WHEN THE ZARISKI SPACE IS A NOETHERIAN SPACE

DARIO SPIRITO

ABSTRACT. We characterize when the Zariski space $\text{Zar}(K|D)$ (where D is an integral domain, K is a field containing D and D is integrally closed in K) and the set $\text{Zar}_{\text{min}}(L|D)$ of its minimal elements are Noetherian spaces.

1. INTRODUCTION

The Zariski space $\text{Zar}(K|D)$ of the valuation ring of a field K containing a subring D was introduced by O. Zariski (under the name abstract Riemann surface) during his study of resolution of singularities [24, 25]. In particular, he introduced a topology on $\text{Zar}(K|D)$ (which was later called *Zariski topology*) and proved that it makes $\text{Zar}(K|D)$ into a compact space [26, Chapter VI, Theorem 40. Later, the Zariski topology on $\text{Zar}(K|D)$ was studied more carefully, showing that it is a spectral space in the sense of Hochster [14], i.e., that there is a ring R such that the spectrum of R (endowed with the Zariski topology) is homeomorphic to $\text{Zar}(K|D)$ [4, 5, 6]. This topology has also been used to study representations of an integral domain by intersection of valuation rings [16, 17, 18] and, for example, in real and rigid algebraic geometry [15, 21].

In [22], it was shown that in many cases $\text{Zar}(D)$ is not a Noetherian space, i.e., there are subspaces of $\text{Zar}(D)$ that are not compact. In particular, it was shown that $\text{Zar}(D) \setminus \{V\}$ (where V is a minimal valuation overring of D) is often non-compact: for example, this happens when $\dim(V) > 2 \dim(D)$ [22, Proposition 4.3] or when D is Noetherian and $\dim(V) \geq 2$ [22, Corollary 5.2].

In this paper, we study integral domains such that $\text{Zar}(D)$ is a Noetherian space, and, more generally, we study when the Zariski space $\text{Zar}(K|D)$ is Noetherian. We show that, if $D = F$ is a field, then $\text{Zar}(K|F)$ can be Noetherian only if the transcendence degree of K over F is at most 1 and, when $\operatorname{trdeg}_F K = 1$, we characterize when this happens in terms of the extensions of the valuation domains of $F[X]$, where X is an element of K transcendental over F (Proposition 4.2). In Section 5, we study the case where K

Date: May 2, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary: 13F30; Secondary: 13A15, 13A18. Key words and phrases. Zariski space; Noetherian space; pseudo-valuation domains.

is the quotient field of D : we first consider the local case, showing that if $\text{Zar}(D)$ is Noetherian then D must be a pseudo-valuation domain (Theorem 5.8) and, subsequently, we globalize this result to the non-local case, showing that $\text{Zar}(D)$ is Noetherian if and only if so are $\text{Spec}(D)$ and $\text{Zar}(D_M)$, for every maximal ideal M of D (Theorem 5.11 and Corollary 5.12). We also prove the analogous results for the set $\text{Zar}_{\text{min}}(K|D)$ of the minimal elements of $\text{Zar}(K|D)$.

2. Background

Throughout the paper, when X_1 and X_2 are topological space we shall use the notation $X_1 \simeq X_2$ to denote that X_1 and X_2 are homeomorphic.

2.1. Overrings and the Zariski space. Let D be an integral domain and let K be a ring containing D. We define $\text{Over}(K|D)$ as the set of rings contained between D and K. The Zariski topology on $\text{Over}(K|D)$ is the topology having, as a subbasis of closed sets, the sets in the form

$$
\mathcal{B}(x_1,\ldots,x_n):=\{V\in \text{Over}(K|D)\mid x_1,\ldots,x_n\in V\},\
$$

as x_1, \ldots, x_n range in K. If K is the quotient field of D, an element of $Over(K|D)$ is called an *overring* of D.

If K is the quotient field of D, a subset $X \subseteq \text{Over}(K|D)$ is a locally finite family if every $x \in D$ (or, equivalently, every $x \in K$) is a non-unit in only finitely many $T \in \text{Over}(K|D)$.

If K is a field containing D, the Zariski space of D in K is the set of all valuation domains containing D and whose quotient field is K ; we denote it by $\text{Zar}(K|D)$. The Zariski topology on $\text{Zar}(K|D)$ is simply the Zariski topology inherited from $\text{Over}(K|D)$. If K is the quotient field of D, then $\text{Zar}(K|D)$ will simply be denoted by $\text{Zar}(D)$, and its elements are called the *valuation* overrings of D.

Under the Zariski topology, $\text{Zar}(K|D)$ is compact [26, Chapter VI, Theorem 40].

We denote by $\text{Zar}_{\text{min}}(K|D)$ the set of minimal elements of $\text{Zar}(K|D)$, with respect to containment. If V is a valuation domain, we denote by m_V its maximal ideal. Given $X \subseteq \text{Zar}(D)$, we define

$$
X^{\uparrow} := \{ V \in \text{Zar}(D) \mid V \supseteq W \text{ for some } W \in X \}.
$$

Since a family of open sets is a cover of X if and only if it is a cover of X^{\uparrow} , we have that X is compact if and only if X^{\uparrow} is compact.

If X is a subset of $\text{Zar}(D)$, we denote by $A(X)$ the intersection $\bigcap \{V \mid V \in$ X}, called the *holomorphy ring* of X [20]. Clearly, $A(X) = A(X^{\uparrow})$.

The *center map* is the application

$$
\gamma\colon \text{Zar}(K|D) \longrightarrow \text{Spec}(D)
$$

$$
V \longmapsto \mathfrak{m}_V \cap D.
$$

If $\text{Zar}(K|D)$ and $\text{Spec}(D)$ are endowed with the respective Zariski topologies, the map γ is continuous ([26, Chapter VI, §17, Lemma 1] or [4, Lemma 2.1]), surjective (this follows, for example, from [2, Theorem 5.21] or [11, Theorem 19.6]) and closed [4, Theorem 2.5].

In studying $\text{Zar}(K|D)$, it is usually enough to consider the case where D is integrally closed in K; indeed, if \overline{D} is the integral closure of D in K, then $\text{Zar}(K|D) = \text{Zar}(K|\overline{D}).$

2.2. Noetherian spaces. A topological space X is *Noetherian* if its open sets satisfy the ascending chain condition, or equivalently if all its subsets are compact. If $X = \text{Spec}(R)$ is the spectrum of a ring, then X is a Noetherian space if and only if R satisfies the ascending chain condition on radical ideals; in particular, the spectrum of a Noetherian ring is always a Noetherian space. If $Spec(R)$ is Noetherian, then every ideal of R has only finitely many minimal primes (see e.g. the proof of [3, Chapter 4, Corollary 3, p.102] or [2, Chapter 6, Exercises 5 and 7]).

Every subspace and every continuous image of a Noetherian space is again Noetherian; in particular, if $\text{Zar}(D)$ is Noetherian then so are $\text{Zar}_{\text{min}}(D)$ and $Spec(D)$ [22, Proposition 4.1].

2.3. Kronecker function rings. Let K be the quotient field of D . For every $V \in \text{Zar}(D)$, let $V^b := V[X]_{\mathfrak{m}_V[X]} \subseteq K(X)$. If $\Delta \subseteq \text{Zar}(D)$, the Kronecker function ring of D with respect to Δ is

$$
\mathrm{Kr}(D,\Delta) := \bigcap \{V^b \mid V \in \Delta\};
$$

we denote $Kr(D, Zar(D))$ simply by $Kr(D)$.

The ring $Kr(D, \Delta)$ is always a Bézout domain whose quotient field is $K(X)$, and, if Δ is compact, the intersection map $W \mapsto W \cap K$ establishes a homeomorphism between $\text{Zar}(\text{Kr}(D,\Delta))$ and the set Δ^{\uparrow} [4, 5, 6]. Since $Kr(D, \Delta)$ is a Prüfer domain, furthermore, $Zar(Kr(D, \Delta))$ is homeomorphic to $Spec(Kr(D, \Delta))$; hence, $Spec(Kr(D, \Delta))$ is homeomorphic to Δ^{\uparrow} , and asking if $\text{Zar}(D)$ is Noetherian is equivalent to asking if $\text{Spec}(\text{Kr}(D))$ is Noetherian or, equivalently, if $Kr(D)$ satisfies the ascending chain condition on radical ideals.

See [11, Chapter 32] or [10] for general properties of Kronecker function rings.

2.4. Pseudo-valuation domains. Let D be an integral domain with quotient field K. Then, D is called a *pseudo-valuation domain* (for short, PVD) if, for every prime ideal P of D, whenever $x_i \in P$ for some $x, y \in K$, then at least one of x and y is in P . Equivalently, D is a pseudo-valuation domain if and only if it is local and its maximal ideal M is also the maximal ideal of some valuation overring V of D (called the valuation domain associated to

D) $[12, Corollary 1.3 and Theorem 2.7].$ If D is a valuation domain, then it is also a PVD, and the associated valuation ring is D itself.

The prototypical examples of a pseudo-valuation domain that is not a valuation domain is the ring $F + XL[[X]]$, where $F \subseteq L$ is a field extension; its associated valuation domain is $L[[X]]$.

3. Examples and reduction

The easiest case for the study of the topology of $\text{Zar}(D)$ is when D is a Prüfer domain, i.e., when D_M is a valuation domain for every maximal ideal M of D.

Proposition 3.1. Let D be a Prüfer domain. Then:

(a) $\text{Zar}(D)$ is a Noetherian space if and only if $\text{Spec}(D)$ is Noetherian; (b) $\text{Zar}_{\text{min}}(D)$ is Noetherian if and only if $\text{Max}(D)$ is Noetherian.

Proof. Since D is Prüfer, the center map $\gamma : \text{Zar}(D) \longrightarrow \text{Spec}(D)$ is a homeomorphism [4, Proposition 2.2]. This proves the first claim; the second one follows from the fact that the minimal valuation overrings of D correspond to the maximal ideals. $\hfill \square$

Another example of a domain that has a Noetherian Zariski space is the pseudo-valuation domain $D := \mathbb{Q} + Y \mathbb{Q}(X)[[Y]]$, where X, Y are indeterminates on \mathbb{Q} , since in this case $\text{Zar}(D)$ can be written as the union of the quotient field of D and two sets homeomorphic to $\text{Zar}(\mathbb{Q}[X]) \simeq \text{Spec}(\mathbb{Q}[X]),$ which are Noetherian; from this, it is possible to build examples of non-Prüfer domains whose Zariski spectrum is Noetherian, and having arbitrary finite dimension [22, Example 4.7].

More generally, we have the following routine observation.

Lemma 3.2. Let D be an integral domain, and suppose that a prime ideal P of D is also the maximal ideal of a valuation overring V of D . Then, the quotient map $\pi : V \longrightarrow V/P$ establishes a homeomorphism between $\{W \in \text{Zar}(D) \mid$ $W \subseteq V$ and $\text{Zar}(V/P|D/P)$, and between $\text{Zar}_{\text{min}}(D)$ and $\text{Zar}_{\text{min}}(V/P|D/P)$.

Proof. Consider the set $\text{Over}(V|D)$ and $\text{Over}(V/P|D/P)$. Then, the map

$$
\tilde{\pi} \colon \text{Over}(V|D) \longrightarrow \text{Over}(V/P|D/P)
$$

$$
A \longmapsto \pi(A) = A/P
$$

is a bijection, whose inverse is the map sending B to $\pi^{-1}(B)$. Furthermore, it is a homeomorphism: indeed, if $x \in V/P$ then $\tilde{\pi}^{-1}(\mathcal{B}(x)) = \mathcal{B}(y)$, for any
 $u \in \pi^{-1}(x)$, while if $x \in V$ then $\tilde{\pi}(\mathcal{B}(x)) = \mathcal{B}(\pi(x))$. $y \in \pi^{-1}(x)$, while if $x \in V$ then $\widetilde{\pi}(\mathcal{B}(x)) = \mathcal{B}(\pi(x))$.

The condition on P implies that D is a pullback in the diagram

$$
D \xrightarrow{\pi} D/P
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
V \xrightarrow{\pi} V/P;
$$

hence, every $A \in \text{Over}(V|D)$ arises as a pullback. By [8, Theorem 2.4(1)], A is a valuation domain if and only if $\pi(A)$ is a valuation domain and V/P is the quotient field of $\pi(A)$; hence, $\tilde{\pi}$ restricts to a bijection between $\text{Zar}(D) \cap$ $\text{Over}(V|D) = \{W \in \text{Zar}(D) \mid W \subseteq V\}$ and $\text{Zar}(V/P|D/P)$. Furthermore, since $\tilde{\pi}$ is a homeomorphism, so is its restriction. The claim about $\text{Zar}(D)$ and $\text{Zar}(V/P|D/P)$ is proved; the claim for the space of minimal elements follows immediately.

Proposition 3.3. Let D be an integral domain, and let L be a field containing D. Then, there is a ring R such that:

- $\text{Zar}(L|D) \simeq \text{Zar}(R) \setminus \{F\}$, where F is the quotient field of R;
- Zar_{min} $(L|D) \simeq \text{Zar}_{\text{min}}(R)$.

Proof. Let X be an indeterminate over L, and define $R := D+XL[[X]]$. Then, the prime ideal $P := XL[[X]]$ of R is also a prime ideal of the valuation domain $L[[X]]$; by Lemma 3.2, it follows that $\text{Zar}(L|D) \simeq \Delta := \{W \in \text{Zar}(R) \mid W \subseteq$ $L[[X]]$. Furthermore, every valuation overring V of R contains $XL[[X]]$, and thus it is either in Δ or properly contains $L[[X]]$; however, since $L[[X]]$ has dimension 1, the latter case is possible only if $V = L((X))$ is the quotient field of R. The first claim is proved, and the second follows easily. \Box

Proposition 3.3 shows that, theoretically, it is enough to consider spaces of valuation rings between a domain and its quotient field. However, it is convenient to not be restricted to this case; the following Proposition 3.4 is an example, as will be the analysis of field extensions in Section 4.

Proposition 3.4. Let D be an integral domain that is not a field, let K be its quotient field and L a field extension of K. If $\text{trdeg}_K L \geq 1$, then $\text{Zar}(L|D)$ and $\text{Zar}_{\text{min}}(L|D)$ are not Noetherian.

Proof. If trdeg_K $L \geq 1$, there is an element $X \in L \setminus K$ that is not algebraic over L. If $\text{Zar}(L|D)$ is Noetherian, so is its subset $\text{Zar}(L|D|X)$, and thus also $\text{Zar}(K(X)|D[X]) = \text{Zar}(D[X])$, which is the (continuous) image of $\text{Zar}(L|D[X])$ under the intersection map $W \mapsto W \cap K(X)$. However, since D is not a field, $\text{Zar}(D[X])$ is not Noetherian by [22, Proposition 5.4]; hence $\text{Zar}(L|D)$ cannot be Noetherian.

Consider now $\text{Zar}_{\text{min}}(L|D)$: it projects onto $\text{Zar}_{\text{min}}(K(X)|D)$, and thus we can suppose that $L = K(X)$. Let V be a minimal valuation overring of D: then, there is an extension W of V to L such that X is the generator

of the maximal ideal of W; furthermore, W belongs to $\text{Zar}_{\text{min}}(K(X)|D)$. In particular, $Spec(W) \setminus Max(W)$ has a maximum, say P. Let $\Delta := Zar(L|D) \setminus$ $\{W\}$: then, Δ can be written as the union of $\Lambda := (\text{Zar}_{\text{min}}(L|D) \setminus \{W\})^{\uparrow}$ and $\{W_P\}^{\uparrow}$. The latter is compact since $\{W_P\}$ is compact; if $\text{Zar}_{\text{min}}(L|D) \setminus$ $\{W\}$ were compact, so would be Λ . In this case, also Δ would be compact, against the proof of [22, Proposition 5.4]. Hence, Δ is not compact, and so $\text{Zar}_{\text{min}}(L|D)$ is not Noetherian.

4. Field extensions

In this section, we consider a field extension $F \subseteq L$ and analyze when the Zariski space $\text{Zar}(L|F)$ and its subset $\text{Zar}_{\text{min}}(L|F)$ are Noetherian. By Proposition 3.3, this is equivalent to studying the Zariski space of the pseudovaluation domain $F + XL[[X]].$

This problem naturally splits into three cases, according to whether the transcendence degree of L over F is 0, 1 or at least 2. The first and the last cases have definite answers, and we collect them in the following proposition. Part (b) is a slight generalization of [22, Corollary 5.5(b)]. Recall that the *inverse topology* (with respect to the Zariski topology) on $\text{Zar}(K|D)$ is the topology whose closed sets are the subsets $\Delta \subseteq \text{Zar}(K|D)$ that are compact (in the Zariski topology) and such that $\Delta = \Delta^{\uparrow}$ (this is not the usual definition, but is equivalent: see for example [6, Remark 2.2 and Proposition 2.6]); in particular, the intersection of two subsets with these properties is still compact in the Zariski topology.

Proposition 4.1. Let $F \subseteq L$ be a field extension.

- (a) If trdeg_F $L = 0$, then $\text{Zar}(L|F) = \{L\} = \text{Zar}_{\text{min}}(L|D)$, and in particular both spaces are Noetherian.
- (b) If trdeg_F $L \geq 2$, then $\text{Zar}(L|F)$ and $\text{Zar}_{\text{min}}(L|F)$ are not Noetherian.

Proof. (a) is obvious. For (b), let X, Y be elements of L that are algebraically independent. Then, the intersection map $\text{Zar}_{\text{min}}(L|F) \longrightarrow \text{Zar}_{\text{min}}(F(X,Y)|F)$ is surjective, and thus it is enough to prove that $\text{Zar}_{\text{min}}(F(X, Y)|F)$ is not Noetherian.

Let $V \in \text{Zar}_{\text{min}}(F(X,Y)|F)$ and, without loss of generality, suppose $X, Y \in$ V. Let $\Delta := \text{Zar}_{\text{min}}(F(X, Y)|F) \setminus \{V\}$. Then, $\Lambda := \text{Zar}(F(X, Y)|F) \setminus \{V\}$ is the union of Δ^{\uparrow} and a finite set (the valuation domains properly containing V). If Δ were compact, so would be Λ , and thus Λ would be closed in the inverse topology. Since also $\text{Zar}(F[X, Y])$ is closed in the inverse topology, it would follow that $\Lambda \cap \text{Zar}(F[X, Y]) = \text{Zar}(F[X, Y]) \setminus \{V\}$ is compact, against the proof of [22, Proposition 5.4]. Hence, Λ is not compact, and thus Δ cannot be compact. Therefore, $\text{Zar}_{\text{min}}(F(X, Y)|F)$ is not Noetherian.

On the other hand, the case of transcendence degree 1 is more subtle. In [22, Corollary 5.5(a)], it was showed that $\text{Zar}(L|F)$ is Noetherian if L is finitely generated over F ; we now state a characterization.

Proposition 4.2. Let $F \subseteq L$ be a field extension such that $trdeg_F L = 1$. Then, the following are equivalent:

- (i) Zar $(L|F)$ is Noetherian;
- (ii) $\text{Zar}_{\text{min}}(L|F)$ is Noetherian;
- (iii) for every $X \in L$ transcendental over F, every valuation on $F[X]$ has only finitely many extensions to L;
- (iv) there is an $X \in L$, transcendental over F, such that every valuation on $F[X]$ has only finitely many extensions to L;
- (v) for every $X \in L$ transcendental over F, the integral closure of $F[X]$ in L has Noetherian spectrum;
- (vi) there is an $X \in L$, transcendental over F, such that the integral closure of $F[X]$ in L has Noetherian spectrum.

Proof. Every valuation domain of L containing F must contain the algebraic closure of F in L; hence, without loss of generality we can suppose that F is algebraically closed in L.

(i) \implies (ii) is obvious; (ii) \implies (i) follows since trdeg_F $L = 1$ and thus $\text{Zar}(L|F) = \text{Zar}_{\text{min}}(L|F) \cup \{L\}.$

(i) \implies (iii). Take $X \in L \setminus F$, and suppose there is a valuation w on $F[X]$ with infinitely many extensions to L; let W be the valuation domain corresponding to w. Then, the integral closure \overline{W} of W in L would have infinitely many maximal ideals. Since every maximal ideal of \overline{W} contains the maximal ideal of W, the Jacobson radical J of \overline{W} contains the maximal ideal of W , and in particular it is nonzero. It follows that J has infinitely many minimal primes; hence, $\text{Max}(\overline{W})$ is not a Noetherian space. However, $\text{Max}(\overline{W})$ is homeomorphic to a subspace of $\text{Zar}(L|F)$, which is Noetherian by hypothesis; this is a contradiction, and so every valuation has only finitely many extensions.

(iii) \implies (v). Let T be the integral closure of $F[X]$, and suppose that $Spec(T)$ is not Noetherian. We first claim that T is not locally finite, i.e., that there is an $\alpha \in T$ such that there are infinitely many maximal ideals of T containing α . Indeed, if T is locally finite and $\{I_{\alpha}\}_{{\alpha}\in A}$ is an ascending chain of radical ideals, then once $I_{\overline{\alpha}} \neq (0)$ the ideal $I_{\overline{\alpha}}$ is contained in only finitely many prime ideals (since T has dimension 1), and thus in only finitely many radical ideals; it follows that the chain stabilizes and $Spec(R)$ is Noetherian, a contradiction.

Consider the norm $N(\alpha)$ of α over $F[X]$, i.e., the product of the algebraic conjugates of α over $F[X]$. Then, $N(\alpha) \neq 0$, and it is both an element of $F[X]$ (being equal to the constant term of the minimal polynomial of $F[X]$ over α) and an element of every maximal ideal containing α (since all the conjugates are in T). Since every maximal ideal of $F[X]$ is contained in only finitely many maximal ideals of T (since a maximal ideal of $F[X]$ corresponds to a valuation v and the maximal ideals of T containing it to the extensions of v), it follows that $N(\alpha)$ is contained in infinitely many maximal ideals of $F[X]$. However, this contradicts the Noetherianity of $Spec(F[X])$; hence, $Spec(T)$ is Noetherian.

Now (iii) \implies (iv) and (v) \implies (vi) are obvious, while the proof of (iv) \implies (vi) is exactly the same as the previous paragraph; hence, we need only to show (vi) \implies (i); the proof is similar to the one of [22, Corollary 5.5(a)].

Let $X \in L$, X transcendental over F, be such that the spectrum of the integral closure T of $F[X]$ is Noetherian. Since X is transcendental over F, there is an F-isomorphism ϕ of $F(X)$ sending X to X^{-1} ; moreover, we can extend ϕ to an F-isomorphism $\overline{\phi}$ of L. Since $\phi(F[X]) = F[X^{-1}]$, the integral closure T of $F[X]$ is sent by $\overline{\phi}$ to the integral closure T' of $F[X^{-1}]$; in particular, $T \simeq T'$, and $Spec(T) \simeq Spec(T')$. Thus, also $Spec(T')$ is Noetherian, and so is $Spec(T) \cup Spec(T')$. Furthermore, $Zar(T) \simeq Spec(T) \simeq$ Spec($L|F[X]$), and analogously for T'; hence, $\text{Zar}(T) \cup \text{Zar}(T')$ is Noetherian. But every $W \in \text{Zar}(L|F)$ contains at least one between X and X^{-1} , and thus W contains $F[X]$ or $F[X^{-1}]$; i.e., $W \in \text{Zar}(T)$ or $W \in \text{Zar}(T')$. Hence, $\text{Zar}(L|F) = \text{Zar}(T) \cup \text{Zar}(T')$ is Noetherian.

We remark that there are field extensions that satisfy the conditions of Proposition 4.2 without being finitely generated. For example, if L is purely inseparable over some $F(X)$, then every valuation on $F[X]$ extends uniquely to L , and thus condition (iii) of the previous proposition is fulfilled; more generally, each valuation on $F(X)$ extends in only finitely many ways when the separable degree $[L : F(X)]_s$ is finite [11, Corollary 20.3]. There are also examples in characteristic 0: for example, [19, Section 12.2] gives examples of non-finitely generated algebraic extension F of the rational numbers such that every valuation on $\mathbb Q$ has only finitely many extensions to F. The same construction works also on $\mathbb{Q}(X)$, and if L is such an example then $\mathbb{Q} \subseteq L$ will satisfy the conditions of Proposition 4.2.

5. The domain case

We now want to study when the space $\text{Zar}(D)$ is Noetherian, where D is an integral domain; without loss of generality, we can suppose that D is integrally closed, since $\text{Zar}(D) = \text{Zar}(\overline{D})$. We start by studying intersections of Noetherian families of valuation rings.

Recall that a *treed domain* is an integral domain whose spectrum is a tree (i.e., such that, if P and Q are non-comparable prime ideals, then they are coprime). In particular, every Prüfer domain is treed.

Lemma 5.1. Let R be a treed domain. If $Max(R)$ is Noetherian, then every ideal of R has only finitely many minimal primes.

Note that we cannot improve this result to $Spec(R)$ being Noetherian: for example, the spectrum of a valuation domain with unbranched maximal ideal if not Noetherian, while its maximal spectrum – a singleton – is Noetherian.

Proof. Let I be an ideal of R, and let $\{P_\alpha \mid \alpha \in A\}$ be the set of its minimal prime ideals. For every α , choose a maximal ideal M_{α} containing P_{α} ; note that $M_{\alpha} \neq M_{\beta}$ if $\alpha \neq \beta$, since R is treed. Let Λ be the set of the M_{α} .

Let $X \subseteq \Lambda$, and define $J(X) := \bigcap \{ IR_M \mid M \in X \} \cap R$: we claim that, if $M \in \Lambda$, then $J(X) \subseteq M$ if and only if $M \in X$. Indeed, clearly $J(X)$ is contained in every element of X. On the other hand, suppose $N \in \Lambda \setminus X$. Since Max(R) is Noetherian, X is compact, and thus also $\{R_M \mid M \in X\}$ is compact; by [7, Corollary 5],

$$
J(X)R_N = \left(\bigcap_{M \in X} IR_M\right)R_N \cap R_N = \bigcap_{M \in X} IR_M R_N \cap R_N
$$

Since $M, N \in \Lambda$, no prime contained in both M and N contains I; hence, $IR_{M}R_{N}$ contains 1 for each $M \in X$. Therefore, $1 \in J(X)R_{N}$, i.e., $J(X) \nsubseteq N$.

Hence, every subset X of Λ is closed in Λ , since it is equal to the intersection between Λ and the closed set of $Spec(R)$ determined by $J(X)$. Since Λ is Noetherian, it follows that Λ must be finite; hence, also the set of minimal primes of I is finite. The claim is proved.

As consequence of Lemma 5.1, we can generalize [16, Theorem 3.4(2)]. We premit an easy lemma.

Lemma 5.2. Let D be an integral domain with quotient field K , and let $V, W \in \text{Zar}(D)$. If $VW = K$, then $V^bW^b = K(X)$.

Proof. Let $Z := V^b W^b$. Then, since $\text{Zar}(D)$ and $\text{Zar}(\text{Kr}(D))$ are homeomorphic, $Z = (Z \cap K)^b$; however, $K \subseteq VW \subseteq V^bW^b$, and thus $Z \cap K = K$. It follows that $Z = K^b = K(X)$, as claimed.

Theorem 5.3. Let $\Delta \subseteq \text{Zar}(D)$ be a Noetherian space, and suppose that $VW = K$ for every $V \neq W$ in Δ . Then, Δ is a locally finite space.

Proof. Let $\Delta^b := \{V^b \mid V \in \Delta\}$, and let $R := \text{Kr}(D, \Delta)$: then (since, in particular, Δ is compact), $\text{Zar}(R)$ is equal to $(\Delta^b)^{\uparrow}$.

Since R is a Bézout domain, it follows that $Spec(R) \simeq (\Delta^b)^{\uparrow}$, while $Max(R) \simeq$ Δ^b ; in particular, Max (R) is Noetherian, and thus by Lemma 5.1 every ideal of R has only finitely many minimal primes. However, since $V^b W^b = K(X)$ for every $V \neq W$ in Δ (by Lemma 5.2), it follows that every nonzero prime of R is contained in only one maximal ideal; therefore, every nonzero ideal of R is contained in only finitely many maximal ideals, and thus the family ${R_M \mid M \in \text{Max}(R)}$ is locally finite. This family coincides with Δ^b ; since Δ^b is locally finite, also Δ must be locally finite, as claimed.

We say that two valuation domains $V, W \in \text{Zar}(D) \setminus \{K\}$ are dependent if $V W \neq K$. Since $\text{Zar}(D)$ is a tree, being dependent is an equivalence relation on $\text{Zar}(D) \setminus \{K\}$; we call an equivalence class a *dependency class*. If $\text{Zar}(D)$ is finite-dimensional (i.e., if every valuation overring of D has finite dimension) then the dependency classes of $\text{Zar}(D)$ are exactly the sets in the form $\{W \in \text{Zar}(D) \mid W \subseteq V\}$, as V ranges among the one-dimensional valuation overrings of D.

Under this terminology, the previous theorem implies that, if D is local and $\text{Zar}(D)$ is Noetherian, then $\text{Zar}(D)$ can only have finitely many dependency classes: indeed, otherwise, we could form a Noetherian but not locally finite subset of $\text{Zar}(D)$ by taking one minimal overring in each dependency class, against the theorem. We actually can say (and will need) something more.

Given a set $X \subseteq \text{Zar}(D)$, we define $\text{comp}(X)$ as the set of all valuation overrings of D that are comparable with some elements of X ; i.e.,

comp
$$
(X) := \{ W \in \text{Zar}(D) \mid \exists V \in X \text{ such that } W \subseteq V \text{ or } V \subseteq W \}.
$$

If $X = \{V\}$ is a singleton, we write $\text{comp}(V)$ for $\text{comp}(X)$. Note that, for every subset X, $comp(comp(X)) = Zar(D)$, since $comp(X)$ contains the quotient field of D.

The purpose of the following propositions is to show that, if D is local and $\text{Zar}(D)$ is Noetherian, then $\text{Zar}(D)$ can be written as $\text{comp}(W)$ for some valuation overring $W \neq K$. The first step is showing that $\text{Zar}(D)$ is equal to $comp(X)$ for some finite X.

Proposition 5.4. Let D be a local integral domain. If $\text{Zar}_{\text{min}}(D)$ is Noetherian, then there are valuation overrings W_1, \ldots, W_n of D, $W_i \neq K$, such that $\text{Zar}(D) = \text{comp}(W_1) \cup \cdots \cup \text{comp}(W_n).$

Proof. Let $R := \text{Kr}(D)$ be the Kronecker function ring of D. Then, the extension $N := MR$ of the maximal ideal M of D is a proper ideal of R, and the prime ideals containing N correspond to the valuation overrings of R where N survives, i.e., to the valuation overrings of D centered on M .

Since $\text{Zar}_{\text{min}}(D)$ is Noetherian, so is $\text{Max}(R)$; since R is treed (being a Bézout domain), by Lemma 5.1 N has only finitely many minimal primes. Thus, there are finitely many valuation overrings of D, say W_1, \ldots, W_n , such that every $V \in \text{Zar}_{\text{min}}(D)$ is contained in one W_i . We claim that $\text{Zar}(D)$ = comp $(W_1) \cup \cdots \cup \text{comp}(W_n)$. Indeed, let V be a valuation overring of D. Since $\text{Zar}(D)$ is compact, V contains some minimal valuation overring V' , and by construction $V' \in \text{comp}(W_i)$ for some *i*; in particular, $W_i \supseteq V'$. The valuation overrings containing V' (i.e., the valuation overrings of V') are linearly ordered; thus, V must be comparable with W_i , i.e., $V \in \text{comp}(W_i)$. The claim is proved.

The following result can be seen as a generalization of the classical fact that, if $X = \{V_1, \ldots, V_n\}$ is finite, then $\text{Zar}(A(X))$ is the union of the various $\text{Zar}(V_i)$ (since $A(X)$ will be a Prüfer domain and its localization at the maximal ideals will be a subset of X).

Proposition 5.5. Let D be an integral domain and let $X \subseteq \text{Zar}(D)$ be a finite set. Then, $\text{Zar}(A(\text{comp}(X))) = \text{comp}(X)$.

Proof. Since $\text{comp}(V) \subseteq \text{comp}(W)$ if $V \subseteq W$, we can suppose without loss of generality that the elements of X are pairwise incomparable. Let $X =$ $\{V_1, \ldots, V_n\}, A_i := A(\text{comp}(V_i))$ and let $A := A(\text{comp}(X)) = A_1 \cap \cdots \cap A_n$. Note that $D \subseteq A$, and thus the quotient field of A coincides with the quotient field of D and of the V_i .

If $V \in \text{comp}(X)$, then clearly $A \subseteq V$; thus, $\text{comp}(X) \subseteq \text{Zar}(A)$.

Conversely, let $V \in \text{Zar}(A)$, and let \mathfrak{m}_i be the maximal ideal of V_i . Then, $\mathfrak{m}_i \subseteq W$ for every $W \in \text{comp}(V_i)$; in particular, $\mathfrak{m}_i \subseteq A_i$. Therefore, $P :=$ $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n \subseteq A$; since $A \subseteq V$, this implies that $PV \subseteq V$.

Suppose $V \notin \text{comp}(X)$, and let $T := V \cap V_1 \cap \cdots \cap V_n$. Since the rings V, V_1, \ldots, V_n are pairwise incomparable, T is a Bézout domain whose localizations at the maximal ideals are V, V_1, \ldots, V_n . In particular, V is flat over T, and each m_i is a T-module; hence,

$$
PV = \left(\bigcap_{i=1}^{n} \mathfrak{m}_i\right) V = \bigcap_{i=1}^{n} \mathfrak{m}_i V.
$$

Since V is not comparable with V_i , for each i, the set \mathfrak{m}_i is not contained in V; in particular, the family $\{\mathfrak{m}_i V \mid i = 1, \ldots, n\}$ is a family of V-modules not contained in V . Since the V-submodules of the quotient field K are linearly ordered, the family has a minimum, and thus $\bigcap_{i=1}^n \mathfrak{m}_i V$ is not contained in V. However, this contradicts $PV \subseteq V$; hence, V must be in comp(X), and $\text{Zar}(A) = \text{comp}(X).$

The proof of part (a) of the following proposition closely follows the proof of [13, Proposition 1.19].

Proposition 5.6. Let $X := \{V_1, \ldots, V_n\}$ be a finite family of valuation overrings of the domain D, and suppose that $V_iV_j = K$ for every $i \neq j$, where K is the quotient field of D. Let $A_i := A(\text{comp}(V_i)),$ and let $A := A(\text{comp}(X)).$ Then:

- (a) each A_i is a localization of A ;
- (b) for each ideal I of A, there is an i such that $IA_i \neq A_i$;
- (c) if $i \neq j$, then $A_iA_j = K$.

Proof. (a) By induction and symmetry, it is enough to prove that $B := A_2 \cap$ $\cdots \cap A_n$ is a localization of A. Let J be the Jacobson radical of B: then, $J \neq$ (0), since it contains the intersection $\mathfrak{m}_{V_2} \cap \cdots \cap \mathfrak{m}_{V_n}$. Furthermore, if $W \neq K$

is a valuation overring of V_1 , then $J \nsubseteq W$, since otherwise (as in the proof of Proposition 5.5) $\mathfrak{m}_{V_2} \cap \cdots \cap \mathfrak{m}_{V_n}$ would be contained in $\mathfrak{m}_W \cap (W \cap V_2 \cap \cdots \cap V_n)$, against the fact that $\{W, V_2, \ldots, V_n\}$ are independent valuation overrings.

Hence, for every such W we can apply [13, Proposition 1.13] to $D :=$ $B \cap W$, obtaining that B is a localization of D, say $B = S^{-1}D$, where S is a multiplicatively closed subset of D; in particular, there is a $s_W \in S \cap \mathfrak{m}_W$. Each sw is in $B \cap A_1 = A$ (since \mathfrak{m}_W is contained in every member of comp (V_1)); let T be the set of all s_W . Then,

$$
T^{-1}A = T^{-1}(B \cap A_2) = T^{-1}B \cap T^{-1}A_1.
$$

Each s_W is a unit of B, and thus $T^{-1}B = B$. On the other hand, no valuation overring $W \neq K$ of V_1 can be an overring of $T^{-1}A_1$, since T contains s_W , which is inside the maximal ideal of W. Since $\text{Zar}(A_1) = \text{comp}(V_1)$, it follows that $T^{-1}A_1 = K$, and thus $T^{-1}A = B$; in particular, B is a localization of A.

(b) Without loss of generality, we can suppose $I = P$ to be prime. There is a valuation overring W of A whose center on A is P; since $\text{Zar}(A) = \text{comp}(X)$ by Proposition 5.5, there is a V_i such that $W \in \text{comp}(V_i)$. Hence, $PA_i \neq A_i$.

(c) By Proposition 5.5, $\text{Zar}(A_i) \cap \text{Zar}(A_j) = \{K\}$. It follows that K is the only common valuation overring of A_iA_j ; in particular, A_iA_j must be K. \Box

By [23, Proposition 4.3], Proposition 5.6 can also be rephrased by saying that the set $\{A_1, \ldots, A_n\}$ is a *Jaffard family* of A, in the sense of [9, Section 6.3].

Proposition 5.7. Let D be an integrally closed domain; suppose that $\text{Zar}(D)$ = comp(V_1) ∪ · · · ∪ comp(V_n), where $X := \{V_1, \ldots, V_n\}$ is a family of incomparable valuation overrings of D such that $V_iV_j = K$ if $i \neq j$. Then:

- (a) the restriction of the center map γ to X is injective;
- (b) $|\operatorname{Max}(D)| \geq |X|$.

Proof. (a) If P is the image of both V_i and V_j , then P survives in both A_i and A_j : however, since A_i and A_j are localizations of A (Proposition 5.6(a)), A_P would be a common overring of A_i and A_j , against the fact that $A_iA_j = K$ (Proposition 5.6(c)). Therefore, the center map is injective on X .

(b) Let M be a maximal ideal: then, there is a unique i such that $MA_i \neq$ A_i . In particular, M can contain only one element of $\gamma(X)$, namely $\gamma(V_i)$; thus, $|\text{Max}(D)| \ge |\gamma(X)| = |X|$, as claimed.

We are ready to prove the pivotal result of the paper.

Theorem 5.8. Let D be an integrally closed local domain. If $\text{Zar}_{\text{min}}(D)$ is a Noetherian space, then D is a pseudo-valuation domain.

Proof. Since D is local, by Proposition 5.4 there are W_1, \ldots, W_n , not equal to K, such that $\text{Zar}(D) = \text{comp}(W_1) \cup \cdots \cup \text{comp}(W_n)$. By eventually passing to bigger valuation domains, we can suppose without loss of generality that $W_iW_j = K$ if $i \neq j$; since D is local, by Proposition 5.7(b) we have $1 \geq n$, and so $\text{Zar}(D) = \text{comp}(V)$ for some $V \neq K$.

Let Δ be the set of $W \in \text{Zar}(D)$ such that $\text{comp}(W) = \text{Zar}(D)$; then, Δ is a chain, and thus it has a minimum in $\text{Zar}(D)$, say V_0 (explicitly, V_0 is the intersection of the elements of Δ); furthermore, clearly $V_0 \in \Delta$. Since $V \in \Delta$, we have $V_0 \subseteq V$, and in particular $V_0 \neq K$. Let M be the maximal ideal of V_0 : then, M is contained in every $W \in \text{comp}(V_0) = \text{Zar}(D)$, and thus $M \subseteq D$.

Consider now the diagram

$$
D \xrightarrow{\pi} D/M
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
V_0 \xrightarrow{\pi} V_0/M.
$$

Clearly, $D = \pi^{-1}(D/M)$; let F_1 be the quotient field of D/M . By Lemma 3.2, the set of minimal valuation overrings of D is homeomorphic to $\text{Zar}_{\text{min}}(V_0/M|D/M)$, which thus is Noetherian; by Proposition 3.4, it follows that either D/M is a field and trdeg $_{D/M}(V_0/M) = 1$ (in which case D is a pseudo-valuation domain with associated valuation domain V_0) or trdeg_{F₁} $(V_0/M) = 0$.

In the latter case, we note that D/M is integrally closed in V_0/M , since D/M is the intersection of all the elements of $\text{Zar}(V_0/M|D/M)$; hence, V_0/M is the quotient field of D/M . If D/M is not a field, by the same argument of the first part of the proof it follows that $\text{Zar}(D/M) = \text{comp}(W_0)$ for some valuation overring $W_0 \neq F_1$; however, this contradicts the choice of V_0 , because $\pi^{-1}(W_0)$ would be comparable with every element of $\text{Zar}(D)$. Hence, it must be $V_0/M = D/M$, i.e., $V_0 = D$; that is, D is a valuation domain and, in particular, a pseudo-valuation domain.

With this result, we can find the possible structures of $\text{Zar}(D)$ and $\text{Zar}_{\text{min}}(D)$. when D is local and $\text{Zar}_{\text{min}}(D)$ is Noetherian. Indeed, D is a pseudo-valuation domain; let V be its associated valuation overring. Then, we have two cases: either $D = V$ (i.e., D itself is a valuation domain) or $D \neq V$.

In the first case, $\text{Zar}_{\text{min}}(D)$ is a singleton, while $\text{Zar}(D)$ is homeomorphic to $Spec(D)$; in particular, $Zar(D)$ is linearly ordered, and it is a Noetherian space if and only if $Spec(D)$ is Noetherian.

In the second case, we can separate $\text{Zar}(D)$ into two parts: $\text{Zar}_{\text{min}}(D)$ and $\Delta := \text{Zar}(D) \backslash \text{Zar}_{\text{min}}(D)$. The former must be homeomorphic to $\text{Zar}_{\text{min}}(L|F)$ $\text{Zar}(L|F) \setminus \{L\}$ (where F and L are the residue fields of D and V, respectively); on the other hand, the latter is linearly ordered, and is composed of the valuation overrings of V, so in particular it is homeomorphic to $Spec(V)$, which is (set-theoretically) equal to $Spec(D)$. In other words, $Zar(D)$ is composed of a long "stalk" (Δ) , under which there is an infinite family of minimal valuation overrings. In particular, we get the following.

Proposition 5.9. Let D, V, F, L as above. Then:

- (a) $\text{Zar}_{\text{min}}(D)$ is Noetherian if and only if $\text{Zar}(L|F)$ is Noetherian.
- (b) $\text{Zar}(D)$ is Noetherian if and only if $\text{Zar}(L|F)$ and $\text{Spec}(V)$ are Noetherian.

Proof. If $\text{Zar}_{\text{min}}(D)$ is Noetherian, then $\text{Zar}_{\text{min}}(L|F)$ is Noetherian as well. By Propositions 4.1 and 4.2, $\text{Zar}(L|F)$ is Noetherian.

If $\text{Zar}(D)$ is Noetherian, so are $\text{Spec}(D) = \text{Spec}(V)$ and $\Delta \simeq \text{Zar}(L|F)$ (in the notation above). Conversely, if $\text{Zar}(L|F)$ and $\text{Spec}(V)$ are Noetherian then so are $\text{Zar}_{\text{min}}(D)$ and Δ , and thus also $\text{Zar}_{\text{min}}(D) \cup \Delta = \text{Zar}(D)$ is Noetherian.

Furthermore, we can now apply Propositions 4.1 and 4.2 to characterize when $\text{Zar}(L|F)$ is Noetherian (see the following Corollary 5.12).

We now study the non-local case.

Lemma 5.10. Let D be an integral domain such that D_M is a PVD for every $M \in \text{Max}(D)$ and, for every M, let $V(M)$ be the valuation overring associated to D_M . Then, the space $\{V(M) | M \in \text{Max}(D)\}\$ is homeomorphic to $Max(D)$.

Proof. Let $\Delta := \{V(M) \mid M \in \text{Max}(D)\}\$. If γ is the center map, then $\gamma(V(M)) = M$ for every M; thus, γ restricts to a bijection between Δ and Max(D). Since γ is continuous and closed, it follows that it is a homeomor- \Box

Theorem 5.11. Let D be an integrally closed domain. Then:

- (a) $\text{Zar}_{\text{min}}(D)$ is Noetherian if and only if $\text{Max}(D)$ is Noetherian and $\text{Zar}_{\text{min}}(D_M)$ is Noetherian for every $M \in \text{Max}(D)$;
- (b) $\text{Zar}(D)$ is Noetherian if and only if $\text{Spec}(D)$ is Noetherian and $\text{Zar}(D_M)$ is Noetherian for every $M \in Max(D)$.

Proof. (a) If $\text{Zar}_{\text{min}}(D)$ is Noetherian, then $\text{Max}(D)$ is Noetherian since it is the image of $\text{Zar}_{\text{min}}(D)$ under the center map, while each $\text{Zar}_{\text{min}}(D_M)$ is Noetherian since they are subspaces of $\text{Zar}_{\text{min}}(D)$.

Conversely, suppose that $Max(D)$ is Noetherian and that $Zar(D_M)$ is Noetherian for every $M \in \text{Max}(D)$. By the latter property and Theorem 5.8, every D_M is a PVD; by Lemma 5.10, the space $\Delta := \{V(M) \mid M \in \text{Max}(D)\}\$ (in the notation of the lemma) is homeomorphic to $Max(D)$, and thus Noetherian. Let β be the map sending a $W \in \text{Zar}_{\text{min}}(D)$ to $V(\mathfrak{m}_W \cap D)$.

Let X be any subset of $\text{Zar}_{\text{min}}(D)$, and let Ω be an open cover of X; without loss of generality, we can suppose $\Omega = \{ \mathcal{B}(f_\alpha) \mid \alpha \in A \}$, where the f_α are elements of K. Then, Ω is also a cover of $X' := \{ \beta(V) | V \in X \}$; since X' is compact (being a subset of the Noetherian space Δ), there is a finite subfamily of Ω , say $\Omega' := {\mathcal{B}(f_1), \ldots, \mathcal{B}(f_n)}$, that covers X'. For each i, let $X_i := \{ V \in X \mid f_i \in \beta(V) \};$ then, $X = X_1 \cup \cdots \cup X_n$. We want to find, for each *i*, a finite subset $\Omega_i \subset \Omega$ that is a cover of X_i .

Fix thus an *i*, let $f := f_i$, and let $I := (D : D f)$ be the conductor ideal. For every $M \in \text{Max}(D)$, let $Z(M) := \gamma^{-1}(M) \cap X_i = \{ V \in X_i \mid \mathfrak{m}_V \cap D = M \},$ where γ is the center map. The union of the $Z(M)$ is X_i ; we separate the cases $I \nsubseteq M$ and $I \subseteq M$.

If $I \nsubseteq M$, then $1 \in ID_M = (D_M :_{D_M} f)$, and thus $f \in D_M$; hence, in this cases $\mathcal{B}(f)$ contains $Z(M)$.

Suppose $I \subseteq M$; clearly, we can suppose $Z(M) \neq \emptyset$. We claim that in this case M is minimal over I. Indeed, if there is a $V \in Z(M)$ then $f \in V$, and thus $f \in \beta(V)$; therefore, $f \in D_P$ for every prime ideal $P \subsetneq M$ (since $D_P \supsetneq \beta(V)$ for every such P), and thus $I \nsubseteq P$. Therefore, M is minimal over I. By Lemma 5.1, I has only finitely many minimal primes; hence, there are only finitely many M such that $I \subseteq M$ and $Z(M) \neq \emptyset$. For each of these M, the set of valuation domains in X centered on M is a subset of $\text{Zar}_{\text{min}}(D_M)$, and thus it is compact; hence, for each of them, Ω admits a finite subcover $\Omega(M)$. It follows that $\Omega_i := \{ \mathcal{B}(f) \} \cup \bigcup \Omega(M)$ is a finite subset of Ω that is a cover of X_i .

Hence, $\bigcup_i \Omega_i$ is a finite subset of Ω that covers X; thus, X is compact. Since X was arbitrary, $\text{Zar}_{\text{min}}(D)$ is Noetherian.

(b) If $\text{Zar}(D)$ is Noetherian, then $\text{Spec}(D)$ and every $\text{Zar}(D_M)$ are Noetherian.

Conversely, suppose that $Spec(D)$ is Noetherian and that $Zar(D_M)$ is Noetherian for every $M \in \text{Max}(D)$. By the previous point, $\text{Zar}_{\text{min}}(D)$ is Noetherian. Furthermore, if $P \in \text{Spec}(D) \setminus \text{Max}(D)$ then D_P is a valuation domain; hence, $\text{Zar}(D) \setminus \text{Zar}_{\text{min}}(D)$ is homeomorphic to $\text{Spec}(D) \setminus \text{Max}(D)$, which is Noetherian by hypothesis. Being the union of two Noetherian subspaces, $\text{Zar}(D)$ itself is Noetherian.

Corollary 5.12. Let D be an integral domain that is not a field, and let L be a field containing D; suppose that D is integrally closed in L. Then, $\text{Zar}(L|D)$ (respectively $\text{Zar}_{\text{min}}(L|D)$) is Noetherian if and only if the following hold:

- L is the quotient field of D ;
- $Spec(D)$ is Noetherian (resp., $Max(D)$ is Noetherian);
- for every $M \in \text{Max}(D)$, the ring D_M is a pseudo-valuation domain such that $\text{Zar}(L|F)$ is Noetherian, where F is the residue field of D_M and L is the residue field of the associated valuation overring of D_M .

Proof. Join Proposition 3.4, Theorem 5.11 and Proposition 5.9. \Box

For our last result, we recall that the *valuative dimension* $\dim_{v}(D)$ of an integral domain D is the supremum of the dimensions of the valuation overrings of D; a domain D is called a *Jaffard domain* if $\dim(D) = \dim_v(D) < \infty$, while it is a locally Jaffard domain if D_P is a Jaffard domain for every $P \in \text{Spec}(D)$ [1]. Any locally Jaffard domain is Jaffard, while the converse does not hold [1, Example 3.2]. The class of Jaffard domains includes, for example, finitedimensional Noetherian domains, Prüfer domains and universally catenarian domains.

Proposition 5.13. Let D be an integrally closed integral domain of finite Krull dimension, and suppose that $\text{Zar}_{\text{min}}(D)$ is a Noetherian space. Then:

(a) $\dim_v(D) \in \{ \dim(D), \dim(D) + 1 \};$

(b) D is locally Jaffard if and only if D is a Prüfer domain.

Proof. (a) Let M be a maximal ideal of D. Then, $\text{Zar}_{\text{min}}(D_M)$ is Noetherian, and thus D_M is a pseudo-valuation domain; by [1, Proposition 2.9], $\dim_v(D_M) = \dim(D_M) + \text{trdeg}_F L$, where F is the residue field of D_M and L is the residue field of the associated valuation ring of D_M . By Propositions 5.9 and 4.1, $\text{trdeg}_F L \leq 1$, and thus $\dim_v(D_M) \leq \dim(D_M) + 1$. Hence, $\dim_v(D) \leq \dim(D) + 1$; since $\dim_v(D) \geq \dim(D)$ always, we have the claim.

(b) If D is a Prüfer domain then it is locally Jaffard. Conversely, if D is locally Jaffard, then $\dim_v(D_P) = \dim(D_P)$ for every prime ideal P of D. Take any maximal ideal M, and let F, L as above; using $\dim_v(D_M)$ = $\dim(D_M)$ + trdeg_F L, it follows that trdeg_F L = 0. Since D (and so D_M) is integrally closed, it must be $F = L$, i.e., D_M itself is a valuation domain. Therefore, D is a Prüfer domain.

Note that there are domains D that are Jaffard domains and have $\text{Zar}(D)$ Noetherian, but are not Prüfer domains. Indeed, the construction presented in [1, Example 3.2] gives a ring R with two maximal ideals, M and N , such that R_M is a two-dimensional valuation ring while R_N is a one-dimensional pseudo-valuation domain with $\dim_v(R_N) = 2$; in particular, it is a Jaffard domain that is not Prüfer. Choosing $k = K(Z_1)$ in the construction (or, more generally, choosing k such that $K(Z_1, Z_2)$ is finite over k), the Zariski space of R_N is Noetherian (being homeomorphic to $\text{Zar}(K(Z_1, Z_2)|k)$, which is Noetherian by Proposition 4.2), and thus $\text{Zar}(R)$ is Noetherian.

REFERENCES

- [1] David F. Anderson, Alain Bouvier, David E. Dobbs, Marco Fontana, and Salah Kabbaj. On Jaffard domains. Exposition. Math., 6(2):145–175, 1988.
- [2] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
- [3] Nicolas Bourbaki. Commutative Algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the French, Reprint of the 1972 edition.
- [4] David E. Dobbs, Richard Fedder, and Marco Fontana. Abstract Riemann surfaces of integral domains and spectral spaces. Ann. Mat. Pura Appl. (4), 148:101–115, 1987.
- [5] David E. Dobbs and Marco Fontana. Kronecker function rings and abstract Riemann surfaces. J. Algebra, 99(1):263–274, 1986.
- [6] Carmelo A. Finocchiaro, Marco Fontana, and K. Alan Loper. The constructible topology on spaces of valuation domains. Trans. Amer. Math. Soc., $365(12):6199-6216$, 2013.

- [7] Carmelo A. Finocchiaro and Dario Spirito. Topology, intersections and flat modules. Proc. Amer. Math. Soc., 144(10):4125–4133, 2016.
- [8] Marco Fontana. Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. (4), 123:331–355, 1980.
- Marco Fontana, Evan Houston, and Thomas Lucas. Factoring Ideals in Integral Domains, volume 14 of Lecture Notes of the Unione Matematica Italiana. Springer, Heidelberg; UMI, Bologna, 2013.
- [10] Marco Fontana and K. Alan Loper. An historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations. In *Multiplicative ideal theory* in commutative algebra, pages 169–187. Springer, New York, 2006.
- [11] Robert Gilmer. Multiplicative Ideal Theory. Marcel Dekker Inc., New York, 1972. Pure and Applied Mathematics, No. 12.
- [12] John R. Hedstrom and Evan G. Houston. Pseudo-valuation domains. Pacific J. Math., 75(1):137–147, 1978.
- [13] William Heinzer. Noetherian intersections of integral domains. II. 311:107–119, 1973.
- [14] Melvin Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43–60, 1969.
- [15] Roland Huber and Manfred Knebusch. On valuation spectra. In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 167–206. Amer. Math. Soc., Providence, RI, 1994.
- [16] Bruce Olberding. Noetherian spaces of integrally closed rings with an application to intersections of valuation rings. Comm. Algebra, 38(9):3318–3332, 2010.
- [17] Bruce Olberding. Affine schemes and topological closures in the Zariski-Riemann space of valuation rings. J. Pure Appl. Algebra, 219(5):1720–1741, 2015.
- [18] Bruce Olberding. Topological aspects of irredundant intersections of ideals and valuation rings. In Multiplicative Ideal Theory and Factorization Theory: Commutative and Non-Commutative Perspectives. Springer Verlag, 2016.
- [19] Paulo Ribenboim. The Theory of Classical Valuations. Springer Monographs in Mathematics. Springer-Verlag, New York, 1999.
- [20] Peter Roquette. Principal ideal theorems for holomorphy rings in fields. J. Reine Angew. Math., 262/263:361–374, 1973. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday.
- [21] Niels Schwartz. Compactification of varieties. Ark. Mat., 28(2):333–370, 1990.
- [22] Dario Spirito. Non-compact subsets of the Zariski space of an integral domain. Illinois J. Math., 60(3-4):791–809, 2016.
- [23] Dario Spirito. Jaffard families and localizations of star operations. J. Commut. Algebra, to appear.
- [24] Oscar Zariski. The reduction of the singularities of an algebraic surface. Ann. of Math. (2), 40:639–689, 1939.
- [25] Oscar Zariski. The compactness of the Riemann manifold of an abstract field of algebraic functions. Bull. Amer. Math. Soc., 50:683–691, 1944.
- [26] Oscar Zariski and Pierre Samuel. Commutative Algebra. Vol. II. Springer-Verlag, New York, 1975. Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29.

Dipartimento di Matematica e Fisica, Universita degli Studi "Roma Tre", Roma, ` **ITALY**

Email address: spirito@mat.uniroma3.it