
THE GOLOMB TOPOLOGY OF POLYNOMIAL RINGS

DARIO SPIRITO

Abstract. We study properties of the Golomb topology on poly-
nomial rings over fields, in particular trying to determine condi-
tions under which two such spaces are not homeomorphic. We
show that if K is an algebraic extension of a finite field and K ′

is a field of the same characteristic, then the Golomb spaces of
K[X] and K ′[X] are homeomorphic if and only if K and K ′ are
isomorphic.

1. Introduction

Let R be an integral domain. The Golomb space of R is the topo-
logical space G(R) having R• := R \ {0} as its underlying set, and
whose topology is generated by the coprime cosets. This topology,
introduced by Brown [3] on Z+ and later studied by Golomb [9, 10],
is one of many coset topologies [13], and it can be used to generalize
Furstenberg’s “topological” proof of the infinitude of primes [8, 4].

Recently two papers, the first one by Banakh, Mioduszewski and
Turek [1] and the second one by Clark, Lebowitz-Lockard and Pollack
[5], have started studying more deeply the topology on G(R) and the
continuous maps between these spaces, with the former concentrating
on the “classical” case of Z+ and the latter generalizing several results
to integral domains and, in particular, to Dedekind domains. A central
problem of both is the isomorphism problem: if G(R) and G(S) are
homeomorphic topological spaces, must R and S be isomorphic rings?
More generally, how much do the continuous maps (and, in particular,
homeomorphisms and self-homeomorphisms) of Golomb spaces respect
the algebraic structure of the underlying rings? In [16], it was shown
that the unique self-homeomorphisms of h : G(Z) −→ G(Z) are the
identity or the multiplication by −1; the proof of this result relies
crucially on the fact that the groups of units of the quotients Z/pnZ
(where p is a prime number) are very close to being cyclic.

In this paper, we study the isomorphism problem in the context
of polynomial rings over fields; in particular, we are interested in the
more restricted problem of determining if the existence of a homeo-
morphism between G(K[X]) and G(K ′[X]) implies that K and K ′ are
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isomorphic as fields. To do so, we study the closure of several sets un-
der the Golomb topology and under the P -adic topologies (which can
be reconstructed from the Golomb topology), obtaining several results
that allow to determine algebraic properties of K from the topologi-
cal properties of G(K[X]). While we aren’t able to solve the isomor-
phism problem in full generality, we show that if K is an algebraic
extension of a finite field, K ′ has the same characteristic of K and
G(K[X]) ' G(K ′[X]) then K ′ must be isomorphic to K (Theorem
7.5); in particular, this implies that the number of distinct Golomb
topologies associated to countable domains it the cardinality of the
continuum, answering a question posed in [5, Section 3.1].

The structure of the paper is as follows. In Section 2, we fix the
notation and recall some results that will be used throughout the paper.
In Section 3 we give a few results about some distinguished subsets of
G(R), for an arbitrary Dedekind domain R. The rest of the paper can
be divided into three parts that are essentially autonomous one from
each other.

In Section 4 we show that, for polynomial rings, the Golomb topology
allows to distinguish between zero and positive characteristic (Propo-
sition 4.1), and study G(K[X]) when K has characteristic 0.

In Section 5 we study the case of separably closed fields in positive
characteristic: we show that we can distinguish them from the other
fields (Proposition 5.1) and that we can recover the characteristic of K
from G(K[X]) (Theorem 5.11).

Sections 6 and 7 provide a proof of the main theorem. In Section
6 we generalize a result of [1] on the image of prime elements under a
homeomorphism, while in Section 7 we use this result to link a (topo-
logically distinguished) subgroup of self-homeomorphisms of G(K[X])
with the unit group of K (Proposition 7.4), which allows to prove the
aforementioned main theorem (Theorem 7.5).

2. Preliminaries and notation

Let R be an integral domain; we shall always suppose that R is not
a field. Given a set I ⊆ R, we set I• := I \ {0}. We denote by U(R)
the set of units of R (both as a set and as a group).

The Golomb space of R is the topological space having R• as un-
derlying set and whose topology is generated by the coprime cosets of
R, that is, by the sets x + I where x ∈ R•, I is a nonzero ideal of
R and 〈x, I〉 = R. We denote by G(R) the Golomb space of R, and
call the topology the Golomb topology on R. When R is an integral
domain with zero Jacobson radical,1 G(R) is a Hausdorff space that
is not regular; furthermore, G(R) is not compact, and is a connected

1The Jacobson radical of R is the intersection of the maximal ideals of R.
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space that is totally disconnected at each of its points [5, Theorems 5,
8 and 9 and Proposition 10].

Suppose from now on that R is a Dedekind domain.
Given a subset A ⊆ R•, we denote by A the closure of A in the

Golomb topology. Let x + I be a coprime coset. If I = P e1
1 · · ·P en

n is
the factorization of I into prime ideals, then [5, Lemma 15]

x+ I =
n⋂
i=1

(P •i ∪ (x+ P ei
i )).

If h : G(R) −→ G(S) is a homeomorphism, then h sends units into
units (i.e., h(U(R)) = U(S)) [5, Theorem 13]. If the class group of R
is torsion then h sends prime ideals to prime ideals, that is, if P is a
prime ideal of R then h(P •)∪{0} is a prime ideal of S; more generally,
h takes radical ideals to radical ideals [16, Theorem 2.8].

For every x ∈ R, let V (x) := {P ∈ Spec(R) | x ∈ P}. Given a
subset ∆ of Max(R), we denote by G∆(R) the set of all x ∈ R• such
that V (x) = ∆; note that G∆(R) is empty if ∆ is infinite. If the class
group of R is torsion, this set is again preserved by homeomorphisms:
if h is a homeomorphism and x ∈ G∆(R), then h(x) ∈ GΛ(R), where Λ
contains the images under h of the elements of ∆ [16, Proposition 2.7].
Given a ∈ R, we set pow(a) := {uan | u ∈ U(R), n ≥ 1}; if a generates
P , then pow(a) is exactly G{P}(R).

Let now R be a Dedekind domain with torsion class group and P be
a prime ideal of R. The P -topology to R \P is the topology generated
by the sets a + P n, for all a ∈ R \ P and all n ≥ 1; this is exactly
the restriction of the P -adic topology to R \ P . The P -topology can
be recovered from the Golomb topology by considering only the clopen
subset of R \ P , and thus every homeomorphism h : G(R) −→ G(S)
in the Golomb topology restricts to a homeomorphism between R \ P
and S \Q (with Q := h(P •) ∪ {0}), where the former is endowed with
the P -topology and the latter with the Q-topology [16, Section 3].

We denote by charK the characteristic of the field K. If q is a prime
power, we denote by Fq the finite field with q elements. If p is a prime

number, we denote by Fp the algebraic closure of Fp.

3. The spaces Gn(R)

Let R be an integral domain. We denote by G0(R) the set of units
of R endowed with the Golomb topology; this space is rather more
well-behaved than the whole Golomb space.

Proposition 3.1. Let R be an integral domain.

(a) G0(R) is homogeneous.
(b) Suppose the Jacobson radical of R is zero. Then, G0(R) is

discrete if and only if there is an ideal I such that the restriction
G0(R) −→ R/I of the canonical quotient is injective.
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(c) G0(R[X]) is discrete.

Proof. Since multiplication by units is a homeomorphism, we can al-
ways send x to y by multiplying by yx−1; hence G0(R) is homogeneous.

For the second claim, suppose first that G0(R) −→ R/I is injective:
then, for every unit u the coset u+ I meets G0(R) only in u, and thus
G0(R) is discrete. Conversely, suppose G0(R) is discrete: then, there
is an ideal I such that (1 + I) ∩ G0(R) = {1}. For every other unit u
of R, u + I = u(1 + I); hence, u is the only unit in (u + I) ∩ G0(R).
Thus, G0(R) −→ R/I is injective.

The last claim follows taking I = XR[X]. �

When R is a Dedekind domain we can say more.

Proposition 3.2. Let R be a Dedekind domain with zero Jacobson
radical.

(a) G0(R) has a basis of clopen sets.
(b) G0(R) is regular.
(c) If R is countable, then G0(R) is either discrete or homeomor-

phic to Q (endowed with the Euclidean topology).
(d) If R is countable and every residue field of R is finite, then

G0(R) ' Q.

Proof. (a) We need to show that (x + I) ∩ G0(R) is clopen in G0(R)
for every x ∈ G0(R) and every ideal I. Indeed, let I =

∏
i P

ei
i be the

factorization of I; then, by [5, Lemma 15],

x+ I ∩G0(R) =
⋂
i

(P •i ∪ (x+ P ei
i )) ∩G0(R).

Since P •i ∩G0(R) = ∅, we have x+ I∩G0(R) =
⋂
i((x+P ei

i )∩G0(R)) =
(x+ I) ∩G0(R), i.e., (x+ I) ∩G0(R) is clopen in G0(R).

(b) Let x ∈ G0(R) and V ⊆ G0(R) be a closed set not containing
x; then, G0(R) \ V is open, and thus it contains a basic clopen set
(x+ I)∩G0(R). Therefore, x and V are separated by (x+ I)∩G0(R)
and G0(R) \ (x+ I), and so G0(R) is regular.

(c) If R is countable, then it has only countably many ideals, and thus
R and G0(R) are second countable. Hence, it is metrizable [11, e-2].
If G0(R) is not discrete, then G0(R) ' Q since G0(R) is homogeneous
[15, 6]. Finally, (d) follows from this and Proposition 3.1. �

We now introduce a sequence {Gn(R)}n∈N of subspaces of G(R) gen-
eralizing G0(R).

Definition 3.3. Let R be a Dedekind domain. For every n ≥ 0, define

Gn(R) :=
⋃
{G∆(R) | ∆ ⊆ Max(R), |∆| = n}.

By [16, Proposition 2.7], if R has torsion class group then the topol-
ogy of the Gn(R) is uniquely determined by the Golomb topology,
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in the sense that if h : G(R) −→ G(S) is a homeomorphism then
h(Gn(R)) = Gn(S) and thus Gn(R) and Gn(S) are homeomorphic.

The results proved above for n = 0 do not generalize to arbitrary n.
When n = 1, we can prove a partial analogue of Proposition 3.2(b) by
extending the proof of [1, Theorem 3.1].

Proposition 3.4. Let R be a Dedekind domain that is not a field, and
suppose that R has finitely many units. Then, G1(R) is a regular space.

Proof. Let Ω be an open set of G(R) and let x ∈ G1(R) ∩ Ω; we
need to show that there is an open neighborhood O of x such that
O ∩ G1(R) ⊆ Ω ∩ G1(R). Without loss of generality, we can suppose
that Ω = x+ bR for some b coprime with x.

Let P1, . . . , Pn be the prime ideals containing b; then, the set Λ of the
prime elements contained in some Pi is finite (as R has finitely many
units). Thus, the set x − Λ := {x − p | p ∈ Λ} is finite too, and so
there are only finitely many prime ideals that contain some element of
x− Λ.

Since R has finitely many units, it has infinitely many maximal
ideals; thus, there is a prime ideal Q that is distinct from each Pi and
that do not contain x nor any element of x−Λ. Consider O := x+ bQ:
then, O is a coprime coset, and thus it is open. By [5, Lemma 15],

O =
⋂
i

(P •i ∪ (x+ P ei
i )) ∩ (Q• ∪ (x+Q)),

where ei is the exponent of Pi in the factorization of bR.
Let p ∈ O∩G1(R). By definition, p can be contained in at most one

of P1, . . . , Pn, Q. We distinguish three cases.

• If p is not contained in any of them, then p ∈
⋂
i(x + P ei

i ) ∩
(x+Q) = (x+ bR) ∩ (x+Q) = x+ bQ = O ⊆ Ω.
• If p is contained in Pi for some i, then it should be contained in
x+Q, that is, p− x ∈ Q. However, this contradicts the choice
of Q.
• If p ∈ Q, then we must have p ∈

⋂
i(x+ P ei

i ) = x+ bR = Ω.

Hence, O∩G1(R) ⊆ Ω∩G1(R), as claimed. Thus, G1(R) is regular. �

Like for G0(R), this implies that if R is countable then G1(R) is
second countable and thus metrizable; hence, it is either discrete or
homeomorphic to Q.

A homeomorphism of Golomb spaces preserves whether G1(R) is
dense in G(R) or not, and both possibilities can happen (see Proposi-
tions 4.3, 5.2 and 6.3); in particular, for polynomial rings K[X], this
property can be used in some cases to distinguish between an alge-
braically closed and a non-algebraically closed K (see Corollary 6.4 or
the proof of Theorem 7.5). When G1(R) is dense, we can prove some
properties of Gn(R); we need a topological lemma.
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Lemma 3.5. Let X be a topological space, Y ⊆ X a dense subset and
Ω an open subset of X. Then, Ω ∩ Y = Ω ∩ Y ∩ Y .

Proof. Clearly, Ω ∩ Y ∩ Y ⊆ Ω∩ Y . On the other hand, let x ∈ Ω∩ Y .
If x /∈ Ω ∩ Y , then there is an open set O of X containing x but disjoint
from Ω∩Y , that is, O∩Ω∩Y = ∅. However, since Y is dense and O∩Ω
is open it follows that O ∩ Ω = ∅, and thus x /∈ Ω, a contradiction. It
follows that Ω ∩ Y ⊆ Ω ∩ Y ∩ Y . The claim is proved. �

Proposition 3.6. Let R be a Dedekind domain with torsion class group
such that G1(R) is dense in G(R). Then, for every n ≥ 2,

(a) Gn(R) is dense in G(R);
(b) Gn(R) is not regular.

Proof. (a) If x+ bR is a coprime coset, we can find p1 ∈ (x+ bR)∩ (1 +
xR)∩G1(R); then, as p1 is coprime with x, the set x+p1bR is open, and
thus we can find p2 ∈ (1+p1bR)∩G1(R), then p3 ∈ (1+p1p2bR)∩G1(R),
and so on. Then, c := p1 · · · pn will be an element of Gn(R) (as each
pi is in G1(R) and pi and pj are coprime for i 6= j) such that c ≡
x · 1 · · · 1 = x mod bR, i.e., c ∈ (x + bR) ∩ Gn(R). Hence, Gn(R) is
dense.

(b) Fix n ≥ 2, and let p ∈ G1(R). Let Ω := 1 + pR, take x ∈
Ω∩Gn(R), and let O be an open set such that x ∈ O and O∩Gn(R) ⊆
Ω∩Gn(R). We claim that O ∩Gn(R) * Ω. Without loss of generality
we can take O = x + bR, with b coprime to x; furthermore, passing if
needed to a power bk we can suppose that b is a product of primary
elements.

If x + b ∈ pR, then we can write x + b = py for some y ∈ R, and
py+pbR ⊆ O since x+ b+pbR ⊆ x+ bR. Let O′ := y+ bR; then, O′ is
open (if y and b have a common factor s, then s would divide also x, a
contradiction). Since Gn−1(R) is dense, we can find q ∈ O′ ∩Gn−1(R);
then, pq ∈ O ∩ Gn(R), while pq /∈ Ω as pq ∈ pR. This contradicts
O ∩Gn(R) ⊆ Ω ∩Gn(R).

Therefore, x + b /∈ pR. Let b := b1 · · · bn, where each bi belongs to
G1(R) and bi and bj are coprime if i 6= j. If bi ∈ pR for some i, let
b′ := b/bi; otherwise, set b′ := b. Then, p is coprime with b′, and thus
there is a z ∈ R, coprime with p, such that pz ≡ x mod b′R. By density,
there is a q ∈ (z+ bR)∩Gn−1(R); we claim that pq ∈ (O∩Gn(R)) \Ω.
Indeed, it is clear that pq ∈ Gn(R) (since p ∈ G1(R), q ∈ Gn−1(R) and
p and q are coprime), and pq /∈ Ω since pq ∈ pR. By [5, Lemma 15],

O =
⋂
i

(P •i ∪ (x+ biR)),

where Pi is the prime ideal containing bi. If bi is not coprime with p,
then pq ∈ P •i ⊆ O. If bi is coprime with p, then bi divides b′ and

pq ∈ p(z + bR) = pz + pbR ⊆ pz + b′R = x+ b′R ⊆ x+ biR ⊆ O.
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Hence, pq ∈ (O ∩Gn(R)) \ Ω.
Let V := Gn(R) \ Ω: then, V is a closed set of Gn(R). If Gn(R)

were regular, then there would be disjoint open sets O1, O2 such that
x ∈ O1 ∩ Gn(R) and V ⊆ O2 ∩ Gn(R). In particular, O1 ∩ Gn(R) ⊆
Gn(R)\(O2∩Gn(R)), and the latter is a closed set; therefore, the closure
V ′ of O1 ∩Gn(R) inside Gn(R) would be disjoint from V . However, by
Lemma 3.5,

V ′ = O1 ∩Gn(R) ∩Gn(R) = O1 ∩Gn(R);

by the previous part of the proof, O1∩Gn(R) is not contained in Ω, i.e.,
it meets V . This is a contradiction, and thus Gn(R) is not regular. �

4. Characteristic 0

We now start studying the Golomb spaces G(K[X]) of polynomial
rings over fields. In this section, we analyze what happens when the
characteristic of the field is 0. The first result is that we can actually
distinguish them from the positive characteristic case.

Proposition 4.1. Let K be a field. Then, K has characteristic 0 if and
only if there is an irreducible polynomial g ∈ K[X] such that pow(g) is
closed in the P -topology for every prime ideal P not containing g.

Proof. Suppose K has characteristic 0, and choose g(X) := X. Let
P = (f) be a prime ideal not containing g, and let λ /∈ (P ∪ pow(g)):
suppose that λ is in the closure of pow(g) in the P -topology. Then,
for every n ∈ N+ the open set λ + P n contains an element of pow(g).
Take n > deg λ + 1: then, there are m ∈ N+ and u ∈ K• such that
ugm ∈ λ+ P n, i.e., fn divides h := λ− ugm. Since λ /∈ pow(g), h 6= 0,
and thus m ≥ n. Let H the (deg λ+ 1)-th derivative of h: then, λ goes
to 0, and thus H is the (deg λ + 1)-th derivative of −ugm = −uXm,
that is, H(X) = cXm−deg λ−1 for some c ∈ K. Since charK = 0 and
m > deg λ + 1, we have H 6= 0, and thus its unique zero is 0. This
contradicts the facts that f |H and that f is coprime with X. Hence,
pow(g) is closed in the (f)-topology.

Conversely, suppose there is a polynomial g with this property, and
suppose that charK = p > 0. Let a ∈ K be such that g(a) 6= 0 (which

exists since g is irreducible). Then, f(X) := X − a divides 1 − g(X)
g(a)

,

and thus fp
n

divides
(

1− g(X)
g(a)

)pn
= 1− g(X)p

n

g(a)pn
, that is, 1+(f)p

n
meets

pow(g). Therefore, 1+(f)k meets pow(g) for every k ∈ N+, i.e., 1 is in
the closure of pow(g) in the (f)-topology. This contradicts the choice
of g, and thus the characteristic of K must be 0, as claimed. �

Corollary 4.2. Let K1, K2 be fields. If charK1 = 0 and charK2 > 0,
then the Golomb spaces G(K1[X]) and G(K2[X]) are not homeomor-
phic.
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Proof. If g is an irreducible polynomial ofK[X], then pow(g) = G{(g)}(K[X]).
By the previous proposition, charK = 0 if and only if there is a prime
ideal P such that G{P}(K[X]) is closed in the Q-topology for every
prime ideal Q 6= P . Since any homeomorphism of Golomb spaces sends
prime ideals into prime ideals, this property is preserved by homeomor-
phisms. In particular, if G(K1[X]) ' G(K2[X]) then charK1 = 0 if and
only if charK2 = 0. �

Note that the proof of Proposition 4.1 is qualitative, and thus cannot
be readily applied to distinguish different positive characteristics. We
shall do this in the algebraically closed case in Theorem 5.11.

We now study the algebraically closed and the real closed case.

Proposition 4.3. Let K be an algebraically closed field of character-
istic 0. For every n ≥ 0, Gn(K[X]) is discrete and closed in G(K[X]).

Proof. Let p(X) ∈ K[X], and let b ∈ K be such that p(b) 6= 0 (which
exists since K is infinite). We claim that, for large N , the only possible
element of (p(X) + (X − b)NK[X]) ∩Gn(K[X]) is p(X).

Indeed, suppose that q(X) ∈ (p(X) + (X − b)NK[X])∩Gn(K[X]) is
different from p(X): then, we have{

q(X) = p(X) + (X − b)Na(X)

q(X) = u(X − a1)e1 · · · (X − an)en ,

where a(X) 6= 0, a1, . . . , an are distinct, e1, . . . , en ≥ 1 and u ∈ K. Let
d := deg p, and apply d + 1 times the derivative process. In the first
equation, p(d+1) becomes 0, and thus (since a(X) 6= 0) q(d+1) has a zero
of multiplicity N − d − 1 in b. In the second equation, at each step
the multiplicity of each ai is lowered by 1, and thus each ai is a zero
of multiplicity at least ei − d− 1 (this holds even if ei < d+ 1). Since
p(X) and X − b are coprime, it follows that b 6= ai for each i; hence,
the total multiplicities of the zeros of q(d+1) is at least

N−d−1+
∑
i

(ei−d−1) = N+
∑
i

ei−(n+1)(d+1) = N+deg q−(n+1)(d+1).

Both n and d are fixed; hence, choosing N > n(d+ 1), we have (using
the fact that K has characteristic 0)

deg q(d+1) > n(d+1)+deg q−(n+1)(d+1) = deg q−(d+1) = deg q(d+1),

a contradiction. Hence, (p(X) + (X − b)NK[X]) ∩Gn(K[X]) contains
at most p(X).

Therefore, if p(X) /∈ Gn(K[X]) then p(X)+(X−b)NK[X] is disjoint
from Gn(K[X]), and thus p(X) is not in the closure of Gn(K[X]); on
the other hand, if p(X) ∈ Gn(K[X]) then (p(X) + (X − b)NK[X]) ∩
Gn(K[X]) = {p(X)} is an open set of Gn(K[X]). Hence, Gn(K[X]) is
discrete and closed in G(K[X]), as claimed. �
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Corollary 4.4. Let K be a real closed field. For every n ≥ 0, Gn(K[X])
is discrete and closed in G(K[X]).

Proof. Let K ′ be the algebraic closure of K, and let G′ := Gn(K ′[X])∪
· · · ∪ G2n(K ′[X]); then, Gn(K[X]) ⊆ G′. Take p(X) ∈ G(K[X]). By
Proposition 4.3, there is a polynomial r(X) ∈ K ′[X], coprime with
p(X), such that (p(X) + r(X)K ′[X]) ∩G′ ⊆ {p(X)}.

Take the conjugate polynomial r(X) of r(X) over K[X]. Then,
s(X) := r(X)r(X) belongs to K[X] and is coprime with p(X) (its
roots are the roots of r(X) and their conjugates). Therefore, p(X) +
s(X)K[X] is an open subset of G(K[X]), and its intersection with
Gn(K[X]) is contained in (p(X) + r(X)K ′[X])∩G′ ⊆ {p(X)}. Hence,
Gn(K[X]) is discrete and closed in G(K[X]). �

These results can be used, for example, to distinguish G(Q[X]) from
G(Q[X]). See Section 6.

5. Separably closed fields in characteristic p

In this section, we analyze what happens to fields of positive char-
acteristic that are separably or algebraically closed. The first step is
distinguishing them from the other fields; the following proof is similar
to the proof of Proposition 4.1.

Proposition 5.1. Let K be a field of characteristic p > 0, and suppose
that K is transcendental over Fp. Then, K is separably closed if and
only if, for every coprime irreducible polynomials f, g of K[X], G0(R)
is contained in the closure of pow(g) in the (f)-topology.

Proof. Suppose first that K is separably closed; since pow(g) is invari-
ant under multiplication by units, it is enough to show that 1 is in the
closure of pow(g). Write f(X) = Xpn−a, and let α be a root of f in the
algebraic closure K of K. Then, h := 1− 1

g(α)
g is a polynomial over K

having α as a zero, and thus X−α divides h; hence, f(X) = (X−α)p
n

divides

hp
n

=

(
1− 1

g(α)
g

)pn
= 1− 1

g(α)pn
gp

n

inK[X]. However, g(α)p
n ∈ K[X], and thus f divides hp

n
also inK[X].

Therefore, for every power q of p, f q divides (hp
n
)q = 1 − 1

g(α)qpn
gqp

n
,

and in particular 1 + f qK[X] contains an element of pow(q). Thus, 1
is in the closure of pow(q) under the (f)-topology, as claimed.

Conversely, suppose that K is not separably closed, let f be a sep-
arable irreducible polynomial, and let α, β be two distinct roots of f
in the algebraic closure of K; since K is transcendental over Fp, we
can suppose that α, β are transcendental too. We claim that there is
a t ∈ K ∩ Fp such that 1 is not in the closure of pow(X − t) in the
(f)-topology. Indeed, suppose 1 is in the closure for some t. Then,
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pow(X − t) meets 1 + fK[X], and in particular there are a unit u and
an integer m such that f divides 1− u(X − t)m. Hence, we must have
1 − u(α − t)m = 0 = 1 − u(β − t)m, and thus (α − t)/(β − t) must
be a root of unity (of degree at most m), and in particular it must be
algebraic over Fp.

Let r(t) := (α− t)/(β − t) and r := r(0) = α/β. Then,

r(t) =
α− t
β − t

=
rβ − t
β − t

=⇒ β =
t(r(t)− 1)

r(t)− r
whenever t 6= 0 (which implies r(t) 6= r). However, both t and r(t)
are algebraic over Fp, and thus β should be algebraic too; this is a
contradiction, and thus 1 is not in the closure of any pow(X − t) with
t 6= 0. �

The following proposition shows the difference between the behavior
of Gn(K[X]) in positive characteristic with respect to the characteristic
0 case (Proposition 4.3). Part (a) does not hold without the assumption
that K is separably closed; indeed, its failure is critical in the proof of
Proposition 7.4.

Proposition 5.2. Let K be a field of characteristic p > 0. Then, the
following hold.

(a) If K is separably closed, then G1(K[X]) is not dense in G(K[X]).
(b) If K is algebraic over Fp, then Gn(K[X]) has no isolated points

for all n ≥ 1.
(c) If K is algebraic over Fp, then Gm(K[X]) is contained in the

closure of Gn(K[X]) for all n ≥ m ≥ 0.

Note that all three of these hypothesis are fulfilled when K is the
algebraic closure of Fp.

Proof. (a) Suppose first p ≥ 3, and consider the open set 1 + X2 +
X3K[X]: if it intersects G1(K[X]) then there are an irreducible poly-
nomial g(X), u ∈ K, k ∈ N and b(X) ∈ K[X] such that ug(X)k = 1 +
X2+X3b(X). Since K is separably closed, we can write g(X) = Xpr−a
for some r ≥ 0 and some a ∈ K. If r > 0, then ug(X)k has no mono-
mial of degree 2, a contradiction; hence, it must be g(X) = X − a.
Considering the coefficients of degree 1 and 2, we have{

0 = u
(
k
1

)
ak−1 = uk(−1)k−1ak−1

1 = u
(
k
2

)
ak−2 = uk(k−1)

2
(−1)k−2ak−2.

The second equality implies that k, k− 1 and a are all different from 0
in K; however, this implies ukak−1 6= 0, a contradiction. Hence, 1+X2

does not belong to the closure of G1(K[X]).
Suppose now p = 2, and consider the open set 1+X+X3 +X4K[X].

Considering the monomial of degree 1, we see that the irreducible poly-
nomial g(X) must be in the form X − a. Suppose thus 1 +X +X3 +
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X4b(X) = u(X − a)k: then, confronting the coefficients of degree 1 we
have that k is odd, while confronting the coefficients of degree 2 we
get that (k − 1)/2 is even. The coefficient of degree 3 of u(X − a)k is
thus uk(k − 2)k−1

2
(−1)k−3ak−3 = 0, contradicting the presence of X3.

Hence, 1 +X +X3 does not belong to the closure of G1(K[X]).
(b) Let a(X) ∈ Gn(K[X]), and let b(X) be a polynomial coprime

with a(X). Let q be a prime power such that Fq contains all the
coefficients of a(X) and of b(X). Then, a(X) and b(X) are coprime
in Fq[X]; since Fq[X]/b(X)Fq[X] is finite, we can find k > 0 such
that a(X)k ≡ 1 mod b(X)Fq[X], and thus a(X)k+1 ∈ Gn(K[X]) ∩
(a(X)+ b(X)K[X]) is different from a(X). Hence, a(X) is not isolated
in Gn(K[X]).

(c) IfK is not algebraically closed thenG1(K[X]) is dense inG(K[X])
(see Proposition 6.3 below) and thus by Proposition 3.6(a) the Gn(R)
are actually dense.

Suppose that K is algebraically closed: by part (a), G0(R) is in the
closure of G1(R).

Let now a(X) ∈ Gm(K[X]), with m < n, and let b(X) be coprime
with a(X); let r := n − m. Choose r distinct elements, t1, . . . , tr,
such that b(ti) 6= 0 and a(ti) 6= 0 for all i; since K[X]/b(X)K[X] is
finite, we can find positive integers k1, . . . , kr such that (X − ti)

ki ∈
1 + b(X)K[X] for all i. Let A(X) := a(X)(X − t1)k1 · · · (X − tr)kr : by
construction, A(X) ∈ Gn(K[X]) and A(X) ≡ a(X) mod b(X)K[X],
that is, A(X) ∈ a(X) + b(X)K[X]. Hence, all neighborhood of a(X)
intersect Gn(K[X]), and thus a(X) is in the closure of Gn(K[X]), as
claimed. �

We now deal with the problem of distinguishing separably closed
fields of different characteristics, that is, we want to prove that if
G(K[X]) ' G(K ′[X]) then K and K ′ have the same characteristic,
extending Proposition 4.1. Until the end of the section the section, K
will be a field of characteristic p > 0 and K a (fixed) algebraic closure
of K. We denote by vp the p-adic valuation on the positive integers.

Definition 5.3. Let r(X) ∈ K[X] be an irreducible polynomial. An
r(X)-sequence is a sequence E ⊂ pow(r(X)). If r(X) /∈ (X − 1), we
say that E is basic if E converges to 1 in the (X − 1)-topology.

Since E ⊆ pow(q(X)), we can always write the elements of an r(X)-
sequence E := {sn(X)}n∈N as sn(X) := unr(X)en , for some un ∈ K•
and some positive integers en.

Lemma 5.4. Let p be a prime number and e, z be natural numbers such
that pz < e. If p divides the binomial coefficient

(
e
pt

)
for all 1 ≤ t ≤ z,

then vp(e) ≥ z + 1.

Proof. Fixed p and e, we proceed by induction on z. If z = 0, then we
know that p divides

(
e
p0

)
=
(
e
1

)
= e, and the claim holds.



12 DARIO SPIRITO

Suppose we have proved the claim up to z − 1. Then, pz|e and p
divides (

e

pz

)
=
e(e− 1) · · · (e− pz + 1)

pz(pz − 1) · · · 2 · 1
.

For all 0 < k < pz, we have vp(k) < vp(e) and thus vp(e − k) =
min{vp(e), vp(k)} = vp(k); hence, the p-valuation of the product (e −
1) · · · (e− pz + 1) is equal to the p-valuation of (pz − 1)!. Thus,

0 < vp

((
e

pz

))
= vp

(
e

pz

)
= vp(e)− vp(pz) = vp(e)− z.

It follows that vp(e) > z, i.e., vp(e) ≥ z + 1. By induction, the claim is
proved. �

Proposition 5.5. Let r(X), q(X) be coprime irreducible polynomials,
and let E = {sn(X) := unr(X)en}n∈N be an r(X)-sequence. Let s ∈
K•. Then, E converges to s in the (q(X))-topology if and only if
vp(en)→∞ and, for every root λ of q(X) in K, we have sn(λ) = s for
all sufficiently large n.

Proof. Suppose first that K = K is algebraically closed. Then, we
can write r(X) := X − t, q(X) := X − λ for some t, λ ∈ K. Let
Q := (X − λ).

Suppose the two conditions hold, and let k be any integer. Then,
there is an N such that vp(en) ≥ k and sn(λ) = s for every n ≥ N .
Thus,

sn(λ) = un(X − t)en = un(X − λ+ λ− t)pke′n =

= un((X − λ)p
k

+ (λ− t)pk)e
′
n .

Untying the binomial, we obtain un((λ−t)pk)e
′
n = un(λ−t)en = sn(λ) =

s, while the other monomials are all divisible by (X − λ)p
k
. Therefore,

sn(λ) ∈ s + Qpk for all n ≥ N . Since {s + Qpk} is a local basis of
neighborhoods of s in the Q-topology, E tends to s.

Conversely, if E converges to s in the Q-topology then sn(X) ∈ s+Q
for all sufficiently large n, i.e., sn(X) − s ∈ Q, or equivalently q(X)
divides sn(X)−s. Hence, sn(λ)−s = 0 and sn(λ) = s for all sufficiently
large n. We now have

sn(X) = un(X − λ+ λ− t)en = un
∑
i

(
en
i

)
(λ− t)n−i(X − λ)i.

Since E converges to s, the polynomial sn(X) − s must belong (for
large n) to Qk for every k > 0, that is, the coefficients of degree < k
in X − λ must be equal to 0. Choose k = pz + 1. Then, for large
n, we have that

(
en
r

)
= 0 for all 1 ≤ r ≤ pz; by Lemma 5.4, we have

vp(en) ≥ z + 1. Since z was arbitrary, vp(en) tends to infinity.
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If now K is not algebraically closed, it is enough to note that the
convergence of E in the (q(X))-topology is equivalent to the conver-
gence in K[X] of E in the (X − λ)-topology for every root λ of q(X),
and then apply the previous reasoning. �

Let now E be a basic r(X)-sequence. We denote by LK(E) the
set of maximal ideals Q of K[X], different from (r(X)), such that E
converges to 1 in the Q-topology; furthermore, we denote by LK the
set of natural numbers n such that there is an irreducible polynomial
r(X) and an (r(X))-sequence E with |LK(E)| = n. These sets are
determined by the Golomb topology, in the following sense.

Proposition 5.6. Preserve the notation above.

(a) Let h : G(K[X]) −→ G(K ′[X]) be a homeomorphism such that
h(1) = 1, and let s(X) be an irreducible polynomial such that
s(X) generates h((r(X)). Then, h(E) is a s(X)-sequence and
h(LK(E)) = LK′(h(E)).

(b) If G(K[X]) and G(K ′[X]) are homeomorphic, then LK = LK′.
Proof. (a) follows from the fact that a homeomorphism of Golomb
spaces is also a homeomorphism between the Q-topology and the Q′-
topology (where Q′ := h(Q•) ∪ {0}). (b) follows directly from (a). �

To study LK , we introduce another set associated to an r(X)-sequence
E: we denote by `(E) the subset of K formed by the roots of the irre-
ducible polynomials that generate a prime ideal of L(E), that is, `(E)
is the set of all λ such that E converges to 1 in the (X−λ)-topology of
K[X]. Note that `(E) does not depend on the field K, i.e., it remains
the same also when considering E in K ′[X], where K ′ is an extension
of K.

Proposition 5.7. Let E be a basic X-sequence. If 1 ∈ `(E), then `(E)

is a torsion multiplicative subgroup of K
•
.

Proof. Let E = {sn(X) := unX
en}. If 1 ∈ `(E), then 1 = sn(1) for

all sufficiently large n, that is, 1 = un1en = un for all large n; without
loss of generality we can suppose that un = 1 for all n. By Proposition
5.5 (and noting that the condition vp(en) → ∞ does not depend on
λ) it follows that `(E) is the set of all λ such that λen = 1 for all
sufficiently large n, and it is easy to see that this is a subgroup of K•

whose elements are all torsion. �

The previous proposition also has a converse.

Proposition 5.8. Let H be a torsion multiplicative subgroup of K
•
.

Then, there is a basic X-sequence E with `(E) = H.

Proof. If H is finite, let fn := |H| for all n. If H is infinite, let h1, h2, . . .
be an enumeration of H (note that, since H is torsion, it is contained
in the algebraic closure of Fp and thus it is countable), and let fn be
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the order of the subgroup generated by h1, . . . , hn. We claim that the
sequence E = {sn(X) := Xfnpn}n∈N satisfies the condition: indeed,
vp(en) = n for all n, and thus the p-adic valuation of the exponents
goes to infinity. Furthermore, if h ∈ H then sn(h) = hfnp

n
= (hfn)p

n
=

1p
n

= 1 for all sufficiently large n. Thus h ∈ `(E) and H ⊆ `(E).
On the other hand, suppose h /∈ H. If its order is infinite, then

hfnp
n 6= 1 for every n and h /∈ `(E) by Proposition 5.5. If the order of

h is finite, we claim that it does not divide any fn. Indeed, every finite
subgroup of K• is cyclic, and thus if the order of h divides fn then h
would belong to 〈h1, . . . , hn〉 and thus to H, a contradiction. Since no
element of K• has order p (or a multiple of p), it follows that the order
of H does not divide fnp

n for every n; thus, again hfnp
n 6= 1 and so

h /∈ `(E). The claim is proved. �

In general, we only know that |`(E)| ≤ |LK(E)|; however, when K
is algebraically closed then the natural map λ 7→ (X − λ) from K to
Max(K[X]) is a bijection, and thus in particular |`(E)| = |LK(E)|. We
now can use the previous propositions to determine LK .

Lemma 5.9. Let K be an algebraically closed field of characteristic
p > 0, and let n be a positive integer. Then, there is a subgroup of K•

of cardinality n if and only if n is coprime with p.

Proof. If n is coprime with p, then there is a k such that n divides
pk − 1; therefore, the multiplicative group of Fpk contains a subgroup
of cardinality n. Since K is algebraically closed, it contains Fpk , and
thus K• contains a subgroup of cardinality n.

If n is not coprime with p, then p divides n. Thus, if K• contains a
subgroup of cardinality n, it contains also a subgroup of cardinality p.
However, no element of K• has order p. �

Proposition 5.10. Let K be a separably field of characteristic p > 0.
Then, LK = N \ pN+.

Proof. Suppose first that K is algebraically closed. If n > 0 is coprime
with p, then by Lemma 5.9 there is a subgroup of K• of cardinality n,
and thus by Proposition 5.8 there is an X-sequence E with |LK(E)| =
n. Furthermore, the sequence {Xk}k∈N does not converge in any P -
topology (as vp(k) does not tend to infinity) and thus also 0 ∈ LK .
Hence, N \ pN+ ⊆ LK .

Conversely, let E be a (X−λ)-sequence with (X−µ) ∈ LK(E). Let
ψ be the map

ψ : G(K[X]) −→ G(K ′[X]),

f(X) 7−→ f((λ+ µ)X + λ).

Then, ψ is a ring automorphism ofK[X], and thus it is a self-homeomorphism
of G(K[X]). Furthermore,

ψ(X − λ) = (λ+ µ)X + λ− λ = (λ+ µ)X
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and thus ψ((X + λ)) = (X); on the other hand,

ψ(X + µ) = h(1)−1((λ+ µ)X − λ+ µ = (λ+ µ)(X − 1)

and thus ψ((X + µ)) = (X − 1). Hence, ψ(E) is a basic X-sequence,
and |LK(E)| = |LK(ψ(E))|. By Lemma 5.9, |LK(E)| is coprime with
p, and thus LK ⊆ N \ pN+. Thus the two sets are equal.

Suppose now that K is separably closed. Then, every irreducible
polynomial is either linear or in the form Xpn − a for some a ∈ K
and some n ≥ 1; hence, every maximal ideal of K[X] is contained in
a single prime ideal of K[X]. Therefore, an r(X)-sequence E in K[X]
is a s(X)-sequence in K[X], where s(X) generates the prime ideal
containing r(X). In particular, |LK(E)| = |LK(E)| = `(E); therefore,
LK = LK and thus LK = N \ pN+, as claimed. �

Theorem 5.11. Let K,K ′ be two separably closed fields of character-
istic p, p′ (respectively). If G(K[X]) and G(K ′[X]) are homeomorphic,
then p = p′.

Proof. By Corollary 4.2 we can suppose p, p′ > 0. By Proposition
5.6(b), LK = LK′ . By Proposition 5.10 LK = N \ pN+ and LK′ =
N \ p′N+. Hence, p = p′. �

Corollary 5.12. Let K,K ′ be algebraically closed fields, and suppose
that G(K[X]) ' G(K ′[X]). If one of them is uncountable, then K '
K ′.

Proof. Since the cardinality of K[X] is the same of K, if G(K[X]) '
G(K ′[X]) then K and K ′ have the same cardinality. If one of them has
characteristic 0, then by Proposition 4.1 so does the other; otherwise,
they have the same positive characteristic by Theorem 5.11. Since
they have the same uncountable cardinality, and they are algebraically
closed and of the same characteristic, by [12, Chapter VI, Theorem
1.12] K and K ′ are isomorphic, as claimed. �

In the countable case, we need to distinguish fields that have different
degree of transcendence over Q or Fp. If the characteristic is positive,

the following Proposition 7.1 will show that we can distinguish Fp from
the other fields, but it is an open question if, for example, the algebraic
closure of Fp(T ) and the algebraic closure of Fp(T1, T2) give rise to
non-homeomorphic Golomb spaces.

6. Almost prime elements

Let R be a Dedekind domain. We say that an element b ∈ R is
almost prime if it is irreducible and it is contained in a unique prime
ideal; this happens if and only if bR = P n for some prime ideal P , with
n being exactly the order of the class of P in the class group.
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Definition 6.1. We say that a Dedekind domain R with torsion class
group has the almost Dirichlet property (or, simply, that R is almost
Dirichlet) if any coprime coset contains (at least) one almost prime
element, that is, if the set of almost prime elements is dense in G(R).

Remark 6.2.

(1) If R has torsion class group, h : G(R) −→ G(S) is a homeo-
morphism of Golomb spaces and b ∈ R is contained in a unique
prime ideal, the same happens for h(b) [16, Proposition 2.7].
However, it is an open question whether h sends irreducible el-
ements into irreducible elements; in particular, we do not know
if the almost Dirichlet property is a topological invariant (with
respect to the Golomb topology).

(2) If R is almost Dirichlet, then G1(R) is dense in G(R), as every
almost prime element belongs to G1(R).

(3) By Dirichlet’s theorem on primes in arithmetic progressions,
the ring Z of integers is almost Dirichlet. The same happens
when R = F [X], where F is a finite field [14, Theorem 4.8] and
when R = Q[X] or, more generally, for R = K[X] when K is a
Hilbertian field.

(4) A field F is said to be pseudo-algebraically closed (PAC) if every
nonempty absolutely irreducible variety defined over F has an
F -rational point [7, Chapter 11]. If F is PAC and contains sep-
arable irreducible polynomials of arbitrarily large degree, then
every coprime coset contains irreducible polynomials, and F [X]
has the almost Dirichlet property [2, Theorem A].

Proposition 6.3. Let F be an algebraic extension of a finite field that
is not algebraically closed. Then, F [X] has the almost Dirichlet prop-
erty.

Proof. If F is finite, the claim follows from [14, Theorem 4.8]. If not,
then F is pseudo-algebraically closed [7, Corollary 11.2.4] and has (sim-
ple) separable extensions of arbitrarily large degree, and thus F [X] is
almost Dirichlet by [2, Theorem A]. �

A simple consequence of the Remark 6.2(3) and of Proposition 4.3
is the following.

Corollary 6.4. G(Q[X]) 6' G(Q[X]).

We now want to prove that, at least in some cases, a homeomorphism
of Golomb spaces preserves almost prime elements and, to do so, we
shall abstract the proof of [1, Lemmas 5.10 and 5.11].

Definition 6.5. Let R be a Dedekind domain with torsion class group.
We say that R is power separated if, for every maximal ideal P and
every b ∈ G{P}(R), we have pow(b) ∩G{P}(R) = pow(b).
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A more explicit sufficient condition is the following.

Proposition 6.6. Let R be a Dedekind domain with torsion class group,
and suppose there is a function d : R• −→ [1,+∞) such that, for all
a, b ∈ R•:

• d(ab) = d(a)d(b);
• d(a+ b) ≤ d(a) + d(b) if a 6= −b;
• d(a) = 1 if and only if a is a unit.

Then, R is power separated.

Proof. Let P be a prime ideal, b ∈ G{P}(R) and c ∈ G{P}(R) \ pow(b).
By hypothesis, d(b) > 1, and thus we can find an integer t such that
d(b)t > d(b)t−1 +d(c) + 1. Let I := (bt− 1)R: then, c+ I is open (since
bt − 1 /∈ P ), and we claim that (c+ I) ∩ pow(b) = ∅.

Indeed, suppose not, and let z be in the intersection. Then, z =
ubr for some u ∈ U(R), r ∈ N. Since bt ≡ 1 mod I, we see that
z ≡ ubs mod I for some s ∈ {0, . . . , t − 1} (setting b0 := 1), and thus
c ≡ ubs mod I, i.e., c− ubs ∈ I. However, as c 6= ubs we can calculate

d(c−ubs) ≤ d(c)+d(ubs) = d(c)+d(b)s ≤ d(c)+d(b)t−1 < d(b)t−1 ≤ d(bt−1).

For all x ∈ I, we have d(x) ≥ d(bt − 1); this is a contradiction, and
thus c + (bt − 1)R does not meet pow(b). Therefore, pow(b) is closed
in G{P}(R), and thus R is power separated. �

Corollary 6.7. The following hold.

(a) If R is the integral closure of Z in an imaginary quadratic ex-
tension of Q, then R is power separated.

(b) If R = K[X] for some field K, then R is power separated.

Proof. In the first case, all units of R are roots of unity, and conversely
every element of R on the unit circle is a root of unity; hence, we
can take the complex modulus as d. For the second case, set d(p) :=
2deg(p). �

Theorem 6.8. Let R be a Dedekind domain with torsion class group,
and suppose that R is power separated and has the almost Dirichlet
property. If S is a Dedekind domain and h : G(S) −→ G(R) is a
homeomorphism, then h sends almost prime elements into almost prime
elements.

Proof. Let a ∈ S be an element contained in a unique prime ideal, and
let b := h(a). We first claim that h(pow(a)) ⊆ pow(b).

Fix a unit u0 ∈ S and an integer n ≥ 1. Let f : G(S) −→ G(S)
be the map sending every x to u0x

n, and let φ : G(R) −→ G(R) be
the composition h ◦ f ◦ h−1. Then, f is continuous in the Golomb
topology, and thus so is φ; furthermore, if P is a prime ideal of R, then
h ◦ f ◦ h−1(P ) ⊆ P since h−1(P ) is a prime ideal of S. Let

c := φ(b) = φ(h(a)) = (h ◦ f ◦ h−1 ◦ h)(a) = h(u0a
n).
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Suppose that c /∈ pow(b): then, since R is power separated, we can find
an open set Ω := c + I such that Ω ∩ pow(b) does not meet G{Q}(R)
(where Q is the radical of bR). Since φ is continuous, φ−1(Ω) is an
open set containing b; hence, there is a d ∈ R, coprime with b, such
that φ(b+ dR) ⊆ Ω.

Since R is almost Dirichlet we can find an almost prime element
p ∈ b+ dI. Then, pow(p) = G{P}(R), where P is the only prime ideal
containing p; hence, φ(p) ∈ pow(p), i.e., there are u ∈ U(R) and l ∈ N+

such that φ(p) = upl. On the other hand,

φ(p) ∈ φ(b+ dR) ⊆ Ω = c+ I

and, at the same time,

upl ∈ u(b+ dI)l ⊆ u(bl + I) = ubl + I;

it follows that c ≡ ubl mod I, i.e., ubl ∈ c + I = Ω. This contradicts
the choice of I; hence, c must be in pow(b), that is, h(u0a

n) = c = ubl

for some l. Since this happens for every u0 and every n, we have
h(pow(a)) ⊆ pow(b).

Suppose now that a is almost prime, and let P andQ be, respectively,
the only prime ideal containing a and the only prime ideal containing
b. Then,

G{Q}(R) = h(G{P}(S)) = h(pow(a)) ⊆ pow(b) ⊆ G{Q}(R).

Thus pow(b) = G{Q}(R), i.e., b is almost prime. �

7. Algebraic extensions of Fp
As observed in [5, Corollary 14], a consequence of the fact that a

homeomorphism of Golomb spaces sends units to units is that if K,K ′

are distinct finite fields then the Golomb spacesG(K[X]) andG(K ′[X])
are not homeomorphic. The purpose of this section is to generalize this
result, allowing K and K ′ to be arbitrary algebraic extensions of the
same Fp.

The first step is to distinguish algebraic extensions from transcen-
dental extensions.

Proposition 7.1. Let K be a field of characteristic p > 0 and let g ∈
K[X] be an irreducible polynomial. Then, the following are equivalent.

(i) pow(g) is not discrete in G(K[X]);
(ii) for every s1, s2 ∈ K, either g(s1) = 0, g(s2) = 0 or g(s1)/g(s2)

is a root of unity;
(iii) K is algebraic over Fp.

Proof. (i) =⇒ (ii) Fix λ := ugn ∈ pow(g). Let s1, s2 ∈ K be such
that g(s1) 6= 0 6= g(s2), and let I be the ideal of K[X] generated by
(X − s1)(X − s2): then, I is coprime with g, and thus λ+ I is an open
subset of G(K[X]). Since pow(g) is not discrete, there are infinitely
many λ′ := u′gm ∈ λ+ I, with λ′ 6= λ.
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Therefore, I contains u′gm − ugn = u′gn(gr − v), where r := m − n
and v := uu′−1 (with g0 := 1); setting h := gr − v, it follows that
h(s1) = h(s2) = 0, and thus that r > 0 (since if r = 0 then v 6= 1 and h
is a nonzero constant) and g(s1)r = v = g(s2)r. Hence, (g(s1)/g(s2))r =
v/v = 1; that is, g(s1)/g(s2) is a root of unity, as claimed.

(ii) =⇒ (iii) Suppose not: then, K is infinite. Let s1 be any element
ofK such that g(s1) 6= 0. Let F be field generated by s1, the coefficients
of g and an element of K that is transcendental over the prime field:
then, F is infinite and contains only finitely many roots of unity. Hence,
there are only finitely many t ∈ F such that g(t) = 0 or g(t) = ug(s1)
for some root of unity u in F . In particular, there is an s2 which does
not satisfy either equality; however, this contradicts the hypothesis,
and thus K is algebraic over Fp.

(iii) =⇒ (i) Let λ ∈ pow(g), and let I be an ideal of K[X] that is
coprime with g (and thus with λ); let f be a generator of I. We need
to show that the open set λ+ I contains other elements of pow(g).

Let F be the subfield of K generated by u, the coefficients of g and
by the roots of f : then, F is a finite field, say of cardinality q. For
every α ∈ F , λ(α)q−1 = 1; hence, the polynomial h := 1 − λq−1 has
zeros in every element of F , and in particular all the zeros of f are
zeros of λ′. Let q′ be a power of q greater than every multiplicity of the
roots of f : then, f divides hq

′
= (1− λq−1)q

′
= 1− λq′(q−1). Therefore,

λ− λq′(q−1)+1 = λ(1− λq′(q−1)) ∈ I,
and thus λq

′(q−1)+1 ∈ λ+ I, as claimed. �

Corollary 7.2. Let K1, K2 be two field of positive characteristic. If
K1 is algebraic over its base field while K2 is not then G(K1[X]) 6'
G(K2[X]).

Let Homeo(G(R)) be the group of self-homeomorphisms of G(R),
and let

Λ(R) := {h ∈ Homeo(G(R)) | h(P •) = P • for every P ∈ Spec(R)}
and

Λ1(R) := {h ∈ Λ(R) | h(1) = 1}.
Note that Λ(R) does not necessarily contain all self-homeomorphisms
of G(R): for example, a ring automorphism ψ of R induces a self-
homeomorphism of Λ(R), but in general does not fix all prime ideals.
(For an example, take R = Z[i] and let ψ be the complex conjugation.)

These groups are effectively invariants of the Golomb topology.

Proposition 7.3. Let R, S be two Dedekind domains, and suppose
G(R) and G(S) are homeomorphic. Then, Λ(R) ' Λ(S) and Λ1(R) '
Λ1(S).

Proof. Let h : G(R) −→ G(S) be a homeomorphism. For every ψ ∈
Λ(R), the map ψ := h ◦ ψ ◦ h−1 is a self-homeomorphism of G(S), and
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if P is a prime ideal of R then ψ(P •) = h(ψ(h−1(P •))) = h(h−1(P •)) =
P •; thus, ψ ∈ Λ(S). Hence, h induces a map Λ(R) −→ Λ(S), sending
ψ to ψ, which is easily seen to be a group homomorphism. Likewise,
h−1 induces a map Λ(S) −→ Λ(R) which is the inverse of the previous
one. Hence, Λ(R) ' Λ(S).

The reasoning for Λ1 is the same, using the homeomorphism h′ :
G(R) −→ G(S) sending x to h(1)−1h(x) (so that h′(1) = 1). �

For any unit u of R, let ψu be the multiplication by u, and let
H := {ψu | u ∈ U(R)}. Then, H is a subgroup of Λ(R) (and thus of
Homeo(R)) that is isomorphic to the group of units of R. For every
h ∈ Homeo(G(R)), the map h1 := ψh(1)−1 ◦ h is a self-homeomorphism
of G(R) fixing 1; furthermore, if h lies in Λ(R) then so does h1, and
thus h1 ∈ Λ1(R). It follows that Λ(R) is generated by H and Λ1(R),
and in particular if Λ1(R) is trivial then Λ(R) = H ' U(R).

For example, if R = Z then by [16, Theorem 6.7] Λ1(Z) is trivial and
thus Λ(Z) is isomorphic to U(Z) ' Z/2Z. This phenomenon is linked
to the hypothesis we worked with in Section 6.

Proposition 7.4. Let R be a Dedekind domain with torsion class group
that has the almost Dirichlet property and is power separated. Sup-
pose that there are infinitely many prime ideals P such that U(R) −→
R/P nP is injective for some integer nP . Then, Λ1(R) is trivial and
Λ(R) ' U(R).

Proof. Let ∆ be the set of all prime ideals for which there is such a nP ,
and let X :=

⋃
{P • | P ∈ ∆}.

By Theorem 6.8, any self-homeomorphism h of G(R) sends almost
prime elements into almost prime elements. Let h ∈ Λ1(R), and let f
be almost prime: then, h(f) is an almost prime element contained in
the same prime ideal of f , and thus there is a uf ∈ U(R) such that
h(f) = uff .

Let P ∈ ∆. Then, h is a homeomorphism in the P -topology, and thus
in particular it is continuous, i.e., for every n there is an m = m(n) ≥ n
such that h(1 +Pm) ⊆ 1 +P n (using h(1) = 1). Choose n ≥ nP : then,
for every f ∈ 1 + Pm that is almost prime both f and uff are in
1 + P n, and thus f − uff = f(1 − uf ) ∈ P n. Since f /∈ P , it follows
that 1 − uf ∈ P n. By the injectivity of U(R) −→ R/P n we have
uf = 1, i.e., f is a fixed point of h. The closure of 1 + Pm is the
Golomb topology is (1 + Pm) ∪ P •; hence, also all the elements of P •

are fixed points of h. It follows that h|X is the identity.
Let now z ∈ G(R) and let z+I be an open neighborhood of z. Since

∆ is infinite, there is a Q ∈ ∆ that is coprime with I and z; thus, z+ I
meets Q. Since I was arbitrary, it follows that z is in the closure of X;
thus, X is dense in G(R). Since h|X is the identity, the whole h is the
identity. Hence, Λ1(R) is trivial and Λ(R) ' U(R). �
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Theorem 7.5. Let K,K ′ be fields of characteristic p > 0. If K is
algebraic over Fp and G(K[X]) ' G(K ′[X]) then K ' K ′.

Proof. By Corollary 7.2, K ′ must be algebraic over Fp. If K is alge-
braically closed, then G1(K[X]) is not dense in G(K[X]) (Proposition
5.2(a)); if K ′ is not algebraically closed, then K ′[X] is almost Dirichlet
(Proposition 6.3) and thus G1(K[X]) is dense in G(K[X]). Therefore,
if K is algebraically closed then so is K ′, and thus K ' K ′.

Suppose now that K is not algebraically closed. By the previ-
ous reasoning, neither K ′ is algebraically closed. By Proposition 6.3,
K[X] and K ′[X] are almost Dirichlet, and thus by Proposition 7.4
Λ1(K[X]) ' U(K[X]) = K• and Λ1(K ′[X]) ' U(K ′[X]) = K ′•. Fur-
thermore, all maps K• −→ K[X]/P are injective; by Proposition 7.4,
it follows that K• ' K ′•.

We can consider K and K ′ contained in the algebraic closure Fp. If
K ′ is not isomorphic to K, then K 6= K ′, and thus without loss of
generality there is a finite extension Fpn that is contained in K but not
in K ′. Hence, K• contains elements of order pn − 1 (the generator of
the multiplicative group of Fpn) while K ′ does not, because pm − 1 is
a multiple of pn − 1 only if m is a multiple of n. Therefore, K• ' K ′•

implies K = K ′, as claimed. �

As a corollary, we are able to answer affirmatively to a question posed
in [5, Section 3.1]. We denote by c the cardinality of the continuum.

Corollary 7.6. The number of distinct Golomb topologies associated
to countably infinite domains is c.

Proof. There are c possible pairs of binary operations on a countably
infinite set; hence, there are at most c ring structures and at most c
distinct Golomb topologies.

To show that there are exactly c, let p be a prime number and let
Cp be the set of all (isomorphism classes of) algebraic extensions of Fp.
By Theorem 7.5, the Golomb topologies relative to the members of Cp
are pairwise non-homeomorphic, and thus we need to show that Cp has
cardinality at least c.

Let {q1, q2, . . .} be the set of prime numbers. To each A ⊆ N, we can
associate the field F (A) defined as the composition of the extensions
of Fp of degree qi, for i ∈ A: then, F (A) 6= F (A′) if A 6= A′, and thus
the cardinality of Cp is at least the cardinality of the power set of N,
i.e., c. The claim is proved. �

The method used in the proof of Theorem 7.5 does not quite extend
to the case in which the characteristic of K and K ′ are not supposed
beforehand to be equal; that is, it is not clear how to prove the analogue
of Theorem 5.11 for algebraic extensions of finite fields. We can however
say something about the relation between the two characteristics.
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Proposition 7.7. Let K,K ′ be algebraic extensions of Fp and Fp′, re-
spectively. If p divides p′ − 1, then G(K[X]) and G(K ′[X]) are not
homeomorphic.

Proof. Using Theorem 5.11 we can suppose that K and K ′ are not
algebraically closed. As in the proof of Theorem 7.5, by Propositions
6.3 and 7.4 if G(K[X]) ' G(K ′[X]) then the groups of units K• and
K ′• are isomorphic. However, p|p′ − 1 implies that there is an u ∈ K ′•
of order p, something which cannot happen in K•. Hence, G(K[X])
and G(K ′[X]) are not homeomorphic. �
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