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Abstract

Reliability Options are capacity remuneration mechanisms aimed at enhancing security
of supply in electricity systems. They can be framed as call options on electricity sold by
power producers to System Operators. This paper provides a comprehensive mathematical
treatment of Reliability Options. Their value is first derived by means of closed-form pricing
formulae, which are obtained under several assumptions about the dynamics of electricity
prices and strike prices. Then, the value of the Reliability Option is simulated under a real-
market calibration, using data of the Italian power market. We perform sensitivity analyses
to highlight the role of the level and volatility of both power and strike price, of the mean
reversion speeds and of the correlation coe�cient on the Reliability Options’ value. Finally,
we calculate the parameter model risk to quantify the impact that a model misspecification
has on the equilibrium value of the RO.
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1 Introduction

In several electricity markets worldwide there is an explicit remuneration of power through some
Capacity Remuneration Mechanisms (CRMs). There exist di↵erent types of CRMs: capacity
payments are explicit payments to power producers that are set administratively; capacity auctions
are procurement auctions through which the System Operator (SO) remunerates a targeted amount
of generation capacity; capacity obligation is the obligation for load serving entities to hold enough
capacity to serve the load; strategic reserves is capacity that is withdrawn from the market and
attributed to the SO in exchange for a predetermined remuneration. Interesting new CRMs that
are gaining momentum are reliability options (ROs). Originally proposed by [41], [9], [31] and
firstly implemented in Colombia [18], ROs are also adopted in ISO-New England [23], in Ireland
[34, 35, 36] and in Italy [29, 39]. ROs are call options on power capacity, which are sold by power
producers to the SO in exchange of a premium. By selling ROs, power producers commit to
supply energy to the market and return to the SO the extra revenues that they would obtain when
electricity prices rise above a predetermined level called strike price. The obligation of returning
these extra revenues, which is termed implicit penalty, discourages any opportunistic behavior on
the producers’ side who might otherwise be tempted to withdraw capacity from the market in an
attempt to benefit from price spikes. The aim of this paper is to propose a quantitative framework
to evaluate ROs. We do so by following the financial approach, which requires identifying the
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stochastic property of the asset under evaluation and assuming that a continuous hedging between
the financial derivative and the underlying asset is possible. At a first glance, this assumption
seems quite hard to be met in the electricity sector, given that the underlying asset of the option is
electricity, which is not a storable good1. However, there are cases of derivatives written on several
underlying assets which are not liquidly traded, such as interest rates or temperatures. What is
needed for the application of the risk-neutral pricing based on hedging is the existence of liquid
assets that are traded and that correlate with the underlying of the derivative, such as forwards.
This is our working assumption.

The RO is in its essence a contract for di↵erences, in which the issuers give up some ex-post
risky return in exchange for a known ex-ante premium. Therefore, a RO allows hedging price risk
in the electricity market.2 In markets where ROs are traded an explicit penalty for unavailability
can also be introduced. For instance, in the Italian case the ROs issuers face an extra penalty
that arises whenever they do not submit bids to the energy market [39]. The value of ROs should
include also the expected value of such a penalty, calculated using some measure of expected
power unavailability. We do not include such a value here and neglect the hedging against such an
explicit penalty for two reasons: i) the latter is limited by the capacity derating that is calculated
by the SO taking into account the average available capacity of a supplier, and we do not model
here the quantity supplied by ROs issuers but just its value. ii) In general, the expected level of
explicit penalty is rather low; for instance, in the Italian RO auctions, the expected amount of
explicit penalty for power producers can be estimated as being not greater than 10% of the implicit
penalty.3

We formulate di↵erent possible assumptions for the dynamics of the stochastic processes on
which the RO depends, and estimate the relative RO value. ROs are complex options on power
supply which can have di↵erent maturities and can be exercised several times at di↵erent, and
possibly random, strike prices. Therefore, we provide a comprehensive mathematical treatment of
all their aspects, and show how their fair value depends on the electricity price and the strike price
definition and behavior.

Several authors have evaluated various exotic options on electricity.4 However, to the best of our
knowledge, our paper is the first one to evaluate ROs under di↵erent assumptions on the electricity
price process. We choose a set of simple and significant models for electricity prices and present
semi-explicit pricing formulae for ROs that have clear economic interpretations. We first start
from the simplest possible assumption about electricity prices and strike prices, increasing then
the level of complexity of the RO design, to allow for a mean reverting underlying, for stochastic
strike prices and for possibly negative (but bounded from below) electricity prices. Furthermore,
we simulate the RO value under di↵erent possible assumptions on the parameters. To provide a
realistic example and gain further insights on their value, we calibrate the RO parameters against
real electricity market data obtained from the Italian Power Exchange. The availability of long
hourly price time series and the recent introduction of ROs in the Italian market both justify the
choice.

We show how the ROs’ value depends on the value of the parameters. We calculate the ROs’
fair value before they are issued, as well as fine-tune their design with respect to the role and the
impact that the strike price has on their value. Finally, we calculate the impact that a model
misspecification has on the equilibrium value of the RO.

The paper is structured as follows. Section 2 places this paper in the relevant literature on the
subject. Section 3 describes ROs and presents a general pricing formula under realistic assumptions.
Section 4 provides semi-explicit solutions to the general pricing formula, for di↵erent electricity and

1
At least as long as storage of electric energy by means of conversion into a di↵erent form of energy, such as

kinetic energy of water in power dams or as chemical energy in batteries, is limited because of its cost or for technical

reasons.
2
This explains why in the RO literature [28], the implicit penalty is also termed implicit covered penalty, high-

lighting that ROs allow hedging against electricity price volatility.
3
Source: own calculation based on Italian market data of year 2018.

4
See the literature review section below for a discussion of these contributions.
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strike price models. We start by defining the arbitrage-free boundaries of RO’s evaluation. We then
move from the simplistic model of geometric Brownian motion (GBM) with deterministic strike, to
correlated GBMs with stochastic strike, and, by increasing realism on the model, to the case when
both electricity and strike prices are seasonal and mean-reverting. For all these models, we present
semi-explicit pricing formulae. Finally, we provide some insights for the case of negative prices. In
Section 5, we showcase a simulation of the RO evaluation and perform a sensitivity analysis, using
data of the Italian Power market for estimates and calibration. In Section 6 we present an analysis
of parametric model risk, which allows quantifying how much a possible parameter misspecification
a↵ects the equilibrium RO price that we derive here. Section 7 draws conclusions, while all the
proofs of the mathematical results are in the Appendix.

2 Literature review

ROs are a specific type of CRMs, aimed at enhancing security of supply. An introduction and an
analysis of Capacity Remuneration Mechanisms can be found e.g. in [19, Chapters 22 and 23].
Among the di↵erent CRMs, ROs, were introduced by [9, 41] and further discussed by [3, 4, 18].
Interestingly enough, all these papers discuss ROs qualitatively and present examples showing how
they can increase the security of supply. None of them present a quantitative analysis of ROs, as
we do here.

The financial approach that we follow in this paper is the standard approach to price financial
derivatives (see for instance [26]). It has been widely used in the literature to price derivatives
on several underlying assets that are not liquidly traded, as it occurs in the present paper, such
as interest rates or temperatures (see for instance [10, Chapter 15] for financial products and
[20, 30, 38] for industrial applications). The assumption that there exists a liquid asset highly
correlated with the price of electricity was questioned in the seminal paper [8], which considered
the relationship between derivative (future) prices and spot prices in markets with limited liquidity
and risk adverse agents. However, we believe that even if the assumption of limited liquidity was
justified at the beginning of the liberalization process of the power market, this concern is less
justified now, after several years of functioning of liberalized electricity markets. In fact, our
approach is shared without concerns by other scholars who have evaluated other exotic options
on electricity, such as spark-spread options (options on the di↵erential between power prices and
the heat content of the fuel, [20, 25]), Asian options (options written on average prices, [16]), and
options which are implicit in demand response mechanisms, [38]. Our approach is also justified by
utility-based arguments, see [14, Remark 3.6] for structured products in energy markets like that
in Eq. (1) and the subsequent ones.

The nearest proxy of our analysis is [13], which evaluates, through a Monte Carlo approach,
a contract composed of a portfolio of 4344 call options on hourly prices, all with the same strike
price. This corresponds to a discrete-time version of the option we consider in Proposition 4.1.
With respect to this paper, we provide a full mathematical treatment of ROs.

Finally, our work is also related to the analysis of arbitrage-free bounds of [20]. We start here by
deriving model-free no-arbitrage bounds to the value of the ROs; similar no-arbitrage bounds have
been derived by [20] for analogous contracts. However, the setting of that paper is di↵erent from
ours: in [20], it is assumed that a continuum of forward contracts is traded, both for electricity and
for the relevant fuel (whose spot price here would be regarded as equivalent to K), which deliver
at any given date t. However, forward contracts on electricity guarantee the delivery of power over
a period rather than on a single date t; therefore, the no-arbitrage bounds available in [20] cannot
be directly applied.
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3 Reliability options

We start by describing in general what ROs are. These contracts are sold in an auction, typically
once a year, and they aim to deliver electricity with a given T1-length period in advance (lead time),
for a pre-defined period of delivery, with length (T2 � T1). The rules of the RO specify that the
capacity provider, the subject who sells the option, must commit to deliver a certain capacity to the
subject buying the option, in general the SO. Such a commitment is made e↵ective by prescribing
that the seller must o↵er in the market an amount of electricity equal to the committed capacity,
and return any positive di↵erence between the reference market price and a previously set strike
price K. Each RO contract scheme specifies what the reference market is. In a first approximation,
the reference market can be a convex combination of di↵erent markets, such as the day-ahead and
the balancing or real-time ones. In practice, di↵erent RO schemes can have di↵erent reference
markets. For instance, in Ireland, the reference is exclusively the day-ahead market, while in NE-
ISO it is the real-time one. If we call P the day-ahead market price and P

(b) the price in the
balancing market (or in the real-time market), we can define the reference market price R as the
following convex combination

R = aP + (1� a)P (b)
,

where, a 2 [0, 1] depends on the country: a = 0 for ISO New England; a = 1 for Colombia and
Ireland; a 2 [0, 1] in the case of Italy (see [29] for a description of the forthcoming Italian market).

The strike price is in general determined by taking into account the variable costs of the
reference peak technology, that is, the dispatchable technology that would be included in the
optimal generation mix with the lowest unitary investment cost. In actual RO markets, the rule
for the strike price is communicated to potential sellers of ROs before the auction takes place. Thus,
in some implementations it can be treated as a deterministic and constant parameter. However, it
is also possible that the strike price changes over time during the life span of the RO. This is the
case e.g. of the Italian scheme, where it is established that the rule linking the strike price to a
reference marginal technology is set before the auction, but the marginal cost of such a technology
is computed every given period during the life span of the RO.5 This implies that the strike price
can also be conceived as a stochastic process. We shall first derive the RO value starting with the
simplest case, and then increase the level of complexity, to derive a general representation of the
value of the RO.

3.1 A simple mathematical model for Reliability Options

The mathematical modeling of the general RO is quite complex, as many auctions and prices are
involved. We simplify it by defining a mathematical model for the case when the reference price is
simply the day-ahead price P , i.e. a = 1, as it is in the Colombian or the Irish CRM.6 In this way,
only one state variable is needed for the reference market price R, and it is indeed P .

We start by computing the fair price of a RO, written only on the reference price P and based
on a generation capacity, i.e. for a power plant that is already in place. As said at the beginning of
this section, the RO is sold in an auction at a certain time, but it becomes active in a subsequent
time period. Let us denote by t = 0 the auction time and by [T1, T2], with T1 > 0, the time
period when capacity has to be committed. It is assumed that the power plant will be productive
at least until T2. The idea of pricing the RO is to compute the expected operational profits at
time t = 0 (auction time) of the power plant over the period [T1, T2], both in the case when the
capacity provider enters a RO scheme, and in the case it does not. The di↵erence between these
two operational profits will be the fair price of the RO.

5
See [29] and [40].

6
Moreover, we do not consider congestion in the transmission network, and therefore we implicitly assume that

the market for ROs have the same size of the electricity market, namely, that there are no di↵erences between the

pricing zones of the electricity and the capacity markets.
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We work on a filtered probability space (⌦,F , {Ft}t�0 ,Q) such that the probability measure
Q is the risk-neutral pricing measure used by the market, and the day-ahead electricity price
P = (Pt)t�0 is a Q-semimartingale. We consider the simple case of a thermal plant, with total
capacity Q > 0,7 that converts a fuel, for example oil, gas or coal, into electricity. The cost
C = (Ct)t�0 of running the thermal plant summarizes the fuel price, CO2 price, operational and
other costs. The power plant sells the electricity at time t � 0 when it wins the day-ahead auction,
i.e. when its bid bt is less than or equal to Pt. We adopt the usual simplifications, continuous time
instead of hourly granularity and no ramping penalties/constraints. The plant can decide its bid
process b = (bt)t�0 to maximize its revenues.

We first evaluate the expected operational profits of the power plant over [T1, T2] in the case
when a RO scheme is not in place. This is the value of the power plant V (T1, T2) at t = 0 and it
depends on the power plant’s income over [T1, T2]. It can be defined as

V (T1, T2) = sup
b2B

EQ
"Z T2

T1

e
�rt

Q1btPt(Pt � Ct) dt

�����F0

#
, (1)

where B is the set of adapted processes on [T1, T2], r is the instantaneous risk-free rate of return
and EQ is the expectation with respect to Q.

Remark 3.1. In this setting, we assume that the investor is risk-neutral. Although here we are not
evaluating financial assets, but rather incomes coming from industrial activity, this is in line with
all the related literature, and it is justified by the following financial argument. The underlying
assets P and C could be in principle not storable, or even not traded in some markets. However,
even in such a situation, the risk-neutral evaluation in Eq. (1) can be applied as long as one can
find hedging instruments that can be storable and liquidly traded, and that are correlated with
P and C: for the mathematical derivation of such a result, see e.g. [10, Chapter 15] for vanilla
products like call and put options (as we will end up to have), and [14, Remark 3.6] for structured
products like that in Eq. (1) and the subsequent ones8. Here, we indeed have such suitable hedging
instruments, i.e. forward contracts on power and fuel (for P and C, respectively), which are liquidly
traded on financial markets, as they are basically equivalent to any other financial asset up to few
days before physical delivery. When physical delivery approaches, in order to maintain the hedging
position it is su�cient to liquidate the position on the maturing future(s) and open an equivalent
new one on another future with a physical delivery further in time. This is a standard practice in
energy markets, called rolled-over portfolios, see e.g. [1, 22] for two applications.

Going back to Eq. (1), it is optimal to choose b such that 1btPt = 1 if and only if Pt > Ct, i.e.
the optimal bidding process is bt = Ct 8 t 2 [T1, T2]. Thus, the final payo↵ for a thermal plant is

V (T1, T2) = EQ
"
Q

Z T2

T1

e
�rt(Pt � Ct)

+
dt

�����F0

#
.

We now consider the case when the thermal plant writes a RO with strike price K = (Kt)t�0. The
plant must now pay back (Pt �Kt)+. Therefore, the value Vro(T1, T2) of the thermal plant with
a RO scheme in place is

Vro(T1, T2) = sup
b2B

EQ
"Z T2

T1

e
�rt

Q(1btPt(Pt � Ct)� (Pt �Kt)
+) dt

�����F0

#
.

7
[41] have explicitly commented the problem for a RO issuer of not being able to produce the energy when called

by the SO. We take this aspect into account here by interpreting Q as the available capacity, as described by [27] and

[17]. This is coherent with the real-world application of RO, in which available capacity is computed by measuring

the average availability of a power plant over a given time span (usually a year) and derating the nominal capacity

accordingly (see [39] for the Italian scheme, and in [37] for Ireland). As an example, consider a 100MW plant with

a maintenance period of one month per year. Its capacity factor is equal to 0.91; this figure can be used to de-rate

the relevant capacity of the plant for the RO, which would amount to 91MW.
8
This is exactly the same argument used to evaluate derivative assets written on non-tradable quantities like

interest rates, temperature, etc.
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The bidding strategy bt = Ct is again optimal for all t 2 [T1, T2]. Thus,

Vro(T1, T2) = V (T1, T2)�EQ
"Z T2

T1

e
�rt

Q(Pt �Kt)
+
dt

�����F0

#
.

In a risk-neutral world, the value RO(T1, T2) of a RO written on the time interval [T1, T2] should
make the investor indi↵erent between having the original plant without the RO, and having it
with the RO written on it plus the price of the option, i.e. V (T1, T2) = Vro(T1, T2) +RO(T1, T2) .
Therefore, the final result is

RO(T1, T2) = V (T1, T2)� Vro(T1, T2)

= EQ
"Z T2

T1

e
�rt

Q(Pt �Kt)
+
dt

�����F0

#
(2)

Thus, the value of a reliability option issued by a thermal plant is equivalent to the price of an
insurance contract against price peaks. Interestingly enough, notice that the operating strategy of
the power plants does not change. In electricity markets, it is well known that perfectly competitive
markets without CRMs, the so called energy only markets, provide enough incentives to investment,
and the same is true for optimally designed CRMs, since the latter simply anticipate ex ante the
supermarginal profits that investors would gain in energy only markets. In other words, the
amount of remuneration of capacity accruing from perfectly competitive markets for CRMs equals
the expected discounted value of the supermarginal profits gained in electricity markets; in a world
without market failures, the two levels coincide (see [19, Chapter 22]). This is confirmed in our
framework: without market power, the value of operating the plant is independent of the form of
remuneration of power production, i.e. if revenues accrue ex-ante from the CRM or ex-post from
selling electricity in the market.

4 Pricing of Reliability Options

4.1 Model-free no-arbitrage bounds

It is worth noticing that Equation (2) already allows us to produce model-free no-arbitrage bounds
on the price of the RO. These model-free bounds do not require any assumption on the electricity
price apart from P being bounded from below by a constant price floor �P

⇤, with P
⇤ � 0. This is

consistent with those electricity markets in which negative prices are allowed with a lower bound
(as for instance in the German and French markets).

We start from the identity

(Pt �Kt)
+ = (Kt � Pt)

+ + Pt �Kt .

Since 0  (Kt � Pt)+  Kt + P
⇤, we have

Pt �Kt  (Pt �Kt)
+  Pt + P

⇤
.

By multiplying the inequalities by e
�rt, integrating and taking the expectation, we have that

QEQ
"Z T2

T1

e
�rt(Pt �Kt) dt

�����F0

#
 RO(T1, T2)  QEQ

"Z T2

T1

e
�rt(Pt + P

⇤) dt

�����F0

#
.

The right-hand side represents the forward price of delivering the quantity Q of electricity over the

period [T1, T2]9 with an additional constant QP
⇤ e�rT1�e�rT2

r , depending on the price floor. We

9
this is alternatively referred to as flow forward or swap, see e.g.[5].

6



label

FP (0;T1, T2) := EQ
"Z T2

T1

e
�rt

Pt dt

�����F0

#

the (unitary) forward price. Then, since RO(T1, T2) � 0, when Kt ⌘ K, i.e. with fixed strike, we
can rewrite the no-arbitrage relation above as

Q

✓
FP (0;T1, T2)�K

e
�rT1 � e

�rT2

r

◆+

 RO(T1, T2)  QFP (0;T1, T2)+QP
⇤ e

�rT1 � e
�rT2

r
. (3)

Thus, the value of a reliability option written on a total capacity Q over the period [T1, T2] lies
between the intrinsic value of Q call options on the forward FP (0;T1, T2) and the modified strike

K
e�rT1�e�rT2

r , and Q forwards FP (0;T1, T2) adjusted by an additional constant proportional to
the price floor P ⇤.

Conversely, when K follows itself a stochastic process, we define

FK(0;T1, T2) := EQ
"Z T2

T1

e
�rt

Kt dt

�����F0

#
,

and obtain

Q (FP (0;T1, T2)� FK(0;T1, T2))
+  RO(T1, T2)  QFP (0;T1, T2) +QP

⇤ e
�rT1 � e

�rT2

r
. (4)

Note that, even with a stochastic strike price K, the upper bound is una↵ected. On the other hand,
the lower bound is now the intrinsic value of Q exchange options on the forward FP (0;T1, T2) for
the forward FK(0;T1, T2).

The no-arbitrage bounds above are model-free, in the sense that they hold for any no-arbitrage
model that one can specify for the dynamics of P , and possibly of K, the only assumption needed
being the existence of a price floor for P . However, to evaluate the RO as a financial contract,
it is necessary to specify the stochastic process modeling electricity prices, as we shall do further
below. Let us stress that electricity price have some peculiarities such as strong seasonality and
mean-reversion; several processes have been adopted to reproduce its dynamics. For this reason, in
the following sections we provide an overview on semi-explicit formulae to price a RO over [T1, T2]
under di↵erent price dynamics. We start with the simplest of the hypothesis, that serves us to build
a reference model to better illustrate the key features of the pricing formula. We then increase
the complexity of the dynamics in order to get a closer approximation to real price dynamics. In
particular, notice that the price models generally used to evaluate options do not allow for negative
prices, while we suggest a model of this kind in Section 4.6 below. In order to have a paper which
is fully self-contained, we write in the Appendix all the proofs of the derivation of the pricing
formulae.

4.2 Electricity spot price as a geometric Brownian motion

Let us start with the simplest assumption, i.e. that the price of electricity P evolves as a GBM,
and that the option’s strike price K is a fixed deterministic value. We stress that the former is
an assumption that we regard as unreasonable, in the sense that it does not provide a realistic
representation of the electricity price dynamics. However, it is the simplest possible assumption
that is used to derive explicit pricing formulae for call options and we treat it as a first simplified
approach to help us presenting the main features of the model. In this case, the price P , under
the risk-neutral measure Q, is assumed to be the solution of the following SDE:

dPt =µPtdt+ �PtdBt, (5)
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where B is a one-dimensional Q-Brownian motion and µ is an appropriate yield, obtained by
taking into account factors like risk-free rate of return and risk premium (which typically occurs
in electricity markets, as shown, for instance by [8], given that P is typically a non-traded asset).

The price of a RO in this case is equivalent to the time integral over the interval [T1, T2] of
a European call option with strike price K and maturity ranging in [T1, T2]. In the following
proposition, we provide a semi-explicit formula to price the RO, under the assumptions above.

Proposition 4.1. Let the reference market price P follow the dynamics (5). The price of a
reliability option over the time interval [T1, T2] with fixed strike price K � 0 is given by the
following formula:

RO(T1, T2) =

Z T2

T1

Q

h
P0e

�(r�µ)t
N(d1(K,P0, t))� e

�rt
KN(d2(K,P0, t))

i
dt , (6)

where N is the cumulative distribution function (CDF) of a standard Gaussian random variable
and

d1(K,P0, t) : =
1

�
p
t


ln

✓
P0

K

◆
+

✓
µ+

�
2

2

◆
t

�
,

d2(K,P0, t) : =d1(K,P0, t)� �
p
t .

Proposition 4.1 simply uses the Black and Scholes formula with dividends, since RO(T1, T2)
can be defined as the time integral of a family of call options with the same underlying and strike
price, indexed by their maturity in [T1, T2].10 Thus, it provides a formula that can be applied to
compute the value of the RO, once the parameters upon which the call depends on have been set;
namely, the risk-free interest rate r, the starting price P0 and the electricity price volatility �.

4.3 Electricity price and strike price as correlated Geometric Brownian

Motions

A first step to increase the level of complexity consists in modeling the strike price as a stochastic
process. Recall that, in ROs, the strike price is the marginal cost of the marginal technology.
Complex RO schemes can allow it to change over time, according to a predefined rule. For instance,
it can be assumed that the strike price is given by the fuel cost of a predefined marginal technology,
such as Combined Cycle Gas Turbines. In such a way, the strike price will be linked to a reference
fuel price. Alternatively, it can be established that the reference price changes at fixed regular
dates according to a given indexing formula.11 Both cases imply that the strike price is a stochastic
process (typically non-traded, in analogy with P ). Thus, a first extension of the model defined in
Section 4.2 is to model K and P as two (possibly correlated) geometric Brownian motions. This
means that the prices (Kt, Pt)t�0 follow a risk-neutral dynamics of the following type:

⇢
dKt = µkKtdt+ �kKtdB

1
t ,

dPt = µpPtdt+ �pPtdB
2
t ,

(7)

where (B1
, B

2) are correlated Q-Brownian motions, with correlation ⇢ 2 [�1, 1]. Notice that the
correlation of the two stochastic processes depends on the rules defining the strike price and on
the strike price nature. For instance, if the variable strike price is set to be equal to the marginal
cost of the marginal technology, and if the electricity market is perfectly competitive, the system
marginal price will be equal to the marginal cost of the marginal technology. Thus, the correlation
coe�cient would be equal to 1. If, on the contrary, the stochastic strike price equals some weighted
average of di↵erent marginal costs at di↵erent hours, for instance at peak and o↵-peak hours, then

10
Interestingly enough, this result solves also a problem firstly posed in [30], in the framework of firms’ evaluations.

11
As mentioned, this is the case of the Italian RO scheme.
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the correlation coe�cient would be positive but strictly less than 1, since the electricity price P

would be more volatile than the strike price K. Finally, even if this possibility is rather unlikely, it
may be that the strike price is negatively correlated with the electricity price, depending on how
the strike price is defined and on what reference basket it is linked to.

The following proposition provides the value of the RO with two GBMs:

Proposition 4.2. Let the reference market price P and the RO strike price K follow the dynam-
ics (7). Then the price of a reliability option over the time interval [T1, T2] is given by

RO(T1, T2) = Q

Z T2

T1

⇣
P0e

�(r�µp)tN(a1(K0, P0, t))�K0e
�(r�µk)tN(a2(K0, P0, t))

⌘
dt , (8)

where N is the CDF of a standard normal random variable, and

a1(K0, P0, t) : =
ln
⇣

P0
K0

⌘
+ (µp � µk)t

�
p
t

+
1

2
�
p
t ,

a2(K0, P0, t) : =a1(K0, P0, t)� �
p
t ,

� : =
q
�2
k + �2

p � 2⇢�k�p =
q

(�k � �p)2 + 2(1� ⇢)�k�p .

In analogy to Proposition 4.1, in Proposition 4.2 we used the Margrabe formula with dividends
(see, for instance, [15]). Here, the RO(T1, T2) value is equal to the time integral of a family of
options to exchange the (random) electricity price P with the (random) strike price K, again
indexed by their maturity. As usual in the Margrabe formula, the relevant volatility is �, that can
be interpreted as the volatility of the ratio P/K (i.e. of the electricity price expressed in units of
the strike price), which is decreasing with respect to the correlation ⇢. In particular, for ⇢ ! 1
(i.e. when the strike price is highly correlated with the electricity price), we have � ! |�k � �p|.
In this case, when also �k = �p, the volatility vanishes, and the value of the option is determined
just by its intrinsic value. Instead, for ⇢ ! �1 (i.e. when the strike price is highly negatively
correlated with the electricity price), we have � ! �k + �p, i.e. volatility is maximized. However,
we stress that this latter case is rather unlikely for the case of RO, as typically a stochastic strike
price K is defined in terms of quantities related to electricity generation (as e.g. the marginal price
of the marginal technology, or some related market index), so that we should expect a positive
correlation.

4.4 Mean-reverting electricity price with seasonality

As mentioned, a GBM does not capture typical stylized facts of electricity prices, namely seasonality
and mean-reversion. A natural extension is thus to price the RO when the dynamics of the reference
price reflects the aforementioned features. In particular, we model the log-spot price of electricity
as a mean-reverting process encoding di↵erent types of seasonality by means of a time-dependent
function, an approach that has been widely adopted in energy markets.12 We first assume a
deterministic strike price. In the next section, we shall remove this assumption.

We define the function describing seasonality trends for all t � 0 as

µ(t) = ↵+
12X

i=1

�i monthi(t) +
4X

i=1

�i dayi(t) +
24X

i=1

�i houri(t) , (9)

where monthi(t), dayi(t) and houri(t) are dummies for month, day of week and hour, used to
capture di↵erent types of seasonality. Specifically, we assume that day can take 4 values: ‘Friday’,

12
For a presentation and critical discussion of various models for electricity prices proposed in the literature, see

e.g. [6, 11, 16, 24, 25, 32, 42] and [5].
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‘Weekend’, ‘Monday’, and ‘other working day’. This captures the di↵erences between working days
and weekend as well as possible first- or end-of-the-working-week e↵ect.

We then consider the day-ahead price P as

Pt = e
µ(t)

e
Xt , (10)

where Xt, under the risk-neutral measure Q, is the solution of the SDE

dXt =� �Xtdt+ �dWt , (11)

where W is a one dimensional Q-Brownian motion, � stands for the volatility and � > 0 is the
mean-reversion speed.

We have the following.

Proposition 4.3. Let the reference market price P follow the dynamics (9)–(10)–(11). Then the
price of a reliability option over the time interval [T1, T2] with fixed strike price K � 0 is given by

RO(T1, T2) =Q

Z T2

T1

e
�rt [f(0, t)N(d1(K,P0, t))�KN(d2(K,P0, t))] dt , (12)

where N is the CDF of a standard normal random variable, P0 = e
µ(0)+X0 and

f(0, t) :=E[Pt|F0] = exp

✓
µ(t) +X0e

��t +
1

2
V ar(t)

◆

=P
e��t

0 exp

✓
µ(t)� µ(0)e��t +

1

2
V ar(t)

◆
,

V ar(t) :=
�
2

2�
(1� e

�2�t) ,

d1,2(K,P0, t) :=
1p

V ar(t)
log

f(0, t)

K
± 1

2

p
V ar(t) ,

where, by abuse of notation we mean that the definition of d1(K,P0, t) involves the + sign and the
definition of d2(K,P0, t) involves the � sign.

Remark 4.1. Equation (12) is a generalization of Equation (6): in fact, if we let µ(t) := (µ� 1
2�

2)t
and � ! 0, then we reobtain at the limit the model of the previous section. In fact, we have that
mt ⌘ X0, V ar(t) ! �

2
t,

e
�rt

f(0, t) ! e
µt+X0 ,

and

d1(K,P0, t) !
1

�
p
t

✓
X0 + µt� 1

2
�
2
t� lnK

◆
=

1

�
p
t
ln

e
X0+µt

K
� 1

2
�
p
t .

Thus, the pricing formula in Equation (12) collapses into that of Equation (6).

4.5 Allowing for mean-reverting strike price with seasonality

As a natural extension of the model in Section 4.4, we now consider the case when the strike K

is a mean-reverting process (with seasonality) as well. The dynamics of the state variables then
becomes ⇢

Pt = e
µ(t)

e
Xt ,

Kt = e
⌫(t)

e
Yt .

(13)

Here, µ is given by (9) and ⌫ is a seasonality function for K of the same form, while the processes
X and Y are solution to ⇢

dXt = ��xXtdt+ �xdW
1
t ,

dYt = ��yYtdt+ �ydW
2
t ,

(14)

where (W 1
,W

2) are correlated Q-Brownian motions, with correlation ⇢ 2 [�1, 1].
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Proposition 4.4. Let the reference market price P and the RO strike price K follow the dynam-
ics (13); then the price of a reliability option over the time interval [T1, T2] is given by

RO(T1, T2) =Q

Z T2

T1

e
�rt (fP (0, t)N (d2(K0, P0, t))� fK(0, t)N (d1(K0, P0, t))) dt , (15)

where N is the CDF of a normal random variable, P0 = e
µ(0)+X0 , K0 = e

⌫(0)+Y0 and

fP (0, t) := E[Pt|F0] = exp

✓
µ(t) +X0e

��xt +
�
2
x

2�x
(1� e

�2�xt)

◆
(16)

= P
e��xt

0 exp

✓
µ(t)� µ(0)e��xt +

�
2
x

2�x
(1� e

�2�xt)

◆
,

fK(0, t) := E[Kt|F0] = exp

 
⌫(t) + Y0e

��yt +
�
2
y

2�y
(1� e

�2�yt)

!
(17)

= K
e��yt

0 exp

 
⌫(t)� ⌫(0)e��yt +

�
2
y

2�y
(1� e

�2�yt)

!
,

d1,2(K0, P0, t) :=
1q

V ar(t)
log

fP (0, t)

fK(0, t)
± 1

2

q
V ar(t) , (18)

V ar(t) := �
2
x
1� e

�2�xt

2�x
+ �

2
y
1� e

�2�yt

2�y
� 2⇢�x�y

1� e
�(�x+�y)t

�x + �y
. (19)

This result resembles that of Proposition 4.3 in the same sense as Proposition 4.2 is similar to
Proposition 4.1: here RO(T1, T2) can be again defined as the time integral of a family of options
to exchange the electricity price P with the strike price K. Here too, the relevant volatility is
V ar(t), which can again be interpreted as the volatility of the ratio P/K (i.e., the electricity price
expressed in units of the strike price: this is made explicit in the proof in the Appendix), which is
again decreasing with respect to the correlation ⇢. In particular, for ⇢ ! 1 (i.e. when the strike
price is highly correlated with the electricity price), and �x = �y =: � (i.e. when the two mean-

reversion speeds are the same), we have V ar(t) ! 1�e�2�t

2� (�x � �y)2. In this case, when �x = �y,
the volatility vanishes, and the value of the option is given just by its intrinsic value. Instead, in
the unlikely case (see the discussion at the end of Section 4.3) when ⇢ ! �1 and �x = �y =: �,

we have V ar(t) ! 1�e�2�t

2� (�x + �y)2, i.e., the volatility is maximized.

4.6 Possible extension to negative day-ahead and strike prices

In principle, it is possible to allow for negative power prices, since we know this is a possibility in
energy markets (see [21] and references therein). An analogous extension can be also envisaged
for strike prices, especially when these are linked to power prices. A possible approach to model
negative prices is to set negative values �P

⇤ and �K
⇤, for certain P

⇤
,K

⇤ � 0, as price floors for
P and K, respectively, and to consider the following shifted dynamics

⇢
Pt =

�
e
µ(t)

e
Xt � P

⇤�
,

Kt =
�
e
⌫(t)

e
Yt �K

⇤�
.

(20)

where µ and ⌫ are again seasonality functions for P and K and the processes X and Y are solution
of Equation (14), in analogy with the previous section.

By setting C := P
⇤ �K

⇤, one can prove that the price of the reliability option is now given by
the following expression:

RO(T1, T2) = Q

Z T2

T1

e
�rtEQ

h
(eµ(t)eXt � e

⌫(t)
e
Yt � C)+

���F0

i
dt . (21)
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The above formula is the time integral of a family of spread options with a fixed strike price C and
indexed by their expiration date in [T1, T2]. Therefore, considering dynamics of type (20) relates
the problem of pricing a Reliability Option to the problem of pricing a spread option (see [15] for
a survey of classical frameworks and methods for spread options). Unfortunately, a general closed
formula for the pricing of spread options is not available. However, since the RO is in principle a
quite illiquid product, one can use a numerical method to price it in this general case, for example
Monte Carlo.

5 Simulation and sensitivity analysis

In this section we simulate the value of the RO under realistic assumptions on the parameter
values. To do so, we fit the parameters of the electricity price dynamics to a real market, using
data of the Italian market. For simplicity, we consider day-ahead prices only, and use the weighted
average of Italian zonal prices, called PUN (Prezzo Unico Nazionale), ranging from January 1 to
December 31, 2016.

As previously explained, we used dummies to capture monthly, daily and hourly seasonality,
as defined in Eq. (9). We chose ‘January’, ‘Friday’ and ‘hour 1’ as reference groups, against which
the comparisons are made. Figure 1 shows the calibrated seasonality function, plotted against the
historical PUN data. In line with the PUN mean price, which is equal to 42.77 §/MWh, when the
strike price is supposed to be a constant K is arbitrarily chosen equal to 40 §/MWh. Furthermore,
we considered an annual risk-free rate r = 0.01. According to the scheme to be implemented in
Italy, the pricing of the RO starts 4 years from now, and the option has a maturity of 3 years
(T1 = 4, T2 = 7).

The starting point X0 is taken equal to 0. Table 1 reports the estimated parameters for each
di↵erent model, while Table 2 shows the estimated seasonality parameters.
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Figure 1: Seasonality function in (9) (solid red line, upper panel) calibrated on historical 2016 PUN
electricity data (solid blue line, upper panel) and residuals (bottom panel).

GBM 1-OU 2-OU

�̂ 5.3033 6.8780 6.8780
(0.041) (0.056) (0.056)

�̂ - 1302.89 1302.89
(-) (61.52) (61.52)

Table 1: Estimated yearly parameters �̂ and �̂ for each pricing model (electricity price following a Geo-
metric Brownian motion (GBM), electricity price following a mean-reverting Ornstein-Uhlenbeck process
(1-OU), correlated electricity and strike prices following mean-reverting Ornstein-Uhlenbeck processes (2-
OU)). Standard errors are in parentheses; all the estimated parameters are statistically significant, with P
(largely) below 0.001 for all the parameters.
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Estimate S.E. pValue Estimate S.E. pValue

Intercept 3.79 0.01 < 0.001 hour6 �0.13 0.01 < 0.001

month2 �0.22 0.01 < 0.001 hour7 �0.01 0.01 0.497

month3 �0.27 0.01 < 0.001 hour8 0.1 0.01 < 0.001

month4 �0.36 0.01 < 0.001 hour9 0.18 0.01 < 0.001

month5 �0.28 0.01 < 0.001 hour10 0.16 0.01 < 0.001

month6 �0.23 0.01 < 0.001 hour11 0.12 0.01 < 0.001

month7 �0.07 0.01 < 0.001 hour12 0.07 0.01 < 0.001

month8 �0.21 0.01 < 0.001 hour13 0 0.01 0.800

month9 �0.07 0.01 < 0.001 hour14 �0.05 0.01 < 0.001

month10 0.14 0.01 < 0.001 hour15 �0.02 0.01 0.130

month11 0.23 0.01 < 0.001 hour16 0.04 0.01 0.002

month12 0.21 0.01 < 0.001 hour17 0.09 0.01 < 0.001

Monday �0.01 0.01 0.045 hour18 0.15 0.01 < 0.001

Weekend �0.14 0.01 < 0.001 hour19 0.22 0.01 < 0.001

Working day 0.02 0.01 0.002 hour20 0.28 0.01 < 0.001

hour2 �0.08 0.01 < 0.001 hour21 0.27 0.01 < 0.001

hour3 �0.15 0.01 < 0.001 hour22 0.2 0.01 < 0.001

hour4 �0.18 0.01 < 0.001 hour23 0.12 0.01 < 0.001

hour5 �0.18 0.01 < 0.001 hour24 0.03 0.01 0.013

Table 2: Linear regression estimates, standard errors and p-values obtained using the specification in (9).
The base group categories for each dummy variable are month1, friday and hour1.

As is evident from Table 1, where � is statistically significant with P << 0.001, real electricity
prices do not follow GBMs. Therefore, in the simulation, we restrict to the model defined in Section
4.4.

5.1 Mean reverting electricity price with seasonality, fixed strike

We simulate the value of the RO using the Monte Carlo methodology. Specifically, we compute
the RO value using 10,000 simulations of the price path of the underlying.

Figure 3 shows the comparative statics for di↵erent ranges for the parameters � and � and
strike price K. As expected, the higher the strike price, the lower the value of the reliability option
for each value of � (left panel). On the other hand, both the left and right panels show that, when
� increases, the RO value rises as well. Moreover, when � is low, the relative increase in the RO
value is high (right panel). This is consistent with the fact that a low � allows fluctuations of the
underlying that are far from the long term mean to be more persistent.

5.2 Electricity spot price and RO strike price as correlated OU with

seasonality

We simulate now the value of the RO using the model described in Section 4.5, again by means
of a Monte Carlo method (with 10,000 runs). For the reason mentioned above, consistently with
the PUN mean price, K0 is arbitrarily chosen equal to 40 §/MWh, so that, after de-seasonalizing
(using the same estimated seasonality parameters of the PUN price), we obtain Y0 = �0.21, while
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Figure 3: Sensitivity analysis of the results using a yearly � in the range (0; 2�̂] with a strike price K in
the range [20; 60] (left panel), and a yearly � in the range (0; 2�̂] with and a yearly � in the range (100; 2�̂]
(right panel). The RO value is expressed in §/MWh.

X0 = 0. If no otherwise stated, we consider a fixed correlation coe�cient ⇢ = 0.5. In Figure 4 we
plot the results of the simulations when the parameters of the strike price �K and �K are assumed
to be equal to the ones estimated for the electricity price, while in Figure 5 the parameters of K
and of P are decoupled.

As mentioned, Figure 4 shows the results of the simulations depending on �p, assuming the
strike price process to have the same parameters estimated for the electricity price P . The upper
left panel shows that the initial level of the strike price K0 has no influence on the value of the
reliability option, the reason for this lies in the magnitude of the estimated �P , and thus of �K : a
mean reversion speed as high as that estimated makes the strike price process return to its mean
level in an amount of time negligible with respect to the maturity. This implies that the starting
point of the process has no relevant impact on the RO value.

The upper right panel of Figure 4 instead shows how sensitive the RO value is to changes in
the electricity price parameters �P and �P (and thus in turn in �K and �K). Similarly to what
we have observed before, the higher the volatility of the underlying (and, in this case, of the strike
price), the higher the RO value. This relationship increases proportionally to the decrease of the
speed of mean reversion, since it takes more time to return to the mean, and thus volatility has a
higher impact.

The role of the correlation factor ⇢ is instead investigated in the bottom left panel, where we
assess how di↵erent correlation factors in the range [�1; 1] a↵ect the price of the RO. When the
two assets are perfectly correlated (⇢ = 1), the RO value is zero for all levels of �P . In fact, as seen
in Section 4.3, the volatility is minimized and the RO can be interpreted as an integral of calls,
with maturity ranging in the interval [T1, T2], being exactly at the money at the time of expiration,
and thus having zero value. Instead, as shown, when the two processes are uncorrelated, the level
of risk increases, and it reaches its maximum when they are perfectly negatively correlated. In this
case, the volatilities of the two Brownian motions sum up, increasing the volatility of the option
payo↵ and minimizing the risk of having the calls at the money. Finally, the bottom right panel
shows that the RO price is negatively correlated with the risk free rate r: a higher r decreases the
option value as it lowers the discounted cash flows.

In Figures 5 and 6 we show simulations’ results when the parameters of the strike price’s
dynamics di↵er from the ones of the electricity price’s . In the case of volatilities �P = �K = �̂P ,
the left panel of Figure 5 reports the results for a variation in �K (in the range (0; 2�̂P ] and shown
in log10 scale) independent from the value of �P (which is instead fixed �P = �̂P ). The graph
shows how K0 hardly a↵ects the RO value, as it has an impact only when both �K and �K are
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Figure 4: Sensitivity analysis of the results using a yearly �P in the range (0; 2�̂P ] with an initial strike
K0 in the range [20; 100] (upper left panel), with a yearly �P in the range (100; 2�̂P ](upper right panel),
with a correlation ⇢ in the range [�1; 1] (left bottom panel) and with a yearly risk free rate r in the range
[0; 0.2] (right bottom panel).

su�ciently small. This confirms the result shown above that the initial value of the prices matters
only when it takes a su�cient amount of time for them (i.e., for the strike price in this case) to
return to their long term value. The right panel instead shows the sensitivity of the RO value to
changes in the yearly �K (again in the range (0; �̂P ]) independent from the value of �P , and in the
correlation factor ⇢ (in the range [�1; 1]). Here, the ⇢ value matters the most when both �K = �P

and �K = �P . In fact, ⇢ (negatively) a↵ects the RO value only when it tends to �1 and �K is
closer to the value of �P (note that, in the figure, �K 2 (0; �̂P ], where �̂P corresponds to the value
of 2.47 in log10 scale). This confirms our intuition that, when the initial value of the electricity
price and the strike price are close and the two random variables follow the same dynamics, the
RO has a negligible value since it is likely that it will be always at-the-money. Conversely, if the
two random variables are not perfectly correlated or the two variables follow di↵erent dynamics,
it is unlikely that at every point in time Pt and Kt coincide, and this adds value to the RO.
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Figure 5: Sensitivity analysis of the results using a yearly �K in the range (0; �̂P ] with an initial strike
price K0 in the range [20; 100], both with a yearly �K equal to the yearly �P (upper left panel) and with
and a scaled down yearly �K (upper right panel), and with a correlation ⇢ in the range [�1; 1] (bottom
panel) (here �K = �P ). The RO value is expressed in §/MWh.

Finally, Figure 6 shows the e↵ect of a disjoint variation in the two volatilities, with a yearly
�P and �K in the range (0; 2�̂P ], for di↵erent levels of ⇢ (in these graphs, �K = �P = �̂P ). As
expected, when ⇢  0, the RO price is always increasing in both the electricity price volatility �P

and the strike price’s one �K , since volatility adds value to the call options. Instead, when ⇢ > 0,
the fact that the two processes are somehow coupled can lower the aggregate risk, since the spread
between the electricity price and the strike price reduces. This translates into a negative e↵ect on
the option value. The RO value is therefore minimized when �P = �K . In Figure 6, panel ⇢ = 0.5,
we can see that the option value is still positive; in the panel ⇢ = 1, the RO value becomes null for
�P = �K , since, as mentioned, if the two processes are perfectly positively correlated, the RO value
coincides with its intrinsic value. Thus, there is a non-monotone e↵ect of the volatility increase of
one process, depending on the amount of volatility of the other process, and on the level of the
correlation coe�cient. The inflection is maximum when the two processes are perfectly positively
correlated.

6 Parametric model risk

The fact that we have (semi-)closed formulae for the price of the RO allows us to investigate how
the price depends on the parameters. This was partially done in the previous section, where a
numerical price sensitivity with respect to various parameters was presented. A more accurate
way to treat this involves parametric model risk, following the approach of [2], i.e. assessing which
of the parameters would have the highest impact on the price in case of misspecification.

Indeed, the standard methodology to derive parameters in electricity markets (and that we
followed in the previous section), lacking su�ciently liquid derivative products, is based on time
series analysis. This allows estimating parameters and it makes use of their point estimates into
the pricing formulae, but it completely disregards the information contained in the estimators’
distribution (e.g. their biases and/or variances). This problem is known, among the various types
of model risk, as parameter risk, i.e. the risk of picking the wrong parameter value(s) for the
pricing formula.

The approach used in [2] to deal with parameter risk is the following: assume that we estimate
a distribution R on the parameter space ⇥, which expresses the trustworthiness that we give to
the di↵erent parameters in ⇥. Then, each parameter ✓ 2 ⇥ implies an expected derivative price
E✓[X], where X is the payo↵ of our derivative contract (in our case, the RO). Since trustworthiness
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Figure 6: Sensitivity analysis of the RO value to a disjoint variation in the two volatilities, with a yearly
�P and �K in the range (0; 2�̂P ] (here �K = �P ). In the di↵erent panels, we can see how a variation in
the correlation coe�cient ⇢ a↵ects the RO value: when the two processes are independent or negatively
correlated, higher �P and �K result in a higher option value. However, when the correlation is positive
(middle right and bottom panels), the higher the correlation, and the more the two volatilities are similar,
the lower the value of the option. The RO value is expressed in §/MWh.

of parameters is unknown, a convex risk measure ⇢ is used to average the pricing mechanism
✓ ! E✓[X].

As in [2], as convex risk measure we choose the Average-Value-at-Risk (AVaR), defined at
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significance level ↵ 2 (0, 1) as:

AVaR↵(X) :=
1

↵

Z ↵

0
q1��(X) d� ,

where q�(X) is the (lower) �-quantile of the random payo↵ X. The standard interpretation is that
AVaR↵(X) is the average of all quantiles of X above the chosen confidence level 1� ↵.

This approach can be implement in our case by identifying that our multidimensional parameter
is

✓ = (↵,�1, . . . ,�12, �1, . . . , �4, �1, . . . , �24,�,�)

in the case of the mean-reverting model of Section 4.4, and

✓ = (↵P
,�

P
1 , . . . ,�

P
12, �

P
1 , . . . , �

P
4 , �

P
1 , . . . , �

P
24,�x,�x,

↵
K
,�

K
1 , . . . ,�

K
12, �

K
1 , . . . , �

K
4 , �

K
1 , . . . , �

K
24,�y,�y, ⇢)

in the case of the two-dimensional mean-reverting model of Section 4.5. However the whole pa-
rameter distribution is very complex and di�cult to obtain, see [12]. Therefore, in analogy with
[2], we reduce the problem by considering the distributions of treatable subsets of parameters sep-
arately, disregarding the remaining parameter risk by considering the rest of parameters as fixed
and known. In what follows we sketch the procedure.

1. Each individual parameter, or a group of parameters, ✓j is estimated by a maximum likeli-

hood estimator (MLE) ✓̂j(P1, . . . , Pn), where n is the length of the time series used for the
estimation.

2. Since ✓̂j is a MLE, its distribution R is asymptotically Gaussian, i.e.
p
n(✓̂j(P1, . . . , Pn) �

✓0) ! N(0,⌃), where ✓0 is the true parameter value and ⌃ is the parameter’s covariance
matrix and the distribution R can be approximated by N(✓0,

1
n⌃).

3. The AVaR can be computed explicitly in the case of a Gaussian distribution, therefore, with
the approximation of the previous step, we obtain

AVaR↵(X) ' E✓[X] +
�(N�1(1� ↵))

↵
p
n

p
(rE✓[X])0⌃(rE✓[X])

����
✓=✓̂j(P1,...,Pn)

, (22)

where � is the density of a standard normal random variable and r is the gradient with
respect to ✓j .

This procedure is well-suited to a situation in which the parameters are estimated from time series
of market data (as it is for our case). In Section 5 we estimated the seasonality parameters for the
power price P , using time series from the Italian market, together with the mean-reversion and
volatility parameters for the stochastic factor. Instead, parameters for the strike price K, even
when this was assumed stochastic, were assumed to be equivalent to those of P . This would occur,
for instance, when power price depends on an underling fuel cost, and the strike price is defined as
an indexed formula of such a fuel cost (this is what happens in the Italian RO [39]). In any case,
the lack of a proper time series of the strike price does not allow us to estimate its distribution and
compare it with the estimate distribution of P . For this reason an accurate model risk procedure
currently makes sense only for the single-factor model, allowing us to provide realistic results.
Notice however that the procedure is general enough to be applied also to the two-factor model,
provided that a time series exists for K, making its estimation possible.

The closed-form expression for the normal AVaR in (22) allows computing risk-captured prices
e�ciently with the model in Section 4.4. The second term in the right-hand side of (22) is the risk
adjustment value, i.e. when subtracted or added to the RO value E✓[X] it provides the ask or bid
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prices for the RO, respectively. As a measure of model risk, we can thus define the relative width
of the bid-ask spread as

� =
bidPrice� askPrice

midPrice
. (23)

Table 3 shows the relative bid-ask spread as defined in equation (23) for di↵erent significance
levels of the underlying risk measure, and for di↵erent treatable subsets of parameters, i.e. for
di↵erent model risk sources. The table shows that the major source of risk lies in the seasonality
parameters distribution, which has the larger impact on the RO price, while volatility also has a
significant impact on the total risk (though five times less than the seasonality). Notice however
that seasonality contains 37 distinct parameters while volatility is a single one; thus, the latter
is the parameter that has the largest impact on model risk. On the contrary, the analysis shows
a negligible model risk due to the speed of mean reversion. Since these results depend on the
estimated variances of the estimators the reason why the model risk due to a misspecification of
� is negligible with respect to the other ones, originates in the low variance of th estimator of �.
Finally, the model risk is quite small also because of a high n (equal to 24⇥ 366 = 8784), which is
the same for all group of parameters13.

↵ = 0.001 ↵ = 0.01 ↵ = 0.05 ↵ = 0.10

�

Total 5.196% 4.113% 3.183% 2.708%
Seasonality 5.099% 4.035% 3.123% 2.657%
Speed of mean reversion 0.161% 0.128% 0.099% 0.084%
Volatility 1.068% 0.845% 0.654% 0.556%

Table 3: Relative width of the bid-ask spread (�, in percentage) as a measure of model risk for di↵erent
significance levels ↵ and for di↵erent risk sources.

7 Conclusions

In this paper, we have studied the value of the RO from a financial perspective. The financial
approach to option pricing relies on the assumption that the market prices financial products by
risk-neutral measure exists. This is not a problem for pricing options on electricity prices, as long
as they can be written on electricity futures that can be rolled over the delivery period of the RO.
Nevertheless, it must be kept into account that such an approach does require that RO markets
are competitive and that forward markets are liquid. therefore, our analysis provides a benchmark
value for the RO under the assumption that the market for the derivative is liquid enough to bring
about competition.14 In this framework, the simplified mathematical model that we proposed can
be seen as a starting point in the analysis of ROs. We obtain semi-explicit formulae for the value
of the RO, under a set of di↵erent assumptions with increasing realism and complexity. We move
from simple integrals of call options written on GBMs to correlated mean reverting processes that
capture the behavior of realistic electricity price time series, on the one hand, and complex rules
for RO, on the other. Moreover, we simulate the RO value through a real-market calibration of
the parameters.

Our results are important from two di↵erent point of views. From a theoretical perspective, we
provide a mathematical treatment that allows to show how the value of the RO depends on the
values of its parameters. The results are consistent with expectations from option theory: a rise
in the strike price lowers the RO value, which depends positively on the volatility of the electricity

13
If K was traded on a time-basis with a smaller frequency (for instance on a daily basis) the n for this time series

would be reduced by a factor 24. This would be the case if K was a gas-linked index. As a consequence, also the

impact of n in equation (22) would be smaller by a factor
p
24 ' 5. This e↵ect was also noticed in [2], where some

parameters had to be estimated on a much smaller dataset and thus carried the highest significant parameter risk
14
Note that, according to [9, 17], ROs are instruments that enhance competition in the electricity market.
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price, as well as on the volatility of the strike price itself. The mean reversion speed of the process
reduces the impact of the starting point, which was another expected result. However, when both
the strike price and the electricity price are assumed to be stochastic processes, the value of the
RO depends crucially on their correlation coe�cient ⇢. In particular, a positive correlation reduces
the value of the RO. Moreover, there is a non-monotone impact of the volatility of one process,
depending on the level of volatility of the other process and on a positive correlation. We also
provide a parametric model risk analysis, which revealed that the most important risk source is
the seasonality, while the single parameter carrying the most risk is the volatility. The parametric
model risk we use here allows us to quantifies the magnitude of these combined e↵ects. To show
it, we calculate them with regards to the value of the RO we estimate using Italian market data.

Our results are also relevant to support a proper design of ROs, in particular avoiding undesired
outcomes. For instance, our analysis shows that ROs might not contribute to deliver security of
supply, providing very little remuneration to capacity. This is the outcome predicted by our study
when the strike price of the ROs is defined as a mark-up on the marginal cost of power production,
as it is for the Italian case. In this case, the electricity price and the strike price of the RO covariate
positively and this implies that ROs have a low value, for every possible starting value of the state
variables P and K. The limited revenue raised by ROs might even hinder security of supply, which
is the opposite of what CRMs are designed for.

More in general, our results show that a careful estimate of the parameters is needed to calculate
the value of the ROs. Ceteris paribus, the RO value will be lower as the volatility of the electricity
price decreases, the strike price increases, the speed of mean reversion increases, the correlation
of the electricity price with the strike price increases (if the strike price is allowed to change over
time), and the two volatilities are closer. These are all factors that need to be taken into account
when designing the market for ROs and calculating the equilibrium value.
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Appendix

A.1 Proofs of pricing formulae

Proof of Proposition 4.1. The quantity f(s,!) : = e
�rs

Q(Ps(!) � K)+ in Equation (2) is non-
negative.

Then, if we set

A(K,P0, s) : = e
�rsEQ

h
(Ps �K)+

���F0

i
, (A.1)

by Tonelli’s theorem, we get

RO(T1, T2) = Q

Z T2

T1

A(K,P0, s)ds . (A.2)
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A(K,P0, s) is clearly the price of a European call option with strike price K and maturity s, thus
Equation (6) is simply obtained with the Black and Scholes formula.

Proof of Proposition 4.2. As in the proof of Proposition 4.1, if we write

A(K0, P0, s) : = e
�rsEQ

h
(Ps �Ks)

+
���F0

i
, (A.3)

then, by Tonelli’s theorem, we have

RO(T1, T2) = Q

Z T2

T1

A(K0, P0, s)ds .

Here, A(K,P0, s) is the price of an exchange option between the electricity price P and the strike
price K, with maturity s, thus Equation (8) is simply obtained with the Margrabe formula with
dividends (see [15]).

Proof of Proposition 4.3. As in the previous proofs, we writeA(K,P0, s) : = e
�rsEQ

h
(Ps �K)+

���F0

i

and apply Tonelli’s theorem to obtain

RO(T1, T2) = Q

Z T2

T1

A(K,P0, s)ds .

We now notice that
A(K,P0, s) = e

�rsEQ
h
(f(s, s)�K)+

���F0

i

where f(t, s), t 2 [0, s], has the dynamics

df(t, s) = f(t, s)�e��(s�t)
dWt

The result then follows from the Black-Scholes formula with time-dependent (deterministic) volatil-
ity, which enters into the formula via the integral of its square, here equal to

Z s

0

⇣
�e

��(s�t)
⌘2

dt =
�
2

2�
(1� e

�2�s) = V ar(s)

Equation (12) follows.

Proof of Proposition 4.4. As before, we write A(P0,K0, s) : = e
�rsEQ [ (Ps �Ks)+ | F0], we use

Tonelli’s theorem and obtain

RO(T1, T2) = Q

Z T2

T1

A(P0,K0, s)ds .

Now, as in the proof of Proposition 3.3, we now notice that

A(P0,K0, s) = e
�rsEQ

h
(fP (s, s)� fK(s, s))+

���F0

i

where fi(t, s), t 2 [0, s], I = P,K, have the dynamics

dfP (t, s) = fP (t, s)�xe
��x(s�t)

dW
1
t ,

dfK(t, s) = fK(t, s)�ye
��y(s�t)

dW
2
t ,

The result then follows from the Margrabe formula with time-dependent (deterministic) volatilities,
which now enters into the formula via the integral of the squared volatility of fp(·, s)/fK(·, s) (see
e.g. [20]), here equal to

Z s

0

⇣
�
2
xe

�2�x(s�t) + �
2
ye

�2�y(s�t) � 2⇢�x�ye
�(�x+�y)(s�t)

⌘
dt = V ar(s)

Equation (15) follows.
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