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Abstract. In this note we give existence and uniqueness result for some el-
liptic problems depending on a small parameter and show that their solutions

converge, when this parameter goes to zero, to the solution of a mixed type

equation, elliptic-parabolic, parabolic both forward and backward. The aim
is to give an approximation result via elliptic equations of a changing type

equation.

1. Introduction. In [8] and [7] existence results for mixed type equations, in par-
ticular forward-backward parabolic equations, are given. The simplest examples are
the two following: given T > 0, Ω open subset of Rn, r ∈ L∞(Ω× (0, T )) consider
(∆p denotes the p-Laplacian for p > 2 and ν the outside normal to ∂Ω)

∂

∂t

(
r(x, t)u

)
−∆pu = f or r(x, t)

∂u

∂t
−∆pu = f in Ω× (0, T )

u = 0 in ∂Ω× (0, T ) or
∂u

∂ν
= 0 in ∂Ω× (0, T )

u = ϕ in {x ∈ Ω|r(x, 0) > 0} × {0}
u = ψ in {x ∈ Ω|r(x, T ) < 0} × {T}

(1)
with f, ϕ, ψ suitable data and, at least for r assuming both positive and negative
sign, suitable assumptions on the two sets {x ∈ Ω|r(x, 0) > 0} × {0} and {x ∈
Ω|r(x, T ) < 0} × {T}. Equations of such type arise in the study of some stochastic
differential equation, in the kinetic theory, in some physical models like electron
scattering or neutron transport. For some references one can see [3] or the much
less recent papers [6, 1, 2] (or the references contained therein and in [8] and [7])
where simple equations like

sgn(x)|x|mut − uxx = f

are considered, being m ∈ N.
The aim of the present note is to give an approximation result for abstract

forward-backward parabolic equations via elliptic problems (see Theorem 4.1). For
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the problems (1) the result may be stated as follows. In accordance with the equa-
tion and with the boundary condition considered in (1) consider one of the two
equations

−ε ∂
∂t

(∣∣∣∣∂u∂t
∣∣∣∣p−2

∂u

∂t

)
+
∂

∂t

(
r(x, t)u

)
−∆pu = f

−ε ∂
∂t

(∣∣∣∣∂u∂t
∣∣∣∣p−2

∂u

∂t

)
+ r(x, t)

∂u

∂t
−∆pu = f

in Ω× (0, T ) (ε is a positive parameter) with the boundary conditions

u = 0 in ∂Ω× (0, T ) or
∂u

∂ν
= 0 in ∂Ω× (0, T )

u = ϕ in {x ∈ Ω|r(x, 0) > 0} × {0}
∂u

∂ν
=
∂u

∂t
= 0 in {x ∈ Ω|r(x, 0) 6 0} × {0}

u = ψ in {x ∈ Ω|r(x, T ) < 0} × {T}
∂u

∂ν
=
∂u

∂t
= 0 in {x ∈ Ω|r(x, T ) > 0} × {T}

and show that the solutions converge, when ε converge to zero, to the corresponding
solution of (1) in the following sense: if u denotes the solution of one of the problems
(1) and uε the solution of the approximating problem one has

uε → u in Lp(0, T ;W 1,p(Ω))-weak,

ruε → ru in L2(Ω× (0, T ))-strong,

ε

∣∣∣∣∂uε∂t
∣∣∣∣p−2

∂uε
∂t
→ 0 in W−1,p′

(
Ω× (0, T )

)
-strong ∩ Lp

′(
Ω× (0, T )

)
-weak,

r
∂uε
∂t
→ r

∂u

∂t
in Lp

′
(0, T ;W−1,p′(Ω))-weak,

∂

∂t
(ruε)→

∂

∂t
(ru) in Lp

′
(0, T ;W−1,p′(Ω))-weak.

This result is similar to that contained in [4], even if our purpose is different: the
result of Lions aims to give an existence result for linear parabolic equations with
boundary conditions depending on time, we only want to give an approximation
result, via more standard equations, of a mixed type equation, even if the technique
can be used also in other different environments.

2. Notations, hypotheses and preliminary results. Consider the following
family of evolution triplets

V (t) ⊂ H(t) ⊂ V ′(t) t ∈ [0, T ] (2)

where H(t) is a separable Hilbert space, V (t) a reflexive Banach space which con-
tinuously and densely embeds in H(t) and V ′(t) the dual space of V (t), and we
suppose there is a constant C0 which satisfies

‖w‖V ′(t) 6 C0‖w‖H(t), and ‖v‖H(t) 6 C0‖v‖V (t) (3)

for every w ∈ H(t), v ∈ V (t) and every t ∈ [0, T ].
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The framework seems to be similar to the one considered in [4], but we have in
mind something different (see the example in the last section). We will suppose the
existence of a Banach space U such that

U ⊂ V (t) and U dense in V (t) for a.e. t ∈ [0, T ] (4)

and define, for some p > 2, the set

U := W 1,p(0, T ;U).

Moreover we will suppose that the functions

t 7→ ‖u(t)‖V (t), t 7→ ‖u(t)‖H(t), t 7→ ‖u(t)‖V ′(t), t ∈ [0, T ],

are measurable for every u ∈ U and we define the spaces

V and H (5)

as the completion of U with respect to the natural norms

‖v‖V :=

(∫ T

0

‖v(t)‖pV (t)dt

)1/p

, ‖v‖H :=

(∫ T

0

‖v(t)‖2H(t)dt

)1/2

.

Finally by V ′ we denote the dual space of V endowed with the norm

‖f‖V′ :=

(∫ T

0

‖f(t)‖p
′

V ′(t)dt

)1/p′

.

Definition 2.1. Given a family of linear operators R(t) such that

R depends on a parameter t ∈ [0, T ] and R(t) ∈ L(H(t)), (6)

being L(H(t)) the set of linear and bounded operators from H(t) in itself, instead
of (6) we sometimes will write improperly

R : [0, T ] −→ L(H(t)), t ∈ [0, T ]. (7)

Now consider an abstract function R : [0, T ] −→ L(H(t)). We say that R belongs
to the class E(C1, C2), C1, C2 > 0, if it satisfies what follows for every u, v ∈ U :

� R(t) is self-adjoint and ‖R(t)‖L(H(t)) 6 C1 for every t ∈ [0, T ],

� t 7→
(
R(t)u, v

)
H(t)

is absolutely continuous on [0, T ],

�
∣∣ d
dt

(
R(t)u, v

)
H(t)

∣∣ 6 C2‖u‖V (t)‖v‖V (t) for a.e. t ∈ [0, T ].

Now, given two positive constants C1 and C2, consider R ∈ E(C1, C2). For every
t ∈ [0, T ] we consider the spectral decomposition of R(t) (see, e.g., Section 8.4 in [5])
and define R+(t), and respectively R−(t), the operator connected to the positive,
respectively negative, part of the spectrum, so that R(t) = R+(t) − R−(t) and
R+(t) ◦R−(t) = R−(t) ◦R+(t) = 0 and R+(t) and R−(t) turn out to be invertible.
Equivalently one can define R+(t) and R−(t) as follows: since R(t) is self-adjoint we
get that R(t)2 = R∗(t) ◦ R(t) is a positive operator; then we can define the square
root of R(t)2 (see, e.g., Chapter 3 in [5]), which is a positive operator,

|R(t)| =
(
R(t)2

)1/2
and then define the two positive operators

R+(t) :=
1

2

(
|R(t)|+R(t)

)
, R−(t) := |R(t)| −R+(t).



1020 FABIO PARONETTO

By this decomposition we can also write H(t) = H+(t) ⊕ H0(t) ⊕ H−(t) where
H+(t) = (KerR+(t))⊥ and H−(t) = (KerR−(t))⊥ and H0(t) is the kernel of R(t).

Finally we denote H̃0(t) = H0(t) = KerR(t) and

H̃(t), H̃+(t), H̃−(t) = the completion respectively of H(t), H+(t), H−(t) (8)

with respect to the norm

‖w‖H̃(t) = ‖|R(t)|1/2w‖H(t).

Clearly the operation ˜ depends on R. Moreover we consider P+(t) and P−(t)

the orthogonal projections from H̃(t) onto H+(t) and H−(t) respectively, P0(t) the
projection defined in H(t) onto H0(t).

Given an operator R ∈ E(C1, C2) it is possible to define two other linear op-
erators. First we can define the derivative of R which, unlike R, is valued in
L(V (t), V ′(t)), i.e. the set of linear and bounded operators from V (t) to V ′(t):
since R ∈ E(C1, C2) we can define a family of equibounded operators

R′(t), t ∈ [0, T ], R′(t) : V (t)→ V ′(t) by

〈R′(t)u, v〉V ′(t)×V (t) :=
d

dt

(
R(t)u, v

)
H(t)

, u, v ∈ U.

By the density of U in V (t) we can extend R′(t) to V (t). Then we can also define

R : H → H, (Ru)(t) := R(t)u(t), (9)

R+ : H → H, (R+u)(t) := R+(t)u(t), (10)

R− : H → H, (R−u)(t) := R−(t)u(t), (11)

which turn out to be linear and bounded by the constant C1 and, by density of U
in V, an operator

R′ : V → V ′ by 〈R′u, v〉V′×V :=

∫ T

0

〈R′(t)u(t), v(t)〉V ′(t)×V (t)dt (12)

which turns out to be linear, self-adjoint and bounded by C2.
For a function

u : [0, T ]→ U

we denote by u′ the distributional derivative, i.e. the function such that∫ T

0

uϕ′dt = −
∫ T

0

u′ϕdt

for every ϕ ∈ C1
0 ([0, T ]; R). We maintain the same notation for functions belonging

to V.
We now could consider for R ∈ E(C1, C2) the two operators

u 7→ (Ru)′ and Ru′

defined respectively in the two spaces

W1 :=
{
u ∈ V

∣∣Ru′ ∈ V ′} and W2 :=
{
u ∈ V

∣∣(Ru)′ ∈ V ′
}
.

Since R admits a derivative one has (see [7]) that (Ru)′ = R′u + Ru′ and that
W1 =W2 even if we will endow the two spaces respectively with the norms

‖u‖W1 = ‖u‖V + ‖Ru′‖V′ and ‖u‖W2 = ‖u‖V + ‖(Ru)′‖V′ .
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Because of that, it will not always be necessary to specify which of the two spaces
we are talking about and in those cases we will simply refer to them as

WR.

As done before we can define, in a way analogous to that done for the spaces (8),

H̃, H̃+, H̃− = the completion respectively of H,H+,H− (13)

with respect to the norm ‖w‖H̃ = ‖|R|1/2w‖H, where |R| = R+ +R−.
Analogously, we define H+ and H− and P+ and P− the orthogonal projections

from H̃ onto H+ and H− respectively. H0 is the kernel of R and P0 the projection
defined in H onto H0.

Now we recall a result which can be found in [7] (see also [8]).

Proposition 2.2. Suppose R ∈ E(C1, C2). Then we have that for every u, v ∈ WR
the following holds:

d

dt
(Ru(t), v(t))H(t)

= 〈Ru′(t), v(t)〉V ′(t)×V (t) + 〈Rv′(t), u(t)〉V ′(t)×V (t) + 〈R′u(t), v(t)〉V ′(t)×V (t)

= 〈(Ru)′(t), v(t)〉V ′(t)×V (t) + 〈(Rv)′(t), u(t)〉V ′(t)×V (t) − 〈R′u(t), v(t)〉V ′(t)×V (t).

Moreover the function t 7→ (R(t)u(t), v(t))H(t) is continuous and there exists a
constant c, which depends only on T , such that

max
[0,T ]
|(R(t)u(t), v(t))H(t)|

6 c
[
‖Ru′‖V′‖v‖V + ‖Rv′‖V′‖u‖V + ‖R′‖L(V,V′)‖u‖V‖v‖V + ‖R‖L(H)‖u‖H‖v‖H

]
.

and

max
[0,T ]
|(R(t)u(t), v(t))H(t)|

6 c
[
‖(Ru)′‖V′‖v‖V+‖(Rv)′‖V′‖u‖V+‖R′‖L(V,V′)‖u‖V‖v‖V+‖R‖L(H)‖u‖H‖v‖H

]
.

Finally we recall a classical result (see, e.g., Section 32.4 in [11], in particular
Corollary 32.26) for which we need some definitions, which we remind.

We say that an operator Q : X → X ′, X being a reflexive Banach space, is
coercive if

lim
‖x‖→+∞

〈Qx, x〉
‖x‖

→ +∞,

The same operator Q is hemicontinuous if the map

t 7→
〈
Q(u+ tv), w

〉
X ′×X is continuous in [0, 1] for every u, v, w ∈ X .

A monotone and hemicontinuous operator Q is of type M if (see, for instance, Basic
Ideas of the Theory of Monotone Operators in volume B of [11] or Lemma 2.1 in
[10]), i.e. it satisfies what follows: for every sequence (uj)j∈N ⊂ X such that

uj → u in X -weak

Quj → b in X ′-weak

lim sup
j→+∞

〈
Quj , uj

〉
X ′×X 6

〈
b, u
〉
X ′×X

∣∣∣∣∣∣∣∣ =⇒ Qu = b. (M)
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Theorem 2.3. Let M : X → X ′ be monotone, bounded, coercive and hemicontin-
uous. Suppose L : X → 2X

′
to be maximal monotone. Then for every f ∈ X ′ the

following equation has a solution

Lu+Mu 3 f

and in particular if L,M are single-valued the equation Lu+Mu = f has a solution.
If, moreover, M is strictly monotone the solution is unique.

3. The approximating problems. In this section we want to give an existence
and uniqueness result for a family of elliptic problems defined below (see (28)).
Before we introduce another functional space, denoted by V∗ below. To do that
first consider another family of reflexive Banach spaces K(t) such that

V (t) ⊂ K(t) ⊂ H(t) t ∈ [0, T ] (14)

where V (t) continuously embeds in K(t) and K(t) continuously embeds in H(t) and
there is a positive constant, which for simplicity we suppose to be C0, such that

‖w‖H(t) 6 C0‖w‖K(t), and ‖v‖K(t) 6 C0‖v‖V (t) (15)

Then we suppose that the functions

t 7→ ‖u(t)‖K(t), t ∈ [0, T ],

are measurable for every u ∈ U and we define the space K as the completion of U
with respect to the natural norm

‖v‖K :=

(∫ T

0

‖v(t)‖pK(t)dt

)1/p

.

Notice that if v belongs to the space
{
u ∈ V

∣∣u′ ∈ K}, which is contained in v ∈{
u ∈ V

∣∣u′ ∈ V ′}, then

t 7→ ‖v(t)‖H(t) is continuous.

To see that it is sufficient to adapt Proposition 3.4 in [7]. Then we consider the
space (the orthogonal projection operators P+, P0, P− are defined in Section 2)

V∗ :=
{
u ∈ V

∣∣∣u′ ∈ K, P+(0)u(0) +
(
P0(0) + P−(0)

)
u′(0) = 0 in H(0),(

P0(T ) + P+(T )
)
u′(T ) + P−(T )u(T ) = 0 in H(T )

}
endowed with the norm

‖u‖V∗ := ‖u‖V + ‖u′‖K.
We will suppose that

if p = 2 then K(t) = H(t) and K = K′ = H,
if p > 2 then K(t) ( H(t) and K ( H.

We now consider, besides the operator R, two operators A and B

A : V −→ V ′, B : V∗ → V ′∗ (16)

the two following family of problems (ε > 0 is a parameter which, in the following,
we will let go to zero)

(I) εBu+Ru′ +Au = f, (II) εBu+ (Ru)′ +Au = f. (17)
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(with suitable boundary conditions we will specify below) where f ∈ V ′. These
equalities are to be intended in V ′∗ as follows:

ε
〈
Bu, v

〉
V′∗×V∗

+
〈
Ru′, v

〉
V′×V +

〈
Au, v

〉
V′×V =

〈
f, v
〉
V′∗×V∗

,

ε
〈
Bu, v

〉
V′∗×V∗

+
〈
(Ru)′, v

〉
V′×V +

〈
Au, v

〉
V′×V =

〈
f, v
〉
V′∗×V∗

for every v ∈ V∗. Notice that, since f ∈ V ′, one has that
〈
f, v
〉
V′∗×V∗

is in fact〈
f, v
〉
V′×V (since v ∈ V∗ ⊂ V).

We suppose there are four positive constants α1, α2, β1, β2 and a function b such
that:

b : [0, T ]×R→ R satisfying(
b(t, ξ)− b(t, η)

)
(ξ − η) > β1|ξ − η|p for every ξ, η ∈ R,∣∣b(t, ξ)

∣∣ 6 β2|ξ|p−1 for every ξ ∈ R,

and suppose that the operator B is defined as〈
Bu, v

〉
V′∗×V∗

=

∫ T

0

〈
b(t, u′(t)), v′(t)

〉
K′(t)×K(t)

dt

in such a way that〈
Bu− Bv, u− v

〉
V′∗×V∗

≥ β1‖u′ − v′‖pK, ‖Bu‖V′∗ ≤ β2‖u′‖p−1
K′ (18)

and, if we consider problems (17)-(I), we require that

for p = 2

〈
Au−Av − 1

2
(R′u−R′v), u− v

〉
V′×V ≥ α1‖u− v‖2V ,

‖Au− 1
2R
′u‖V′ ≤ α2‖u‖V

(19)

for p > 2
〈Au−Av, u− v〉V′×V ≥ α1‖u− v‖pV , ‖Au‖V′ ≤ α2‖u‖p−1

V
〈R′u, u〉V′×V ≤ 0

(20)

for every u, v ∈ V; if we consider problems (17)-(II) we require

for p = 2

〈
Au−Av +

1

2
(R′u−R′v), u− v

〉
V′×V ≥ α1‖u− v‖2V ,

‖Au+
1

2
R′u‖V′ ≤ α2‖u‖V

(21)

for p > 2
〈Au−Av, u− v〉V′×V ≥ α1‖u− v‖pV , ‖Au‖V′ ≤ α2‖u‖p−1

V
〈R′u, u〉V′×V ≥ 0

(22)

for every u, v ∈ V. If we denote by

Aε : V∗ → V ′∗, Aεu := εBu+Au

for p = 2 we have that by (19) one derives〈
Aεu−Aεv −

1

2
(R′u−R′v), u− v

〉
V′∗×V∗

=ε
〈
Bu− Bv, u− v

〉
V′∗×V∗

+
〈
Au−Av − 1

2
(R′u−R′v), u− v

〉
V′×V

>εβ1‖(u− v)′‖2H + α1‖u− v‖2V

>
1

2
min{εβ1, α1}‖u− v‖2V∗ , (23)
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‖Aεu−
1

2
R′u‖V′∗ 6ε‖Bu‖V′∗ + ‖Au− 1

2
R′u‖V′ 6 εβ2‖u′‖H + α2‖u‖V

6max{εβ2, α2}‖u‖V∗ ; (24)

while, similarly, by (21) one gets〈
Aεu−Aεv +

1

2
(R′u−R′v), u− v

〉
V′∗×V∗

>
1

2
min{εβ1, α1}‖u− v‖2V∗ , (25)

‖Aεu+
1

2
R′u‖V′∗ 6 max{εβ2, α2}‖u‖V∗ , (26)

For p > 2 by (20) and (22) (cp being a constant depending only on p) one gets〈
Aεu−Aεv, u− v

〉
V′∗×V∗

> εβ1‖u′ − v′‖pK + α1‖u− v‖pV
> cp min{εβ1, α1}‖u− v‖pV∗ , (27)

‖Aεu‖V′∗ 6 εβ2‖u′‖p−1
K + α2‖u‖p−1

V 6 max{εβ2, α2}‖u‖p−1
V∗ .

Notice that the operators Pεu := Aεu+Ru′ and Qεu := Aεu+ (Ru)′ defined in
V∗ with above assumptions are strictly monotone in V∗. Indeed if (19) in the case
p = 2 or (20) in the case p > 2 holds then〈

Aεu+Ru′ −Aεv −Rv′, u− v
〉
V′∗×V∗

> εβ1‖u′ − v′‖pK + α1‖u− v‖pV .

Similarly if (21) in the case p = 2 or (22) in the case p > 2 holds then for every
u, v ∈ V∗〈

Aεu+ (Ru)′ −Aεv − (Rv)′, u− v
〉
V′∗×V∗

> εβ1‖u′ − v′‖pK + α1‖u− v‖pV .

We now want to apply Theorem 2.3. First we state the following result. Consider
the space

V0
∗ :=

{
u ∈ V

∣∣u′ ∈ K, P+(0)u(0) = 0 in H(0), P−(T )u(T ) = 0 in H(T )
}
⊃ V∗

and the operators

L1u = Ru′ + 1

2
R′u, L2u = Ru′, L3u = (Ru)′, D(Li) = V0

∗ i = 1, 2, 3.

Lemma 3.1.
i) The operator L1 : V0

∗ → (V0
∗ )
′ is maximal monotone;

ii) the operator L2 : V0
∗ → (V0

∗ )
′ is maximal monotone if

〈
R′u, u

〉
V′×V 6 0 for every

u ∈ V∗; iii) the operator L3 : V0
∗ → (V0

∗ )
′ is maximal monotone if

〈
R′u, u

〉
V′×V > 0

for every u ∈ V∗.

Remark 3.2. - Clearly the lemma is true even if the domain of Lj is V∗.

Proof. We prove the lemma for L1, being the other proofs similar and, indeed,
simpler.

From Proposition 2.2 we have that〈
L1u, u

〉
V′×V =

1

2

[
(R+(T )u(T ), u(T ))H(T ) + (R−(0)u(0), u(0))H(0)

]
> 0

for every u ∈ V0
∗ , and then L1 is monotone. To see that it is maximal monotone fix

w ∈ (V0
∗ )
′ and v ∈ V0

∗ and suppose〈
w − L1u, v − u

〉
V′∗×V∗

≥ 0
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for every u ∈ V0
∗ . We want to show that v ∈ V0

∗ and w = L1v. Choose u = ϕz with
ϕ ∈ C1

0 ([0, T ]) and z ∈ U and get〈
w, v

〉
≥
〈
L1u, v − u

〉
+
〈
w, u

〉
that is, since

〈
L1u, u

〉
= 0, R and R′ are linear and self adjoint, the following

equivalent inequalities:〈
w, v

〉
≥
〈
ϕ′Rz + ϕ

1

2
R′z, v

〉
+
〈
w,ϕz

〉
〈
w, v

〉
≥
〈
Rz, ϕ′v

〉
+

1

2

〈
R′z, ϕv

〉
+
〈
ϕw, z

〉
〈
w, v

〉
≥
〈
Rϕ′v, z

〉
+

1

2

〈
R′ϕv, z

〉
+
〈
ϕw, z

〉
.

Since this holds for each z ∈ U we can consider λz with λ ∈ R and get〈
w, v

〉
≥ λ

[〈
Rϕ′v, z

〉
+

1

2

〈
R′ϕv, z

〉
+
〈
ϕw, z

〉]
.

Since this holds both for λ > 0 and λ < 0 we derive that〈
Rϕ′v, z

〉
+

1

2

〈
R′ϕv, z

〉
+
〈
ϕw, z

〉
= 0

and since this holds for every z ∈ U we get that〈
Rϕ′v, p

〉
+

1

2

〈
R′ϕv, p

〉
+
〈
ϕw, p

〉
= 0

where p is a polynomial with coefficients in U , i.e.

p(t) =

N∑
k=0

zkt
k for some N ∈ N and zk ∈ U.

Since the space of such polynomials is dense in U and then in V∗ we finally get that

ϕ′Rv + ϕ
1

2
R′v + ϕw = 0 in V ′∗,

that is

(Rv)′ =
1

2
R′v + w ⇐⇒ w = Rv′ + 1

2
R′v = L1v.

Remark 3.3. - Notice that in Theorem 3.6 we consider f ∈ V ′, even if, a priori, in
(28) one could consider a datum F ∈ V ′∗. If one consider F ∈ V ′∗ there are f ∈ V ′
and g ∈ K′ such that 〈

F, v
〉
V′∗×V∗

=
〈
f, v
〉
V′×V +

〈
g, v′

〉
K′×K.

If one confines to consider F ∈ V ′∗ such that g = 0 (or, more generally, g′ ∈ V ′)
F does not act directly on v′. In the following theorem we will confine to consider
F = f ∈ V ′ so that 〈

F, v
〉
V′∗×V∗

=
〈
f, v
〉
V′×V .

This is needed to have the estimates in Theorem 3.6 with a constant c independent
of ε.
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We now consider the two following problems: find u ∈ VN∗ such that

(I)


εBu+Ru′ +Au = f in V ′∗
P+(0)u(0) = ϕ

P−(T )u(T ) = ψ,

(II)


εBu+ (Ru)′ +Au = f in V ′∗
P+(0)u(0) = ϕ

P−(T )u(T ) = ψ,
(28)

where f ∈ V ′, ϕ ∈ H̃+(0), ψ ∈ H̃+(T ) and

VN∗ :=
{
u ∈ V

∣∣∣u′ ∈ K, (P0(0) + P−(0)
)
b(0, u′(0)) = 0 in H(0),(

P0(T ) + P+(T )
)
b(T, u′(T )) = 0 in H(T )

}
=

VN∗ :=
{
u ∈ V

∣∣∣u′ ∈ K, (P0(0) + P−(0)
)
u′(0) = 0 in H(0),(

P0(T ) + P+(T )
)
u′(T ) = 0 in H(T )

}
.

Before stating the result we will suppose an additional assumption. Consider the
following spaces:

U+(0) =
{
w ∈ U

∣∣ P+(0)w ∈ U
}

= U ∩ (H̃+(0)⊕ H̃0(0)),

U−(T ) =
{
w ∈ U

∣∣ P−(T )w ∈ U} = U ∩ (H̃−(T )⊕ H̃0(T )).

(see (8) for the definition of H̃−, H̃0, H̃+). The first assumption is to suppose that

U+(0) dense in H̃+(0), U−(T ) dense in H̃−(T ). (29)

Remark 3.4. - Assumption (29) is in fact an assumption about R(0) and R(T ),
which in fact results in an assumption about the sets Ω+(0) and Ω−(T ). Indeed,
for example, in the simple situation where

R(t) ≡ R for every t and Ru := r(x)u

with

r ≡ 1 in Ω+, r ≡ 0 in Ω0, r ≡ −1 in Ω−,

H̃(t) = H(t) = L2(Ω) for every t, U = V (t) = H1
0 (Ω) for every t, then requiring

that

U+(0) =
{
u ∈ H1

0 (Ω)
∣∣u|Ω+

∈ H1
0 (Ω+)

}
is dense in L2(Ω+) means requiring some regularity on the set Ω+. For example,
this were surely true if Ω+ is an open subset of Ω with Lipschitz boundary (the
analogous clearly holds for Ω−). For other details we refer to [8] and [7].

Remark 3.5. - Assumption (29) is in fact an assumption about R(0) and R(T ),
which results in an assumption about the sets Ω+(0) and Ω−(T ). Indeed, for ex-
ample, in the simple situation where

R(t) ≡ R for every t and Ru := r(x)u

with

r ≡ 1 in Ω+, r ≡ 0 in Ω0, r ≡ −1 in Ω−,

H̃(t) = H(t) = L2(Ω) for every t, U = V (t) = H1
0 (Ω) for every t and Ω+ is an open

subset of Ω with Lipschitz boundary then

U+(0) =
{
u ∈ H1

0 (Ω)
∣∣u|Ω+ ∈ H1

0 (Ω+)
}

is dense in L2(Ω+). For other details we refer to [8] and [7].
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Theorem 3.6. Consider R ∈ E(C1, C2) and the operator R defined via R as in (9)

and B satisfying (18). Consider f ∈ V ′, ϕ ∈ H̃+(0) and ψ ∈ H̃−(T ) and suppose
that (29) holds.
I) Consider A and suppose A and R satisfy (19) for p = 2 and (20) for p > 2.
Moreover suppose that A and B are hemicontinuous. Then there exists a unique
u ∈ VN∗ satisfying (28)-(I) and there is c > 0, depending only on α1, β1, α2, β2, p,
such that (for ε ∈ (0, 1])

ε‖u′‖pK + ‖u‖pV + ‖Ru′‖V′ 6 c

[
‖f‖V′ + ‖f‖

p
p−1

V′ +

+ ‖R1/2
− (T )ψ‖

2
p

H−(T ) + ‖R1/2
+ (0)ϕ‖

2
p

H+(0) + ‖R1/2
− (T )ψ‖2

p−1
p

H−(T ) + ‖R1/2
+ (0)ϕ‖2

p−1
p

H+(0)

]
.

II) Consider A and suppose A and R satisfy (21) for p = 2 and (22) for p > 2.
Moreover suppose that A and B are hemicontinuous. Then for every f ∈ V ′ and
φ ∈ {u ∈ V

∣∣u′ ∈ K} there exists a unique u ∈ VN∗ satisfying (28)-(II) and there is
c > 0, depending only on α1, β1, α2, β2, p, such that (for ε ∈ (0, 1])

ε‖u′‖pK + ‖u‖pV + ‖(Ru)′‖V′ 6 c

[
‖f‖V′ + ‖f‖

p
p−1

V′ +

+ ‖R1/2
− (T )ψ‖

2
p

H−(T ) + ‖R1/2
+ (0)ϕ‖

2
p

H+(0) + ‖R1/2
− (T )ψ‖2

p−1
p

H−(T ) + ‖R1/2
+ (0)ϕ‖2

p−1
p

H+(0)

]
.

Proof. Estimates - Consider point I) in the case p > 2, being the proof in the other
cases very similar. Then, as observe in Remark 3.3, we stress that the estimate we
are going to show would not be true uniformly in ε for a general f ∈ V ′∗. Precisely,
consider u ∈ VN∗ and suppose that

Pεu := εBu+Ru′ +Au ∈ V ′. (30)

By Proposition 2.2 and since R′ satisfies (20) we have that

2
〈
Ru′, u

〉
V′∗×V∗

= 2
〈
Ru′, u

〉
V′×V

= −
〈
R′u, u

〉
V′×V +

(
R(T )u(T ), u(T )

)
H(T )

−
(
R(0)u(0), u(0)

)
H(0)

> −
(
R−(T )u(T ), u(T )

)
H(T )

−
(
R+(0)u(0), u(0)

)
H(0)

. (31)

Then by (27), (30) and (31) we get that

ε‖u′‖pK + ‖u‖pV 6 c1
〈
Aεu, u

〉
V′∗×V∗

= c1

[〈
Pεu, u

〉
V′∗×V∗

−
〈
Ru′, u

〉
V′∗×V∗

]
6 c1

[
〈Pεu, u〉V′×V +

1

2

(
R−(T )u(T ), u(T )

)
H(T )

+
1

2

(
R+(0)u(0), u(0)

)
H(0)

]
6 c1

[
1

q

(
1

pδ

)q/p
‖Pεu‖qV′ + δ‖u‖pV +

(
R−(T )u(T ), u(T )

)
H(T )

+

+
(
R+(0)u(0), u(0)

)
H(0)

]
with c1 = c1(α1, β1) and q = p/(p − 1). By that, choosing δ in such a way that
c1δ = 1/2, we get

ε‖u′‖pK+‖u‖pV 6 c2

[
‖Pεu‖

p
p−1

V′ +
(
R−(T )u(T ), u(T )

)
H(T )

+
(
R+(0)u(0), u(0)

)
H(0)

]
(32)
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with c2 = c2(α1, β1, p). Now, since Ru′ = Pεu−Aεu and Bu ∈ V ′, ‖Ru′‖V can be
estimated (see (27)) as follows:

‖Ru′‖V′ 6 ‖Pεu‖V′ + ‖Aεu‖V′ 6 ‖Pεu‖V′ + εβ2‖u′‖p−1
K + α2‖u‖p−1

V

6 ‖Pεu‖V′ + ε
1
p β2

(
ε‖u′‖pK

) p−1
p + α2

(
‖u‖pV

) p−1
p

6 ‖Pεu‖V′ + ε
1
p β2

(
c2‖Pεu‖

p
p−1

V′
) p−1

p + α2

(
c2‖Pεu‖

p
p−1

V′
) p−1

p

6 c3

[
‖Pεu‖V′ +

(
R−(T )u(T ), u(T )

) p−1
p

H(T ) +
(
R+(0)u(0), u(0)

) p−1
p

H(0)

]
where c3 = c3(p, α1, β1, α2, β2, ε

1
p ) or simply c3 = c3(p, α1, β1, α2, β2) if we confine

to consider ε ∈ (0, 1]. Summing this last inequality to (32) we get the thesis.
Existence and uniqueness - Consider first ϕ = 0 and ψ = 0. By assumptions we

have that, both in case I) and in case II), and for every p > 2, the operator Aε
is strictly monotone, coercive, bounded and hemicontinuous. By Lemma 3.1 the
operator u 7→ Ru′ in case (I) and the operator u 7→ (Ru)′ in case (II) are maximal
monotone in V0

∗ , and then in {v ∈ VN∗ |P+(0)v(0) = 0, P−(T )v(T ) = 0}.

V0,N
∗ :=

{
u ∈ VN∗

∣∣∣P+(0)u(0) = 0 in H(0), P−(T )u(T ) = 0 in H(T )
}

= VN∗ ∩ V0
∗ .

Applying Theorem 2.3 we conclude. Now consider ϕ,ψ ∈ U , any δ ∈ (0, T/2) and
φ defined as

φ :=


ϕ t ∈ [0, δ]
(T − 2δ)− (t− δ)

T − 2δ
ϕ+

t− δ
T − 2δ

ψ t ∈ [δ, T − δ]
ψ t ∈ [T − δ, T ].

(33)

In this way φ ∈ VN∗ . Then a function u satisfies (28)-(I) if and only if the function
v = u− φ satisfies {

εB(v + φ) +Rv′ +A(v + φ) = f −Rφ′

v ∈ V0,N
∗ .

If we define

B̃v := B(v + φ) and Ãv := A(v + φ) (34)

we have the following problem{
εB̃v +Rv′ + Ãv = f −Rφ′

v ∈ V0,N
∗ .

(35)

It is not difficult to verify that B̃ and Ã are bounded, coercive, strongly mono-

tone and hemicontinuous, so arguing as before we get a unique solution v ∈ V0,N
∗

satisfying (35), and then a unique u ∈ VN∗ satisfying (28)-(I).
Now we use the a priori estimates previously obtained to get the thesis for every

admissible datum. Consider now ϕ ∈ H̃+(0) and ψ ∈ H̃−(T ) and two sequences
(ϕn)n, (ψn)n ⊂ U such that (this is possible thanks to assumption (29))

ϕn → ϕ in H̃+(0), ψn → ψ in H̃−(T ).

In this way the function φn defined in a way analogous to (33) belong to VN∗ .
Similarly as done above to get the a priori estimate one gets (for instance, in case
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I))

ε‖un − u′m‖
p
K + ‖un − um‖pV + ‖R(u′n − u′m)‖V′

6 c

[
‖R1/2
− (T )(ψn − ψm)‖

2
p

H−(T ) + ‖R1/2
+ (0)(ϕn − ϕm)‖

2
p

H+(0)+

+ ‖R1/2
− (T )(ψn − ψm)‖2

p−1
p

H−(T ) + ‖R1/2
+ (0)(ϕn − ϕm)‖2

p−1
p

H+(0)

]
for every n,m ∈ N, and then there is a function u ∈ VN∗ such that

un → u in V,
u′n → u′ in K,
Ru′n → Ru′ in V ′.

We also get that
‖Bun‖V′∗ 6 c, ‖Aun‖V′ 6 c

for some positive constant c. Up to select a subsequence we get that Aun weakly
converge to some b ∈ V ′ and then 〈Aun, un〉V′×V → 〈b, u〉V′×V . Since A is type
M we conclude that b = Au. In the same way one has that Bun → Bu. Since for
every subsequence (unj

)j∈N we can extract a further subsequence (unjk
)k∈N such

that Aunjk
→ Au and Bunjk

→ Bu we conclude that all the sequence satisfies
Aun → Au and Bun → Bu and u is the solution looked for.

4. Taking the limit for ε → 0. In this section we want to prove the result
which is the goal of the paper: to show that the solutions of problems (28)-(I)
(respectively of problems (28)-(II)) converge, in a suitable way, to the solution of
(36)-(I) (respectively of (36)-(II)). We recall that the existence of a solution of the
following problems has already been proved in [8] and [7]:

(I)


Ru′ +Au = f in V ′

P+(0)u(0) = ϕ in H̃+(0)

P−(T )u(T ) = ψ in H̃−(T ),

(II)


(Rv)′ +Av = f in V ′

P+(0)v(0) = ϕ in H̃+(0)

P−(T )v(T ) = ψ in H̃−(T ),

(36)

In the following three steps we will consider the problem (28)-(I) for p > 2. The
proofs in other cases, problem (28)-(I) for p = 2 and problem (28)-(II) both for
p > 2 and p = 2, are very similar.

Limit in the equation - Consider some f ∈ V ′, ϕ ∈ H̃+(0) and ψ ∈ H̃−(T ) and
denote by uε ∈ V∗ the solution of (28)-(I), p > 2. By Theorem 3.6 and boundedness
of A we get that (up to select a sequence εj → 0 which we will still denote by ε for
sake of simplicity) letting ε go to 0

uε → u in V-weak,

ε1/pu′ε → w in K-weak,

Auε → g in V ′-weak,

Ru′ε → z in V ′-weak.

(37)

Notice that, by (18) and since ε1/pu′ε is bounded in K, we also get that

‖εBuε‖V′∗ 6 εβ2‖u′ε‖
p−1
K′ = ε1/pβ2‖ε1/pu′ε‖

p−1
K′ →ε 0. (38)

Moreover for every η ∈ C1
c ([0, T ];U)〈

Ru′ε, η
〉
V′×V = −

(
Ruε, η′

)
H −

〈
R′uε, η

〉
V′×V
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and taking the limit for ε→ 0 one gets〈
z, η
〉
V′×V = −

(
Ru, η′

)
H −

〈
R′η, u

〉
V′×V

by which we derive

z = Ru′.

With these informations we consider the limit in the equation of problem (28)-(I)
and get

Ru′ + g = f.

The goal now is to show that

g = Au. (39)

Now we consider problems (28) and multiply by uε the equations of problem (28).
First observe that Auε → g and then

Auε →ε→0 g = f −Ru′ in V ′-weak.

We get〈
Ru′ε,uε

〉
V′×V +

〈
Auε, uε

〉
V′×V

6 ε
〈
Buε, uε

〉
V′∗×V∗

+
〈
Ru′ε, uε

〉
V′×V +

〈
Auε, uε

〉
V′×V =

〈
f, uε

〉
V′×V

by which

lim sup
ε→0

[〈
Ru′ε, uε

〉
V′×V +

〈
Auε, uε

〉
V′×V

]
6
〈
f, u
〉
V′×V . (40)

Observe that, since u 7→ Ru′ is monotone in V0
∗ and uε − u ∈ V0

∗ ,〈
Auε, uε

〉
V′×V =

〈
Auε, u

〉
V′×V +

〈
Auε, uε − u

〉
V′×V

6
〈
Auε, u

〉
V′×V +

〈
Auε, uε − u

〉
V′×V +

〈
Ru′ε −Ru′, uε − u

〉
V′×V

=
〈
Auε, u

〉
V′×V +

〈
Auε +Ru′ε, uε

〉
V′×V −

〈
Ru′, uε

〉
V′×V

−
〈
Auε, u

〉
V′×V −

〈
Ru′ε, u

〉
V′×V +

〈
Ru′, u

〉
V′×V

=
〈
Auε +Ru′ε, uε

〉
V′×V −

〈
Ru′, uε

〉
V′×V −

〈
Ru′ε, u

〉
V′×V +

〈
Ru′, u

〉
V′×V

and taking the limit and using (40) and since g = f −Ru′ we get

lim sup
ε→0

〈
Auε, uε

〉
V′×V

6
〈
f, u
〉
V′×V −

〈
Ru′, u

〉
V′×V −

〈
Ru′, u

〉
V′×V +

〈
Ru′, u

〉
V′×V

=
〈
f −Ru′, u

〉
V′×V =

〈
g, u
〉
V′×V .

Since we suppose A to be hemicontinuous and, as already observed, A is of type M
we get that

Au = f −Ru′

that is

Ru′ +Au = f.
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Limit in the boundary conditions - By Lemma 3.19 in [7] given u ∈ WR we have
that

R(σ)u(σ) ∈
⋂

t∈[0,T ]

H(t) for every σ ∈ [0, T ] and

∥∥∥∥∫ t

s

(Ru)′(τ)dτ

∥∥∥∥
H(σ)

6
∫ t

s

‖(Ru)′(τ)‖V ′(τ)dτ for every σ ∈ [0, T ] and [s, t] ⊂ [0, T ].

In particular for the family of solutions uε of problems (28)-(I) since (uε)ε are
bounded in V and Ru′ε are bounded in V ′ we have (C0 is defined in (3))∥∥R(t2)uε(t2)−R(t1)uε(t1)

∥∥
H(0)

=

∥∥∥∥∫ t2

t1

R′uε(s)ds+

∫ t2

t1

Ru′ε(s)ds
∥∥∥∥
H(0)

6C0

[∫ t2

t1

∥∥R′uε(s)∥∥V ′(s)ds+

∫ t2

t1

∥∥Ru′ε(s)∥∥V ′(s)ds]
6C0|t2 − t1|1/2

[[∫ t2

t1

∥∥R′uε(s)∥∥2

V ′(s)
ds

]1/2

+

[∫ t2

t1

∥∥Ru′ε(s)∥∥2

V ′(s)
ds

]1/2
]

6C0|t2 − t1|1/2
(
‖R′uε‖V′ + ‖Ru′ε‖V′

)
.

Notice that, since R′ is linear and continuous and (uε)ε converge to u in V, we have
that

R′uε → R′u.
Since we also have that Ru′ε → Ru′ we derive that the quantity ‖R′uε‖V′+‖Ru′ε‖V′
is bounded with respect to ε and then we got that the family(

R(t)uε(t)
)
ε>0

is equibounded and equicontinuous in [0, T ]

with respect to the topology of H(0)

and then
(
R(t)uε(t)

)
ε>0

is weakly relatively compact in H(0) uniformly in time.

Precisely, since Ruε → Ru in H we get that for every η ∈ H(0)(
R(t)uε(t), η

)
H(0)

→
(
R(t)u(t), η

)
H(0)

uniformly in [0, T ].

The same argument can be used to get that for every η ∈ H(T )(
R(t)uε(t), η

)
H(T )

→
(
R(t)u(t), η

)
H(T )

uniformly in [0, T ].

In particular we get that

R+(0)u(0) = R+(0)ϕ in H(0), R−(T )u(T ) = R−(T )ψ in H(T ) (41)

and also

R−(0)uε(0)→ R−(0)u(0) in H(0), R+(T )uε(T )→ R+(T )u(T ) in H(T ),

but for these we loose the propery to belong to VN .
Summing up, we have that there exists a sequence of the family of the solutions

(uε)ε > 0 of problems (28)-(I) with p > 2 which converge to a function u which
satisfies (36)-(I).

The proofs of the other cases are completely similar.
Convergence of the whole family - Since for every subfamily of (uε)ε>0 satisfying

(28)-(I) one can repeat the same argument as above and get a limit function u
satisfying (36)-(I) by the uniqueness of the solution just of (36)-(I) we get that
from every subfamily one can select a sequence converging to the same u. Then we
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conclude that we do not need to select a sequence, but all the family of solutions is
converging.

Summing up, we have proved the following result.

Theorem 4.1. Consider an operator R :WR → V ′ defined via R ∈ E(C1, C2), B :
V∗ → V ′∗ operator satisfying (18) and hemicontinuous, A : V → V ′ hemicontinuous.

Suppose (29) holds and, given f ∈ V ′, ϕ ∈ H̃+(0), ψ ∈ H̃−(T ), denote by uε the
solution of problem (28)-(I) with A and R′ satisfying (19) or (20), denote by vε the
solution of problem (28)–(II) with A and R′ satisfying (21) or (22). Then we have
that

lim
ε→0

εBuε = lim
ε→0

εBvε = 0 in V ′∗-strong,

lim
ε→0

uε = u, lim
ε→0

vε = v in V-weak

lim
ε→0
Ru′ε = Ru′, lim

ε→0
(Rvε)′ = (Rv)′ in V ′-weak,

where u and v are the unique solutions respectively of the problems (36)-(I) and
(36)-(II) and satisfy

‖u‖V + ‖Ru′‖V′ 6 C
[
‖f‖V′+‖f‖

1
p−1

V′ + ‖R1/2
− (T )ψ(T )‖

2
p

H(T ) + ‖R1/2
+ (0)ϕ(0)‖

2
p

H(0)

+ ‖R1/2
− (T )ψ(T )‖2

p−1
p

H(T ) + ‖R1/2
+ (0)ϕ(0)‖2

p−1
p

H(0)

]
.

‖v‖V + ‖(Rv)′‖V′ 6 C
[
‖f‖V′+‖f‖

1
p−1

V′ + ‖R1/2
− (T )ψ(T )‖

2
p

H(T ) + ‖R1/2
+ (0)ϕ(0)‖

2
p

H(0)

+ ‖R1/2
− (T )ψ(T )‖2

p−1
p

H(T ) + ‖R1/2
+ (0)ϕ(0)‖2

p−1
p

H(0)

]
.

with C = C(p, α1, α2).

As an immediate consequence we have the following corollaries.

Corollary 4.2. As a consequence of the previous result, uε, u, vε, v as above, we
also get that

lim
ε→0
Ruε = Ru, lim

ε→0
Rvε = Rv in H-strong.

Proof. The proof follows immediately from Theorem 3.6 and Proposition 3.4 in [7]
(see also Theorem 2.14 and Proposition 2.6 in [8]).

Corollary 4.3. As a consequence of Theorem 4.1 we also get that

lim
ε→0
〈εBuε, uε〉V′∗×V∗ = lim

ε→0
〈εBvε, vε〉V′∗×V∗ = 0.

Proof. Consider uε, the solution of (28)-(I), and u its limit in WR satisfying (36)-
(I). Since uε weakly converge in V and εBuε strongly converge to zero (see (38)) we
immediatly conclude. Similarly one proves the convergence for 〈εBvε, vε〉V′∗×V∗ .

Corollary 4.4. As a consequence of the previous corollary, uε and vε as above, we
also get that

lim
ε→0

uε = u, lim
ε→0

vε = v in V-strong
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and, if A is continuous,

lim
ε→0
Ru′ε = Ru′, lim

ε→0
(Rvε)′ = (Rv)′ in V ′-strong,

lim
ε→0
Auε = Au, lim

ε→0
Avε = Av in V ′-strong.

Proof. As usual we prove the result for uε, being the proof for vε similar.
Subtracting δBuδ +Ru′δ +Auδ = f to εBuε +Ru′ε +Auε = f we get

εBuε − δBuδ +Ru′ε −Ru′δ +Auε −Auδ = 0.

Multiplying by uε − uδ we get

0 6ε
〈
Buε, uε

〉
V′∗×V∗

+ δ
〈
Buδ, uδ

〉
V′∗×V∗

+
〈
Ru′ε −Ru′δ, uε − uδ

〉
V′×V +

〈
Auε −Auδ, uε − uδ

〉
V′×V

= δ
〈
Buδ, uε

〉
V′∗×V∗

+ ε
〈
Buε, uδ

〉
V′∗×V∗

and since uε − uδ ∈ V0 one gets

α1‖uε − uδ‖pV 6 δ
〈
Buδ, uε

〉
V′∗×V∗

+ ε
〈
Buε, uδ

〉
V′∗×V∗

.

By Theorem 4.1 one derives that

lim
ε → 0+

δ → 0+

ε
〈
Buε, uδ

〉
V′∗×V∗

= lim
ε → 0+

δ → 0+

ε
〈
Buε, uδ

〉
V′∗×V∗

= 0

and then (uε)ε>0 is a Cauchy family in V and then

lim
ε→0+

uε = u strongly in V.

Since εBuε +Ru′ε + Auε = f and εBuε strongly converge to zero (see (38)) in V ′∗
(and in V ′) we also get that

Ru′ε +Auε → f strongly in V ′.
By the continuity of A we get that Auε → Au and consequently

lim
ε→0+

Ru′ε = Ru′ strongly in V ′.

5. Examples. In this section we present just two examples, since many examples
of forward-backward parabolic equations are already given in the two papers [8] and
[7].

Before exposing these examples we stress that, obviously, the two simple cases

R ≡ 0 and R = Id

are admitted. In the first case we approximate an elliptic problem in dimension n
with an analogous elliptic problem in dimension n+ 1, while in the second case the
limit problem is a parabolic equation (completely forward).

In both the two following examples we consider

R : H → H, (Ru, v) =

∫ T

0

∫
Ω

u(x, t)v(x, t)r(x, t)dxdt,

but
in the first r is bounded,
in the second r may be unbounded.
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First example: we consider the following situation: T > 0, Ω ⊂ Rn an open set
with Lipschitz boundary, λo,Λo positive constants and, for p 6 2, we consider the
spaces

U ≡ V (t) = W 1,p
0 (Ω), K(t) = Lp(Ω), H(t) = L2(Ω) for every t ∈ [0, T ],

H = L2(Ω× (0, T )), V = L2(0, T ;W 1,p
0 (Ω)), V∗ = W 1,p

0 (Ω× (0, T ))

and the operators

A(t) : W 1,p
0 (Ω)→W−1,p′(Ω)(

A(t)u
)
(x) := −diva

(
x, t, u(x), Du(x)

)
,

with a : Ω× (0, T )×Rn → Rn verifying

λo|ξ|p 6 a(x, t, u, ξ) · ξ 6 Λo|ξ|p for every ξ ∈ Rn,

A : V → V ′, 〈Au, v〉V′×V =

∫ T

0

∫
Ω

(
a(x, t, u(x, t), Du(x, t)), Dv(x, t)

)
dxdt,

B : V∗ → V ′∗, 〈Bu, v〉V′∗×V∗ =

∫ T

0

∫
Ω

|ut|p−2(x, t)ut(x, t)vt(x, t)dxdt,

R : H → H, (Ru, v) =

∫ T

0

∫
Ω

u(x, t)v(x, t)r(x, t)dxdt

where

r : Ω× (0, T )→ R, r ∈ L∞(Ω× (0, T ))

is such that

t 7→
∫

Ω

u(x)v(x)r(x, t)dx is absolutely continuous and∣∣∣∣ ddt
∫

Ω

u(x)v(x)r(x, t)dx

∣∣∣∣ 6 C2

(∫
Ω

|Du|p(x)dx

∫
Ω

|Dv|p(x)dx

)1/p

.

The operator R′ is defined as follows: R′(t) : W 1,p
0 (Ω)→W−1,p′(Ω) and

〈R′(t)u, v〉W−1,p′×W 1,p
0

:=
d

dt

∫
Ω

u(x)v(x)r(x, t)dx (42)

which has to satisfy assumptions (19)-(20). Notice that assumption (29) is in fact
an assumption about R, in particular an assumption regarding the regularity of the
two sets

{x ∈ Ω|r(x, 0) > 0} and {x ∈ Ω|r(x, T ) 6 0}.
About that we refer to example (3) in the last section in [8]. About the sets

Ω+(0) := {x ∈ Ω|r(x, 0) > 0} and Ω−(T ) := {x ∈ Ω|r(x, T ) < 0}

we supposte that they are measurable sets. Define the spaces

H̃+(0) := the completion of C1
c (Ω+(0)) w.r.t. the topology induced by(∫

Ω

u2(x)r+(x, 0)dx

)1/2

H̃−(T ) := the completion of C1
c (Ω−(T )) w.r.t. the topology induced by(∫

Ω

u2(x)r−(x, T )dx

)1/2

.
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Then, the solutions uε of

−ε ∂
∂t

(∣∣∣∣∂u∂t
∣∣∣∣p−2

∂u

∂t

)
+r

∂u

∂t
−diva

(
x, t, u(x), Du(x)

)
= f in Ω× (0, T )

u = 0 in ∂Ω× (0, T )

u(x, 0) = ϕ(x) in Ω+(0)× {0}
∂u

∂t
(x, 0) = 0 in

(
Ω0(0) ∪ Ω−(0)

)
× {0}

u(x, T ) = ψ(x) in Ω−(T )× {T}
∂u

∂t
(x, T ) = 0 in

(
Ω0(T ) ∪ Ω+(T )

)
× {0}

under the assumtpions (19)-(20) converge to the solution of
r
∂u

∂t
− diva

(
x, t, u(x), Du(x)

)
= f in Ω× (0, T )

u = 0 in ∂Ω× (0, T )

u = ϕ in ∂Ω+(0)

u = ψ in ∂Ω−(T ).

Similarly, mutatis mutandis, i.e. under the assumtpions (21)-(22), one has the same
result substituting in the two previous problems r ∂u∂t by ∂

∂t (ru).
Second example: to consider an example where the spaces are depending on t one
can consider λo and Λo depending on time. In this way one must introduce some
weighted spaces. First suppose that

λo = λ(x, t) and Λo = Lλ(x, t)

for some L > 1 and for λ > 0 almost everywhere (and possibly unbounded). We
will denote by λ(t) the function x 7→ λ(x, t) and by r(t) the function x 7→ r(x, t)
(also r could be unbounded). One can suitably define the spaces (see [9])

H(t) := L2(Ω, µ(t)), K(t) := Lp(Ω, µ(t)), V (t) :=W1,p
0 (Ω, |r(t)|, λ(t))

which may be defined as the completion of C1
c (Ω) with respect to the topologies

induce by the norms(∫
Ω

|u(x, t)|qµ(x, t)

)1/q

, q = 2 or q = p and

(∫
Ω

|Du(x, t)|pλ(x, t)

)1/p

,

provided that a suitable Poincaré inequality holds(∫
Ω

|u(x, t)|pµ(x, t)

)1/p

6 c

(∫
Ω

|Du(x, t)|pλ(x, t)

)1/p

for u ∈ C1
c (Ω)

and where µ is a suitable extension of |r|, i.e.

µ(x, t) = |r(x, t)| where |r| > 0 and µ > 0 almost everywhere.

Under suitable assumptions about r and λ there is s ∈ R such that W 1,s
0 (Ω) is a

dense subset of W1,p
0 (Ω, |r(t)|, λ(t)) for every t ∈ [0, T ] and then one can consider

U := W 1,s
0 (Ω) for such s.

If r is unbounded we consider

R+(t) = P+(t)
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i.e. R+(t) is the orthogonal projection from H(t) onto L2(Ω+(t), r+(t)) (analogous
is the definition of R−(t)). With the other simple and obvious adaptations one can
conclude as in the previous example.

In this case the operator B could be Bu :=
(
|ut|p−2utµ

)
t
, i.e.〈

Bu, v
〉

=

∫∫
|ut|p−2utvtµ(x, t)dxdt.
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Verlag, Basel, 2009, 175–195.
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