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Abstract

Measurement uncertainty is a key component of metrology but, as it is defined, it does not apply to nominal
properties. The possibility to define, evaluate, and express the uncertainty in the examination of nominal
properties is then a critical prerequisite for a harmonized treatment of nominal properties in metrology. The
assumption at the basis of this paper is that examination uncertainty can be understood in analogy with and
as  a  generalization  of  measurement  uncertainty.  To  this  aim  a  foundational  framework  is  introduced,
grounded  on  a  generic  concept  of  evaluation  uncertainty  that  applies  equally  to  quantitative  and  non-
quantitative  evaluations.  Based  on  this,  a  concept  of  examination  uncertainty  is  presented  and  some
examples of mathematical functions of examination uncertainty are proposed.
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1. Introduction

Measurement uncertainty is a well-established tool for modelling and reporting the quality of measurement
results. Not surprisingly, then, widening the scope of metrology to new fields  arises  the question whether
measurement uncertainty, or an appropriately generalized version of it, can be applied also to  such new
fields. The evaluation of  non-quantitative properties – which  is  usually not considered a measurement (a
notable exception is [Possolo 2015: p.12]) – is one of these fields, where properties are called “categorical”.
A basic distinction is drawn: “many categorical variables have only two categories [and] are called binary
variables. When a categorical variable has more than two categories, we distinguish between two types of
categorical scales. Variables having categories without a natural ordering are [...] called nominal variables.
[...] Many categorical variables do have ordered categories. Such variables are [...] called ordinal variables.”
[Agresti 2013: p.2] (other traditional classifications are presented in [Stevens 1946] and [Carnap 1966]).
The result of evaluations of nominal properties is affected by uncertainty as well, and currently there is no
consensus  on  how to  evaluate  and express  such  uncertainty.  The fact  that  often the  results  of  nominal
property evaluations are reported as single values – for example when the result of the examination of the
blood type of an individual is A in the ABO system – only hides the problem, by implicitly conveying the
misleading message that  such results  are in  any case certain.  Rather,  a  properly generalized  evaluation
uncertainty should be applicable also in the case of nominal property evaluations, a critical condition  for
adopting  the  principles  and methods  of  metrology:  “irrespective  of  whether  the  assignment  of  value to
nominal  properties should or should not  be called measurement,  the need is  both clear  and present  for
methods to evaluate the uncertainty associated with such assignments” [Possolo 2014: p.S231].
In the path toward a metrological treatment of nominal properties, a critical step is indeed the modelling and
quantification of evaluation uncertainty, whose applications are becoming more and more important. For
example,  there  is  an  increasing  request  for  reference  materials  certified  for  nominal  properties,  such
materials being needed for the quality control of examinations, in applications such as disease control (anti-
microbial resistance), food fraud (fish speciation, food adulteration), doping control (chemical structure). As
a  consequence,  reference  material  producers,  seeking  to  fulfil  the  general  requirements  for  reference
materials producers [ISO 2016], assign nominal property values with uncertainties or certify the reference
material for another quantitative property while a non-certified nominal property will be used by the users of
the reference material. Furthermore, evaluation uncertainty would be useful, for example, “in determinations
of identity of substance (is it salicylamide or is it aspirin?), and in forensic studies, including matching hairs
and fibres, comparing bite marks and shoe prints, examining firearm tool-marks, and in serological studies”
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[Possolo 2014: p.S231] (indeed, serological studies include a vast number of non-quantitative methods: the
mentioned case of blood typing is just an example of them).
While approaches for the evaluation of measurement uncertainty are accessible and highly standardised, a
general treatment of examination uncertainty is still to be developed, and in many cases only an indication
about the reliability of the assigned nominal property value is given. Even though some papers in the field of
metrology have already touched on the subject (e.g., [Ellison et al 1998], [Watanabe 2005], [Possolo 2014],
[Mari 2017], [Possolo, Iyerb 2017]),  also in reference to specific applications (e.g.,  [Possolo 2015: E6],
[Trapmann et al 2017]), examination uncertainty still requires a foundational study. In such a situation a
framework like the one we propose in this paper seems to be useful, in which measurement uncertainty is
generalized to an evaluation uncertainty, thus also applicable for nominal property evaluations. 
The  terminology in  the  field  of  nominal  properties  is  still  not  standardised,  and  in  particular  the  term
“examination” is sometimes used for both quantitative and qualitative evaluations [ISO 2012, 3.7]. Here it is
used  in compliance with the  Vocabulary on nominal properties, a recent IFCC-IUPAC Recommendation,
whose  phrasing  explicitly  mirrors  the  definition  that  the  JCGM  International  Vocabulary  of  Metrology
(VIM) gives of ‘measurement’: ‘examination’ is defined as “process of experimentally obtaining one or more
nominal property values that can reasonably be attributed to a nominal property” [Nordin et al 2018: 2.6].
The adoption of the principles and methods of metrology would make examination results accountable in
their trustworthiness [Mari 2017].
This paper aims to contribute to this purpose, based on the assumption that examination uncertainty can be
understood in analogy with measurement uncertainty. Hence, what in the last decades has been developed
about  measurement  uncertainty  –  as  presented  in  particular  in  the  JCGM  Guide  to  the  Expression  of
Uncertainty in Measurement (GUM) documents [JCGM 2008] – can be taken as a rich, structured set of
lessons  learned  toward  the  application  of  metrological  concepts  to  examination.  We  are  aware  that
measurement uncertainty still arises controversial issues, as discussed for example by [Thompson 2012], [Ye
et  al  2016],  and [Grégis 2019].  In the trade-off  between drawing a parallel  with JCGM documents  and
complete freedom of exploration, we opted for the former, plausibly at the price of inheriting some flaws that
future  editions  of  the VIM and the GUM might  fix.  Our justification is  that  several  communities  from
different  scientific fields are interested and involved in the matter:  we believe that,  at  this  stage of  the
development process, the VIM and the GUM provide a precious common ground for mutual understanding
and a sufficiently appropriate point to start from.
The  paper  is  structured  as  follows.  Section  2  proposes a  conceptual  framework in  which measurement
uncertainty  is  interpreted  as  a  specific  case  of  evaluation  uncertainty.  This  provides  the  context  for
introducing in  Section  3  an example of  nominal  property examination,  on which Section 4 develops a
concept  of  examination  uncertainty,  then  applied  in  Section  5  to  some  specific  cases  of  mathematical
functions which evaluate examination uncertainty. Section 6 further broaden the scope of the framework, by
showing  examination  uncertainty  may  be  coupled  with  a  second  parameter  –  which  could  be  called
“examination confidence” or “examination reliability” – to convey more complete information on the quality
of examination results.

2. Uncertainty of measurement as a quantifiable attribute and its specifications

In its most generic meaning, ‘uncertainty of measurement’ “as a quantifiable attribute” [JCGM 2008: 0.2] is
an informal concept, related to the “doubt about the validity of the result of a measurement” [JCGM 2008:
2.2.1] due to the “dispersion of the values being attributed to a measurand, based on the information used”
[JCGM 2012: 2.26]. More operatively, this general concept of uncertainty could be understood as  doubt
about  which  values  should  be  reported  in  the  measurement  result.  In  order  to  make  it  mathematically
tractable, such a “quantifiable attribute” needs then to be quantified. While more general approaches have
been proposed (see Ferrero, Salicone 2006), the GUM framework assumes that probability distributions are
the basic  mathematical  tool  for  this  quantification (the GUM maintains  a distinction between statistical
distributions  and probability  distributions,  as  referred to  the  way they are  generated (see [JCGM 2008:
2.2.3]);  since  also  the  former  fulfil  Kolmogorov  axioms,  the  term  “probability  distribution”,  and
“distribution” for short, can be used for referring to both).
The definition of measurement uncertainty, adapted from the GUM, that the VIM gives [JCGM 2012: 2.26],

“non-negative parameter  characterizing the dispersion of  the  quantity  values  being attributed to  a
measurand, based on the information used”
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is “an operational one that focuses on the measurement result and its evaluated uncertainty” [JCGM 2008:
2.2.4]. Though still generic, what is defined here is a mathematical entity: measurement uncertainty as a
parameter, and more generally an index, of a distribution (as defined in [ISO 2006: 2.9], a parameter is an
“index of a family of distributions”;  in reference to this definition,  measurement uncertainty – and then
examination uncertainty – may be then more generally considered as an index, so as to encompass the (non-
parametric) cases in which the distribution does not belong to any identified family, the usual situation in
examinations). In reference to the condition that “when reporting the result of a measurement of a physical
quantity, it is obligatory that some quantitative indication of the quality of the result be given so that those
who use it can assess its reliability” [JCGM 2008: 0.1], the underlying hypothesis is that a “quantitative
indication of the quality of the result” is effectively provided by an index of the distribution that, explicitly or
implicitly, summarizes the information acquired on the measurand. On this basis some specific indexes can
be chosen, as is the case of standard measurement uncertainty [JCGM 2012: 2.30], defined as

“measurement uncertainty expressed as a standard deviation”
Reporting the information on the quality of a measurement result in terms of standard uncertainty might not
always be adequate. The concept ‘measurement uncertainty’ is not exhausted by standard uncertainty, which
is just one of the several possible examples of measurement uncertainty. The GUM framework provides in
fact a richer array of options to characterise uncertainty, and in particular expanded measurement uncertainty
[JCGM 2008: 3.3.7]:

“To meet the needs of some industrial and commercial applications, as well as requirements in the
areas  of  health  and  safety,  an  expanded  uncertainty  U is  obtained  by  multiplying  the  combined
standard uncertainty  uc by a coverage factor  k. The intended purpose of  U is to provide  an interval
about  the  result  of  a  measurement  that  may  be  expected  to  encompass  a  large  fraction  of  the
distribution of values that could reasonably be attributed to the measurand.”

Expanded uncertainty  [JCGM 2012:  2.35]  involves  a  different,  and often more useful,  attitude  towards
“dispersion of the values”, as witnessed by the fact that measuring instrument specifications are typically
given  in  terms  of  expanded  uncertainty  and  level  of  confidence.  Other  examples  of  measurement
uncertainties which are not standard uncertainties include half-width of an interval having a stated level of
confidence (as in JCGM 2008: 2.2.3 Note 1) and interquartile range (i.e., the difference between the third and
the first quartile of the distribution).
There  is  a  critical  point  to  remark  here:  measurement  uncertainty  is  unavoidably  related  to  what  is  a
measurement result, and the very idea of what is a measurement result has been changing in the last decades.
The  GUM  –  originally  published  in  1993  –  adopted  the  traditional  approach  of  considering  that  the
measurement result is the value attributed to the measurand (see in particular JCGM 2008: 4.1.4), as in the
second edition of the VIM, which defined ‘result of a measurement’ as “value attributed to a measurand,
obtained by measurement” [ISO 1993: 3.1]. Under this assumption, the acknowledgement that generally we
cannot be certain about one value to attribute to a measurand – so that “a complete statement of the result of
a measurement includes information about the uncertainty of measurement” [ISO 1993: 3.1 Note 2] – leads
to the concept ‘uncertainty of the measurement result’. Uncertainty is then uncertainty of a given value, in its
role of summarizing the available information about the measurand. In this perspective an appropriate index
of  a  distribution  provides  a  summary  of  such  information,  but  of  course  “measurement  uncertainty  is
described fully  and quantitatively  by  a  probability  distribution  on  the  set  of  values  of  the  measurand”
(emphasis added) [Possolo 2015]. Along the same path Thompson [2012] is even more direct in stating that
“the uncertainty of a result  is the density function (or mass function) that best describes the probability of
possible values of the measurand” (emphasis added).
One of the key changes introduced in the third edition of the VIM [Mari 2015] is a new, more encompassing
definition of ‘measurement result’ as a “set of quantity values being attributed to a measurand together with
any other available relevant information” [JCGM 2012: 2.9]. Here measurement results are intended in a
generalized sense, as what results from a measurement, and therefore including the information related to
measurement uncertainty. The “relevant information” about the set of values is “such that some may be more
representative of the measurand than others” so that “this may be expressed in the form of a probability
density  function” [JCGM 2012:  2.9 Note  1].  But  if  the  measurement  result  is  (or  at  least  may be)  the
distribution,  not  one  value,  then  what  is  measurement  uncertainty  needs  to  be  reconsidered,  where  the
concept is now ‘uncertainty within the measurement result’, given that the “available relevant information”
which is a component of a measurement result generally includes measurement uncertainty. This justifies the
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position, of both the GUM and the VIM, that measurement uncertainty is an index of a distribution. From
this  distribution  one  representative  value  may  be  chosen  –  what  the  VIM calls  “measured  value”,  the
“quantity value representing a measurement result” [JCGM 2012: 2.10] – so that the uncertainty within the
measurement result may be interpreted as the uncertainty of the chosen measured value.
On this basis two other points are worth to emphasize.
First. If measurement uncertainty is an index that provides summary information on the dispersion of the
values in a measurement result, and if the underlying probability distribution is known, then measurement
uncertainty is usually sufficient to derive the confidence level for the chosen set of measured values.
Second. In these distributions no conditioning elements, such as true values, are explicitly included (whereas,
as usual, an implicit conditioning element is the available knowledge). Hence, measurement uncertainty may
be intended as the uncertainty about the true value of the measurand, as in [Possolo 2015: p.6], but the
concept is compatible also with true-value-agnostic positions, that may interpret it – as mentioned above – as
doubt about which values should be reported in the measurement result: “uncertainty of measurement is the
doubt that exists about the result of any measurement” [Bell 1999: p.1]. This rules out from our consideration
any modelling that assumes an explicit dependence of the distribution on one or more conditioning values, be
them true values or just generic reference values (an example of this more specific approach in the case of
ordinal properties is in [Bashkansky, Gadrich 2010], which assumes that “in order to understand how to
evaluate the uncertainty of an ordinal measurement result, one needs to know the likelihood that a measured
level j is received whereas the true level is i”).
Since  “the word “uncertainty” means doubt, and thus in its broadest sense “uncertainty of measurement”
means doubt about the validity of the result of a measurement”, the GUM acknowledges that “because of the
lack  of  different  words  for  this  general  concept  of  uncertainty  and the  specific  quantities  that  provide
quantitative measures of the concept, for example, the standard deviation, it is necessary to use the word
“uncertainty” in these two different senses.” [JCGM 2008: 2.2.1].  This  interpretation may be refined by
understanding uncertainty in/of measurement as admitting three layers of specification:
L1. a generic concept: uncertainty as a quantifiable attribute;
L2.  a  mathematical  concept:  uncertainty  as  a  generic  quantitative  attribute,  corresponding  to  a  yet
unspecified index of a distribution;
L3.  several  specific  mathematical  concepts:  uncertainty  as  a  given  quantitative  attribute,  related  to  a
specified index of a distribution.
This is the framework that we aim to apply, through an appropriate generalization, to examination. While
pursuing this, we also consider concepts that are “applicable to evaluating and expressing the uncertainty
associated with the conceptual design and theoretical analysis of experiments, methods of measurement, and
complex components and systems” [JCGM 2008: 1.3], which is a key feature of the GUM.

3. Background and example

A simple  representative  example  may  be  useful  to  help  understand the  analysis  that  follows.  First  the
examinand has to be defined, i.e.,  the “property intended to be examined” according to the Vocabulary on
nominal properties [Nordin et al 2018: 2.7], in intentional analogy with measurement and the VIM, where
the  property  to  which  the  measurement  result  is  attributed  is  called  the  “measurand”,  i.e.,  a  “quantity
intended to be measured” [JCGM 2012: 2.3].
Let us assume that a person or a technological system has to determine the character written in a given ink
pattern, a task called “optical character recognition” (OCR) in the context of Information Technology. The
implementation of an OCR system is a complex task (see, e.g., Mori et al, 1999), due to the fact that:
– character recognition is a multi-faceted task, where a variety of factors may come into play; for example,
even disregarding hand-writing recognition, character shapes still vary depending on size, font family, font
type, and attributes (e.g., bold and italic);
– typical groupings of characters often occur, which may affect character recognition performances in a
language-dependent way;
– the same shape may correspond to different characters in different alphabets, as in the case of Latin ‘P’ and
Greek/Cyrillic ‘P’, thus showing the need of a reference to the context in the examination.
In spite of this, the input-output description of the process (i.e., its black box model) is analogous to a generic
description of a measurement process:
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– the input is an object considered with respect to a given empirical property, in this case ink on paper
considered with respect to the shape of the ink pattern;
– the output is information about that property, in this case the recognized and assigned character.
Given our aims, we shall not “open the black box” here, as we focus only on the outcome of the recognition
process (incidentally, this implies that we shall not discuss examination uncertainty budgets; for an in-depth
analysis of the OCR techniques see, for example, [Mori et al, 1999]).
Like measurement, OCR can be abstractly intended as an evaluation, i.e., a value attribution [Mari 2013], of
the shape of any given ink pattern, where the possible characters (“a”, “b”, “c”, and so on), as elements of a
predefined set, are the possible values. Hence the shape of a given ink pattern could be reported by OCR as
the character “a” of a given alphabet, called an “examined value” [Nordin et al 2018: 3.5], much like the
reported length of a given rod is, e.g., 1.234 m, called a “measured value” [JCGM 2012: 2.10].
In the same way that measurement results can be compared if they are traceable to the same unit, comparison
among examination results  requires  reference to  the  same  classification system,  i.e.,  to  the  same set  of
reference values,  each of them being the identifier  of  a class of equivalent nominal  properties ( a major
difference between measurement and examination is that for the latter nothing like the International System
of  Quantities  (ISQ)  [JCGM 2012:  1.6]  and  the  International  System of  Units  (SI)  [BIPM 2014]  exist:
examinations typically refer to established classification systems which in some cases may change due to
knowledge improvement). We refer in the following to a basic Latin alphabet and, for simplicity, assume as
the classification system the set of 26 lowercase and the 26 uppercase characters, disregarding punctuation
marks. We also do not consider the distinctions among other features such as font types (e.g.,  Arial and
Times), attributes (e.g., italic and bold), or size, that would be part of the detailed examination model for the
evaluation of uncertainty. While conceptually simpler to discuss, such feature-independence may make OCR
a more complex task in practice. Of course, character recognition might involve and exploit order or metric
information, e.g., lengths of stems, radii of curvature of rings, suitably defined distances among patterns,
etc., but this remains “within the black box”.
What differentiates examination from measurement, as shown by the OCR example, is that the examinand
cannot be compared to a unit, and a property-related ordering cannot be defined: claims that the shape of an
ink  pattern  is  greater  than  another,  or  that  one  shape  is,  say,  double  than  another  have  no  empirical
significance in the context of OCR. Rather, outcomes of the process are purely classificatory, and the values
attributed to the shapes are themselves elements of a set with no algebraic structure. Hence, shape is not a
measurable property in the sense of the VIM [JCGM 2012: 2.1].
Despite these differences, the fundamental idea of metrology – that a measurement must provide not only
one or more values to be attributed to the measurand,  but also some quantitative information about the
quality of this attribution –  applies also to examination. This  seems to be indeed a key condition for the
application of metrological concepts/approaches/understanding to examinations, that triggers the next step in
our analogical consideration of examination with respect to measurement. Let us paraphrase the statement of
[JCGM 2008: 0.1] (changes are underlined):

When reporting the result of an examination of a nominal property, it is obligatory that some quantitative
indication of the quality of the result be given so that those who use it can assess its reliability. Without such
an indication,  examination results cannot be compared, either among themselves or with reference values
given in a specification or standard. It is therefore necessary that there be a readily implemented, easily
understood, and generally accepted procedure for characterizing the quality of a result of an examination,
that is, for evaluating and expressing its uncertainty.

4. From measurement uncertainty to examination uncertainty

Once the set of possible values for the nominal property under consideration has been chosen, the core idea
of  examination  uncertainty  is  not  different  from  the  one  at  the  basis  of  measurement  uncertainty.  An
examination process may be formally described as a mapping from a set of nominal properties of objects to
the chosen set of values, or to a more complex structure derived from it. In our OCR example, each shape s
in a set S is expected to be recognized as a character c in the chosen reference set of characters. Ideally, the
process maps each shape to a character, and therefore it is formalized by a recognition function  ϱ:S→C,
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c=ϱ(s), i.e.,  shape of  s =  c in the set  C (where, as mentioned above, the mapping could result  from the
composition  of  multiple  intermediate  mappings,  which  might  involve  extracting  and  then  exploiting
measurable features). This induces on S a partition into subsets Sj, where two shapes s and s’ belong to the
same subset, and therefore are recognized as equivalent,  s≈s’, if and only if they are mapped to the same
character, ϱ(s)=ϱ(s’).
It is a fact that the recognition of some shapes may be less than ideal for a variety of reasons. In the OCR
example introduced above, these might include insufficient scanner pixel resolution, blurred edges of the
printed or written character, and so on. In these cases it might happen that a given shape is not recognized at
all, or that it is mapped to more than one character, possibly each of them with an associated probability of
recognition. As a consequence, the recognition function becomes more complex, its range being the set of the
subsets of  C, possibly extended with one element for all cases of non-recognition, or even the set of the
probability  distributions  on  C:  it  is  then  legitimate  to  ask  what  uncertainty  can  be  attributed  to  the
examination result in these cases, and how it can be reported.
In discussing a  definition of  ‘examination uncertainty’,  we  shall  undertake to  fulfil  the  following three
conditions:
(1)  in  analogy  with  ‘measurement  uncertainty’ as  discussed  in  Section  2,  ‘examination  uncertainty’ is
structured as a three-layer concept: a generic concept of uncertainty (L1) is quantified into a quantitative
attribute of  examination uncertainty (L2),  that  may correspond to several  possible  specific  indexes of a
distribution (L3);
(2)  it  generalizes  measurement  uncertainty,  so  as  to  maintain  the  well-known  conceptual  and  formal
hierarchical  structure  of  invariant  conditions  among  statistics,  those  that  Stevens  called  “permissible
statistics”  [Stevens  1946]  and  such  that,  for  example,  the  mean  can  be  computed  only  for  numerical
distributions but the mode can be computed for both categorical and numerical distributions;
(3) it is general enough to include cases in which an examination result is reported as either a probability
distribution of values or a set of values, somehow extracted from the distribution and possibly reduced to a
single  value,  in  analogy with measurement  results:  “If  the  measurement  uncertainty is  considered to be
negligible for some purpose, the measurement result may be expressed as a single measured quantity value.
In many fields, this is the common way of expressing a measurement result.” [JCGM 2012: 2.9 Note 2]
(measurement results reported as single values may be interpreted as implicitly conveying an uncertainty
through their number of significant digits; due to the absence of algebraic structure, nothing similar applies
to examination results).
Like in the case of measurement, the generic concept of uncertainty in nominal examination (L1) has to do
with the quality of the examination result, the information provided by the quantitative specifications (L2
and L3) depending on the way the result is reported:
– if a distribution is reported as the result, an index of examination uncertainty allows us to compare different
results, and therefore different distributions, so as to establish their relative uncertainty;
–  if  instead  the  result  is  a  single  value  or  a  set  of  values  chosen  from  the  distribution,  an  index  of
examination  uncertainty  gives  us  some  information  about  the  specificity  of  the  choice:  the  greater  the
uncertainty, the less the specificity; in this case a properly generalized version of the concept ‘statistical
coverage interval’ – “an interval for which it can be stated with a given level of confidence that it contains at
least a specified proportion of the population” [JCGM 2008: C.2.30] – may be adopted to refer to the set,
where the lack of algebraic structure of the set of values requires “interval” to be substituted with “subset”.
With the same substitution, the concept ‘confidence coefficient’, or ‘confidence level’ – “the value (1 − α) of
the probability associated with a confidence interval or a statistical coverage interval” [JCGM 2008: C.2.29]
– is appropriate also for examination results. In fact, the non-parametric nature of the distributions defined
over sets of values of nominal properties makes the reference to confidence levels even more important than
in the case of measurement: while the confidence level of a coverage interval obtained from a parametric
distribution may be typically computed, in the case of examination results the choice of the coverage subset
is generally not sufficient to know the confidence level, which needs then to be explicitly specified.
This shows that examination uncertainty may be conceived in analogy to measurement uncertainty also at the
quantitative  level  (L2).  However,  while  measurement  uncertainty  refers  to  “dispersion  of  values”,  it  is
arguable  whether the concept ‘dispersion’ applies to nominal properties. For quantities, being more or less
dispersed usually means ‘being more or less distant, from each other or from a given point’. The reference to
a distance, and therefore to a structure in the set of values, suggests that applying the concept ‘dispersion’ to
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nominal properties might be inappropriate (in fact, the Vocabulary on nominal properties uses ‘dispersion’
also  in  the  case  of  nominal  properties  –  for  example  when noting  that  “examination  precision  can  be
expressed numerically by measures of dispersion of examined values” [Nordin et  al  2018:  3.12] – thus
showing that the subject is not settled down). Alternative terms to “dispersion” might be “discrepancy”,
“diversity”, or “variation”. Our task here is to propose a conceptual framework, not a set of definitions: as a
placeholder, we adopt here “variation” (as in [Wilcox 1967], but without the adjective “qualitative”, which
could be misleading), to be intended in the sense of ‘variation internal to the distribution’. In reference to our
OCR example, we may say then that the result R1 = {“a”, “d”, “o”} has a greater variation (or discrepancy, or
diversity, or, possibly, dispersion) than  R2 = {“a”, “d”}. By  a  slightly modified version of [JCGM 2012:
2.26], a simple draft definition is then (changes are underlined):

examination uncertainty: index characterizing the variation of the values being attributed to an examinand,
based on the information used

The comparison between measurement and examination that we have drawn so far can be summarized as in
Table 1.

Table 1: Side by side comparison of a measurement and examination,
including the treatment of measurement uncertainty and examination uncertainty.

In the case of measurement, In the case of examination,

the length of a given rod the shape of a given ink pattern

is an example of a measurand. is an example of an examinand.

A measured value for the measurand is, e.g., An examined value for the examinand is, e.g.,

1.234 m. “a” in the set of Latin characters.

In presence of measurement uncertainty In presence of examination uncertainty

a measurement result is, e.g., an examination result is, e.g.,

the interval of values 1.2340±0.0005 m, the subset of values {“a”, “d”, “o”} in the set of
Latin characters,

possibly with an associated level of confidence, possibly with an associated level of confidence,

and more generally it is a probability distribution
defined on the set of possible values.

and more generally it is a probability distribution
defined on the set of possible values.

This summary may be then framed in the context of the proposed three layers of specification, as in Table 2.

Table 2: Side by side comparison of a measurement uncertainty and examination uncertainty,
in reference to the proposed three layers of specification.

Layer Uncertainty of an
evaluation as

In the case of measurement: In the case of examination:

L1 a quantifiable attribute
of the evaluation result

the same (a quantifiable attribute of
the measurement result)

the same (a quantifiable attribute of
the examination result)

L2 an index of the
distribution that is the

evaluation result

the same (an index of the
distribution that is the measurement

result)

the same (an index of the
distribution that is the examination

result)

L3 a specific index of the
distribution

e.g., standard deviation, interquartile
range

e.g., f1, f2, as defined in section 5
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On this basis specific indexes can be defined (L3) to provide quantitative information on the uncertainty of
examination results (ordinal properties can be interpreted as nominal properties for which an ordering is also
meaningful [Agresti 2013]:  hence what follows also applies to ordinal properties, although more specific
statistical techniques, e.g., indexes based on distribution percentiles, can be exploited for dealing with ordinal
properties).

5. Some specific cases of examination uncertainty

Let us consider the general case in which the result of examining a nominal property s is a probability mass
function  R = {(cj,  pj)} defined on a set of  values  C = {cj}, where  pj is  the probability  that the nominal
property s is examined to be the value cj. For OCR, this corresponds to a distribution such as

R = {(“a”, 0.80), (“d”, 0.15), (“o”, 0.05), (any other character in the set C, 0.00)}
that might be generated by repeating the recognition of the same shape  s and obtaining, for example, the
character  c1 =  “a” 8 times out  of  10 and so on,  or  by either a  person or  an OCR system attributing a
probability of recognition of the shape, in this case p1 = 0.8 to “a” and so on (how such probabilities can be
obtained depends of course on the specific application; for example, in the case of DNA sequencing Possolo
shows how the probabilities of the nucleobases at any given location can be computed from “quality scores”
[2015: E6], and a technique for estimating the probabilities of correct identification of chemical substances is
presented by Stein [1994]). An explicitly probabilistic information might not be available, and in this case
the person or the OCR system could report a subset of C as the result, e.g., R1 = {“a”, “d”, “o”}: this can be
interpreted as the implicit assumption of a uniform distribution, {(“a”, 0.33), (“d”, 0.33), (“o”, 0.33), (any
other character in the set C, 0.00)}. In the case of examination results that are subsets, their comparison by
variation is  trivial.  For example,  in reference to the results  R2 = {“a”,  “d”} and  R3 = {“a”},  where the
subscript denotes different examinations of the same shape, as a general (L1) description, we may conclude
that there is more variation in R1 than in R2, and that in R3 there is no variation at all, so that according to R3

the given shape is claimed to have been recognized as the character “a” with certainty.
The idea of a variation index may be then formalized by a set function (L2), and the statistical literature
provides a variety of indexes that may be considered for this purpose. After [Wilcox 1967], a simple choice,
applicable to examination results formalized as subsets, is a function whose minimum value is 0, in the case
of no uncertainty (i.e., if #R = 1, where #R is the cardinality of  R), and monotonically increasing with the
cardinality of the subset. If a normalization condition is added, so as to obtain the value 1 in the case of
complete  uncertainty  (i.e.,  if  #R = #C),  a  first  specific  (L3)  instance  of  examination  uncertainty  is  the
function:

f1(R) =def (#R – 1) / (#C – 1)
where the term #C – 1 is a normalization factor, such that uncertainty ranges from 0 to 1 (another option
might be to divide by #C, so that uncertainty ranges from 0 to the probability that can be associated to the set
of "wrong" values, still assuming all elements in C are equiprobable. As mentioned above, we are assuming a
set  C of 26 lowercase and 26 uppercase characters in a basic Latin alphabet,  with one more element to
account for all other possibly unidentified shapes, so that #C = 53). Hence f1(R1) = 2/52,  f1(R2) = 1/52, and
f1(R3) = 0.
Another  and more general option to evaluate examination uncertainty is based on information entropy, as
already  suggested  by  [Possolo  2015]:  “for  nominal  (or,  categorical)  properties,  the  entropy  of  the
corresponding probability  distribution  is  one  of  several  possible  summary descriptions  of  measurement
uncertainty” (where, interestingly, measurement is assumed to encompass also the evaluation of nominal
properties). For an examination result R = {(cj, pj)}, entropy H(R) is defined as

H(R) =def –Σj pj log(pj)
with

0 ≤ H(R) ≤ logb(#C)
the largest value being obtained when all values have equal probability, i.e., when {pj} is again a uniform
distribution. Any logarithm basis b can be considered, and it can be observed that the inequality above yields

b0 = 1 ≤ bH ≤ #C
As a specific (L3) index H(R) could be taken, but another interesting candidate is

f2(R) =def bH(R) – 1
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or its normalized version (bH(R) – 1) / (#C – 1). Both  H and  f2 associate smaller uncertainty with smaller
values,  as  expected  of  an  uncertainty  index,  and  do  indeed  characterize  variation,  and  both  provide
meaningful information about  the uncertainty in the examination result. The latter, being independent of  b
and comparable to #C,  might be more directly understood and could perhaps be preferred.  Indeed,  if  R
contains a single value with probability 1, then f2(R) = 0, i.e., there is no uncertainty. At the opposite end, if
the examination result  R includes all values in C with equal probability, all #C – 1 values but the first one
contribute to uncertainty, which is indeed maximal, f2(R) = #C – 1. For all intermediate examination results,
bH(R) can be non-integer, given that the values in  R are not merely counted by  f2(R), but suitably weighted
according to their probability. Then, bH(R) can be interpreted as an equivalent number of possible values, and
bH(R) – 1 provides the equivalent number of values contributing to the examination uncertainty.
The fact that multiple indexes of examination uncertainty can be defined is not surprising, given that the
same happens for measurement uncertainty,  of  which standard deviation and interquartile range are two
examples: each index provides different information about, and has different uses related to, uncertainty. A
discussion of specific indexes, their suitability and relevance is beyond the scope of this paper, but may be
the subject of future works, once steady foundations have been laid.

6. Examination uncertainty and examination confidence

We have already quoted the VIM in its consideration that “if the measurement uncertainty is considered to be
negligible for some purpose, the measurement result may be expressed as a single measured quantity value”,
with the acknowledgement that “in many fields, this is the common way of expressing a measurement result”
[JCGM 2012: 2.9 Note 2]. The same happens in examinations of nominal properties, whose results are in
fact  usually  single  values.  For  an  examination  the  probability  distribution  that  formalizes  the  available
information is defined on a finite set of values: this offers a further option for assessing the quality of the
results, by simply reporting the probability that the chosen value has in the distribution. For example, starting
again from the distribution

R = {(“a”, 0.80), (“d”, 0.15), (“o”, 0.05), (any other character in the set C, 0.00)}
the examination result could be

shape s = “a” in the set C, with probability 0.80
This  probability  is  not  an  index  of  variation,  in  the  sense  proposed  above,  but  an  index  of  correct
classification (and therefore its complement, 0.20 = 1 – 0.80, is an index of mis-classification), assessed on
the basis of the available information. This index, which could be called maybe “examination confidence” or
“examination reliability”, is complementary, not alternative, to examination uncertainty, and over uncertainty
it has the advantage of being simple to understand and of offering positive (confidence, reliability), instead
of negative (un-certainty) information. Furthermore, this is immediately generalized to the case in which
more than one value is reported, so that for example

shape s = “a” or “d” in the set C, with probability 0.95 (=0.80+0.15)
A simple draft definition might be then:

examination  confidence  /  examination  reliability:  probability  of  the  values  being  attributed  to  an
examinand, based on the information used

This complementarity is well highlighted in [Bell 1999: p.1]: “Since there is always a margin of doubt about
any measurement, we need to ask ‘How big is the margin?’ and ‘How bad is the doubt?’ Thus, two numbers
are really needed in order to quantify an uncertainty. One is the width of the margin, or interval. The other is
a confidence level, and states how sure we are that the ‘true value’ is within that margin.”. Basically the same
applies  to  examination  then,  the  only  difference  being  that  in  this  case  the  margin  of  doubt  must  be
interpreted as related not to the width of an interval but to the cardinality of a subset. Hence, if a single value
is reported, the confidence level remains the only relevant index.
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7. Conclusions

The  possibility  to  evaluate  and  express  uncertainty  in  examination  of  nominal  properties  is  a  critical
prerequisite for a harmonized treatment of nominal properties in metrology, and a foundational framework
like the one we have proposed here contributes to this endeavour.
– Exactly as in the case of measurement, it starts (layer L1) from a concept of uncertainty as a quantifiable
attribute related to the doubt about the values to be reported in an evaluation result.
– Under the hypothesis that results are probability distributions, it establishes (layer L2) that uncertainty is
quantified as an index of the distribution.
– This  provides  the  context  for  defining (layer  L3)  specific  indexes,  each quantifying an aspect  of  the
complex concept of uncertainty.
In reference to the concept of evaluation as value attribution, such that both measurements and examinations
are evaluations, L1 and L2 establish a common ground, on  which measurement-specific and examination-
specific indexes are defined at the layer L3.  This suggested structure seems to be a useful component of a
conceptual, mathematical, and operative framework for embedding the evaluations of nominal properties in
metrology.
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