m
h

2
‖NH‖−1

〈
v,

n∑
k=1

(ekik − ek̄ik̄)v

〉

−=m‖NH‖−1

〈
J(HessR2nf)v,

n∑
k=1

(ekik − ek̄ik̄)v

〉

= −=m‖NH‖−1

〈
J(HessR2nf)v,

n∑
k=1

(ekik − ek̄ik̄)v

〉
,

since 〈
v,

n∑
k=1

(ekik − ek̄ik̄)v

〉
=

n∑
k=1

(
‖ikv‖2 − ‖ik̄v‖2

)
is a real number. Thus keeping in mind that ‖v‖ = ‖Ju‖ = ‖u‖ yields (43).

Analogously, if in condition (DN) one has ut = 0, then we can argue in a
similar way by assuming that:

(45) =m

〈
J−1L̃JνHJu,

n∑
k=1

(ekik − ek̄ik̄)u

〉
= 0.

We summarize the previous arguments in the following.

Theorem 7.1 (Gaffney-Friedrichs Inequality (3rd version)). Let U ( Hn

be a domain with smooth boundary of class C2 satisfying condition (H) (see
Definition 3.4). Let u ∈ Ωh

H(U)⊗RC be a horizontal h-form with 1 ≤ h < n,
and assume that either

(i) uνH = 0,
(ii) u satisfies the condition (44),

or

(j) ut = 0,
(jj) u satisfies the condition (45).
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Then, there exist geometric constants C̃1 and C̃2, only dependent on U
and on the integers h and n, such that

DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(46)

Furthermore, if u ∈ Ωh
H(U)⊗RC is a horizontal h-form with n+1 ≤ h ≤ 2n,

then (46) still holds provided that ∗Hu satisfies either (i) and (ii), or (j) and
(jj). Finally, Theorem 6.7 still holds in this case.

8. Rumin’s complex in Heisenberg groups

8.1. Rumin’s complex. In this section we briefly sketch the main ideas
in Rumin’s construction of the intrinsic complex of differential forms in
Heisenberg groups; see [40]. For a more general approach we refer the reader,
for instance, to [42], [43], and [7].

First, we would like to show how Rumin’s complex appears naturally in
the Geometric Measure Theory of Heisenberg groups. The starting point
is the question “what is counterpart of a linear manifold in Heisenberg
groups?”. As shown in [23], [25], this role is played by the homogeneous
subgroups of Hn, that is, in exponential coordinates, by the homogeneous
subalgebras of h. It is well-known that, in Euclidean spaces, linear sub-
manifolds are the annihilators of homogeneous simple covectors, which are
invariant under translations. Thus, is it natural to look for left-invariant
homogeneous differential forms whose annihilator is a subalgebra of h.

By the Frobenius theorem, the annihilator of a left invariant differential
form ω is a Lie subalgebra of h if and only if dω = 0. On the other hand,
when acting on left-invariant forms, the exterior differential d is nothing but
its “algebraic” part, which in the sequel will be denoted as d0; see below,
Definition 8.2.

A natural choice for a class of intrinsic differential forms in Hn would be
to take ker d0 as the ambient space. Nevertheless, this choice is not totally
satisfying, since it fails to take into account a crucial algebraic property of
linear manifolds in Euclidean spaces, which resides in the fact that they are
complemented. Indeed, also complementary subspaces of a fixed subspace
V can be viewed as annihilators of differential forms in the following sense:
If V is the annihilator of a simple form ω, then a complementary subspace W
is the annihilator of the Hodge-dual form ∗ω, where the Hodge duality must
be taken with respect to an inner product making V and W orthogonal.
Thus in order to obtain a satisfying notion of intrinsic h-covector in h, we
have to choose once for all an inner product in h and take

Eh0 = ker d0 ∩ ker(∗d0).

Recall that h is endowed with the inner product that makes the basis
{X1, . . . , Xn, Y1, . . . , Yn, T} orthonormal.

The family of vector spaces (Eh0 )0≤h≤n can be equipped with an “exterior
differential operator”

dc : Eh0 → Eh+1
0

making (E∗0 , dc) a complex that is homotopic to the de Rham complex. The
definition of dc is rather technical and will be given by Theorem 8.6 below.
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Essentially, dc is defined as

dc := ΠE0dΠE ,

where ΠE is the projection onto a second complex (E∗, d), again homotopic
to the de Rham complex, which is meant to take into account the lack of
commutativity of h, and where ΠE0 is the orthogonal projection on E∗0 that
minimizes the number of compatibility conditions for a differential form to
be exact. We stress that dc is an operator of order 1 in the horizontal
derivatives, when acts on Eh0 with h 6= n, but it is of order 2 on En0 .

Definition 8.1. If α ∈
∧1 h1, α 6= 0, then we say that α has weight 1,

and write w(α) = 1. If α = ϑ, then we say that α has weight 2, and

write w(α) = 2. More generally, we say that α ∈
∧h h has pure weight

k when α is a linear combination of covectors ψi1 ∧ .... ∧ ψih such that
w(ψi1) + ...+ w(ψih) = k.

Note that, if α, β ∈
∧h h and w(α) 6= w(β), then 〈α, β〉 = 0. Moreover,

we have (see, e.g., formula (13) in [7]):∧h
h =

∧h,h
h⊕

∧h,h+1
h,

where
∧h,p h denotes the linear span of Ψh,p := {α ∈ Ψh : w(α) = p}.

The ordinary exterior differential d splits into the sum of its weighted
components. More precisely, we have the following definition.

Definition 8.2. Let α =
∑

ψhi ∈Ψh,p αiψ
h
i be a smooth (simple) h-form of

pure weight p. Then we shall write

(47) dα = d0α+ d1α+ d2α,

where d0α has pure weight p, d1α has pure weight p+ 1, and d2α has pure
weight p+ 2.

When acting on left-invariant forms, one has d = d0, since d preserves the
weight. Notice also that d1 = dH .

Using Cartan’s identity (see, for example, [32], formula (9) p. 21) and the
left-invariance of the forms ψhi ∈ Ψh,p, it follows that

d0α =
∑

ψhi ∈Ψh,p

αidψ
h
i .

Analogously, we have

d1α =
∑

ψhi ∈Ψh,p

Wj(αi)ψj ∧ ψhi , d2α =
∑

ψhi ∈Ψh,p

T (αi)ϑ ∧ ψhi .

We stress that d0 is an algebraic operator, and therefore can be identified
with an operator acting on covectors.

The following important notion due to Rumin can be found in [41, 42].

Definition 8.3. For any 0 ≤ h ≤ 2n+ 1 we set Eh0 := Kerd0∩R(d0)⊥. The
elements of Eh0 are called intrinsic h-forms on Hn.

39



It is not difficult to see that ∗Eh0 = E2n+1−h
0 . Observe that, since this

notion is invariant under left translations, the space Eh0 can be seen as the

space of sections of a fiber subbundle of
∧h h, generated by left translation

and still denoted as Eh0 . Since d0 is algebraic, there is no ambiguity if we
denote by E∗0 both the space of covectors and the spaces of the sections of

the associated linear bundle. We also note that Eh0 inherits from
∧h h the

inner product 〈·, ·〉 on the fibers.

Theorem 8.4 (See [41]). With the notation of Definition 2.7, we have:

• E1
0 =

∧1 h1.

• If 2 ≤ h ≤ n, then Eh0 =
∧h h1 ∩ ker Λ.

• If n < h ≤ 2n+ 1, then Eh0 = θ ∧ kerL.

We remark that a h-form in Eh0 has either weight h, if 1 ≤ h ≤ n, or
weight h + 1, if n < h ≤ 2n + 1. Let Ξh0 = {ξhi : 1 ≤ i ≤ Nh} be an
orthonormal basis of Eh0 , where Nh := dimEh0 . Notice that we can always
assume that ξ1

i = ψi for any i = 1, ..., 2n.
We have to define an “inverse” of the algebraic operator d0 and this can

be done as follows (see, e.g., Lemma 2.11 in [7]).

Lemma 8.5. For any β ∈
∧h+1 h there exists a unique α ∈

∧h h∩ (ker d0)⊥

such that d0α−β ∈ (R(d0))⊥. In the sequel, with a slight abuse of notation,
we shall set d−1

0 β := α.

By construction, the operator d−1
0 is weight-preserving.

In the next theorem we summarize the main features of the intrinsic
exterior differential dc. For more details, we refer the reader to [41]; see also
[42] and [7].

Theorem 8.6. The de Rham complex (Ω∗, d) splits into the direct sum of
two sub-complexes (E∗, d) and (F ∗, d), where we have set

E := ker d−1
0 ∩ ker

(
d−1

0 d
)
, F := R(d−1

0 ) +R(dd−1
0 ).

Furthermore, the following assertions hold:

(i) Let ΠE denote the (non-orthogonal) projection on E along F . For
any α ∈ Eh0 one has either ΠEα = α − d−1

0 d1α, if 1 ≤ h ≤ n, or
ΠEα = α, if h > n.

(ii) ΠE is a chain map, i.e., dΠE = ΠEd.
(iii) Let ΠE0 denote the orthogonal projection from

∧∗ h onto E∗0 . Then,

we have ΠE0 = Id− d−1
0 d0 − d0d

−1
0 and ΠE⊥0

= d−1
0 d0 − d0d

−1
0 .

(iv) We have ΠE0 = ΠE0ΠEΠE0 and ΠE = ΠEΠE0ΠE.

Let 0 ≤ h ≤ 2n and set dc := ΠE0dΠE : Eh0 → Eh+1
0 . Then, we have:

(v) d2
c = 0.

(vi) The differential complex (E∗0 , dc) is exact.

(vii) If h 6= n, then dc : Eh0 → Eh+1
0 is a homogeneous differential operator

in the horizontal derivatives of order 1. Moreover, dc : En0 → En+1
0

is a homogeneous differential operator of order 2.
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Notice that for any smooth function f ∈ E0
0 we have

dcf = (∇Hf)# =

n∑
1=1

(Xifdxi + Yifdyi) .

We can also define a codifferential δc, by taking the formal adjoint of dc
in L2(Hn, E∗0). More precisely, we set δc := d∗c .

Proposition 8.7. On Eh0 we have δc = (−1)h ∗ dc∗.

For a proof, see, e.g., [26], Proposition 3.15.
Explicit calculations and further examples concerning Rumin’s complex

in Heisenberg groups can be found in [8].

Definition 8.8 (Sub-Laplacians on forms; see [40]). We define the operator
∆c,h on Eh0 by setting

∆c,h :=

 dcδc + δcdc ifh 6= n, n+ 1;
(dcδc)

2 + δcdc ifh = n;
dcδc + (δcdc)

2 ifh = n+ 1.

Notice that ∆c,0 = ∆K is the usual sub-Laplacian on Hn.

Lemma 8.9. If α ∈ Eh0 , with h 6= n+ 1, then δHα = δcα.

Proposition 8.10 ([40], Proposition 4). Let 1 ≤ h < n and α ∈ Eh0 . Then:

(i) δcα = δHα;

(ii) dcα = dHu−
1

n− h+ 1
LΛ(dHα).

The next lemma follows from the Kähler identities in Proposition 4.5.

Lemma 8.11. For any u ∈ Eh0 , with 0 ≤ h ≤ n, we have Λ(dHu) = −δJHu.

Furthermore Λ`(dHu) = 0 for every ` ≥ 2.

Proof. Keeping in mind that Λu = 0 and using (i) of Proposition 4.5 yields

Λ(dHu) = dHΛu− δJHu = −δJHu.
Moreover, by applying (iii) of Proposition 4.5 we obtain

Λ2(dHu) = ΛδJHu = δJHΛu = 0.

�

Lemma 8.12. Let u ∈ Eh0 , with 0 ≤ h < n. Then

(48) dcu = dHu+
1

n− h+ 1
LδJHu.

Moreover, the following identity holds:

‖dcu‖2 +
1

n− h+ 1
‖δJHu‖2 = ‖dHu‖2.

Proof. By Proposition 8.10 and Lemma 8.11 we get

dcu = dHu−
1

n− h+ 1
LΛ(dHu)

= dHu+
1

n− h+ 1
LδJHu.
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In order to prove the second assertion we first remark that, by definition,
dcu is orthogonal to the range of L. Now since LδJHu = −LΛ(dHu) we get

‖LδJHu‖2 = ‖LΛ(dHu)‖2

= 〈LΛ(dHu), LΛ(dHu)〉
= 〈Λ(dHu),ΛLΛ(dHu)〉
=
〈
Λ(dHu), LΛ2(dHu)

〉
+ (n− h+ 1) 〈Λ(dHu),Λ(dHu)〉 (by Lemma 2.8)

= (n− h+ 1) 〈Λ(dHu),Λ(dHu)〉 (by Lemma 8.11)

= (n− h+ 1)‖δJHu‖2,
and the thesis easily follows.

�

8.2. Decomposition of forms on the boundary of a domain II. This
section is the counterpart of Section 2.2 and, roughly specking, the idea here
is to replace horizontal forms with intrinsic forms in E∗0 . We later assume
that U ( Hn is a domain with boundary of class C2.

With the notation of Section 2.2, if α ∈ Eh0 , with n < h ≤ 2n+1, we have

α = θ ∧ αH with αH ∈ Ωh−1
H .

Now, writing αH = (αH)t + νH ∧ (αH)νH , where we have set

(αH)t := νH (νH ∧ αH) and (αH)νH := νH αH ,

we obtain the decomposition formula

α = θ ∧ (αH)t + θ ∧ νH ∧ (αH)νH .

Thus if α ∈ Eh0 , with n < h ≤ 2n+ 1, we can set

αt := θ ∧ (αH)t and ανH := −θ ∧ (αH)νH ,

and again we obtain the identity

α = αt + νH ∧ ανH .
Clearly, it turns out that αt ⊥ νH ∧ ανH .

The above definition is motivated by the following lemma.

Lemma 8.13. If α ∈ Eh0 , with n < h ≤ 2n+ 1, then

∗αt = νH ∧ (∗α)νH and ∗ (νH ∧ ανH ) = (∗α)t.

Proof. By Lemma 2.2 we have

∗αt = ∗H(αH)t = νH ∧ (∗HαH)νH = νH ∧ (∗α)νH .

On the other hand, we have

(νH ∧ ανH ) = − ∗ (νH ∧ θ ∧ (αH)νH )

= ∗(θ ∧ νH ∧ (αH)νH )

= ∗H(νH ∧ (αH)νH )

= (∗HαH)t

= (∗α)t.

�
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In particular, if α ∈ Ωh
H , 1 ≤ h ≤ 2n, we can always write

αt := νH (νH ∧ α), ανH := νH α,

and, as above, we have the decomposition formula

α = αt + νH ∧ ανH ∀α ∈ Eh0 .

Remark 8.14. We stress that combining (6) and Lemma 8.13, we obtain a
very useful result: If 1 ≤ h ≤ 2n+ 1 and α ∈ Eh0 , then

αt = 0 if and only if (∗α)νH = 0 and ανH = 0 if and only if (∗α)t = 0.

Definition 8.15. From now on, we denote by E∗0(U) the space of smooth
sections of E∗0 over U . With a slight abuse of notation, we also denote by
E∗0(U)⊗R C the corresponding space of complex forms Γ(U , E∗0 ⊗R C).

We conclude this section by stating a Green-type identity for the Rumin
differential dc (compare with formula (7)).

Theorem 8.16 (Green identity in (E∗0 , dc)). Let U ( Hn be a domain with

boundary of class C2. If α ∈ Eh−1
0 (U) ⊗R C and β ∈ Eh0 (U) ⊗R C, with

h 6= n, n+ 1, then

〈dcα, β〉L2(U) = 〈α, δcβ〉L2(U) +

∫
∂U
〈n ∧ α, β〉 dσ

= 〈α, δcβ〉L2(U) +

∫
∂U
〈νH ∧ α, β〉 dσH .

8.3. Gaffney-Friedrichs-type inequalities: technical preliminaries.
Let U ( Hn be a domain with smooth boundary of class C2. Below, we
generalize to E∗0 a classical definition which can be found in [38]; see, e.g.,
Definition 7.2.6, p. 291 (also compare with Definition 5.1).

Definition 8.17. Let u ∈ Eh0 (U) ⊗R C be an intrinsic differential h-form,
with 0 ≤ h ≤ 2n+ 1; we define the CC-Dirichlet integral by

Dc(u) :=

∫
U

(〈dcu, dcu〉+ 〈δcu, δcu〉) dV.

It is clear from the definition that all these quantities are positive real
numbers. Moreover, we remind the reader that Dc(u) = Dc(∗u).

Finally, it is worth observing that our main results for the complex (E∗0 , dc)
(see, more precisely, Theorems 8.22, 8.24 and 8.25) only concern the case
h 6= n, n+ 1.

Proposition 8.18. Let u ∈ Eh0 (U)⊗R C, with 1 ≤ h < n. Then

Dc(u) = DH(u)− 1

n− h+ 1

∫
U

〈
δJHu, δ

J
Hu
〉
dV

≥ DH(u)− 1

n− h+ 1
DH(Ju) = DJ

H(u).(49)
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Proof. By using together Definition 8.17, identity (48) in Lemma 8.12 and
Proposition 8.10, we get

〈dcu, dcu〉+ 〈δcu, δcu〉

= 〈dHu, dHu〉 −
1

n− h+ 1
〈δJHu, δJHu〉+ 〈δHu, δHu〉

= 〈dHu, dHu〉+ 〈δHu, δHu〉 −
1

n− h+ 1

〈
δJHu, δ

J
Hu
〉

= 〈dHu, dHu〉+ 〈δHu, δHu〉 −
1

n− h+ 1

〈
J−1δHJu, J

−1δHJu
〉

= 〈dHu, dHu〉+ 〈δHu, δHu〉 −
1

n− h+ 1
〈δHJu, δHJu〉 ,

where we have used that J2 = −Id. Now since∫
U
〈δHJu, δHJu〉 dV ≤ DH(Ju),

the proof follows. �

Moreover, by applying Proposition 5.11 to Ju and by keeping into account
that the first two integrals in (24) remain unchanged if we replace u with
Ju, we find the following proposition.

Proposition 8.19. Let u ∈ Ωh
H(U)⊗R C and assume that either (Ju)t = 0

or (Ju)νH = 0 on ∂U \ char(∂U). Then

DH(Ju) =

∫
U
‖∇Hu‖2 dV − i

∑
I,J

(pI − qJ)

∫
U
ūI,JTuI,J dV

−
∫
∂U\char(∂U)

〈
R̃J(u), u

〉
dσH ,(50)

where we have set R̃J(u) := J−1R̃(Ju).

Lemma 8.20. Let u ∈ Eh0 (U)⊗RC be an intrinsic h-form, with 1 ≤ h ≤ n.
Then, at every point of ∂U \ char(∂U), the following implications hold:

(i) ut = 0⇒ (Ju)νH = 0;
(ii) (Ju)t = 0⇒ uνH = 0.

Proof. We just prove (i), since the proof of (ii) is similar. Let g : Hn → R
be a defining function for U of class C2. We are assuming that:

• U = {x ∈ Hn : g(x) < 0};
• g(x) = 0 if and only if x ∈ ∂U ;
• ∇g 6= 0 for all x ∈ ∂U ;

see, e.g., Ch.2 in [34]. Now observe that dHg is parallel to νH and that the
hypothesis ut = 0 is equivalent to dH(gu) = 0 on ∂U . Indeed, if ut = 0,
then u = νH ∧ (νH u). On the other hand

dH(gu) = dHg ∧ u = dHg ∧ νH ∧ (νH u) = 0.

Moreover, if dH(gu) = 0, then dHg∧u = 0 and so νH ∧u = 0, which implies
ut = νH (νH ∧ u) = 0.

On the other hand, by Lemma 8.11, if ut = 0, then

0 = −ΛdH(gu) = δJH(gu) = J−1δHJ(gu),
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which implies

δH(gJu) = δHJ(gu) = 0.

From this we get δH(gJu) = 0 on ∂U and since δH(gJu) = − (dHg Ju),
the proof of (i) follows. �

Combining Propositions 8.18, 5.11, 8.19, Lemma 8.20, and formula (17)
in Corollary 5.5, we obtain the next proposition.

Proposition 8.21. Let u ∈ Eh0 (U)⊗R C, with 1 ≤ h < n, and suppose that
either ut = 0 or (Ju)t = 0 on ∂U \ char(∂U). Then

DJ
H(u) = DH(u)− 1

n− h+ 1
DH(Ju)

=
n− h

n− h+ 1

∫
U

‖∇Hu‖2 − i∑
I,J

(pI − qJ)ūI,JTuI,J

 dV

−
∫
∂U\char(∂U)

〈R(u), u〉 dσH

=
n− h

n− h+ 1
DH(u)− n− h

n− h+ 1
<e A

−
∫
∂U\char(∂U)

〈R(u), u〉 dσH

=
n− h

n− h+ 1
DH(u)− 1

n− h+ 1
<e

∫
∂U\char(∂U)

〈(R̃− R̃J)u, u〉 dσH ,

where R(u) := R̃(u)− 1
n−h+1R̃J(u).

8.4. Gaffney-Friedrichs-type inequalities: the main results. At this
point, by using the estimates of the “error terms” proved in the preceding
sections, Theorems 6.1 can be stated in (E∗0 , dc) as follows.

Theorem 8.22 (Gaffney-Friedrichs Inequality in (E∗0) (1st version)). Let
U ( Hn be a domain with boundary of class C2. Let u ∈ Eh0 (U)⊗R C, with
1 ≤ h < n, and assume that:

(i) u satisfies either ut = 0 or Jut = 0;
(ii) u satisfies either condition (JνH) (see Proposition 5.14) or

condition (J̃νH) (see Proposition 5.17).

Let {Vε}ε>0 be a family of open neighborhoods of char(∂U) (in the relative
topology) shrinking around char(∂U) when ε→ 0. In addition, assume that
σ(Vε) → 0 as ε → 0. Then, there exist geometric constants C0, C1 and C2

such that

Dc(u) + C0

∫
∂U∩Vε

‖u‖2 dσ

≥ C1

∫
U
‖∇Hu‖2 dV − C2

∫
U
‖u‖2 dV.

(51)

The constants C0, C1, C2 depend only on U , ε and on the integers h and n.
Furthermore, if u ∈ Eh0 (U)⊗R C with n+ 1 < h ≤ 2n, then (51) still holds
provided that ∗u satisfies (i) and (ii).
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Remark 8.23. Just as in Remark 6.2, the constant C2 may blow up as ε
tends to 0+.

Theorem 8.24 (Gaffney-Friedrichs Inequality in (E∗0 , dc) (2nd version)).
Let U ( Hn be a domain with boundary of class C2 satisfying condition (H)
(see Definition 3.4). Let u ∈ Eh0 (U)⊗RC, with 1 ≤ h < n, and assume that:

(i) either ut = 0 or Jut = 0;
(ii) u satisfies condition (Jν∗H) (see Remark 5.15).

Then, there exist geometric constants C̃1 and C̃2, depending only on U
and on the integers h and n, such that

Dc(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(52)

Furthermore, if u ∈ Eh0 (U)⊗RC with n+1 < h ≤ 2n, then (52) still holds
provided that ∗u satisfies (i) and (ii).

Theorem 8.25 (Gaffney-Friedrichs Inequality in (E∗0 , dc) (3rd version)).
Let U ( Hn be a domain with boundary of class C2 satisfying condition (H)
(see Definition 3.4). Let u ∈ Eh0 (U)⊗R C with 1 ≤ h < n, and assume that
either

(i) Jut = 0,
(ii) u satisfies the condition (44),

or

(j) ut = 0,
(jj) u satisfies the condition (45).

Then, there exist geometric constants C̃1 and C̃2, depending only on U
and on the integers h and n, such that

Dc(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(53)

Furthermore, if u ∈ Eh0 (U)⊗RC with n+1 < h ≤ 2n, then (53) still holds
provided that ∗u satisfies either (i) and (ii), or (j) and (jj).

References

[1] R. Abraham, J.E. Marsden, T. Ratiu, “Manifolds, tensor analysis, and applications”, Applied
mathematical sciences (Springer-Verlag New York Inc.), v. 75, Springer-Verlag (1988).

[2] Z.Balogh, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew.
Math. 564, pp. 63-83, (2003).

[3] Z.M. Balogh, C. Pintea, H. Rohner, Size of tangencies to non-involutive distributions, Indiana
Univ. Math. J. 60, No. 6, 2061-2092 (2011).

[4] H. Bahouri, J.Y. Chemin, C.J. Xu, Trace theorem on the Heisenberg group on homogeneous
hypersurfaces, Chapter in Phase Space Analysis of Partial Differential Equations, Vol. 69, Progress in
Nonlinear Differential Equations and Their Applications, pp. 1–15 (2006).

[5] , Trace theorem on the Heisenberg group, Annales de linstitut Fourier (2009), Vol. 59, Issue
2, pp. 491–514.

[6] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, “Stratified Lie groups and potential theory for their
sub-Laplacians”, Springer Monographs in Mathematics. New York, NY: Springer. xxvi, 800 pp.
(2007).

[7] A. Baldi, B. Franchi, N. Tchou, M.C. Tesi, Compensated compactness for differential forms in
Carnot groups and applications, Adv. Math. 223, No. 5, 1555-1607 (2010).

[8] A. Baldi, B. Franchi, Sharp a priori estimates for div-curl systems in Heisenberg groups, J.
Funct. Anal. 265, No. 10, 2388-2419 (2013).

[9] , Differential forms in Carnot groups: a Γ-convergence approach, Calc. Var. Partial Differ.
Equ. 43, No. 1-2, 211-229 (2012).

[10] , Maxwell’s equations in anisotropic media and Carnot groups as variational limits, Adv.
Nonlinear Stud. 15, 325–354 (2015) 325–354.

46



[11] A. Baldi, B. Franchi, M.C. Tesi. Hypoellipticity, fundamental solution and Liouville type the-
orem for matrix–valued differential operators in Carnot groups, J. Eur. Math. Soc. 11 (2009),
777-798

[12] A. Bove, B. Franchi, On the notion of differential forms in sub-Riemannian manifolds and
pull-back invariance, preprint (2015).

[13] L. Capogna, D. Danielli, N. Garofalo, The geometric Sobolev embedding for vector fields and
the isoperimetric inequality, Commun. Anal. Geom. 2, No.2, 203-215 (1994).

[14] L. Capogna, N. Garofalo, D.M. Nhieu, Examples of uniform and NTA do- mains in Carnot
groups, Proceedings on Analysis and Geometry (Novosibirsk Akademgorodok, 1999), Izdat. Ross.
Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 103121 (2000).
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