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Abstract
In the numerical approximation of phase-field models of fracture in porous media with the finite element method, the problem
of numerical lockingmay occur. The causes can be traced both to the hydraulic and to themechanical properties of thematerial.
In this work we present a mixed finite element formulation for phase-field modeling of brittle fracture in elastic solids based
on a volumetric-deviatoric energy split and its extension to water saturated porous media. For the latter, two alternative
mixed formulations are proposed. To be able to use finite elements with linear interpolation for all the field variables, which
violates the Ladyzenskaja–Babuska–Brezzi condition, a stabilization technique based on polynomial pressure projections,
proposed and tested by previous authors in fluid mechanics and poromechanics, is introduced. We develop an extension of
this stabilization to phase-field mixed models of brittle fracture in porous media. Several numerical examples are illustrated,
to show the occurrence of different locking phenomena and to compare the solutions obtained with different unstable, stable
and stabilized low order finite elements.

Keywords Phase-field modeling · Volumetric locking · Stabilized mixed formulations · Water saturated porous media ·
Polynomial pressure projection

1 Introduction

Porous media are materials characterized by a heteroge-
neous internal structure consisting of a solid phase, which
confers stiffness to the material, and empty spaces, called
pores, which may be filled by one or more fluids [26]. Due
to this complicated internal microstructure, for engineer-
ing purposes it is more convenient to model the behavior
of these materials at the so-called macroscopic scale, i.e.
substituting the real structure of thematerial by ideally super-
imposed continua which occupy the entire domain at the
same time [14]. At this scale the classical balance equations
characteristic of continuum mechanics can be applied with-
out taking into account the discontinuity at the interfaces
between the real constituents. In order to derive the macro-
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scopic equations describing the behavior of these substitute
continua, several theories have been developed in the field
of the mechanics of porous media. These theories can be
classified into two main categories [26]: one approach starts
from the mechanical description of the behavior of the real
constituents at the microscopic scale, with the derivation of
balance equations in which interaction forces and disconti-
nuities at the interfaces between the constituents are taken
into account. The macroscopic equations are then derived
using an averaging process based on the integration of the
microscopic quantities over a control volume, called repre-
sentative volumeelement. These averaging theories, basedon
the upscaling of microscopic quantities, are known as hybrid
mixture theories [20–22,37]. A second possible approach is
to start the derivation of the balance equations for the sin-
gle phases directly at the macroscopic level, and is based on
the fundamental concept of volume fraction, defined as the
ratio of the volume of the constituents to the volume of the
control space [26]. The volume fraction allows the smear-
ing operation of the intrinsic mechanical properties of the
single phases over the entire domain �. Phenomenological
approaches, such as Biot’s theory [3,4] and mixture theories
[34–36] restricted by the volume fraction concept belong
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to this category [11,18,29,30]. A comprehensive description
of the balance equations that govern the (thermo)-hydro-
mechanical behavior of porous media can be found in [26].

Concerning the modeling of fracture, a fundamental
contribution to the study of the problem of evolution of pre-
existing cracks in elastic materials is the energetic approach
proposed byGriffith [19]. Griffith’s criterion states that a pre-
existing fracture in an elastic body can propagate only if the
release of potential energy upon an infinitesimal increment
of the fracture surface equals the surface energy associated
to the increment itself. A variational formulation of Grif-
fith’s energetic criterion was first proposed by Francfort and
Marigo [16]. The phase-field approach to fracture [9] is based
on the regularization of this variational formulation.A review
on several phase-field formulations of brittle fracture present
in the literature can be found in [1].

In order to couple the phase-field approach to fracture
with porous media mechanics, several approaches can be
followed. A variational formulation of the coupled problem,
limited to the saturated case, has been proposed in [27]. Other
possible strategies to realize the coupling can be found in [8,
23,28]. In this workwe follow the approach proposed in [13],
where the coupling between the two problems is realized
including a dependency on the phase-field parameter into
the constitutive law for the effective stress, which is defined
as the portion of the stress directly correlated with the elastic
deformations of the solid matrix of the porous medium [32].

In the numerical approximation of phase-field models of
fracture in porousmedia with the finite element (FE)method,
the problem of volumetric lockingmay occur. The causes can
be traced both to the hydraulic and the mechanical properties
of the material. Regarding the hydraulic properties, it is well
known in the literature [7,26,39] that, in the early stage of the
consolidation process of porousmediawith lowpermeability,
oscillating solutions for the pore pressure can be found when
using FEs that violate the so-called Ladyzenskaja–Babuska–
Brezzi (LBB) condition [12]. Regarding the mechanical
properties, it has been shown in [33] that, when using a
deviatoric-volumetric energy split in the phase-field simu-
lation of brittle fractures subjected to compressive loading,
the phase-field solution may feature a much larger thick-
ness of the localization band than that expected based on the
chosen characteristic length, or the simulation may even not
converge at all. To the best of the authors’ knowledge, the
combination of these two phenomena has not been studied
yet.

This paper focuses on the study and the development of
FE formulations which mitigate the aforementioned locking
phenomena. For this purpose, we introduce amixed u− p−d
(displacements/pressure/phase-field) formulation for phase-
field modeling of fracture in elastic solids and its extension
to water saturated porous media. The latter results in two
alternative mixed formulations of the problem. In the FE

discretization, the higher degree of interpolation for the dis-
placement field due to the LBB condition, in combination
with a fine discretization required in order to resolve the
length scale inherent to the phase-field approach, leads to
a very large number of degrees of freedom (DOFs). There-
fore, to allow the use of linear interpolation for all the fields,
a stabilization technique based on polynomial pressure pro-
jections is applied. This stabilization has been proposed in
the literature for the solution of the incompressible Stokes
equations [6,15], and successfully applied to the solution of
theDarcy problem [5], the coupled problem of saturated fluid
flow in a deforming porous medium [38] and for the stabi-
lization of the fluid pressure fields in phase-field modeling of
fracture in partially saturated porous media [24]. This tech-
nique has two interesting properties: the stabilization term
is local (thus requiring only a few additional lines in the FE
code) and its influence is controlled by a material parameter
[38]. In this work we propose an extension of this stabiliza-
tion to phase-field mixed models of brittle fracture based on
a volumetric-deviatoric energy split. This extension stems
from the analogy between the equations governing the prob-
lem of consolidation in water saturated porous media under
undrained conditions and the mixed u − p formulation for
incompressible elasticity.

The paper is organized as follows: Sect. 2 focuses onmod-
eling fully saturated porous media and introduces the mixed
formulation and the stabilization technique for this case. In
Sect. 3 the same stabilization technique is extended to phase-
field modeling of brittle fracture in elastic solids and, in
Sect. 4, the two problems are combined. Here two alternative
mixed formulations, based on the mean effective stress and
on the mean total stress, respectively, are proposed. Several
numerical examples are analyzed to compare the solutions
obtained with unstable, stable and low order stabilized FEs.
Conclusions are outlined in Sect. 5.

2 Water flow in a linear elastic saturated
porousmedium

2.1 Governing equations

The governing equations for the coupled problem of water
flow in a deforming porous medium are briefly derived.
The following assumptions are made: isothermal and fully
saturated conditions (u − pw, displacement/water pressure
formulation), incompressibility of both constituents, and
geometric linearity. With these assumptions, we can write
the strong form of the equilibrium equation as

∇ · σ t + ρg = 0 (1)
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and the strong form of the mass balance equation of solid and
water as

∇ · u̇ + ∇ · vws = 0 (2)

where σ t is the Cauchy total stress tensor, g the vector of
gravity acceleration, u the solid matrix displacement, vws

the relative water velocity with respect to the solid matrix,
and

ρ = (1 − n)ρs + nρw (3)

is the density of the mixture, with ρs and ρw indicating the
intrinsic density of the solid and of the water phase, respec-
tively, and n indicating the porosity. Equations (1) and (2)
are defined on the domain � of the body. A superimposed
dot denotes derivation with respect to time, while ∇· is the
divergence operator.

Based on Terzaghi’s effective stress principle [32], the
Cauchy total stress tensor σ t can be decomposed as

σ t = σ e − pw I (4)

where pw is the water pore pressure, σ e is the so-called
effective stress, namely the portion of the total stress directly
related to the deformation of the solid matrix, and I is the
second order identity tensor.

To solve the system of differential Eqs. (1) and (2) some
constitutive laws and the strain-displacement relation need
to be introduced. Concerning the mechanical behavior of the
solid matrix, we assume a linear elastic constitutive relation
between the effective stress tensor σ e and the infinitesimal
strain tensor ε, namely

σ e = C : ε (5)

whereC is the fourth-order elastic tensor. Note that ε = ∇su,
where ∇s is the symmetric part of the gradient operator.

For the water flow we introduce, as constitutive equation,
Darcy’s law, which, for a saturated porous medium, takes the
form

vws = − kw

ρwg
(∇ pw − ρw g) (6)

where kw is the isotropic hydraulic conductivity (expressed
in m/s).

Introducing (5), (6) and (4) into (1) and (2) we obtain the
system of governing equations

∇ · (C : ∇su − pw I) + ρg = 0 (7)

∇ · u̇ − ∇ ·
[
kw

ρwg
(∇ pw − ρw g)

]
= 0 (8)

which can be solved for the primary variables u and pw.
In order for the system of Eqs. (7) and (8) to be a well-

posed problem,weneed to specify someboundary conditions
(BCs) on the boundary � = ∂�, together with some initial
conditions (ICs) at the time t = 0 on �∪�. The ICs and the
BCs are expressed as

u = u0 at t = 0 on � ∪ �

pw = pw
0 at t = 0 on � ∪ �

u = u on �D
u

pw = p̄w on �D
p

σ · n = t̄ on �N
u

vws · n = q̄ on �N
p (9)

where u0 and pw
0 are the initial values of the displacement

and water pressure, u and p̄w are the imposed values of the
displacement and water pressure on the Dirichlet boundary
�D
u ∩ �D

p , t and q̄ are the imposed values of the traction and
the water flux on the Neumann boundary �N

u ∩ �N
p , and n is

the outward unit normal to �.

2.2 Weak form and FE discretization

Defining the following spaces for the trial functions u and
pw and the test functions wu and wp

Tu =
{
u : � → R

nd | u ∈ H1, u = u on �D
u

}

Tp =
{
pw : � → R | pw ∈ H1, pw = p̄w on �D

p

}

Wu =
{
wu : � → R

nd | wu ∈ H1,wu = 0 on �D
u

}

Wp =
{
wp : � → R | wp ∈ H1, wp = 0 on �D

p

}
(10)

the solution of the problem (7), (8) and (9) is the pair
{u, pw} ∈ Tu × Tp that solves, for any admissible pair{
wu, wp

} ∈ Wu ×Wp, the following weak form of the prob-
lem

∫
�

(∇swu : C : ∇su − pw∇ · wu − wu · ρg)d�

−
∫

�N
u

wu · t̄d� = 0

∫
�

{
wp∇ · u̇ + ∇wp ·

[
kw

ρwg
(∇ pw − ρw g)

]}
d�

+
∫

�N
p

wpq̄d� = 0 (11)

Starting from this weak form, it is now possible to dis-
cretize the problem in time and in space. Concerning the

123



Computational Mechanics

discretization in time, we denote with n + 1 and n the quan-
tities at the current and the previous time steps, respectively,
with �t = tn+1 − tn the size of the current time step and we
apply the Backward Euler scheme. We obtain the following
discrete-time counterpart of (11):

∫
�

(∇swu : C : ∇sun+1 − pw
n+1∇ · wu − wu · ρg)d�

−
∫

�N
u

wu · t̄n+1d� = 0

∫
�

{
wp∇ · (un+1 − un)/�t

+∇wp ·
[
kw

ρwg
(∇ pw

n+1 − ρw g)

]}
d�

+
∫

�N
p

wpq̄n+1d� = 0 (12)

Concerning the discretization in space, we subdivide the
domain in a mesh of FEs, and we consider an approximation
of the trial and test functions based on polynomial shape
functions with local support, namely

ũ = Nu û w̃u = Nuŵu

p̃w = N p p̂
w

w̃p = N pŵ p (13)

where (̃) are the approximated trial and weighting functions,
(̂) the vectors containing the values of those functions on the

mesh nodes, N p =
{
N 1

p N
2
p ... Nnn

p

}
is the vector containing

the shape functions for the water pressure at the nn nodes of
the mesh and Nu a matrix defined as

Nu =
[
N1

u N
2
u ... Nnn

u

]
(14)

where

N i
u = INi

u (15)

with Ni
u as the shape function for the displacement relative to

the node i . Furthermore we introduce the matrices B and b,
defined such that Bû = {ε} and bû = ∇ · ũ, with {ε} being
the Voigt (vector) representation of the infinitesimal strain
tensor ε. The same shape functions are used to approximate
the corresponding trial and weighting functions, recovering
the standard Bubnov–Galerkin Method.

We can therefore derive the discrete counterpart of the
weak form (12) as

Ru,n+1 = K n+1ûn+1 − Qn+1 p̂
w
n+1 − f u,n+1 = 0

R p,n+1 = QT
n+1(ûn+1 − ûn)/�t

+kwHn+1 p̂
w
n+1 − kw f p,n+1 = 0 (16)

with

K =
∫
�

BTCBd� (17)

Q =
∫
�

bT N pd� (18)

H =
∫
�

(∇N p)
T 1

ρwg
∇N pd� (19)

f u =
∫
�

NT
u ρgd� +

∫

�N
u

NT
u t̄d� (20)

f p = −
∫
�

(∇N p)
T g
g
d� +

∫

�N
p

NT
p q̄d� (21)

ThematrixC is the elasticitymatrix,which for the plain strain
assumption adopted in the numerical simulations presented
in this paper, reads

C =
⎡
⎣λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤
⎦ (22)

where λ and μ are the Lamè coefficients.
The quantities (17)–(21) do not depend on the solution at

the current time step, so the problem is linear and the solution
can be directly calculated solving the system

[
K −Q

−QT −kw�tH

]{
û
p̂w

}
n+1

=
[

0 0
−QT 0

]{
û
p̂w

}
n

+
{

f u
kw�t f p

}
n+1

(23)

The next step is the choice of the functions Nu and N p.
It is well known in the literature that the pair (Nu , N p) has
to fulfill the so called LBB condition to ensure the stability
of the solution in the locally undrained limit (e.g. [39]). The
study of the stability of the FE formulation will be treated in
the next section.

2.3 Stable, unstable and stabilized FE formulations

We consider now the algebraic structure of the problem in
the local undrained limit, i.e. when kw�t → 0 [38]. In this
case the system of Eq. (23) becomes

[
K −Q

−QT 0

] {
û
p̂w

}
n+1

=
{

f u,n+1
−QT ûn

}
(24)

We can notice that the lower diagonal block in the system
(24) is now zero, and that the matrix assumes the typi-
cal structure of incompressible elasticity problems in solid
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mechanics. From a physical point of view, this is exactly
what is happening: if we consider an arbitrary control vol-
ume in our domain, in the undrained limit the water can
not flow in or out and, due to its very low compressibil-
ity, constrains the solid matrix to develop pure deviatoric
deformations. In order to obtain a stable solution, the choice
of the spaces Wu and Wp has to satisfy the LBB condi-
tion. The combination of quadratic displacements and linear
water pressure interpolations (Taylor-Hood element Q9Pw4)
satisfies this condition, while the low order element with lin-
ear displacement and linear pressure interpolations (Q4Pw4)
does not [26,38,39]. Obviously, the element Q9Pw4, with
its 22 DOFs, is computationally more expensive than the
Q4Pw4, which has only 12 DOFs. The computational advan-
tage of the linear-displacements/linear-pressure interpolation
becomes even more evident in three-dimensional problems,
where every hexahedral element has 32 DOFs, while using
a quadratic-displacements/linear-pressure interpolation the
number of DOFs per hexahedral element rises to 89.

A smart approach to stabilize the linear-displacements/
linear-pressure interpolation has been introduced by Bochev
and Dohrmann in [5,6,15] in the context of fluid mechan-
ics, and successively applied by White and Borja in [38] in
porous media mechanics. The idea proposed in [15] is to add
a stabilization term in the weak formulation of the problem,
resulting in a non-zero lower diagonal block in the corre-
sponding discrete equation. Let us first define the element
piecewise constant projection operator as

Π � |�e = 1

Ve

∫
�e

�d� (25)

where Π is the projection operator applied to the generic
variable � and Ve is the volume of the element domain �e.
When applied to the water pressure pw, this is nothing but
the definition of the average element water pore pressure.

In [38] White and Borja proposed the following modified
version of (16):

Ru,n+1 = K n+1ûn+1 − Qn+1 p̂
w
n+1 − f u,n+1 = 0

R p,n+1 = QT
n+1(ûn+1 − ûn)/�t + kwHn+1 p̂

w
n+1

−kw f p,n+1 + Rstab
n+1 = 0 (26)

where the stabilization vector Rstab
n+1 has been added. This is

defined in [38] as

Rstab
n+1 = Spw( p̂w

n+1 − p̂w
n )/�t (27)

with Spw being the so-called stabilization matrix, defined as

Spw =
∫
�

cW B
stab(N p − ΠN p)

T (N p − ΠN p)d� (28)

where cW B
stab is a penalization factor, which regulates the influ-

ence of the stabilization matrix Spw.
The idea behind this stabilization is substantially to ’penal-

ize’ the oscillations of the pressure around their element
average value. This is actually more than a simple penaliza-
tion:Bochev andDohrmanndemonstrated that this additional
term quantifies, and therefore corrects, the deficiency of
the linear-displacements/linear-pressure interpolation with
respect to the LBB condition [15,38]. There are two main
advantages in the use of this stabilization:

• The stabilization matrix Spw is a local additional term: it
requires only the computation of the average value of the
element shape functions, making this stabilization easy
to implement and adding a minimal computational cost.

• The stabilization coefficient cW B
stab acts as a penalization

factor in (28) and can be related to a physical parameter
characterizing the problem. In [15] this factor is taken as
the inverse of the dynamic water viscosity, while in [38]
it is chosen as

cW B
stab = τ

2μ
(29)

where τ is an additional coefficient introduced to com-
pensate a possible excess of stabilization (τ = 0.04 has
been used in [38] for a two-dimensional numerical appli-
cation).

Being the permeability kw > 0 (even if very small), the prob-
lem is always characterized by a transient evolution (even if
very slow) and, therefore, the stabilized quantity is the time
derivative of thewater pressure.Now it is interesting to notice
that, in analogy to the idea in [15] for the stabilization of the
Stokes equations, White and Borja [38] related the penal-
ization factor to the inverse of the material parameter 2μ.
However, while in the Stokes equations the parameter multi-
plying the velocity is a scalar value and so the choice of the
penalization is quite clear (the inverse of that value), in the
present case the strain tensor ε is multiplied by the fourth-
order elasticity tensor C, containing the two Lamè constants
λ and μ. Thus a criterion for the choice of a scalar parameter
representative of the tensorC is needed. In analogy with [15]
we suggest to use as a stabilization coefficient

cstab = 1

C1111
= 1

C2222
= ... = 1

Cndndndnd
= 1

λ + 2μ
(30)

with nd being the dimension of the problem, where the value
C1111 = C2222 = ... = Cndndndnd has been chosen as scalar
parameter representative of the tensorC.We notice that, with
our choice, the stabilization coefficient is always smaller than
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or equal to the coefficient cW B
stab, proposed in [38], leading to

a weaker stabilization effect. On the other hand, we do not
introduce any additional coefficient τ as in (29).

With the introduction of the stabilization matrix Spw, the
stabilized counterpart of (23) can be derived, obtaining

[
K −Q

−QT −kw�tH − Spw

]{
û
p̂w

}
n+1

=
[

0 0
−QT −Spw

]{
û
p̂w

}
n

+
{

f u
kw�t f p

}
n+1

(31)

2.4 Numerical example

In this section we simulate the consolidation process of a
vertical column of water saturated soil [38], known as Terza-
ghi’s problem, whose analytical solution is known [31]. The
domain of the problem is a layer of poroelastic material of
base L and height H , subjected to a constant surface load
w applied at the top and vertically constrained at the bottom
(see Fig. 1). The water flux is free at the top and set to zero
at the bottom. Concerning ICs, the water pressure is set to
zero on the entire domain. On the lateral boundaries zero
horizontal displacement and water flux are imposed. Plain
strain is assumed. The mesh used for the discretization of the
domain consists in a column of 20 quadrilateral elements.
Our goal is to compare the numerical solutions of the water
pressure obtained using different stable and unstable FEs at

pw = 0  

w = 1 kPa

H
 =

 1 m
  

L = 0.1 m  

qw = 0  

q
w

=
 0  

q
w

=
 0  

Fig. 1 Scheme of Terzaghi’s problem [38]

the early stage of the consolidation. The problem is hence
solved using the Taylor-Hood element Q9Pw4, the low order
element Q4Pw4, and the stabilized elements Q4Pw4s-WB
(the one proposed by White and Borja with the stabilization
coefficient (29)) andQ4Pw4s (with ourmodified stabilization
coefficient (30)). The material parameters are: E = 1 kPa,
kw = 10−5 m/s,ρs = 0,ρw = 1000 kg/m3, g = 0m/s2 [38].
The time step is Δt = 1 s. Two different Poisson’s ratios are
considered, ν = 0 (λ = 0 kPa, μ = 0.5 kPa) and ν = 0.4
(λ = 1.43 kPa,μ = 0.36 kPa). The latter is a very high value
for soils, but is chosen here to amplify the difference between
the choices (29) and (30) of the penalization coefficient.

Immediately after the application of the load, for a fac-
tor kwΔt small enough, the porous medium is subjected to
local undrained conditions, behaving as an incompressible
material: the water bears the entire load and the analytical
solution consists in null vertical displacements and constant
water pressure equal to the applied load along the column,
with a sharp jump in the solution at the top, where Dirichlet
BCs are applied. Under these conditions unstable FEs are
expected to show oscillations for the pressure solution. Fig-
ure 2a shows that, for the case ν = 0, the solution obtained
for the water pressure with the element Q4Pw4 features large
oscillations that propagate also far away from the boundary
where the load is applied (pressure jump), while the solution
obtained with the stable Taylor-Hood element Q9Pw4 shows
a small oscillation, that disappears at a small distance from
the boundary. Moreover, Fig. 2a shows also that both stabi-
lized elementsQ4Pw4s-WBandQ4Pw4s reproduce perfectly
the solution of the stable element Q9Pw4. The two solutions
coincide as, for ν = 0 (i.e. λ = 0), (29) and (30) deliver the
same result.

In Fig. 2b the results obtained using ν = 0.4 are shown.
For the element Q4Pw4 the results show again large oscil-
lations along the entire domain, while the Taylor-Hood
element, as expected, leads to a stable pressure distribu-
tion. In this case, however, the difference in the choice of
the stabilization coefficient becomes evident. While the pro-
posed stabilized element Q4Pw4s delivers again exactly the
same solution obtained with the stable Q9Pw4, Q4Pw4s-WB
leads to no oscillation. This result, which seems to indicate
an advantage of Q4Pw4s-WB, is instead an indicator of an
excess of stabilization. In fact, we consider as indicator of
the correctness of the stabilization coefficient the agreement
with the numerical solution obtained with a stable formula-
tion, rather than the agreement with the analytical solution.
This excess of stabilization for the element Q4Pw4s-WBwas
also noticed by the authors themselves, and could be the rea-
son of the additional coefficient τ < 1, introduced in (29)
in other to reduce the excess of diffusion obtained in some
simulations [38]. Except for the choice of the stabilization
coefficient, the stabilization technique proposed in [38] is
very effective and, at the same time, easy to implement.
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(a)

(b)

Fig. 2 Water pressure distribution along the column at the first time
step for different FEs. In a ν = 0, in b ν = 0.4

3 Phase-field computation of deviatoric
fractures in brittle solids

3.1 Energy functional

As already metioned in the introduction, the phase-field
approach to brittle fracture is based on the work of Bourdin
et al. [9], and consists in the regularization of the variational
formulation of Griffith’s theory of brittle fracture, first pro-
posed in 1998 by Francfort and Marigo [16]. The problem of
equilibrium and quasi-static evolution of the phase-field vari-
able d, assumed to vary smoothly between the values d = 0
(intact material) to the value d = 1 (fully broken material),
is governed by the minimization of the energy functional

E(u, d) =
∫
�

[
g (d) Ψ +(ε(u)) + Ψ −(ε(u))

]
d�

+ Gc

4Cv

∫
�

(
w(d)

l
+ l |∇d|2

)
d� −

∫

�N
u

t̄ · ud�

+γ

2

∫
�

〈d − dn〉2− d� (32)

where g (d) = (1−d)2+η is the so-called degradation func-
tion, with 0 < η 	 1 being a residual stiffness, introduced
for numerical stability reasons, Ψ +(ε) and Ψ −(ε) are the
so-called ’positive’ and ’negative’ parts of the undamaged
elastic energy Ψ (ε) = 1

2λtr
2(ε)+μtr(ε2), whose definition

depends on the particular model chosen for the energy split,
Gc is the fracture toughness, Cv is a normalization constant,
depending on the model used for the local part of the dissipa-
tion function w(d), and l is a characteristic length parameter
controlling the amount of regularization. The last integral is
introduced to enforce the irreversibility of the evolution of
the phase-field variable d [17].

The functional (32) is a general expression, which needs
to be particularized by choosing a specific model for the
function w(d) and for the the split of the energy Ψ = Ψ + +
Ψ −. Concerning the local part of the dissipation function,
we choose the so-called AT1 model [10], characterized by
the following expression for w(d) and Cv:

w(d) = d, Cv = 2
3 (33)

Regarding the choice of the split of the energy density
function, we introduce the volumetric-deviatoric energy split
proposed byLancioni andRoyer-Carfagni [25]. In thismodel
it is

Ψ +(ε) = Ψ dev(ε) = μ
(
εdev : εdev

)
= 1

2
ε : Cdev : ε

Ψ −(ε) = Ψ vol(ε) = 1

2
K tr2(ε) = 1

2
ε : Cvol : ε (34)

where εdev = ε − 1
3 tr(ε)I is the deviatoric component of

the strain tensor ε, K = λ + 2
3μ is the bulk modulus of the

material,Cdev and Cvol are the deviatoric and the volumetric
parts of the elasticity tensor C, respectively. Inserting (33)
and (34) in (32), we obtain

E(u, d) = 1

2

∫
�

ε(u) :
[
g (d)Cdev + C

vol
]

: ε(u)d�

+3

8
Gc

∫
�

(
d

l
+ l |∇d|2

)
d� −

∫

�N
u

t̄ · ud�

+γ

2

∫
�

〈d − dn〉2− d� (35)

We notice at this point that, to model the real behavior of
brittle materials, a more adequate choice for a split based on
the volumetric-deviatoric decompositionof the elastic energy
would be the one proposed by Amor et al. [2] where

Ψ + = 1

2
K 〈tr(ε)〉2+ + μ

(
εdev : εdev

)

Ψ − = 1

2
K 〈tr(ε)〉2− (36)
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implying that also the volumetric energy contributes to the
fracture evolution, if the volumetric deformation is positive.
Anyway, the numerical instabilities due to volumetric lock-
ing, which are in focus in this paper, are expected to manifest
themselves when the volumetric deformation is negative, in
which case the splits (34) and (36) coincide.

3.2 Minimization problem

The phase-field formulation of brittle fracture consists in the
minimization of El(u, d) with (u, d) ∈ Tu × H1 (�). Nec-
essary conditions for this minimization are

Eu(u, d) (v) =∫
�

ε(u) : [g (d)Cdev + C
vol] : ε(v)d� −

∫

�N
u

t̄ · vd� != 0

(37)

Ed (u, d) (α) =∫
�

[−2(1 − d)Ψ dev (ε(u))
]
αd� + 3

8
Gc

∫
�

α

l
d�

+3

4
Gcl

∫
�

∇d · ∇αd� + γ

∫
�

〈d − dn〉− αd�
!= 0 (38)

for every (v, α) ∈ Wv × H1 (�). Here Eu(u, d) (v) and
Ed(u, d) (α) are the directional derivatives of the functional
E(u, d)with respect to u and d in directions v and α, respec-
tively.

Applying Green’s Lemma to (37) and (38), it is possible
to derive the following Euler’s equations

−∇ · σ (ε, d) = 0 (39)

−2(1 − d)Ψ dev + 3Gc

8
(
1

l
− 2l�d) + γ 〈d − dn−1〉− =0

(40)

where σ (ε, d) is the stress tensor, defined as

σ (ε, d)=
[
g (d)Cdev + C

vol
]

: ε = g (d) 2μεdev+K tr(ε)I

(41)

Together with the BCs

σ · n = t̄ on �N
u (42)

∇d · n = 0 on �N
d (43)

Equations (39) and (40), i.e. the equilibrium equations and
the phase-field evolution equation, respectively, represent the
strong form of the variational problem.

3.3 Mixed formulation and stabilization

Because of the volumetric-deviatoric energy split introduced
in the functional (35), when a fracture occurs the deviatoric
stiffness of the material becomes very small in compar-
ison with the volumetric one, which is not affected by
the phase-field variable d. Therefore, a discretization that
cannot treat the deviatoric and the volumetric part of the
deformation independently can lead to instabilities when
the fracture localizes. This problem is similar to the well
known phenomenon of volumetric locking in the modeling
of incompressible materials, and can be solved using amixed
formulation in which, in addition to the displacement u, also
the hydrostatic component of the stress p, defined as

p = tr(σ )

3
(44)

is treated as a primary variable. The latter is related to the vol-
umetric deformation of the body by the constitutive equation

p = K tr(ε(u)) = K∇ · u (45)

Following the procedure in [33], we now introduce a
mixed formulation u − p − d of the phase-field model pre-
sented inSect. 3.1.Taking into account the elastic constitutive
relation (45), the volumetric part of the elastic energy can be
expressed as a function of p, namely

Ψ vol(p) = p2

2K
(46)

With this definition the functional (35) can be rewritten as

E(u, p, d) = 1

2

∫
�

g (d) ε (u) : Cdev : ε (u) d� + 1

2

∫
�

p2

K
d�

+3

8
Gc

∫
�

(
d

l
+ l |∇d|2

)
d� −

∫

�N
u

t̄ · ud�

+γ

2

∫
�

〈d − dn〉2− d� (47)

The evolution of the pressure p is related to the volumetric
deformation by the constitutive equation (45), which can be
viewed as a constraint equation, namely

∇ · u − p

K
= 0 (48)

This constraint equation can be included in the varia-
tional formulation using the method of Lagrange multipliers.
Indeed, if we define the following Lagrangian

L(u, p, d, β) = E(u, p, d) +
∫
�

β
(
∇ · u − p

K

)
d� (49)
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where β is a Lagrange multiplier, introduced to enforce
the constraint (48), the variational problem for the resulting
mixed formulation consists in the stationarity of L(u, p, d, β)

with (u, p, d, β) ∈ Tu × L2 (�) × H1 (�) × L2 (�). Nec-
essary conditions for stationarity are

Lu(u, p, d, β) (v)
!= 0, L p(u, p, d, β) (q)

!= 0,

Ld(u, p, d, β) (α)
!= 0, Lβ(u, p, d, β) (ξ)

!= 0 (50)

for every (v, q, α, ξ) ∈ Wu × L2 (�) × H1 (�) × L2 (�).
From the condition

L p(u, p, d, β)(q) =
∫
�

q(p−β)d� = 0 ∀q ∈ L2 (�) (51)

we obtain that

p = β (52)

This means that the hydrostatic stress p acts as a Lagrange
multiplier in the mixed formulation. The Lagrangian (49)
becomes therefore

L(u, p, d) = 1

2

∫
�

g (d) (u) : Cdev : ε (u) d�

−1

2

∫
�

p2

K
d� +

∫
�

p∇ · ud�

+3

8
Gc

∫
�

(
d

l
+ l |∇d|2

)
d� −

∫

�N
u

t̄ · ud�

+γ

2

∫
�

〈d − dn〉2− d� (53)

and its directional derivatives read

Lu(u, p, d, β) (v) =
∫
�

g (d) ε (u) : Cdev : ε(v)d�

+
∫
�

p∇ · vd� −
∫

�N
u

t̄ · vd� = 0 (54)

L p(u, p, d) (q) =
∫
�

q
(
∇ · u − p

K

)
d� = 0 (55)

Ld(u, p, d) (α) =
∫
�

[
−2(1 − d)Ψ dev (ε(u))

]
αd�

+3

8
Gc

∫
�

α

l
d�

+3

4
Gcl

∫
�

∇d · ∇αd� + γ

∫
�

〈d − dn〉− αd�=0

(56)

for every (v, q, α) ∈ Wu×L2 (�)×H1 (�). After the appli-
cation of Green’s lemma to Eqs. (54) and (56), we can derive
the strong form of the mixed variational formulation, which
consists in the differential equations

−∇ · σ (ε, p, d) = 0 (57)
p

K
− ∇ · u = 0 (58)

−2(1 − d)Ψ dev + 3Gc

8

(
1

l
− 2l�d

)
+ γ 〈d − dn−1〉− = 0

(59)

valid on the domain �, together with the BCs

σ · n = t̄ on �N
u (60)

∇d · n = 0 on �N
d (61)

where

σ (ε, p, d) = g (d)Cdev : ε + I p (62)

3.4 FE discretization

We introduce now an approximation of the trial and test func-
tions basedonpolynomial shape functionswith local support,
namely

ũ = Nu û ṽ = Nu v̂

p̃ = N p p̂ q̃ = N p q̂

d̃ = Nd d̂ α̃ = Nd α̂ (63)

where Nd = {
N 1
d N 2

d ... Nnn
d

}
is the vector containing the

shape functions for the phase-field at the nn nodes of the
mesh. The following discrete version of the weak form of
the problem

Ru =
∫
�

g ˜(d)BTCdev {ε(ũ)} d� +
∫
�

bT p̃d� −
∫

�N
u

Nu t̄d�
!= 0

(64)

R p =
∫
�

BT∇ · ũd� −
∫
�

NT
p
p̃

K
d�

!= 0 (65)

Rd =
∫
�

NT
d

[
−2(1 − d̃)Ψ dev (ε(ũ)) + 3Gc

8l

]
d�

+3

4
Gcl

∫
�

(∇Nd )
T∇d̃d�

+γ

∫
�

NT
d

〈
d̃ − d̃n

〉
− αd�

!= 0 (66)

is obtained, where Ru , R p and Rd are the residual vectors
and Cdev and Cvol are the deviatoric and the volumetric com-
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ponent of the elasticity matrix C which, in the case of plain
strain, read

Cdev =
⎡
⎢⎣

4
3μ − 2

3μ 0

− 2
3μ

4
3μ 0

0 0 μ

⎤
⎥⎦ (67)

Cvol =
⎡
⎢⎣

λ + 2
3μ λ + 2

3μ 0

λ + 2
3μ λ + 2

3μ 0

0 0 0

⎤
⎥⎦ (68)

The system of Eqs. (64), (65) and (66) is solved using a
staggered approach in which, for every loading step, the dis-
crete coupled u− p problem, consisting in the system of Eqs.
(64) and (65), and the discrete phase-field evolution equation
(66) are solved independently, using the last calculated value
of the other fields as a constant. These procedure is repeated
until a convergence condition is satisfied, namely [33]

∥∥∥d̂s+1 − d̂s
∥∥∥∞ < TOLstag (69)

where s + 1 and s are the current and the previous staggered
iteration, respectively.

Due to the presence of theMacaulay brackets, the residual
Rd is nonlinear with respect to d, so an iterative procedure
has to be used to solve (66) at each staggered iteration within
the current loading step. Using theNewton-Raphsonmethod,
the solution is obtained solving, at each nonlinear iteration,
the system of equations

Jkd�d̂
k+1 = −Rk

d (70)

where k + 1 and k are the current and the previous nonlinear

iterations and the matrix Jkd = ∂Rk
d

∂ d̂
k is the Jacobian matrix of

Rk
d . The solution d̂ is updated after each nonlinear iteration,

i.e.

d̂
k+1 = d̂

k + �d̂
k+1

(71)

Concerning the coupled u − p problem, Eqs. (64) and
(65) are solved with a monolithic approach, which leads to
the following linear system of equations:

[
K dev

d̃
Q

QT − 1
K M

]{
û
p̂

}
=
{

f u
0

}
(72)

where

K dev
d̃

=
∫
�

g ˜(d)BTCdevBd� (73)

M =
∫
�

NT
pN pd� (74)

and Q and f u are as defined in Sect. 2.2.
We focus now on the stability of the formulation which, as

we saw in the previous section, is ensured by a choice of the
shape functions Nu and N p satisfying the LBB condition.
The combination of quadratic displacement and linear pres-
sure interpolations (Q9P4 for quadrilateral FEs) satisfies this
condition, while the combination of linear displacement and
linear pressure interpolations (Q4P4 for quadrilateral FEs)
does not. If we look at the structure of the system of Eqs.
(72), when K → ∞, we can notice a clear analogy with
the structure of the system (24), characterizing the numer-
ical solution of the problem of consolidation of a porous
media under undrained conditions. This is either the case of
materials with very high volumetric stiffness K , or the case
of cracked materials modeled with a phase-field approach
based on a volumetric-deviatoric split of the energy, charac-
terized by a deviatoric stiffness several order of magnitudes
smaller than the volumetric one in correspondence of values
d � 1 of the phase-field.

In order to stabilize the solutionobtainedwith the elements
Q4P4,we use the pressure projection technique introduced in
Sect. 2.3. Therefore we add to the system (72) a stabilization
matrix Sp f defined as

Sp f =
∫
�

cp fstab(N p − ΠN p)
T (N p − ΠN p)d� (75)

where, as shown in Sect. 2, the choice of the stabilization
coefficient cp fstab plays an important role in the performance
of the stabilized solution. Following (30), the stabilization
coefficient, which now depends on a scalar value represen-
tative of the damaged deviatoric part of the elasticity tensor
C, is defined as

cp fstab = 1

g ˜(d)Cdev
1111

= 1

g ˜(d)Cdev
2222

= ... = 1

g ˜(d)Cdev
ndndndnd

= 3

4μg ˜(d)
(76)

With the introduction of the stabilization matrix Sp f , the
following stabilized counterpart of the mixed formulation
(72) is obtained

[
K dev

d̃
Q

QT − 1
K M − Sp f

]{
û
p̂

}
=
{

f u
0

}
(77)
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Table 1 Summary of the different FEs used for the numerical examples
of Sect. 3.5

u p d

Q4/Q4 Linear – Linear

Q9/Q4 Quadratic – Linear

Q4P4/Q4 Linear Linear Linear

Q4P4s/Q4 Linear Linear-stabilized Linear

Q9P4/Q4 Quadratic Linear Linear

3.5 Numerical examples

We present now two numerical examples in order to test
the performance of different FE interpolations. In particular
we consider interpolations with the quadrilateral elements
Q4/Q4 and Q9/Q4 for the formulation u − d, and with the
quadrilateral elements Q4P4/Q4, Q4P4s/Q4 and Q9P4/Q4
for the mixed formulation u − p − d. These symbols are
specified in Table 1, including an indication of the field in
which, if present, the stabilization is applied. In the notation
used to identify the elements, the interpolation of the phase-
field d is separated by the symbol “/”, to point out that we
use a staggered procedure in which the phase-field equation
is solved separately from the other equations. We choose a
linear interpolation for the phase-field for all the FEs consid-
ered, for a better comparison of the results.

With regard to the choice of the penalty coefficient intro-
duced to enforce the irreversibility of the phase-field, we use
the expression derived in [17], which for the AT1 model and
a tolerance TOLir = 0.01 on the error in the evalution of
the fracture energy, leads to the following expression for the
penalty parameter:

γ = 4000
Gc

l
(78)

This expression is used in all the phase-field numerical sim-
ulations in this paper.

3.5.1 Uniaxial tension test

In this example we study the numerical solution of the uni-
axial tension test of a bar, with the dimensions shown in
Fig. 3. The mesh is composed by a grid of square elements,
with side hel = 0.005m, and plane strain conditions are
assumed. A Dirichlet BC ux = −t , with t being a pseudo-

time parameter, is imposed on the left boundary, while the
right one is assumed fixed. Concerning the phase-field vari-
able d, homogeneous Dirichlet BCs are imposed on the left
and the right boundaries, in order to maintain the symmetry
of the phase-field solution, thus promoting the localization of
the phase-field in themiddle of the domain.Theparameters of
the model are: E = 1 Pa, ν = 0.4, Gc = 1N/m, l = 0.05m,
η = 10−8. The time step is �t = 0.05 s. We perform 80
time steps, with a tolerance TOLp f = 10−8 on the residual
for the phase-field Newton-Raphson iterative scheme, and a
tolerance TOLstag = 10−5 for the staggered loop (see Sect.
3.4). The localization of the phase-field variable occurs at
tloc = 2.7 s.

Figure 4a plots the profiles of the phase-field at tend = 4 s,
computed with the standard elements Q9/Q4 andQ4/Q4, and
the analytical solution derived in [33]. Looking at the pro-
file obtained with the element Q9/Q4, we can notice that the
analytical solution is almost perfectly recovered, with the
exception of the small plateau obtained in correspondence
of the cusp of the analytical optimal profile, which is due to
the numerical approximation and, having the dimension of
one FE, tends to disappear for hel → 0. On the other hand,
the element Q4/Q4 shows a localization width significantly
larger than the analytical one, with a round profile at the peak
instead of the cusp that characterizes the analytical solution.
This is how the locking phenomenon occurs when the phase-
field localizes, caused by the fact that the deviatoric stiffness,
degraded by the phase-field, becomes very small in compar-
ison with the volumetric one.

In Fig. 4b we compare the analytical profile with the one
obtained with the mixed elements Q4P4/Q4, Q4P4s/Q4 and
Q9P4/Q4. In this case we can notice that all the solutions
reproduce very well the analytical one. However the profile
obtained with the element Q4P4/Q4 is slightly wider than the
one obtained with the stabilized element Q4P4s/Q4, whose
solution coincides with that of the stable Q9P4/Q4.

In order to compare the general behavior of all the standard
and mixed FEs adopted so far, in Fig. 5 we plot the force-
displacement curve relative to all the numerical solutions.
We notice that, after the localization of the phase-field, the
reaction force vanishes for all the elements, except for the
Q4/Q4. This is due to an excess of residual stiffness, again
characteristic of a locking behavior. A confirmation of this
can be obtained comparing the maximum values of d at the
peak of the damage:while for all the other elements d reaches

H
 =

 0.1 m
  L = 1 m  

ux = - t

Fig. 3 Scheme of the problem
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(a)

(b)

Fig. 4 Phase field profiles at tend = 4 s: a standard u − d formulation,
b mixed u − p − d formulation

Fig. 5 Reaction force versus applied displacement curve with standard
and mixed FEs

the unity, with the element Q4/Q4we have d → 1 but always
d < 1.

According to these results, except for a small difference
in the width of the localization profile, the mixed element
Q4P4/Q4 seems to behave as well as the elements Q9/Q4,
Q4P4s/Q4 and Q9P4/P4. However, the positive effect of the
stabilization becomes evident if we look at the profile of the
hydrostatic stress p, obtained with the mixed elements, after
the localization. In Fig. 6 we can clearly observe that, in

(a)

(b)

Fig. 6 Hydrostatic stress p at tend = 4 s for the mixed u − p − d
formulation: a interval [0, 1], b interval [0.4, 0.6]

correspondence of the crack, the profile obtained with the
stabilized element Q4P4s/Q4 is in good agreement with the
one obtained with the stable Q9P4/Q4, while the unstable
element Q4P4/Q4 leads to large oscillations.

3.5.2 Two-dimensional compression test

In this example we study the development of a shear fracture
in a rectangular domain subjected to lateral compression.
This problem, with different dimensions, has already been
solved in [33], in order to show the stability of the mixed
element Q9P4/Q4, compared to the standard one Q4/Q4. We
recompute this example with the elements used in the pre-
vious section. The mesh is composed by square elements
with side hel = 0.005m, and the dimensions of the domain
are shown in Fig. 7 along with the BCs. In this case, on
the left side we apply symmetric BCs, so the vertical dis-
placements uy and the phase-field d are not constrained.
The problem is solved in control of displacements, with
ux = −t as non-homogeneous Dirichlet BC on the right
boundary. The parameters of the model are: E = 1 kPa,
ν = 0.3, Gc = 1N/m, l = 0.02m, η = 10−8. The time
step is �t = 2.5e−4 s. We perform 320 time steps, with a
tolerances TOLp f = 10−8 and TOLstag = 10−5 (see previ-
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Fig. 7 Scheme of the problem of shear fracture under compressive load

ous example). The localization of the phase-field occurs at
tloc = 0.07525 s.

Figure 8 shows the contours of the phase-field d obtained
at the end of the simulation with the different FEs. Looking
at the solution obtained with standard elements, we can again
notice that the element Q9/Q4 leads to the expected solution,
i.e. a fracture that localizes along an inclined shear band
starting from the center of the domain (considering the sym-
metry). The standard elementQ4/Q4, instead, localizes along
a thick vertical crack, whose width is no longer controlled
by the internal length l. Focusing on the mixed elements, we
notice that the stable Q9P4/Q4 and the stabilized Q4P4s/Q4
are able to catch the correct crack pattern and width, while
the unstable Q4P4/Q4 shows, as in the previous example, a
width slightly broader than the one obtained with the stabi-
lized Q4P4s/Q4, but with a non realistic localization pattern,
which starts vertically from the center and then tilts down
along an inclined band.

4 Phase-field computing of deviatoric
fractures in saturated porousmedia

4.1 Governing equations

In this section we aim at coupling the model for fluid flow
in saturated elastic porous media, formulated in Sect. 2, with
the phase-field model for fracture with volumetric-deviatoric
energy split, given in Sect. 3.

If we combine the phase-field equation (40) with the sys-
tem of Eqs. (7) and (8), we obtain

∇ ·
{[

g (d)Cdev + C
vol
]

: ∇su
}

− ∇ pw + ρg = 0 (79)

∇ · u̇ − ∇ ·
[
kw

ρwg
(∇ pw − ρw g)

]
= 0 (80)

−2(1 − d)Ψ dev + 3Gc

8
(
1

l
− 2l�d) + γ 〈d − dn−1〉− = 0

(81)

(a) – Q4/Q4 

(b) – Q9/Q4 

(c) – Q4P4/Q4 

(d) – Q4P4s/Q4 

(e) – Q9P4/Q4 

1

0

1

0

1

0

1

0

1

0

Fig. 8 Contours of the phase-field d at t = 0.08 s: standard elements a
Q4/Q4, bQ9/Q4; mixed elements cQ4P4/Q4, dQ4P4s/Q4, eQ9P4/Q4

where the linear elastic constitutive equation (5) for σ e has
been replaced by the following constitutive relation

σ e =
{
g (d)Cdev + C

vol
}

: ε (82)

which is the same relation used in Sect. 3 for σ . The ICs and
BCs of the problem are
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u = u0 at t = 0

pw = pw
0 at t = 0

u = u on �D
u

pw = p̄w on �D
pw

σ · n = t̄ on �N
u

vws · n = q̄ on �N
q

∇d · n = 0 on �N
d (83)

Following the same procedure of Sect. 2, after the dis-
cretization in time and space, we obtain the following
expression for the residuals:

Ru =
∫
�

BT
{
g
(
d̃n+1

)
Cdev + Cvol

}
{ε(ũn+1)}V d�

−
∫
�

bT p̃w
n+1d�

−
∫
�

NT
u ρgd� −

∫
�u

NT
u t̄n+1d� = 0 (84)

R p =
∫
�

BT∇ · ũn+1 − ũn
�t

d�

+
∫
�

(∇N p)
T kw

ρwg
(∇ p̃w

n+1 − ρw g)d�

+
∫

�pw

NT
p q̄n+1d� = 0 (85)

Rd =
∫
�

NT
d

[
−2(1 − d̃)Ψ dev (ε(ũn+1)) + 3Gc

8l

]
d�

+3

4
Gcl

∫
�

(∇Nd)
T∇d̃n+1d�

+γ

∫
�

NT
d

〈
d̃n+1 − d̃n

〉
− αd� = 0 (86)

Again, as explained in Sect. 3.1, the problem is split into
two sub-problems, solved for the pair (u, pw) and for the
phase-field d independently. The residual Rd is identical to
the one obtained in Sect. 3.4 and the same nonlinear solution
scheme is adopted. The sub-problem (84) (85) is solved with
a monolithic approach, which leads to the linear system

[
K dev

d̃
−Q

−QT −kw�tH

] {
û
p̂w

}
n+1

=
[

0 0
−QT 0

]{
û
p̂w

}
n

+
{

f u
kw�t f p

}
n+1

(87)

In this case, when deviatoric fractures develop under
locally undrained conditions, both the instabilities analyzed
in Sects. 2 and 3 can appear. The use of a stabilized element
Q4Pw4s for the problem (87), together with a linear interpo-
lation (Q4) of the phase-field, is expected to be stable under
undrained conditions, and to become unstable when the frac-
ture develops. The Taylor-Hood element Q9Pw4/Q4 is stable
with respect to the undrained conditions and, as shown in the
numerical example in Sect. 3.5, can lead to acceptable results
for the phase-field. However, none of these elements ensures
a stable behavior when the phase-field localizes. In the next
section we derive two possible mixed formulations, which
are stable under both undrained and fractured conditions.

4.2 Mixed formulations and stabilization

We focus now only on the poromechanical sub-problem
governed by Eqs. (79) and (80), based on the fact that the
phase-field equation is solved independently in the staggered
procedure adopted. Following the same procedure of Sect.
3.3, we can derive a mixed formulation of equation (79)
leaving unchanged equation (80). We obtain the system of
differential equations

∇ ·
[
g (d)Cdev : ∇su

]
+ ∇(pe − pw) + ρg = 0 (88)

pe

K
− ∇ · u = 0 (89)

∇ · u̇ − ∇ ·
[
kw

ρwg
(∇ pw − ρw g)

]
= 0 (90)

where pe is the hydrostatic component of the effective stress
tensor σ e, defined through the effective stress principle (4).
Equation (89) is the volumetric part of the elastic constitutive
equation (82). Following the usual FE procedure, we obtain
the following system of algebraic equations:

⎡
⎣ K Q −Q

QT −M 0
−QT 0 −kw�tH

⎤
⎦
⎧⎨
⎩

û
p̂e

p̂w

⎫⎬
⎭

n+1

=
⎡
⎣ 0 0 0

0 0 0
−QT 0 0

⎤
⎦
⎧⎨
⎩

û
p̂e

p̂w

⎫⎬
⎭

n

+
⎧⎨
⎩

f u
0

kw�t f p

⎫⎬
⎭

n+1

(91)

to be solved along with the discrete counterpart of the phase-
field equation (86). Based on the main variables of the
problem, we call this the “u − pe − pw − d formulation”.

Now, looking at the structure of the matrix on the left-
hand side of the system of Eq. (91), we can notice that
both equations for the fields pe and pw are coupled with
the equations for the displacement field u. In the perspec-
tive of the stability of the mixed formulation it will be
necessary either to use stable FEs, like the quadrilateral

123



Computational Mechanics

element Q9Pe4Pw4 (quadratic-displacement/linear-effective
pressure/linear-water pressure), or to develop a low order FE
defining a stabilization for both fields, dealing though with
the problem of the correct balance between the two stabiliza-
tions.

A possible way to reduce the number of couplings is to
perform a change of variables, based on the effective stress
principle restricted to the volumetric component of the stress,
namely

pt = pe − pw (92)

where pt is the hydrostatic part of the total stress tensor σ t .
After applying the change of variables (92), the system of
Eqs. (88), (89) and (90) becomes

∇ ·
[
g (d)Cdev : ∇su

]
+ ∇ pt + ρg = 0 (93)

(pt + pw)

K
− ∇ · u = 0 (94)

∇ · u̇ − ∇ ·
[
kw

ρwg
(∇ pw − ρw g)

]
= 0 (95)

We can notice that equation (95) is still directly depending
from u. But if we take the total time derivative of equation
(94) and we combine it with (95) we obtain the system of
differential equations

∇ ·
[
g (d)Cdev : ∇su

]
+ ∇ pt + ρg = 0 (96)

(pt + pw)

K
− ∇ · u = 0 (97)

( ṗt + ṗw)

K
− ∇ ·

[
kw

ρwg
I · (∇ pw − ρw g)

]
= 0 (98)

This leads to the discrete system of equations:

⎡
⎣ K Q 0

QT −M −M
0 −M −M − kw�tH

⎤
⎦
⎧⎨
⎩

û
p̂t

p̂w

⎫⎬
⎭

n+1

=
⎡
⎣0 0 0
0 0 0
0 −M −M

⎤
⎦
⎧⎨
⎩

û
p̂t

p̂w

⎫⎬
⎭

n

+
⎧⎨
⎩

f u
0

kw�t f p

⎫⎬
⎭

n+1

(99)

to be solved together with the phase-field equation (86).
Based on the main variables of the problem, we call this
the “u− pt − pw − d formulation”. Now we can notice that
pw is not directly coupled with u anymore.

Both the previous formulations are expected to be sta-
ble if we use for u a order of interpolation higher than the
one used for the pressures. This is the case of the element
Q9Pe4Pw4/Q4 for the u − pe − pw − d formulation, and of

the element Q9Pt4Pw4/Q4 for the u− pt − pw −d formula-
tions (the order of interpolation for the phase-field is always
assumed linear).

It is clear that the number of DOFs of a stable FE, already
large for the u − pw − d formulation, becomes even larger
for the two developed mixed formulations. For example, if
we focus on the interpolation for the poromechanical sub-
problem, the standard Taylor-Hood element Q9Pw4 implies
22DOFs,while themixedQ9Pe4Pw4 (orQ9Pt4Pw4) element
has 26 DOFs.

Using the results obtained in the previous two sections
for the stabilization of pw and p independently, we can now
derive the stabilized versions of the two mixed formulations
developed in this section, in order to be able to use FEs with
linear interpolations for all the fields and reduce the number
of DOFs. As a general guideline, we assume that the sta-
bilization of a particular pressure field is needed when that
field is directly coupled with the displacement u. It follows
that two equations need to be stabilized in (91), while in (99)
only one.

The stabilized version of the discrete system of Eq. (91)
is defined as

⎡
⎣ K Q −Q

QT −M − Sp f 0
−QT 0 −kw�tH − Spw

⎤
⎦
⎧⎨
⎩

û
p̂e

p̂w

⎫⎬
⎭

n+1

=
⎡
⎣ 0 0 0

0 0 0
−QT 0 0

⎤
⎦
⎧⎨
⎩

û
p̂e

p̂w

⎫⎬
⎭

n

+
⎧⎨
⎩

f u
0

kw�t f p

⎫⎬
⎭

n+1

(100)

where Spw and Sp f are the two stabilization matrices
introduced in Sects. 2.3 and 3.4, respectively. With these
stabilization terms it is now possible to use the element
Q4Pe4sPw4s, with linear interpolations for all the fields (the
letter ’s’ indicates as usual the stabilization of the correspond-
ing field).

Similarly, the stabilized version of the discrete system of
Eq. (99) is defined as

⎡
⎣ K Q 0

QT −M − Sp f −M
0 −M −M − kw�tH

⎤
⎦
⎧⎨
⎩

û
p̂t

p̂w

⎫⎬
⎭

n+1

=
⎡
⎣0 0 0
0 0 0
0 −M −M

⎤
⎦
⎧⎨
⎩

û
p̂t

p̂w

⎫⎬
⎭

n

+
⎧⎨
⎩

f u
0

kw�t f p

⎫⎬
⎭

n+1

(101)

Also in this case, due to the introductionof the stabilization
matrix Sp f , it is now possible to use the low order element
Q4Pt4sPw4/Q4.

To conclude we notice that, using the stabilized element
Q4Pe4sPw4s (or Q4Pt4sPw4) instead of the stableQ9Pe4Pw4
(or Q9Pt4Pw4), the number of DOFs per element reduces
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Table 2 Summary of the
different FEs used for the
numerical examples of Sect. 4.3

u pe pt pw d

Q4Pw4/Q4 Linear – – Linear Linear

Q4Pw4s/Q4 Linear – – Linear-stabilized Linear

Q9Pw4/Q4 Quadratic – – Linear Linear

Q4Pe4sPw4s/Q4 Linear Linear-stabilized – Linear-stabilized Linear

Q9Pe4Pw4/Q4 Quadratic Linear – Linear Linear

Q4Pt4sPw4/Q4 Linear – Linear-stabilized Linear Linear

Q9Pt4Pw4/Q4 Quadratic – Linear Linear Linear

from 26 to 16, becoming now less than the 22 DOFs of the
Taylor-Hood element Q9Pw4.

4.3 Numerical examples

In this section twonumerical examples are presented, in order
to test the performance of the different formulations of the
phase-fieldmodel of brittle fracture in saturatedporousmedia
developed in Sects. 4.1 and 4.2. In particular, for both exam-
ples, we consider interpolations with quadrilateral elements
Q4Pw4/Q4, Q4Pw4s/Q4 and Q9Pw4/Q4 for the u − pw − d
formulation,with the quadrilateral elementsQ4Pe4sPw4s/Q4
and Q9Pe4Pw4/Q4 for the u − pe − pw − d formula-
tion, and with the quadrilateral elements Q4Pt4sPw4/Q4 and
Q9Pt4Pw4sQ4 for the u− pt− pw−d formulation. The inter-
polations used for each of these elements and the stabilized
fields are specified in Table 2.

4.3.1 Terzaghi’s consolidation problem

In this first example we solve again the Terzaghi’s problem
analyzed in Sect. 2.4. Our goal is a first comparison, without
the influence of the phase-field d, of the results obtained with
the two formulations u − pe − pw and u − pt − pw with
those obtained with the u− pw formulation. The FEs used in
the simulation are the stabilized Q4Pe4sPw4s and the stable
Q9Pe4Pw4 for the u − pe − pw formulation, the stabilized
Q4Pt4sPw4 and the stable Q9Pt4Pw4 for the u− pt − pw for-
mulation, and the Taylor-HoodQ9Pw4 for the u− pw formu-
lation. Theparameters are the sameofSect. 2.4,with ν = 0.4.

In Fig. 9 the pressure profile after the first time step
for the different FEs is shown. Both stable mixed ele-
ments Q9Pe4Pw4 and Q9Pt4Pw4 lead to the same solution
obtained with the standard Taylor-Hood Q9Pw4, used as ref-
erence solution. Coming to the stabilized low order elements
Q4Pe4sPw4s and Q4Pt4sPw4, we notice that the second one
leads to the same results obtained with the reference element
Q9Pw4, while the first one shows slightly larger oscillations
in the vicinity of the top surface. Moreover, the Q4Pt4sPw4
turns out to be stable for the water pressure field pw, even
if the stabilization is applied only to the equation relative to

(a)

(b)

Fig. 9 Pressure distribution along the column at the first time step for
different FEs. a u − pe − pw formulation, b u − pt − pw formulation

the total hydrostatic stress field pt , confirming our assump-
tion that the stabilization is needed only for the field directly
coupled with the displacement field u. On the other hand, the
larger oscillations obtained with the Q4Pe4sPw4s are prob-
ably due to the difficulty to define a correct value for the
two stabilization coefficients needed in Spw and Sp f , which,
due to the coupling of the equations, need to be mutually
balanced.

4.3.2 Two-dimensional water saturated compression test

In this second example we recompute the compression test
of Sect. 3.5.2 considering, in this case, the material as a water
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Fig. 10 Contours of the
phase-field d (left) and of the
water pressure pw (right), at
t = 0.06 s : a Q4Pw4/Q4, b
Q4Pw4s/Q4, c Q9Pw4/Q4

(a) – Q4Pw4/Q4 

(b) – Q4Pw4s/Q4 

(c) – Q9Pw4/Q4 
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saturated porousmedium. Additional BCs for the water pres-
sure field are needed, and in this case we consider the lower
and the lateral sides impervious, while on the upper one we
impose the Dirichlet BC pw = 0. The FEs used in the sim-
ulation are listed in Table 2. The parameters of the problem
are the same of Sect. 3.5.2, with the exception of the num-
ber of steps, which is equal to 240. The permeability of the
porous medium is kw = 10−8 m/s (a value quite low, corre-
sponding to a silt). The localization of the phase-field occurs
at tloc = 0.05525 s (the presence of the water accelerates the
process of formation of the crack).

In Fig. 10we show the results relative to the u−pw−d for-
mulation. We can see how the element Q4Pw4/Q4 (Fig. 11a)
shows both oscillations in the water pressure and a wrong
localization profile in the phase-field, as alreadynoticed sepa-
rately in the previous sections. The elementQ4Pw4s/Q4 (Fig.
11b) solves the instabilities in the water pressure field, but
the phase-field profile still indicates the presence of locking
after the phase-field localization. The Taylor-Hood element
Q9Pw4/Q4 (Fig. 11c) behaves well also in the coupled simu-
lation, leading to a good solution for both the water pressure
and the phase-field variable.

In Fig. 11 we show the results relative to the mixed
u− pe − pw − d and u− pt − pw − d formulations. When

a quadratic interpolation is used for the displacement field
(elements Q9Pe4Pw4/Q4 and Q9Pt4Pw4/Q4), both formu-
lations are stable and lead to identical results (in Fig. 10c
only the results relative to the element Q9Pe4Pw4/Q4 are
reported). Looking at the phase-field profiles obtained with
the stabilized elements with linear interpolation for the dis-
placement field, we notice that the element Q4Pe4sPw4s/Q4
(Fig. 10a) shows a crack which starts vertically, and then
takes the expected direction, while the right failure pattern is
perfectly captured by the element Q4Pt4sPw4/Q4 (Fig. 10b),
which shows results very similar to those obtained with the
stable mixed element Q9Pt4Pw4/Q4. As for the water pres-
sure field, the elementQ4Pt4sPw4/Q4 leads again to the same
solution obtained with the element Q9Pt4Pw4/Q4, while the
element Q4Pe4sPw4s/Q4 shows slightly wider oscillations
in the vicinity of the top surface, as noticed already in the
previous example (see Fig. 9a).

5 Conclusions

In this paper we focused on the problem of the numerical
locking, due to a condition of high volumetric stiffness of
the solid matrix, that can occur using the FE method in the
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Fig. 11 Contours of the
phase-field d (left) and of the
water pressure pw(right), at
t = 0.06 s: a Q4Pe4sPw4s/Q4, b
Q4Pt4sPw4/Q4, c
Q9Pt4Pw4/Q4(Q9Pe4Pw4/Q4)

(a) – Q4Pe4sPw4s/Q4 

(b) – Q4Pt4sPw4/Q4 

(c) – Q9Pt4Pw4/Q4 (Q9Pe4Pw4/Q4 ) 
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numerical approximation of a phase-fieldmodel of deviatoric
fracture in elastic solids and in water saturated poroelastic
materials. We showed how the causes of this state of incom-
pressibility can be traced both to the hydraulic and to the
mechanical properties of the material.

In the first part we reviewed the problem of the numer-
ical locking in the simulation of the consolidation process
of water saturated porous media under undrained condi-
tions. The problem appears when a linear interpolation
for both the solid and the fluid fields is used, due to the
fact that the LBB condition is not satisfied. A stabilization
technique presented in [38], developed using a polynomial
pressure-projection technique originally introduced for the
incompressible Stokes equation in [15], has been adopted
and, additionally, a correction of the penalization coefficient
introduced in [38] has been proposed, based on an analogy
with the coefficient introduced in [15].

In the second part, the problem of volumetric locking due
to the presence of fully developed cracks obtained with a
phase-field model based on a decomposition of the elastic
energy into volumetric and deviatoric parts has been investi-
gated. It has been noticed how, in this case, the locking is due
to the fact that the deviatoric stiffness becomes several order
of magnitudes smaller than the volumetric one, causing an

enlargement of the localization band of the phase-field vari-
able, and a dissipative residual force in the crack. To solve
this problem, a stabilized mixed u − p − d FE formulation
has been developed, using the same technique applied in the
first part of the paper.

Finally, the model has been extended to water saturated
porousmedia, and twoalternativemixed and stabilizedmixed
formulations of the problem, based on the Terzaghi’s effec-
tive stress principle, have been proposed. These two mixed
formulations have been tested in two numerical applica-
tions, a one- and a two- dimensional consolidation problem,
showing how the stabilized mixed formulation based on the
hydrostatic part of the total stress tensor pt leads to bet-
ter results than the one based on the hydrostatic part of the
effective stress tensor pe, in terms of crack pattern, phase-
field profile and stability of water pressure field.
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