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Abstract: Hot stamping by partition heating of Al–Si coated boron steel sheets is currently utilized 

to produce parts of the car body-in-white with tailored microstructural and mechanical 

characteristics. This paper investigates the evolution of the Al–Si coating and its tribological and 

wear performances in the case of direct heating at the process temperatures of 700 °C, 800 °C, and 

900 °C, skipping the preliminary austenitization as it may happen in the case of tailored tempered 

parts production. A specifically designed pin-on-disk configuration was used to reproduce at a 

laboratory scale the process thermo-mechanical cycle. The results show the morphological and 

chemical variation of the Al–Si coating with heating temperature, as well as that the friction 

coefficient, decreases with increased temperature. Furthermore, the results proved that the adhesive 

wear is the main mechanism at the lower temperature, while abrasive wear plays the major role at 

the higher temperature. 
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1. Introduction 

Hot stamping of boron steel sheets has become the most popular technology for producing 

components of the car body-in-white, in order to meet the increasing demands for the reduction of 

the vehicle weight and the improvement of passenger safety [1]. During the conventional hot 

stamping process, the sheets of quenchable boron steel 22MnB5 are usually provided with an Al–Si 

coating in order to prevent scale formation and decarburization when furnace heated before 

stamping [2]. After being heated above the austenitization temperature, they are simultaneously 

deformed and quenched between cooled dies, finally achieving a fully martensitic microstructure 

suitable for structural parts of high mechanical resistance. The conventional hot stamping process 

presents some evident advantages compared to conventional stamping at room temperature, such as 

formability improvement, forming load reduction, and spring-back decrease [3]. Furthermore,  

it makes it possible to manufacture components with tailored microstructure [4], and thus with 

different mechanical properties on different zones, enhancing their functionality. This result can be 

achieved by controlling the thermal cycle undergone by the workpiece, and several strategies are 

proposed in literature [5]. 

Among these, hot stamping by partition heating has been proposed to manufacture components 

of the car body-in-white with tailored properties to further improve the vehicle crashworthiness [6]. 

The main difference with the conventional hot stamping lies in the heating procedure of the blank. 

The blank region that requires higher strength is heated above the steel Ac3 (austenite-to-ferrite 

hypoeutectoid transformation) temperature, whereas the region that requires higher elongation is 

heated below the Ac1 (austenite-to-pearlite eutectoid transformation) temperature, with a transition 

region forming that characterized by a temperature gradient between Ac1 and Ac3. The heated blank 

is then stamped and quenched between cooled dies, following the same procedure of the 
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conventional hot stamping process; as such, a tailored component with different volume fractions of 

martensite in different regions can be produced. The process allows manufacturing tailored 

components with less energy expenditure compared to conventional hot stamping and without 

introducing micro-structural changes in the areas heated below Ac1. Using this kind of process, Mori 

et al. [7] produced a tailored hat-shaped part using bypass resistance partition heating with high 

selective heating capabilities, obtaining a reduced length of the transition zone between the areas 

with different microstructures. Mu et al. [8] optimized the partition heating parameters, then 

produced an M-shaped part and a cup-shaped part with tailored properties [9]; furthermore, they 

developed a calibrated finite element (FE) model of the hot stamping process by partition  

heating [10]. 

The different temperatures in the heated blank may have an impact on the tribological 

characteristics at the blank-die interface in terms of blank coating behaviour, heat transfer, friction 

coefficient, and tool wear. In this context, it is mandatory to investigate the influence of the blank 

temperature on the tool wear characteristics, in order to have a deeper knowledge of the process. 

As described above, the heated blank owns different temperatures in different regions, which 

may affect the evolution of the Al–Si coating. Ghiotti et al. [11] investigated the influence of the 

heating temperature, holding time, and cooling rate on the Al–Si coating behavior of the 22MnB5 

boron steel, showing that iron diffused into the Al–Si coating forms an Al-Fe-Si ternary alloy. 

Pelcastre et al. [12] investigated the evolution of the morphology and microstructure of the Al–Si 

coating at different heating conditions, finding that Fe5Al2 and FeAl2 formed at the surface of the 

coating. It is worth noting that the characteristics of the Al–Si coating after heating considerably 

influences the hot stamping process. Gui et al. [13] and Wang et al. [14] investigated the thermo–

mechanical behaviour and cracking characteristics of the Al–Si coating on hot stamped boron steel 

parts, showing that micro-cracks and voids appeared after austenitization, and that cracking 

behaviour was sensitive to the tensile state of stress. 

Some researches on tribology and wear tests devoted to conventional hot stamping of Al–Si 

coated boron steel sheets are available in literature. Pelcastre et al. [15] investigated the mechanism 

of galling at elevated temperatures during hot stamping of Al–Si coated boron steel sheets by 

analyzing the behaviour of the actual hot forming tools. Kondratiuk et al. [16] performed sheet 

forming tests to study the wear mechanism by analyzing the tools used to produce a rotationally 

symmetrical cup. These experiments making use of actual hot stamping tests can effectively describe 

the tool wear phenomena, but they are costly and time consuming. Some other investigations were 

performed making use of laboratory testing devices, such as a sliding, reciprocating, and vibrating 

(SRV) machine [17], a deep drawing process simulator [18], hot strip drawing devices equipped with 

roller hearth furnace [19], an induction heating system [20], or infrared image furnace [21]. However, 

these devices are not usually able to accurately reproduce the thermal and mechanical conditions the 

tools cyclically encounter during the actual hot stamping process. Ghiotti et al. [22, 23] proposed a 

novel approach to wear testing during hot stamping of boron steel sheets, using a universal 

tribometer equipped with a pin-on-disk configuration and an electrical furnace, capable to reproduce 

on the pin the same heating and cooling cycles experienced by the tools during the industrial hot 

stamping process. They utilized this equipment to investigate the tribological behaviour and wear 

characteristics during conventional hot stamping of Al–Si coated boron steel sheets [24,25]. 

However, on the basis of the literature review, there is still a lack of information regarding the 

analysis of the influence that the heating temperatures characteristic of the hot stamping by partition 

heating have on both the chemical and morphological evolution of the Al–Si coating and the tool 

wear mechanisms. 

In this framework, the paper focuses on the influence that the thermal and mechanical 

parameters that are characteristic of hot stamping by partition heating have on the wear behaviour 

of the tribopair made of Al–Si coated 22MnB5 steel and AISI H11 tool steel. Firstly, the influence of 

the heating temperature on the evolution of the Al–Si coating is investigated by means of thermal 

simulation experiments, scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) 

spectroscopy, and 3D profiler analyses. In the second section, wear tests are carried out using the 
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experimental apparatus proposed in [22], using for the first time testing temperatures relevant to hot 

stamping by partition heating. The influence of the heating temperature on the tribological 

characteristics and wear mechanisms at increasing number of cycles is evaluated and analyzed by 

means of SEM, EDX, 3D profiler, and weight measurement analyses. 

2. Reference Process 

The reference industrial process is the hot stamping of boron steel sheets by partition heating to 

manufacture body-in-white components with tailored properties. The main differences, if compared 

with hot stamping, lie in the heating procedure: one segment of the metal blank is heated up to about 

900 °C and soaked for 3–5 min to realize fully austenitization, while the remaining part of the blank 

is heated at about 700 °C, inducing a transition region with a temperature between 700 °C and 900 

°C. The partition heating can be realized by means of specially designed heating equipment, such as 

furnaces with separated chambers [26], furnaces with special plate clamping devices [10], bypass 

resistance heating systems [7], and selective heating laser-based systems [27]. After heating, the blank 

is automatically transferred as quickly as possible to the forming press, with a transfer time usually 

controlled between 5 and 10 s. Then, the cooled dies are closed and kept clamped at a dwell pressure 

between 5 and 15 MPa to quench the component with a cooling rate above 27 °C/s suitable to obtain 

a fully martensitic structure where needed. On the contrary, the blank segment heated at 700 °C 

retains its initial ferritic-pearlitic microstructure regardless of the cooling rate. The industrial hot 

stamping process by partition heating is usually performed without any lubricant and the tools are 

usually reground after producing 2000–3000 tailored components, the same of the conventional hot 

stamping process. 

3. Experimental 

3.1. Materials 

The blank material is the Al–Si coated boron steel 22MnB5 produced by ArcelorMittal™ 

(Luxembourg City, Luxembourg), whereas the material of the tools is the hardened hot working tool 

steel AISI H11. The chemical composition, the micro-hardness at room temperature and the surface 

roughness (Sa) of both materials in the as-delivered conditions are reported in Table 1. Figure 1 shows 

the surface topography of both the blank (a) and tool (b) in the as-delivered conditions, measured by 

means of a 3D surface profilometer SensofarTM (Barcelona, Spain) Plu Neox. 

Table 1. Chemical composition (in wt%), hardness (room temperature), and surface roughness of the 

blank and tool in the as-delivered conditions. 

Material C Mn Cr Si B Mo V Hardness (HRC) Sa (μm) 

22MnB5 0.22 1.4 0.3 0.35 0.005 - - 20 ± 1.5 0.62 ± 0.1 

AISI H11 0.38 0.4 5 1.1 - 1.3 0.4 51 ± 1.5 1.52 ± 0.1 
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Figure 1. As-delivered conditions: (a) Surface topography of the blank and (b) surface topography of 

the tool. 

3.2. Testing Equipment 

Thermal simulations and wear tests at elevated temperatures have been carried out on a 

Universal Mechanical Tester UMT-3 tribometer by Bruker™(Billerica, MA, USA) equipped with an 

electrical furnace (see the whole apparatus and some details in Figure 2). The furnace allots to heat 

the Al–Si coated 22MnB5 black up to 1000 °C, following a predefined thermal cycle measured by 

means of K-type thermocouple located inside the furnace and controlled in a closed-loop 

configuration by a controller unit. The blank is fixed on a rotation table inside the furnace driven by 

an electrical motor. The pin, mounted on the pin holder, can be moved along both the vertical and 

horizontal directions. The pin load and torque are measured by ultra-accurate strain-gauge sensors, 

which are used to calculate the friction coefficient during testing according to the Coulomb’s law. In 

order to ensure a constant load, the normal force is measured by a dedicated load cell, and its signal 

is used by the machine controller to adjust the pin vertical position. During the test, the pin 

temperature is constantly measured by a K-type thermocouple embedded inside it. 

For the sake of keeping the same thermal conditions characterizing the actual hot stamping 

process by partition heating, an air nozzle is used to cool down the pin outside the chamber (see 

Figure 2b) after a predefined amount of cycles. The pin cooling rate can be adjusted by changing the 

air pressure air up to eight bars. More details about the testing equipment can be found in [22, 24]. 

 

Figure 2. (a) UMT-3 tribometer; (b) pin cooling system; (c) heating chamber. 
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3.3. Thermal Simulation Tests 

Different heating temperatures are expected to change the morphology and chemical 

composition of the Al–Si coating, which may lead to different tribological behavior and wear 

mechanisms. To this regard, thermal simulation tests were firstly performed using the furnace of the 

UMT-3 tribometer in order to investigate the influence of the heating temperature on the evolution 

of the Al–Si coating. The experimental plan is shown in Table 2. Three different temperatures were 

chosen relevant of the hot stamping process by partition heating: 700 °C, where no austenitization 

occurs as demonstrated in [3, 28], and is therefore indicative of the blank temperature in the low-

temperature region; 900 °C, where a fully austenitization occurs, and therefore indicative of the blank 

condition in the high-temperature region; and 800 °C, where the blank is partially austenitized, on 

behalf of the transition region [3, 28]. 

Table 2. Experimental plan of the thermal simulation tests. 

Heating Temperature Heating Time Cooling Method 

700 °C 6 min Water quenching 

800 °C 6 min Water quenching 

900 °C 6 min Water quenching 

During the tests, a rectangular blank with a length of 20 mm and width of 5 mm is placed inside 

the furnace, pre-heated at the target temperature, and held for 6 min. Then the blank is taken out and 

quenched in water to cool it down to room temperature. Afterwards, the blank section is polished to 

carry out SEM and EDX analyses of the coating in the thickness direction. Furthermore, the surface 

morphology of the coating is analyzed through SEM and 3D profiler. 

3.4. Wear Tests 

Before starting each wear tests, the pin and the blank are cleaned in ether using an ultrasonic 

cleaner and then air dried. The weight of the initial pin is measured in order to evaluate its volume 

and weight variation after different cycles. Afterwards, the pin is installed on the pin holder, whereas 

the blank is fixed on the rotation table inside the furnace. Table 3 reports the wear testing parameters, 

which reproduce the same thermal and mechanical conditions of the actual hot stamping process by 

partition heating. 

The procedure applied for wear testing is as follows: after the furnace reaches the set 

temperature, the pin enters into the furnace and is brought into contact with the blank at a normal 

contact pressure equal to 7 MPa, meanwhile the blank is made to rotate reaching a tangential velocity 

under the pin of 15 mm/s for 5 s. Afterwards, the pin is moved out from the furnace and cooled down 

for 15 s by the air nozzle. The same steps are repeated until the end of the test. 

Table 3. Experimental plan of the wear tests. 

Parameter Value 

Blank temperature (°C) 700, 800, 900 ± 1 

Contact pressure (MPa) 7 ± 0.1 

velocity (mm/s) 15 

Sliding distance per cycle (mm) 75 

Pin cooling time (s) 15 

number of cycles 200, 400, 1200, 2000 

After repeating the process 100 times, the sliding track is changed in order to make the pin come 

in contact with new blank surface and virgin coating. It is worth noting that the disk rotating velocity 

must be adjusted when changing the sliding track in order to keep the same sliding speed. For every 

disk, four sliding tracks, each used for 400 cycles, are performed and then a new disk is installed. 

After 200, 400, 1200, and 2000 cycles, the pin is dismounted and cleaned in ether. Then, its weight is 

measured, and its surface condition evaluated using SEM, EDX, and 3D optical profiler analyses. 
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4. Results and discussion 

4.1. Chemical and Morphological Evolution of the Al–Si Coating 

The SEM images of the cross sections of the blanks after the thermal simulation tests at 700 °C, 

800 °C, and 900 °C are shown in Figure 3 together with the results of the EDX micro-chemical analysis. 

A clear influence of the heating temperature on the evolution of the Al–Si coating can be 

appreciated. The coating of the blank in as-delivered condition presents two zones: (A) the Al–Si 

coating, and (B) the interface area between the steel substrate and the coating. This interface zone is 

made of a ternary mixture containing approximately 64% aluminum, 9% silicon, and 27% iron. The 

coating of the blank heated at 700 °C presents instead three zones: (A) characterized by the presence 

of iron, contrary to the as-delivered condition, proving that iron starts diffusing from the interface 

area to the coating; (B) with a higher presence of iron; and (C) close to the substrate with the highest 

amount of iron. When the blank is heated at 800 °C, the coating shows four zones: (A), (B), and (C) 

are characterized by a higher amount of iron compared to the 700 °C sample whereas zone (D) close 

to the substrate presents a little amount of silicon. When the blank is heated to 900 °C, the number of 

layers continues increasing and the coating is composed of approximately 5 zones (A–E). In these five 

zones, the lowest amount of the aluminum is 39% in zone D and the lowest silicon amount is 2% in 

zone E, which is the same of the 800 °C blank. 

Figure 4 shows the SEM images and 3D profiler maps of the coating tested at different 

temperatures, carried out on the central zone of 50 × 50 mm samples, with a repeatability of three. 

After the thermal cycle at 700 °C, several peaks appear on the surface, making the coating rougher 

than in the as-delivered condition, with the surface roughness Sa equal to 4.87 µm (±0.35; Figure 4b). 

If the holding temperature is increased up to 800 °C, the density and dimension of these peaks 

decrease, and the surface roughness Sa decreases to 2.73 µm (±0.32; Figure 4c). Whereas at 900 °C, 

only a few peaks can be observed, but in some zones the coating becomes thinner and distributed in 

a less homogeneous way, resulting in the surface roughness Sa equal to 4.36 µm (±0.28; Figure 4d). 

The variation of the coating surface topography can be attributed to the chemical diffusion of  

iron [23]. 

4.2. Friction Coefficient 

The temperature history of the pins tested at 700 °C, 800 °C and 900 °C is shown by Figure 5a.  

It can be seen that the temperature reaches a steady state after 200 s, then a reproducible thermal cycle 

is kept, where the heating and cooling steps are basically consistent with the actual hot stamping 

process. The maximum temperature reached by the pin when heating the disk at the three different 

temperatures are 209 °C, 228 °C, and 268 °C, respectively. This simulates the tools behaviour in hot 

stamping by partition heating where each segment reaches a different maximum temperature. As in 

all the tested conditions the pin temperature does not exceed 300 °C, it is possible to assume negligible 

hardness loss effects, as is decrease from 51 ± 1.5 HRC at room temperature to 49 ± 1.5 HRC at  

300 °C [24]. 
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Figure 3. Morphology and chemical composition of the Al–Si coating heated at different 

temperatures: (a) as-delivered condition, (b) 700 °C, (c) 800 °C, and (d) 900 °C. 
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Figure 4. Scanning electron microscopy (SEM) images and 3D profiler maps of the coating surface 

heated at different temperatures: (a) as-delivered condition, (b) 700 °C, (c) 800 °C, and (d) 900 °C. 
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Figure 5. (a) Evolution of the pin temperature and (b) friction coefficient with time at  

varying temperature. 

The friction coefficient during the test is evaluated according to the Coulomb’s law as in Equation (1): 

μ =
𝐹

𝑁
=

𝜏𝐴

𝜎𝐴
=

𝜏

𝜎
 (1) 

where F is the horizontal force and N the vertical one acquired by the strain gauge sensors, τ is the 

shear stress, σ the normal stress, and A  the apparent contact area. The variation of the friction 

coefficient obtained every 200 cycles when the disk is heated at 700 °C, 800 °C, and 900 °C is shown 

in Figure 5b. The friction coefficient decreases at increasing heating temperature, with mean values 

of the friction coefficient equal to 0.609 (±0.022), 0.591(±0.020), and 0.547(±0.018) at 700 °C, 800 °C, and 

900 °C, respectively. On one hand, the shear strength of the coating becomes lower at increasing 

heating temperatures, thus resulting in the decrease of the friction coefficient. On the other hand, 

more oxidation occurs at increasing heating temperatures, and the oxide particles may play the 

function of lubricants, therefore causing the reduction of the friction coefficient. 

Figure 6 shows the SEM images of the blank and the pin after 200 cycles as a function of the test 

temperature. It can be seen that the blanks surfaces tested at 800 °C (Sa = 6.25 μm) and 900 °C (Sa = 

10.88 μm) have a similar appearance, but are less rough than the one of the disk tested at 700 °C (Sa 

= 16.33 μm), keeping the same trend described in Figure 4, before the wear tests. Furthermore, the 

asperities that characterize the heated disk surface are easier to deform at a higher temperature, thus 

producing a smoother sliding surface. In regards to the surface of the pins, a similar phenomenon 

can be observed. Massive material adheres to the surface of the pin tested at 700 °C, whereas the 

surface of the pin tested at 900 °C is very smooth. The more significant surface flattening for both the 

blank and the pin at the highest heating temperature can also explain the reduction of the friction 

coefficient at increasing temperature. 
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Figure 6. SEM images of the disks (a) and the pins (b) after 200 cycles when tested at  

different temperatures. 

4.3. Wear Mechanisms 

The wear mechanisms arising on the pins tested at different temperatures at increasing sliding 

cycles were identified through SEM, EDX micro-chemical, and 3D profiler analyses, as well as 

measurements of the pins weight. Figure 7 shows the SEM images and EDX analysis on the pins 

surface tested at 700 °C, 800 °C, and 900 °C after 200 cycles. For the pin tested at 700 °C, the bright 

areas consist of only chromium and iron, whereas oxygen, aluminum and silicon are also present in 

the dark areas, which were transferred to the pin surface from the blank coating. At the testing 

temperature of 800 °C the observations confirm the results already found in [24], where aluminum 

can be found in both the analyzed points 1 and 2, but with a content of aluminum in spectrum 2 

higher than that in spectrum 1. When the pin is tested at 900 °C, the content of oxygen in the dark 

areas reaches values up to 40.81%, which was much higher when compared with the pins tested at 

700 °C and 800 °C, proving that oxidation increases at increasing heating temperatures. The EDX 

analysis indicates that adhesion wear occurred on the pins regardless of the testing temperature, 

witnessed by the presence of chemical elements of the blank coating. However, the content of silicon 

on the dark area of the pin tested at 700 °C was 8.33%, which was much higher than that of the pins 

tested at 800 °C and 900 °C; therefore when a larger amount of the blank coating is transferred to the 

pin surface then the adhesion wear seems to be severe at the lowest testing temperature. 

As the number of cycles were increased at 400, 1200, and 2000, cycle the contact surfaces of the 

pin cycles were observed and analyzed by means of SEM images and 3D profiler maps, as shown in 

Figure 8 for the different testing temperatures. The pins tested at 700 °C show severe adhesion as 

reported in Figure 8a with a large amount of material from the blank coating attached to the pin 

surface after 400 cycles. Then the amount of adhered material gradually decreased as it was removed 

by the mutual sliding with the blank as the number of cycles increased. When the testing cycles 

reached 2000, few scratches appeared, showing that adhesion and abrasive wear phenomena occur 

simultaneously. The wear mechanisms changed at higher testing temperatures, as already found by 

Ghiotti et al. [24], at 800 °C, and shown by Figure 8b where more scratches are evident without any 

massive adhesion as seen on the surface of the pin tested at 700 °C. The same behaviour became more 

evident at 900 °C (Figure 8c) and can be attributed to the formation of more oxidation particles at an 

elevated temperature. These wear particles can act as a three-body abradant between two contacting 
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surfaces or a two-body abradant embedded on one surface, resulting in the abrasive damage of the 

surfaces. Furthermore, the surface of the pin tested at 900 °C was smoother and showed more shallow 

scratches compared with the pin tested at 800 °C. However, the variations of the pin weight after 

different numbers of cycles shown by Figure 9b highlight how the abrasive wear is more severe at 

the higher temperature, as the weight loss is greater at 900 °C. This difference of the surface conditions 

may be related to the characteristics of the oxidation particles at the different testing temperatures, 

as the presence of more severe scratches seems to be related to the presence of bigger and harder 

three-body abradant particles. 

 

Figure 7. SEM images and energy-dispersive x-ray (EDX) analysis of the pin surfaces after 200 cycles 

when tested at: (a) 700 °C, (b) 800 °C [24], and (c) 900 °C. 
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Figure 8. Topography of the pin surfaces at increasing numbers of cycles when testing at (a) 700 °C, 

(b) 800 °C [24], and (c) 900 °C. 
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Figure 9a,b show the surface roughness Sa and weight variation of the pins at the tree 

temperatures after 400, 1200, and 2000 cycles, respectively. The results confirm the evolution of the 

wear mechanisms as described above. The surface roughness basically increased with the cycle 

number, but it was larger at the lowest temperature due to the adhesive wear that took places at  

700 °C, which causes the increase of the surface roughness due to the material transfer from the blank. 

The analysis of the pin weight variation at varying numbers of cycles leads to similar conclusions,  

as at 700 °C the pin is heavier after 400 and 1200 cycles when compared with the initial one. This 

indicates that adhesive wear is the main wear mechanism at the lowest temperature. For the pin 

tested at 800 °C, the weight showed a small increment after 400 cycles, but then it decreased after 

1200 and 2000 cycles, proving that adhesive and abrasive wear occur simultaneously. However, the 

weight of the pin tested at 900 °C always decreased across increasing number of cycles, showing that 

abrasive wear always plays the dominating role at the highest temperature. 

 

Figure 9. Surface roughness Sa (a) and weight variation (b) of the pins tested at different temperatures 

and measured after 400, 1200, and 2000 cycles. 

5. Conclusions 

Thermal simulation tests and wear tests, replicating the same thermal and mechanical cycles 

characterizing the hot stamping process by partition heating, were performed to investigate the 

influence of the heating temperature on the evolution of the Al–Si coating and the wear mechanisms. 

The following main conclusions can be drawn from this study. 

 When heating the metal blank, iron from the substrate gradually diffuses to the Al–Si coating 

surface, forming a more complex structure as the heating temperature increases. 

 The surface topography of the Al–Si coating changes at different heating temperatures, 

becoming rougher as a consequence of the formation of peaks than the as-delivered condition; 

however, the surface roughness decreases when the heating temperature increases from 700 °C 

to 900 °C. 

 The friction coefficient decreases at increasing heating temperatures, as a consequence of both 

the lower shear strength of the coating and the presence of more and softer oxidation particles 

at higher temperatures. 

 Adhesive wear seems to be dominant at 700 °C while abrasive wear becomes more relevant as 

the temperature increases. This behaviour is proven by the analysis carried out on the material 

transferred from the Al–Si blank coating to the pin surface. 

 The SEM images, 3D profiler maps, surface roughness, and weight variation of the pins after 

different number of cycles demonstrate the difference in the wear mechanisms at different 

heating temperatures: adhesive wear is the primary wear mechanism at the lowest testing 

temperature, whereas abrasive wear plays a more dominating role at higher temperatures. 
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