
WHEN THE ZARISKI SPACE IS A NOETHERIAN SPACE

DARIO SPIRITO

Abstract. We characterize when the Zariski space Zar(K|D) (where D

is an integral domain, K is a field containing D and D is integrally closed
in K) and the set Zarmin(L|D) of its minimal elements are Noetherian

spaces.

1. Introduction

The Zariski space Zar(K|D) of the valuation ring of a field K containing
a subring D was introduced by O. Zariski (under the name abstract Riemann
surface) during his study of resolution of singularities [24, 25]. In particular,
he introduced a topology on Zar(K|D) (which was later called Zariski topol-
ogy) and proved that it makes Zar(K|D) into a compact space [26, Chapter
VI, Theorem 40]. Later, the Zariski topology on Zar(K|D) was studied more
carefully, showing that it is a spectral space in the sense of Hochster [14], i.e.,
that there is a ring R such that the spectrum of R (endowed with the Zariski
topology) is homeomorphic to Zar(K|D) [4, 5, 6]. This topology has also been
used to study representations of an integral domain by intersection of valua-
tion rings [16, 17, 18] and, for example, in real and rigid algebraic geometry
[15, 21].

In [22], it was shown that in many cases Zar(D) is not a Noetherian space,
i.e., there are subspaces of Zar(D) that are not compact. In particular, it was
shown that Zar(D) \ {V } (where V is a minimal valuation overring of D) is
often non-compact: for example, this happens when dim(V ) > 2 dim(D) [22,
Proposition 4.3] or when D is Noetherian and dim(V ) ≥ 2 [22, Corollary 5.2].

In this paper, we study integral domains such that Zar(D) is a Noether-
ian space, and, more generally, we study when the Zariski space Zar(K|D) is
Noetherian. We show that, if D = F is a field, then Zar(K|F ) can be Noe-
therian only if the transcendence degree of K over F is at most 1 and, when
trdegF K = 1, we characterize when this happens in terms of the extensions
of the valuation domains of F [X], where X is an element of K transcen-
dental over F (Proposition 4.2). In Section 5, we study the case where K
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is the quotient field of D: we first consider the local case, showing that if
Zar(D) is Noetherian then D must be a pseudo-valuation domain (Theorem
5.8) and, subsequently, we globalize this result to the non-local case, showing
that Zar(D) is Noetherian if and only if so are Spec(D) and Zar(DM ), for
every maximal ideal M of D (Theorem 5.11 and Corollary 5.12). We also
prove the analogous results for the set Zarmin(K|D) of the minimal elements
of Zar(K|D).

2. Background

Throughout the paper, when X1 and X2 are topological space we shall use
the notation X1 ' X2 to denote that X1 and X2 are homeomorphic.

2.1. Overrings and the Zariski space. LetD be an integral domain and let
K be a ring containing D. We define Over(K|D) as the set of rings contained
between D and K. The Zariski topology on Over(K|D) is the topology having,
as a subbasis of closed sets, the sets in the form

B(x1, . . . , xn) := {V ∈ Over(K|D) | x1, . . . , xn ∈ V },
as x1, . . . , xn range in K. If K is the quotient field of D, an element of
Over(K|D) is called an overring of D.

If K is the quotient field of D, a subset X ⊆ Over(K|D) is a locally finite
family if every x ∈ D (or, equivalently, every x ∈ K) is a non-unit in only
finitely many T ∈ Over(K|D).

If K is a field containing D, the Zariski space of D in K is the set of all
valuation domains containing D and whose quotient field is K; we denote it by
Zar(K|D). The Zariski topology on Zar(K|D) is simply the Zariski topology
inherited from Over(K|D). If K is the quotient field of D, then Zar(K|D)
will simply be denoted by Zar(D), and its elements are called the valuation
overrings of D.

Under the Zariski topology, Zar(K|D) is compact [26, Chapter VI, Theorem
40].

We denote by Zarmin(K|D) the set of minimal elements of Zar(K|D), with
respect to containment. If V is a valuation domain, we denote by mV its
maximal ideal. Given X ⊆ Zar(D), we define

X↑ := {V ∈ Zar(D) | V ⊇W for some W ∈ X}.
Since a family of open sets is a cover of X if and only if it is a cover of X↑,
we have that X is compact if and only if X↑ is compact.

If X is a subset of Zar(D), we denote by A(X) the intersection
⋂
{V | V ∈

X}, called the holomorphy ring of X [20]. Clearly, A(X) = A(X↑).
The center map is the application

γ : Zar(K|D) −→ Spec(D)

V 7−→ mV ∩D.
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If Zar(K|D) and Spec(D) are endowed with the respective Zariski topologies,
the map γ is continuous ([26, Chapter VI, §17, Lemma 1] or [4, Lemma 2.1]),
surjective (this follows, for example, from [2, Theorem 5.21] or [11, Theorem
19.6]) and closed [4, Theorem 2.5].

In studying Zar(K|D), it is usually enough to consider the case where D
is integrally closed in K; indeed, if D is the integral closure of D in K, then
Zar(K|D) = Zar(K|D).

2.2. Noetherian spaces. A topological space X is Noetherian if its open
sets satisfy the ascending chain condition, or equivalently if all its subsets are
compact. If X = Spec(R) is the spectrum of a ring, then X is a Noetherian
space if and only if R satisfies the ascending chain condition on radical ideals;
in particular, the spectrum of a Noetherian ring is always a Noetherian space.
If Spec(R) is Noetherian, then every ideal of R has only finitely many minimal
primes (see e.g. the proof of [3, Chapter 4, Corollary 3, p.102] or [2, Chapter
6, Exercises 5 and 7]).

Every subspace and every continuous image of a Noetherian space is again
Noetherian; in particular, if Zar(D) is Noetherian then so are Zarmin(D) and
Spec(D) [22, Proposition 4.1].

2.3. Kronecker function rings. Let K be the quotient field of D. For every
V ∈ Zar(D), let V b := V [X]mV [X] ⊆ K(X). If ∆ ⊆ Zar(D), the Kronecker
function ring of D with respect to ∆ is

Kr(D,∆) :=
⋂
{V b | V ∈ ∆};

we denote Kr(D,Zar(D)) simply by Kr(D).
The ring Kr(D,∆) is always a Bézout domain whose quotient field is

K(X), and, if ∆ is compact, the intersection map W 7→ W ∩ K establishes
a homeomorphism between Zar(Kr(D,∆)) and the set ∆↑ [4, 5, 6]. Since
Kr(D,∆) is a Prüfer domain, furthermore, Zar(Kr(D,∆)) is homeomorphic to
Spec(Kr(D,∆)); hence, Spec(Kr(D,∆)) is homeomorphic to ∆↑, and asking
if Zar(D) is Noetherian is equivalent to asking if Spec(Kr(D)) is Noetherian
or, equivalently, if Kr(D) satisfies the ascending chain condition on radical
ideals.

See [11, Chapter 32] or [10] for general properties of Kronecker function
rings.

2.4. Pseudo-valuation domains. Let D be an integral domain with quo-
tient field K. Then, D is called a pseudo-valuation domain (for short, PVD)
if, for every prime ideal P of D, whenever xy ∈ P for some x, y ∈ K, then
at least one of x and y is in P . Equivalently, D is a pseudo-valuation domain
if and only if it is local and its maximal ideal M is also the maximal ideal
of some valuation overring V of D (called the valuation domain associated to
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D) [12, Corollary 1.3 and Theorem 2.7]. If D is a valuation domain, then it
is also a PVD, and the associated valuation ring is D itself.

The prototypical examples of a pseudo-valuation domain that is not a val-
uation domain is the ring F +XL[[X]], where F ⊆ L is a field extension; its
associated valuation domain is L[[X]].

3. Examples and reduction

The easiest case for the study of the topology of Zar(D) is when D is a
Prüfer domain, i.e., when DM is a valuation domain for every maximal ideal
M of D.

Proposition 3.1. Let D be a Prüfer domain. Then:

(a) Zar(D) is a Noetherian space if and only if Spec(D) is Noetherian;
(b) Zarmin(D) is Noetherian if and only if Max(D) is Noetherian.

Proof. Since D is Prüfer, the center map γ : Zar(D) −→ Spec(D) is a home-
omorphism [4, Proposition 2.2]. This proves the first claim; the second one
follows from the fact that the minimal valuation overrings of D correspond to
the maximal ideals. �

Another example of a domain that has a Noetherian Zariski space is the
pseudo-valuation domain D := Q + YQ(X)[[Y ]], where X,Y are indetermi-
nates on Q, since in this case Zar(D) can be written as the union of the
quotient field of D and two sets homeomorphic to Zar(Q[X]) ' Spec(Q[X]),
which are Noetherian; from this, it is possible to build examples of non-Prüfer
domains whose Zariski spectrum is Noetherian, and having arbitrary finite di-
mension [22, Example 4.7].

More generally, we have the following routine observation.

Lemma 3.2. Let D be an integral domain, and suppose that a prime ideal P of
D is also the maximal ideal of a valuation overring V of D. Then, the quotient
map π : V −→ V/P establishes a homeomorphism between {W ∈ Zar(D) |
W ⊆ V } and Zar(V/P |D/P ), and between Zarmin(D) and Zarmin(V/P |D/P ).

Proof. Consider the set Over(V |D) and Over(V/P |D/P ). Then, the map

π̃ : Over(V |D) −→ Over(V/P |D/P )

A 7−→ π(A) = A/P

is a bijection, whose inverse is the map sending B to π−1(B). Furthermore,
it is a homeomorphism: indeed, if x ∈ V/P then π̃−1(B(x)) = B(y), for any
y ∈ π−1(x), while if x ∈ V then π̃(B(x)) = B(π(x)).
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The condition on P implies that D is a pullback in the diagram

D D/P

V V/P ;

π

π

hence, every A ∈ Over(V |D) arises as a pullback. By [8, Theorem 2.4(1)], A
is a valuation domain if and only if π(A) is a valuation domain and V/P is
the quotient field of π(A); hence, π̃ restricts to a bijection between Zar(D) ∩
Over(V |D) = {W ∈ Zar(D) | W ⊆ V } and Zar(V/P |D/P ). Furthermore,
since π̃ is a homeomorphism, so is its restriction. The claim about Zar(D)
and Zar(V/P |D/P ) is proved; the claim for the space of minimal elements
follows immediately. �

Proposition 3.3. Let D be an integral domain, and let L be a field containing
D. Then, there is a ring R such that:

• Zar(L|D) ' Zar(R) \ {F}, where F is the quotient field of R;
• Zarmin(L|D) ' Zarmin(R).

Proof. Let X be an indeterminate over L, and define R := D+XL[[X]]. Then,
the prime ideal P := XL[[X]] of R is also a prime ideal of the valuation domain
L[[X]]; by Lemma 3.2, it follows that Zar(L|D) ' ∆ := {W ∈ Zar(R) | W ⊆
L[[X]]}. Furthermore, every valuation overring V of R contains XL[[X]], and
thus it is either in ∆ or properly contains L[[X]]; however, since L[[X]] has
dimension 1, the latter case is possible only if V = L((X)) is the quotient
field of R. The first claim is proved, and the second follows easily. �

Proposition 3.3 shows that, theoretically, it is enough to consider spaces
of valuation rings between a domain and its quotient field. However, it is
convenient to not be restricted to this case; the following Proposition 3.4 is
an example, as will be the analysis of field extensions in Section 4.

Proposition 3.4. Let D be an integral domain that is not a field, let K be its
quotient field and L a field extension of K. If trdegK L ≥ 1, then Zar(L|D)
and Zarmin(L|D) are not Noetherian.

Proof. If trdegK L ≥ 1, there is an element X ∈ L \ K that is not alge-
braic over L. If Zar(L|D) is Noetherian, so is its subset Zar(L|D[X]), and
thus also Zar(K(X)|D[X]) = Zar(D[X]), which is the (continuous) image of
Zar(L|D[X]) under the intersection map W 7→ W ∩ K(X). However, since
D is not a field, Zar(D[X]) is not Noetherian by [22, Proposition 5.4]; hence
Zar(L|D) cannot be Noetherian.

Consider now Zarmin(L|D): it projects onto Zarmin(K(X)|D), and thus
we can suppose that L = K(X). Let V be a minimal valuation overring of
D: then, there is an extension W of V to L such that X is the generator
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of the maximal ideal of W ; furthermore, W belongs to Zarmin(K(X)|D). In
particular, Spec(W ) \Max(W ) has a maximum, say P . Let ∆ := Zar(L|D) \
{W}: then, ∆ can be written as the union of Λ := (Zarmin(L|D) \ {W})↑
and {WP }↑. The latter is compact since {WP } is compact; if Zarmin(L|D) \
{W} were compact, so would be Λ. In this case, also ∆ would be compact,
against the proof of [22, Proposition 5.4]. Hence, ∆ is not compact, and so
Zarmin(L|D) is not Noetherian. �

4. Field extensions

In this section, we consider a field extension F ⊆ L and analyze when
the Zariski space Zar(L|F ) and its subset Zarmin(L|F ) are Noetherian. By
Proposition 3.3, this is equivalent to studying the Zariski space of the pseudo-
valuation domain F +XL[[X]].

This problem naturally splits into three cases, according to whether the
transcendence degree of L over F is 0, 1 or at least 2. The first and the last
cases have definite answers, and we collect them in the following proposition.
Part (b) is a slight generalization of [22, Corollary 5.5(b)]. Recall that the
inverse topology (with respect to the Zariski topology) on Zar(K|D) is the
topology whose closed sets are the subsets ∆ ⊆ Zar(K|D) that are compact (in
the Zariski topology) and such that ∆ = ∆↑ (this is not the usual definition,
but is equivalent: see for example [6, Remark 2.2 and Proposition 2.6]); in
particular, the intersection of two subsets with these properties is still compact
in the Zariski topology.

Proposition 4.1. Let F ⊆ L be a field extension.

(a) If trdegF L = 0, then Zar(L|F ) = {L} = Zarmin(L|D), and in partic-
ular both spaces are Noetherian.

(b) If trdegF L ≥ 2, then Zar(L|F ) and Zarmin(L|F ) are not Noetherian.

Proof. (a) is obvious. For (b), let X,Y be elements of L that are algebraically
independent. Then, the intersection map Zarmin(L|F ) −→ Zarmin(F (X,Y )|F )
is surjective, and thus it is enough to prove that Zarmin(F (X,Y )|F ) is not
Noetherian.

Let V ∈ Zarmin(F (X,Y )|F ) and, without loss of generality, suppose X,Y ∈
V . Let ∆ := Zarmin(F (X,Y )|F ) \ {V }. Then, Λ := Zar(F (X,Y )|F ) \ {V } is
the union of ∆↑ and a finite set (the valuation domains properly containing
V ). If ∆ were compact, so would be Λ, and thus Λ would be closed in the
inverse topology. Since also Zar(F [X,Y ]) is closed in the inverse topology, it
would follow that Λ∩Zar(F [X,Y ]) = Zar(F [X,Y ]) \ {V } is compact, against
the proof of [22, Proposition 5.4]. Hence, Λ is not compact, and thus ∆ cannot
be compact. Therefore, Zarmin(F (X,Y )|F ) is not Noetherian. �
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On the other hand, the case of transcendence degree 1 is more subtle. In
[22, Corollary 5.5(a)], it was showed that Zar(L|F ) is Noetherian if L is finitely
generated over F ; we now state a characterization.

Proposition 4.2. Let F ⊆ L be a field extension such that trdegF L = 1.
Then, the following are equivalent:

(i) Zar(L|F ) is Noetherian;
(ii) Zarmin(L|F ) is Noetherian;

(iii) for every X ∈ L transcendental over F , every valuation on F [X] has
only finitely many extensions to L;

(iv) there is an X ∈ L, transcendental over F , such that every valuation
on F [X] has only finitely many extensions to L;

(v) for every X ∈ L transcendental over F , the integral closure of F [X]
in L has Noetherian spectrum;

(vi) there is an X ∈ L, transcendental over F , such that the integral clo-
sure of F [X] in L has Noetherian spectrum.

Proof. Every valuation domain of L containing F must contain the algebraic
closure of F in L; hence, without loss of generality we can suppose that F is
algebraically closed in L.

(i) =⇒ (ii) is obvious; (ii) =⇒ (i) follows since trdegF L = 1 and thus
Zar(L|F ) = Zarmin(L|F ) ∪ {L}.

(i) =⇒ (iii). Take X ∈ L \ F , and suppose there is a valuation w on
F [X] with infinitely many extensions to L; let W be the valuation domain
corresponding to w. Then, the integral closure W of W in L would have
infinitely many maximal ideals. Since every maximal ideal of W contains
the maximal ideal of W , the Jacobson radical J of W contains the maximal
ideal of W , and in particular it is nonzero. It follows that J has infinitely
many minimal primes; hence, Max(W ) is not a Noetherian space. However,
Max(W ) is homeomorphic to a subspace of Zar(L|F ), which is Noetherian by
hypothesis; this is a contradiction, and so every valuation has only finitely
many extensions.

(iii) =⇒ (v). Let T be the integral closure of F [X], and suppose that
Spec(T ) is not Noetherian. We first claim that T is not locally finite, i.e.,
that there is an α ∈ T such that there are infinitely many maximal ideals of T
containing α. Indeed, if T is locally finite and {Iα}α∈A is an ascending chain
of radical ideals, then once Iα 6= (0) the ideal Iα is contained in only finitely
many prime ideals (since T has dimension 1), and thus in only finitely many
radical ideals; it follows that the chain stabilizes and Spec(R) is Noetherian,
a contradiction.

Consider the norm N(α) of α over F [X], i.e., the product of the algebraic
conjugates of α over F [X]. Then, N(α) 6= 0, and it is both an element of F [X]
(being equal to the constant term of the minimal polynomial of F [X] over α)
and an element of every maximal ideal containing α (since all the conjugates
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are in T ). Since every maximal ideal of F [X] is contained in only finitely
many maximal ideals of T (since a maximal ideal of F [X] corresponds to a
valuation v and the maximal ideals of T containing it to the extensions of v),
it follows that N(α) is contained in infinitely many maximal ideals of F [X].
However, this contradicts the Noetherianity of Spec(F [X]); hence, Spec(T ) is
Noetherian.

Now (iii) =⇒ (iv) and (v) =⇒ (vi) are obvious, while the proof of (iv) =⇒
(vi) is exactly the same as the previous paragraph; hence, we need only to
show (vi) =⇒ (i); the proof is similar to the one of [22, Corollary 5.5(a)].

Let X ∈ L, X transcendental over F , be such that the spectrum of the
integral closure T of F [X] is Noetherian. Since X is transcendental over
F , there is an F -isomorphism φ of F (X) sending X to X−1; moreover, we
can extend φ to an F -isomorphism φ of L. Since φ(F [X]) = F [X−1], the
integral closure T of F [X] is sent by φ to the integral closure T ′ of F [X−1];
in particular, T ' T ′, and Spec(T ) ' Spec(T ′). Thus, also Spec(T ′) is
Noetherian, and so is Spec(T )∪ Spec(T ′). Furthermore, Zar(T ) ' Spec(T ) '
Spec(L|F [X]), and analogously for T ′; hence, Zar(T )∪Zar(T ′) is Noetherian.
But every W ∈ Zar(L|F ) contains at least one between X and X−1, and
thus W contains F [X] or F [X−1]; i.e., W ∈ Zar(T ) or W ∈ Zar(T ′). Hence,
Zar(L|F ) = Zar(T ) ∪ Zar(T ′) is Noetherian. �

We remark that there are field extensions that satisfy the conditions of
Proposition 4.2 without being finitely generated. For example, if L is purely
inseparable over some F (X), then every valuation on F [X] extends uniquely
to L, and thus condition (iii) of the previous proposition is fulfilled; more
generally, each valuation on F (X) extends in only finitely many ways when
the separable degree [L : F (X)]s is finite [11, Corollary 20.3]. There are also
examples in characteristic 0: for example, [19, Section 12.2] gives examples
of non-finitely generated algebraic extension F of the rational numbers such
that every valuation on Q has only finitely many extensions to F . The same
construction works also on Q(X), and if L is such an example then Q ⊆ L
will satisfy the conditions of Proposition 4.2.

5. The domain case

We now want to study when the space Zar(D) is Noetherian, where D
is an integral domain; without loss of generality, we can suppose that D is
integrally closed, since Zar(D) = Zar(D). We start by studying intersections
of Noetherian families of valuation rings.

Recall that a treed domain is an integral domain whose spectrum is a tree
(i.e., such that, if P and Q are non-comparable prime ideals, then they are
coprime). In particular, every Prüfer domain is treed.

Lemma 5.1. Let R be a treed domain. If Max(R) is Noetherian, then every
ideal of R has only finitely many minimal primes.
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Note that we cannot improve this result to Spec(R) being Noetherian: for
example, the spectrum of a valuation domain with unbranched maximal ideal
if not Noetherian, while its maximal spectrum – a singleton – is Noetherian.

Proof. Let I be an ideal of R, and let {Pα | α ∈ A} be the set of its minimal
prime ideals. For every α, choose a maximal ideal Mα containing Pα; note
that Mα 6= Mβ if α 6= β, since R is treed. Let Λ be the set of the Mα.

Let X ⊆ Λ, and define J(X) :=
⋂
{IRM | M ∈ X} ∩ R: we claim that,

if M ∈ Λ, then J(X) ⊆ M if and only if M ∈ X. Indeed, clearly J(X) is
contained in every element of X. On the other hand, suppose N ∈ Λ \ X.
Since Max(R) is Noetherian, X is compact, and thus also {RM | M ∈ X} is
compact; by [7, Corollary 5],

J(X)RN =

( ⋂
M∈X

IRM

)
RN ∩RN =

⋂
M∈X

IRMRN ∩RN

Since M,N ∈ Λ, no prime contained in both M and N contains I; hence,
IRMRN contains 1 for each M ∈ X. Therefore, 1 ∈ J(X)RN , i.e., J(X) * N .

Hence, every subset X of Λ is closed in Λ, since it is equal to the intersection
between Λ and the closed set of Spec(R) determined by J(X). Since Λ is
Noetherian, it follows that Λ must be finite; hence, also the set of minimal
primes of I is finite. The claim is proved. �

As consequence of Lemma 5.1, we can generalize [16, Theorem 3.4(2)]. We
premit an easy lemma.

Lemma 5.2. Let D be an integral domain with quotient field K, and let
V,W ∈ Zar(D). If VW = K, then V bW b = K(X).

Proof. Let Z := V bW b. Then, since Zar(D) and Zar(Kr(D)) are homeomor-
phic, Z = (Z ∩K)b; however, K ⊆ VW ⊆ V bW b, and thus Z ∩K = K. It
follows that Z = Kb = K(X), as claimed. �

Theorem 5.3. Let ∆ ⊆ Zar(D) be a Noetherian space, and suppose that
VW = K for every V 6= W in ∆. Then, ∆ is a locally finite space.

Proof. Let ∆b := {V b | V ∈ ∆}, and let R := Kr(D,∆): then (since, in
particular, ∆ is compact), Zar(R) is equal to (∆b)↑.

SinceR is a Bézout domain, it follows that Spec(R) ' (∆b)↑, while Max(R) '
∆b; in particular, Max(R) is Noetherian, and thus by Lemma 5.1 every ideal
of R has only finitely many minimal primes. However, since V bW b = K(X)
for every V 6= W in ∆ (by Lemma 5.2), it follows that every nonzero prime
of R is contained in only one maximal ideal; therefore, every nonzero ideal
of R is contained in only finitely many maximal ideals, and thus the family
{RM | M ∈ Max(R)} is locally finite. This family coincides with ∆b; since
∆b is locally finite, also ∆ must be locally finite, as claimed. �
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We say that two valuation domains V,W ∈ Zar(D) \ {K} are dependent
if VW 6= K. Since Zar(D) is a tree, being dependent is an equivalence
relation on Zar(D) \ {K}; we call an equivalence class a dependency class. If
Zar(D) is finite-dimensional (i.e., if every valuation overring of D has finite
dimension) then the dependency classes of Zar(D) are exactly the sets in
the form {W ∈ Zar(D) | W ⊆ V }, as V ranges among the one-dimensional
valuation overrings of D.

Under this terminology, the previous theorem implies that, if D is local and
Zar(D) is Noetherian, then Zar(D) can only have finitely many dependency
classes: indeed, otherwise, we could form a Noetherian but not locally finite
subset of Zar(D) by taking one minimal overring in each dependency class,
against the theorem. We actually can say (and will need) something more.

Given a set X ⊆ Zar(D), we define comp(X) as the set of all valuation
overrings of D that are comparable with some elements of X; i.e.,

comp(X) := {W ∈ Zar(D) | ∃ V ∈ X such that W ⊆ V or V ⊆W}.

If X = {V } is a singleton, we write comp(V ) for comp(X). Note that, for
every subset X, comp(comp(X)) = Zar(D), since comp(X) contains the quo-
tient field of D.

The purpose of the following propositions is to show that, if D is local
and Zar(D) is Noetherian, then Zar(D) can be written as comp(W ) for some
valuation overring W 6= K. The first step is showing that Zar(D) is equal to
comp(X) for some finite X.

Proposition 5.4. Let D be a local integral domain. If Zarmin(D) is Noether-
ian, then there are valuation overrings W1, . . . ,Wn of D, Wi 6= K, such that
Zar(D) = comp(W1) ∪ · · · ∪ comp(Wn).

Proof. Let R := Kr(D) be the Kronecker function ring of D. Then, the
extension N := MR of the maximal ideal M of D is a proper ideal of R,
and the prime ideals containing N correspond to the valuation overrings of R
where N survives, i.e., to the valuation overrings of D centered on M .

Since Zarmin(D) is Noetherian, so is Max(R); since R is treed (being a
Bézout domain), by Lemma 5.1 N has only finitely many minimal primes.
Thus, there are finitely many valuation overrings of D, say W1, . . . ,Wn, such
that every V ∈ Zarmin(D) is contained in one Wi. We claim that Zar(D) =
comp(W1) ∪ · · · ∪ comp(Wn). Indeed, let V be a valuation overring of D.
Since Zar(D) is compact, V contains some minimal valuation overring V ′,
and by construction V ′ ∈ comp(Wi) for some i; in particular, Wi ⊇ V ′.
The valuation overrings containing V ′ (i.e., the valuation overrings of V ′) are
linearly ordered; thus, V must be comparable with Wi, i.e., V ∈ comp(Wi).
The claim is proved. �
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The following result can be seen as a generalization of the classical fact
that, if X = {V1, . . . , Vn} is finite, then Zar(A(X)) is the union of the vari-
ous Zar(Vi) (since A(X) will be a Prüfer domain and its localization at the
maximal ideals will be a subset of X).

Proposition 5.5. Let D be an integral domain and let X ⊆ Zar(D) be a finite
set. Then, Zar(A(comp(X))) = comp(X).

Proof. Since comp(V ) ⊆ comp(W ) if V ⊆ W , we can suppose without loss
of generality that the elements of X are pairwise incomparable. Let X =
{V1, . . . , Vn}, Ai := A(comp(Vi)) and let A := A(comp(X)) = A1 ∩ · · · ∩ An.
Note that D ⊆ A, and thus the quotient field of A coincides with the quotient
field of D and of the Vi.

If V ∈ comp(X), then clearly A ⊆ V ; thus, comp(X) ⊆ Zar(A).
Conversely, let V ∈ Zar(A), and let mi be the maximal ideal of Vi. Then,

mi ⊆ W for every W ∈ comp(Vi); in particular, mi ⊆ Ai. Therefore, P :=
m1 ∩ · · · ∩mn ⊆ A; since A ⊆ V , this implies that PV ⊆ V .

Suppose V /∈ comp(X), and let T := V ∩ V1 ∩ · · · ∩ Vn. Since the rings
V, V1, . . . , Vn are pairwise incomparable, T is a Bézout domain whose local-
izations at the maximal ideals are V, V1, . . . , Vn. In particular, V is flat over
T , and each mi is a T -module; hence,

PV =

(
n⋂
i=1

mi

)
V =

n⋂
i=1

miV.

Since V is not comparable with Vi, for each i, the set mi is not contained in
V ; in particular, the family {miV | i = 1, . . . , n} is a family of V -modules not
contained in V . Since the V -submodules of the quotient field K are linearly
ordered, the family has a minimum, and thus

⋂n
i=1 miV is not contained in

V . However, this contradicts PV ⊆ V ; hence, V must be in comp(X), and
Zar(A) = comp(X). �

The proof of part (a) of the following proposition closely follows the proof
of [13, Proposition 1.19].

Proposition 5.6. Let X := {V1, . . . , Vn} be a finite family of valuation over-
rings of the domain D, and suppose that ViVj = K for every i 6= j, where K
is the quotient field of D. Let Ai := A(comp(Vi)), and let A := A(comp(X)).
Then:

(a) each Ai is a localization of A;
(b) for each ideal I of A, there is an i such that IAi 6= Ai;
(c) if i 6= j, then AiAj = K.

Proof. (a) By induction and symmetry, it is enough to prove that B := A2 ∩
· · · ∩An is a localization of A. Let J be the Jacobson radical of B: then, J 6=
(0), since it contains the intersection mV2

∩· · ·∩mVn
. Furthermore, if W 6= K
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is a valuation overring of V1, then J *W , since otherwise (as in the proof of
Proposition 5.5) mV2∩· · ·∩mVn would be contained in mW ∩(W∩V2∩· · ·∩Vn),
against the fact that {W,V2, . . . , Vn} are independent valuation overrings.

Hence, for every such W we can apply [13, Proposition 1.13] to D :=
B ∩W , obtaining that B is a localization of D, say B = S−1D, where S is a
multiplicatively closed subset ofD; in particular, there is a sW ∈ S∩mW . Each
sW is in B ∩ A1 = A (since mW is contained in every member of comp(V1));
let T be the set of all sW . Then,

T−1A = T−1(B ∩A2) = T−1B ∩ T−1A1.

Each sW is a unit of B, and thus T−1B = B. On the other hand, no valuation
overring W 6= K of V1 can be an overring of T−1A1, since T contains sW ,
which is inside the maximal ideal of W . Since Zar(A1) = comp(V1), it follows
that T−1A1 = K, and thus T−1A = B; in particular, B is a localization of A.

(b) Without loss of generality, we can suppose I = P to be prime. There is
a valuation overring W of A whose center on A is P ; since Zar(A) = comp(X)
by Proposition 5.5, there is a Vi such that W ∈ comp(Vi). Hence, PAi 6= Ai.

(c) By Proposition 5.5, Zar(Ai) ∩ Zar(Aj) = {K}. It follows that K is the
only common valuation overring of AiAj ; in particular, AiAj must be K. �

By [23, Proposition 4.3], Proposition 5.6 can also be rephrased by saying
that the set {A1, . . . , An} is a Jaffard family of A, in the sense of [9, Section
6.3].

Proposition 5.7. Let D be an integrally closed domain; suppose that Zar(D) =
comp(V1) ∪ · · · ∪ comp(Vn), where X := {V1, . . . , Vn} is a family of incompa-
rable valuation overrings of D such that ViVj = K if i 6= j. Then:

(a) the restriction of the center map γ to X is injective;
(b) |Max(D)| ≥ |X|.

Proof. (a) If P is the image of both Vi and Vj , then P survives in both Ai and
Aj : however, since Ai and Aj are localizations of A (Proposition 5.6(a)), AP
would be a common overring of Ai and Aj , against the fact that AiAj = K
(Proposition 5.6(c)). Therefore, the center map is injective on X.

(b) Let M be a maximal ideal: then, there is a unique i such that MAi 6=
Ai. In particular, M can contain only one element of γ(X), namely γ(Vi);
thus, |Max(D)| ≥ |γ(X)| = |X|, as claimed. �

We are ready to prove the pivotal result of the paper.

Theorem 5.8. Let D be an integrally closed local domain. If Zarmin(D) is a
Noetherian space, then D is a pseudo-valuation domain.

Proof. Since D is local, by Proposition 5.4 there are W1, . . . ,Wn, not equal to
K, such that Zar(D) = comp(W1) ∪ · · · ∪ comp(Wn). By eventually passing
to bigger valuation domains, we can suppose without loss of generality that
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WiWj = K if i 6= j; since D is local, by Proposition 5.7(b) we have 1 ≥ n,
and so Zar(D) = comp(V ) for some V 6= K.

Let ∆ be the set of W ∈ Zar(D) such that comp(W ) = Zar(D); then, ∆
is a chain, and thus it has a minimum in Zar(D), say V0 (explicitly, V0 is the
intersection of the elements of ∆); furthermore, clearly V0 ∈ ∆. Since V ∈ ∆,
we have V0 ⊆ V , and in particular V0 6= K. Let M be the maximal ideal of V0:
then, M is contained in every W ∈ comp(V0) = Zar(D), and thus M ⊆ D.

Consider now the diagram

D D/M

V0 V0/M.

π

π

Clearly, D = π−1(D/M); let F1 be the quotient field of D/M . By Lemma 3.2,
the set of minimal valuation overrings ofD is homeomorphic to Zarmin(V0/M |D/M),
which thus is Noetherian; by Proposition 3.4, it follows that either D/M is a
field and trdegD/M (V0/M) = 1 (in which case D is a pseudo-valuation domain

with associated valuation domain V0) or trdegF1
(V0/M) = 0.

In the latter case, we note that D/M is integrally closed in V0/M , since
D/M is the intersection of all the elements of Zar(V0/M |D/M); hence, V0/M
is the quotient field of D/M . If D/M is not a field, by the same argument
of the first part of the proof it follows that Zar(D/M) = comp(W0) for some
valuation overring W0 6= F1; however, this contradicts the choice of V0, be-
cause π−1(W0) would be comparable with every element of Zar(D). Hence,
it must be V0/M = D/M , i.e., V0 = D; that is, D is a valuation domain and,
in particular, a pseudo-valuation domain. �

With this result, we can find the possible structures of Zar(D) and Zarmin(D),
when D is local and Zarmin(D) is Noetherian. Indeed, D is a pseudo-valuation
domain; let V be its associated valuation overring. Then, we have two cases:
either D = V (i.e., D itself is a valuation domain) or D 6= V .

In the first case, Zarmin(D) is a singleton, while Zar(D) is homeomorphic
to Spec(D); in particular, Zar(D) is linearly ordered, and it is a Noetherian
space if and only if Spec(D) is Noetherian.

In the second case, we can separate Zar(D) into two parts: Zarmin(D) and
∆ := Zar(D)\Zarmin(D). The former must be homeomorphic to Zarmin(L|F ) =
Zar(L|F ) \ {L} (where F and L are the residue fields of D and V , respec-
tively); on the other hand, the latter is linearly ordered, and is composed of
the valuation overrings of V , so in particular it is homeomorphic to Spec(V ),
which is (set-theoretically) equal to Spec(D). In other words, Zar(D) is com-
posed of a long “stalk” (∆), under which there is an infinite family of minimal
valuation overrings. In particular, we get the following.

Proposition 5.9. Let D,V, F, L as above. Then:
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(a) Zarmin(D) is Noetherian if and only if Zar(L|F ) is Noetherian.
(b) Zar(D) is Noetherian if and only if Zar(L|F ) and Spec(V ) are Noe-

therian.

Proof. If Zarmin(D) is Noetherian, then Zarmin(L|F ) is Noetherian as well.
By Propositions 4.1 and 4.2, Zar(L|F ) is Noetherian.

If Zar(D) is Noetherian, so are Spec(D) = Spec(V ) and ∆ ' Zar(L|F )
(in the notation above). Conversely, if Zar(L|F ) and Spec(V ) are Noetherian
then so are Zarmin(D) and ∆, and thus also Zarmin(D) ∪ ∆ = Zar(D) is
Noetherian. �

Furthermore, we can now apply Propositions 4.1 and 4.2 to characterize
when Zar(L|F ) is Noetherian (see the following Corollary 5.12).

We now study the non-local case.

Lemma 5.10. Let D be an integral domain such that DM is a PVD for
every M ∈ Max(D) and, for every M , let V (M) be the valuation overring
associated to DM . Then, the space {V (M) |M ∈ Max(D)} is homeomorphic
to Max(D).

Proof. Let ∆ := {V (M) | M ∈ Max(D)}. If γ is the center map, then
γ(V (M)) = M for every M ; thus, γ restricts to a bijection between ∆ and
Max(D). Since γ is continuous and closed, it follows that it is a homeomor-
phism. �

Theorem 5.11. Let D be an integrally closed domain. Then:

(a) Zarmin(D) is Noetherian if and only if Max(D) is Noetherian and
Zarmin(DM ) is Noetherian for every M ∈ Max(D);

(b) Zar(D) is Noetherian if and only if Spec(D) is Noetherian and Zar(DM )
is Noetherian for every M ∈ Max(D).

Proof. (a) If Zarmin(D) is Noetherian, then Max(D) is Noetherian since it
is the image of Zarmin(D) under the center map, while each Zarmin(DM ) is
Noetherian since they are subspaces of Zarmin(D).

Conversely, suppose that Max(D) is Noetherian and that Zar(DM ) is Noe-
therian for every M ∈ Max(D). By the latter property and Theorem 5.8,
every DM is a PVD; by Lemma 5.10, the space ∆ := {V (M) |M ∈ Max(D)}
(in the notation of the lemma) is homeomorphic to Max(D), and thus Noe-
therian. Let β be the map sending a W ∈ Zarmin(D) to V (mW ∩D).

Let X be any subset of Zarmin(D), and let Ω be an open cover of X;
without loss of generality, we can suppose Ω = {B(fα) | α ∈ A}, where the fα
are elements of K. Then, Ω is also a cover of X ′ := {β(V ) | V ∈ X}; since
X ′ is compact (being a subset of the Noetherian space ∆), there is a finite
subfamily of Ω, say Ω′ := {B(f1), . . . ,B(fn)}, that covers X ′. For each i, let
Xi := {V ∈ X | fi ∈ β(V )}; then, X = X1 ∪ · · · ∪Xn. We want to find, for
each i, a finite subset Ωi ⊂ Ω that is a cover of Xi.
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Fix thus an i, let f := fi, and let I := (D :D f) be the conductor ideal. For
every M ∈ Max(D), let Z(M) := γ−1(M) ∩Xi = {V ∈ Xi | mV ∩D = M},
where γ is the center map. The union of the Z(M) is Xi; we separate the
cases I *M and I ⊆M .

If I * M , then 1 ∈ IDM = (DM :DM
f), and thus f ∈ DM ; hence, in this

cases B(f) contains Z(M).
Suppose I ⊆ M ; clearly, we can suppose Z(M) 6= ∅. We claim that in

this case M is minimal over I. Indeed, if there is a V ∈ Z(M) then f ∈ V ,
and thus f ∈ β(V ); therefore, f ∈ DP for every prime ideal P ( M (since
DP ) β(V ) for every such P ), and thus I * P . Therefore, M is minimal over
I. By Lemma 5.1, I has only finitely many minimal primes; hence, there are
only finitely many M such that I ⊆M and Z(M) 6= ∅. For each of these M ,
the set of valuation domains in X centered on M is a subset of Zarmin(DM ),
and thus it is compact; hence, for each of them, Ω admits a finite subcover
Ω(M). It follows that Ωi := {B(f)} ∪

⋃
Ω(M) is a finite subset of Ω that is

a cover of Xi.
Hence,

⋃
i Ωi is a finite subset of Ω that covers X; thus, X is compact.

Since X was arbitrary, Zarmin(D) is Noetherian.
(b) If Zar(D) is Noetherian, then Spec(D) and every Zar(DM ) are Noe-

therian.
Conversely, suppose that Spec(D) is Noetherian and that Zar(DM ) is Noe-

therian for every M ∈ Max(D). By the previous point, Zarmin(D) is Noether-
ian. Furthermore, if P ∈ Spec(D) \Max(D) then DP is a valuation domain;
hence, Zar(D) \ Zarmin(D) is homeomorphic to Spec(D) \ Max(D), which
is Noetherian by hypothesis. Being the union of two Noetherian subspaces,
Zar(D) itself is Noetherian. �

Corollary 5.12. Let D be an integral domain that is not a field, and let L be
a field containing D; suppose that D is integrally closed in L. Then, Zar(L|D)
(respectively Zarmin(L|D)) is Noetherian if and only if the following hold:

• L is the quotient field of D;
• Spec(D) is Noetherian (resp., Max(D) is Noetherian);
• for every M ∈ Max(D), the ring DM is a pseudo-valuation domain

such that Zar(L|F ) is Noetherian, where F is the residue field of DM

and L is the residue field of the associated valuation overring of DM .

Proof. Join Proposition 3.4, Theorem 5.11 and Proposition 5.9. �

For our last result, we recall that the valuative dimension dimv(D) of an in-
tegral domain D is the supremum of the dimensions of the valuation overrings
of D; a domain D is called a Jaffard domain if dim(D) = dimv(D) <∞, while
it is a locally Jaffard domain if DP is a Jaffard domain for every P ∈ Spec(D)
[1]. Any locally Jaffard domain is Jaffard, while the converse does not hold
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[1, Example 3.2]. The class of Jaffard domains includes, for example, finite-
dimensional Noetherian domains, Prüfer domains and universally catenarian
domains.

Proposition 5.13. Let D be an integrally closed integral domain of finite
Krull dimension, and suppose that Zarmin(D) is a Noetherian space. Then:

(a) dimv(D) ∈ {dim(D),dim(D) + 1};
(b) D is locally Jaffard if and only if D is a Prüfer domain.

Proof. (a) Let M be a maximal ideal of D. Then, Zarmin(DM ) is Noether-
ian, and thus DM is a pseudo-valuation domain; by [1, Proposition 2.9],
dimv(DM ) = dim(DM ) + trdegF L, where F is the residue field of DM and L
is the residue field of the associated valuation ring of DM . By Propositions
5.9 and 4.1, trdegF L ≤ 1, and thus dimv(DM ) ≤ dim(DM ) + 1. Hence,
dimv(D) ≤ dim(D) + 1; since dimv(D) ≥ dim(D) always, we have the claim.

(b) If D is a Prüfer domain then it is locally Jaffard. Conversely, if D
is locally Jaffard, then dimv(DP ) = dim(DP ) for every prime ideal P of
D. Take any maximal ideal M , and let F,L as above; using dimv(DM ) =
dim(DM ) + trdegF L, it follows that trdegF L = 0. Since D (and so DM )
is integrally closed, it must be F = L, i.e., DM itself is a valuation domain.
Therefore, D is a Prüfer domain. �

Note that there are domains D that are Jaffard domains and have Zar(D)
Noetherian, but are not Prüfer domains. Indeed, the construction presented
in [1, Example 3.2] gives a ring R with two maximal ideals, M and N , such
that RM is a two-dimensional valuation ring while RN is a one-dimensional
pseudo-valuation domain with dimv(RN ) = 2; in particular, it is a Jaffard
domain that is not Prüfer. Choosing k = K(Z1) in the construction (or,
more generally, choosing k such that K(Z1, Z2) is finite over k), the Zariski
space of RN is Noetherian (being homeomorphic to Zar(K(Z1, Z2)|k), which
is Noetherian by Proposition 4.2), and thus Zar(R) is Noetherian.

References

[1] David F. Anderson, Alain Bouvier, David E. Dobbs, Marco Fontana, and Salah Kabbaj.

On Jaffard domains. Exposition. Math., 6(2):145–175, 1988.
[2] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison-

Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[3] Nicolas Bourbaki. Commutative Algebra. Chapters 1–7. Elements of Mathematics

(Berlin). Springer-Verlag, Berlin, 1989. Translated from the French, Reprint of the

1972 edition.
[4] David E. Dobbs, Richard Fedder, and Marco Fontana. Abstract Riemann surfaces of

integral domains and spectral spaces. Ann. Mat. Pura Appl. (4), 148:101–115, 1987.
[5] David E. Dobbs and Marco Fontana. Kronecker function rings and abstract Riemann

surfaces. J. Algebra, 99(1):263–274, 1986.

[6] Carmelo A. Finocchiaro, Marco Fontana, and K. Alan Loper. The constructible topol-

ogy on spaces of valuation domains. Trans. Amer. Math. Soc., 365(12):6199–6216,
2013.



WHEN THE ZARISKI SPACE IS A NOETHERIAN SPACE 17

[7] Carmelo A. Finocchiaro and Dario Spirito. Topology, intersections and flat modules.

Proc. Amer. Math. Soc., 144(10):4125–4133, 2016.

[8] Marco Fontana. Topologically defined classes of commutative rings. Ann. Mat. Pura
Appl. (4), 123:331–355, 1980.

[9] Marco Fontana, Evan Houston, and Thomas Lucas. Factoring Ideals in Integral Do-

mains, volume 14 of Lecture Notes of the Unione Matematica Italiana. Springer, Hei-
delberg; UMI, Bologna, 2013.

[10] Marco Fontana and K. Alan Loper. An historical overview of Kronecker function rings,

Nagata rings, and related star and semistar operations. In Multiplicative ideal theory
in commutative algebra, pages 169–187. Springer, New York, 2006.

[11] Robert Gilmer. Multiplicative Ideal Theory. Marcel Dekker Inc., New York, 1972. Pure

and Applied Mathematics, No. 12.
[12] John R. Hedstrom and Evan G. Houston. Pseudo-valuation domains. Pacific J. Math.,

75(1):137–147, 1978.
[13] William Heinzer. Noetherian intersections of integral domains. II. 311:107–119, 1973.

[14] Melvin Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math.

Soc., 142:43–60, 1969.
[15] Roland Huber and Manfred Knebusch. On valuation spectra. In Recent advances in

real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Fran-

cisco, CA, 1991), volume 155 of Contemp. Math., pages 167–206. Amer. Math. Soc.,
Providence, RI, 1994.

[16] Bruce Olberding. Noetherian spaces of integrally closed rings with an application to

intersections of valuation rings. Comm. Algebra, 38(9):3318–3332, 2010.
[17] Bruce Olberding. Affine schemes and topological closures in the Zariski-Riemann space

of valuation rings. J. Pure Appl. Algebra, 219(5):1720–1741, 2015.

[18] Bruce Olberding. Topological aspects of irredundant intersections of ideals and valu-
ation rings. In Multiplicative Ideal Theory and Factorization Theory: Commutative

and Non-Commutative Perspectives. Springer Verlag, 2016.
[19] Paulo Ribenboim. The Theory of Classical Valuations. Springer Monographs in Math-

ematics. Springer-Verlag, New York, 1999.

[20] Peter Roquette. Principal ideal theorems for holomorphy rings in fields. J. Reine
Angew. Math., 262/263:361–374, 1973. Collection of articles dedicated to Helmut Hasse

on his seventy-fifth birthday.

[21] Niels Schwartz. Compactification of varieties. Ark. Mat., 28(2):333–370, 1990.
[22] Dario Spirito. Non-compact subsets of the Zariski space of an integral domain. Illinois

J. Math., 60(3-4):791–809, 2016.

[23] Dario Spirito. Jaffard families and localizations of star operations. J. Commut. Algebra,
to appear.

[24] Oscar Zariski. The reduction of the singularities of an algebraic surface. Ann. of Math.

(2), 40:639–689, 1939.
[25] Oscar Zariski. The compactness of the Riemann manifold of an abstract field of alge-

braic functions. Bull. Amer. Math. Soc., 50:683–691, 1944.
[26] Oscar Zariski and Pierre Samuel. Commutative Algebra. Vol. II. Springer-Verlag, New

York, 1975. Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29.

Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Roma,
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