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Abstract. This paper concerns singular perturbation problems where the dy-
namics of the fast variable evolve in the whole space according to an operator

whose infinitesimal generator is formed by a Grushin type second order part

and a Ornstein-Uhlenbeck first order part.
We prove that the dynamics of the fast variables admits an invariant mea-

sure and that the associated ergodic problem has a viscosity solution which

is also regular and with logarithmic growth at infinity. These properties play
a crucial role in the main theorem which establishes that the value functions

of the starting perturbation problems converge to the solution of an effective

problem whose operator and initial datum are given in terms of the associated
invariant measure.

1. Introduction. This paper is devoted to study with PDE’s methods some as-
ymptotic features of processes described by the dynamics

dZt = b(Zt)dt+
√

2σ(Zt)dWt for t ∈ (0,+∞), Z0 = x0 ∈ R2, (1)

where Wt is a 2-dimensional Brownian motion while the matrix σ is degenerate and
of Grushin type and the drift b is of Ornstein-Uhlenbeck type, namely

σ(x) =

(
1 0
0 x1

)
, b(x) = −αx, α > 0. (2)

The columns of σ in (2), X1 and X2, satisfy Hörmander condition: actually X1 =
(1, 0) and [X1, X2] = (0, 1) span all R2. Hence, we have that [X1, X2] = ∂x2 .

In particular, we shall investigate:
1) existence and uniqueness of the invariant measure of this process;
2) existence, uniqueness and regularity of the solution for the ergodic problem of
the infinitesimal generator L (see (4));
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3) the asymptotic behaviour as ε → 0 of the value function of optimal control
problems driven by{

dXt = φ̃(Xt, Yt, ut)dt+
√

2σ̃(Xt, Yt, ut)dWt, X0 = x ∈ Rn

dYt = 1
ε b(Yt)dt+

√
2√
ε
σ(Yt)dWt, Y0 = y ∈ R2.

(3)

The paper is organized as follows: in Section 2 we prove existence and uniqueness
of the invariant measure. In Section 3 we establish our main result on perturba-
tion problem; to this end, we introduce the approximated ergodic problems and
investigate the regularity of their solutions.

2. Existence of the invariant measure. We consider the stochastic dynamics
(1) with coefficients as in (2). The main aim of this section is to prove existence
and uniqueness of the invariant measure m associated to the process (1). To this
goal, we use a Liouville property for the infinitesimal generator of (1) (see [4] for
other Liouville properties for Grushin operator in a semilinear framework with a
superlinear growth for the zeroth order term).

Let us recall from [3] that a probability measure m on R2 is an invariant measure
for process (1) if, for each u0 ∈ L∞(R2), it satisfies∫

R2

u(x, t)m(x) dx =

∫
R2

u0(x)m(x) dx

where u(x, t) = Ex(u0(Xt)) is the solution to the parabolic Cauchy problem

∂tu+ Lu = 0 in (0,+∞)× R2, u(x, 0) = u0(x) on R2

where
L(y, q, Y ) := −tr(σσTY )− b · q ≡ −Y11 − y21Y22 − b(y)q (4)

is the infinitesimal generator of process (1). For the sake of completeness, let us
recall the result in [12, Example 5.1].

Theorem 2.1. The diffusion process (1) admits exactly one invariant probability
measure m.

Proof. Under our assumptions it is easy to check that the matrix Aρ = σρσ
T
ρ where

σρ(x) =

(
1 0 0
0 x1 ρ

)
is such that Aρ → A in L∞ and Aρ is locally definite positive. Moreover taking

W (x) =
1

12
x41 +

1

2
x22,

we have
−tr(Aρ(x)D2W (x))) = −2x21 − ρ2

−b(x)DW =
1

3
αx41 + αx22.

Then LρW = −tr(σρσTρ D2W ) + b ·DW ≥ 1 is equivalent to the following condition

1

3
αx41 + αx22 ≥ 2x21 + 1 + ρ2,

hence W satisfies

LρW ≥ 1 in B(0, R0)
C
, W ≥ 0 in B(0, R0)

C
, lim
|x|→∞

W =∞

for ρ sufficiently small.
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Then following the procedure used in [12, Proposition 2.1], using the function W ,
there exists an unique invariant measure mρ for the process with diffusion σρ, and
arguing as in [12, Theorem 2.1 (proof)] and using again the function W we obtain
the existence of the invariant measure associated to the process (1). For the proof
of uniqueness, we refer the reader to [12, Theorem 2.1]. �

Remark 1. Lions-Musiela in [11] have considered a similar degenerate case but in
their paper the elements of the matrix are bounded in R2 in this way

σ(x) =

(
1 0
0 x1√

1+x2
1

)
.

Remark 2. Following [12, Example 5.1] one can obtain results similar to Theorem
2.1 with a more general drift term b:

bi(x) = bi(xi),

{
bi(xi) ≤ − Ci

|xi|1−β for xi ≥ R
bi(xi) ≥ Ci

|xi|1−β for xi ≤ −R

for β ≥ 0, R > 0 and suitably chosen Ci > 0 (i = 1, 2).

Remark 3. As applications of the existence of an invariant measure we obtain,
arguing as in [12] the following results:

lim
δ→0+

δuδ(x) = lim
t→+∞

u(t, x) = lim
t→+∞

v(t, x)

t
=

∫
R2

fdm,

where m is the invariant measure and uδ, u and v are the solutions respectively of

δuδ + Luδ = f(·), in R2,

ut + Lu = 0 in (0,+∞)× R2, u(0, ·) = f(·) on R2,

vt + Lv = f(·) in (0,+∞)× R2, v(0, ·) = 0 on R2,

and L is defined in (4).

3. Asymptotic behaviour for a singular perturbation problem. In this sec-
tion, we investigate the limit of the value function

V ε(t, x, y) := sup
u∈U

E[

∫ T

t

f(Xs, Ys, us)ds+ ea(t−T )g(XT )]

where E denotes the expectation, U is the set of progressively measurable processes
with values in a compact metric set U and a is a fixed positive parameter and
(Xt, Yt) are driven by (3) (note that V ε depends on ε through the coefficients of the
dynamics).

Throughout this section, we shall assume

i) the function f = f(x, y, u) is Lipschitz continuous in (x, y) uniformly in u
and, for some Cf > 0, it satisfies

|f(x, y, u)| ≤ Cf (1 + |x|) ∀(x, y, u) ∈ Rn × R2 × U ;

ii) the function g is continuous in (x, y) and there exits Cg such that

|g(x, y)| ≤ Cg(1 + |x|) ∀(x, y) ∈ Rn × R2;

iii) φ̃(x, y, u) and σ̃(x, y, u) are Lipschitz continuous and bounded in (x, y) uni-

formly on u: |φ̃(x, y, u)| ≤ Cφ̃, |σ̃(x, y, u)| ≤ Cσ̃.
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Problems of this type arise from models where the variables Y evolve much faster
than the variables X. We refer to [2] and [13] for the financial models which inspired
this research.

By standard theory (see [7]), the value function V ε is the unique (viscosity)
solution to the following Cauchy problem

−∂tV ε +H
(
x, y,DxV

ε, D2
xxV

ε,
D2
xyV

ε

√
ε

)
+ 1
εL(y,DyV

ε, DyyV
ε) + aV ε = 0 in (0, T )× Rn × R2

V ε(T, x, y) = g(x, y) on Rn × R2

(5)

where L is the operator defined in (4) and

H(x, y, p,X,Z) := min
u∈U

{
−tr(σ̃σ̃TX)− φ̃ · p− 2tr(σ̃σTZ)− f(x, y, u)

}
.

Our aim is to establish that, as ε → 0+, the function V ε converges locally uni-
formly to a function V = V (t, x) (which will be independent of y) which can be
characterized as the unique (viscosity) solution to the effective Cauchy problem{

−∂tV +H
(
x,DxV,D

2
xxV

)
+ aV = 0 in (0, T )× Rn

V (T, x) = g(x) on Rn. (6)

The effective Hamiltonian and the effective terminal datum are given by

H(x, p,X) :=

∫
R2

H(x, y, p,X, 0)dm(y) (7)

g(x) :=

∫
R2

g(x, y)dm(y) (8)

and m is the invariant measure established in Theorem 2.1. As a matter of facts,
H(x, p,X) is the ergodic constant λ of the cell problem

− tr(σ(y)σT (y)D2w(y))− b(y)Dw(y) +H(x, y, p,X, 0) = λ y ∈ R2, (9)

(the solution w to this equation is called corrector) while g(x) is the constant ob-
tained in the long time behaviour of the parabolic Cauchy problem

∂tw
∗ − Lw∗ = 0 in (0,∞)× R2, w∗(0, y) = g(x, y) on R2,

(namely g = lim
t→+∞

w∗(t, y)).

The main issues of this setting are: 1) the fast variables evolve in the whole
space, 2) the infinitesimal generator of their operator is degenerate with unbounded
coefficients, 3) the variables y lack a group structure. In order to overcome these
issues, we shall use the following tools: 1) there exists a superlinear Lyapunov
function, 2) a Liouville type result applies to operator L, 3) there exists an invariant
measure, 4) the cell problem admits a regular solution (we shall first prove that it
is globally Lipschitz continuous and then we make a bootstrap argument) with an
at most logarithmic growth.

In order to prove the existence and the properties of (λ,w) satisfying (9), we
introduce the approximated problems

δuδ − tr(σ(y)σT (y)D2uδ)− b(y)Duδ = F (y) in R2, (10)

where δ > 0 and F (y) := −H(x, y, p,X, 0) with (x, p,X) fixed. In the next sub-
section we investigate the properties of the approximated correctors uδ; in the last
subsection these properties will be inherited by the corrector w.
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3.1. Regularity of the approximated correctors. In this section we shall es-
tablish two results on the regularity of uδ in two different setting for F : a global
Lipschitz continuity and a local Hölder continuity. In our opinion, both these re-
sults have their own interest because we apply two different techniques: the former
follows the ones of [5, 10] while the latter one follows the ones of [8]. However, in
the rest of the paper we shall only need the former one.

Throughout this section we assume

|F (y)| ≤ CF (|y|+ 1) ∀y ∈ R2. (11)

Let us recall from [13, Lemma 3.3] the following result on the growth of uδ; for the
proof, we refer the reader to [13].

Lemma 3.1. Under assumptions (11), there exists a constant C such that

|uδ(y)| ≤ C
(
|y|+ 1

δ

)
, y ∈ R2. (12)

3.1.1. Global Lipschitz continuity of the approximated corrector.

Proposition 1. Assume b as in (2) with α > 1 and that F is Lipschitz continuous
in R2 with Lipschitz constant L. Let uδ be the unique continuous solution of (10)
which satisfies (12). Then, for L̄ > L/(α− 1), there holds

|uδ(x)− uδ(y)| ≤ L̄|x− y| ∀x, y ∈ R2, δ > 0.

Proof. The proof follows the same arguments of the proof of [13, Theorem 3.2]. For
completeness, we briefly sketch the main steps. For each η > 0, we introduce the
function

Ψ(x, y) = uδ(x)− uδ(y)− L̄|x− y| − η|x|2 − η|y|2.
Our statement is equivalent to the following inequality

Ψ(x, y) ≤ 4η

δ
∀x, y ∈ R2, η ∈ (0, 1). (13)

In order to prove (13), we argue by contradiction. Using the Lemma [5, Lemma
3.2], we follow the same calculation up to equation [13, eq.(3.24)]. By our choice of
the matrix σ, we obtain the desired contradiction. �

Remark 4. As in [13], for b(x) = (−α1x1,−α2x2), we obtain the same result when
α1 > 1, α2 > 0 and L̄ > L/l where l = min{α1 − 1, α2}.

3.1.2. Local Hölder continuity of the approximated corrector.

Proposition 2. Assume b as in (2) with α > 1, (11) and

|F (x)− F (y)| ≤ CF |x− y|γ(Φ(x) + Φ(y)), x, y ∈ R2, γ ∈ (0, 1], CF > 0

where Φ(x) = x41 + x22 + M , M ≥ 1. Let uδ be the unique continuous solution of
(10) which satisfies (12). Then there is a constant C > 0, independent on δ such
that

|uδ(x)− uδ(y)| ≤ C|x− y|γ(Φ(x) + Φ(y)), ∀ x, y ∈ R2. (14)

Proof. We follow the procedure of [8, Theorem 4.3]. We define the functions
wδ(x, y) = uδ(x) − uδ(y) and g̃(x, y) = CF |x − y|γ(Φ(x) + Φ(y) + A) where A
will be chosen suitably large. If we prove that wδ ≤ g̃ in R2 × R2 then we obtain
(14) with a suitable C, since Φ > 1.

We argue by contradiction, we suppose that supR2×R2(wδ − g̃) > 0. From the
linear growth of uδ (see (12)) we know that lim|x|+|y|→+∞(wδ(x, y)− g̃(x, y)) = −∞
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hence we have that wδ ≤ g̃ in (R2×R2) \BR for a suitable ball BR ⊂ R2×R2. Let
(x̂, ŷ) ∈ BR be maximum point of wδ(x, y)− g̃(x, y): wδ(x̂, ŷ)− g̃(x̂, ŷ) > 0, x̂ 6= ŷ.
At this point we introduce the operator Ξ defined as:

Ξg(x, y) = tr(Σ(x, y)D2g(x, y)) + 2
∑
i,j

∂2

∂xi∂xj
g(x, y)

where

Σ(x, y) =

(
σ(x)σT (x) σ(x)σT (y)
σ(y)σT (x) σ(y)σT (y)

)
=


1 0 1 0
0 x21 0 x1y1
1 0 1 0
0 x1y1 0 y21


(the matrix σ is defined in (2)). This operator is elliptic.

We observe that wδ(x, y) satisfies for any x, y ∈ R2

δwδ − Ξwδ + αxDxwδ + αyDywδ = F (x)− F (y)

≤ CF |x− y|γ(Φ(x) + Φ(y)).

Hence from the maximum principle we have that

δg̃(x̂, ŷ)−Ξg̃(x̂, ŷ) + αx̂Dxg̃(x̂, ŷ) + αyDy g̃(x̂, ŷ) ≤ CF |x̂− ŷ|γ(Φ(x̂) + Φ(ŷ)). (15)

At this point to find a contradiction we compute

δg̃(x̂, ŷ)− Ξg̃(x̂, ŷ) + αx̂Dxg̃(x̂, ŷ) + αyDy g̃(x̂, ŷ)

directly by the definition of g̃.
Denoting by t = |x− y|2, let us introduce g(x, y) as

g(x, y) = tγ/2(Φ(x) + Φ(y) +A).

We compute now Ξg(x, y) = tr(Σ(x, y)D2g(x, y)). We have

Dxg = γtγ/2−1(x− y)(Φ(x) + Φ(y) +A) + tγ/2DxΦ(x)

Dyg = γtγ/2−1(y − x)(Φ(x) + Φ(y) +A) + tγ/2DyΦ(y)

D2
xxg = γ(γ − 2)tγ/2−2(x− y)⊗ (x− y)(Φ(x) + Φ(y) +A) +

γtγ/2−1I(Φ(x) + Φ(y) +A) + 2γtγ/2−1(x− y)⊗DxΦ(x) + tγ/2D2
xxΦ(x)

D2
yyg = γ(γ − 2)tγ/2−2(y − x)⊗ (y − x)(Φ(x) + Φ(y) +A) +

γtγ/2−1I(Φ(x) + Φ(y) +A) + 2γtγ/2−1(y − x)⊗DyΦ(y) + tγ/2D2
yyΦ(y)

D2
xyg = −γ(γ − 2)tγ/2−2(x− y)⊗ (x− y)(Φ(x) + Φ(y) +A)−

γtγ/2−1I(Φ(x) + Φ(y) +A) + γtγ/2−1(x− y)⊗ (DyΦ(y)−DxΦ(x)).

Denoting by Aij the 2× 2 minor of Σ we have that

Ξg(x, y) = tr(Σ(x, y)D2g(x, y)) =

tr(A11D
2
xxg +A12(D2

xyg)T +A12D
2
xyg +A22D

2
yyg).
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Using the explicit derivatives written here above and the definition of Φ we obtain

Ξg(x, y) = tr(Σ(x, y)D2g(x, y)) =

γ(γ − 2)tγ/2−2(Φ(x) + Φ(y) +A)(x2 − y2)2(x1 − y1)2 +

tγ/2(∆GxΦ(x) + ∆GyΦ(y)) + γtγ/2−1(Φ(x) + Φ(y) +A)(x1 − y1)2 +

+4γtγ/2−1(x1 − y1)(x2 − y2)(x1x2 + y1y2)

where we denoted by ∆Gu(z) := tr(σ(z)σT (z)u(z)), i.e. the horizontal Grushin
Laplace operator.

We note that, by elementary calculations, it is possible to find a constant Lα
such that

−∆GΦ(z) + αzDzΦ(z) ≥ 2αΦ(z)− Lα. (16)

Now we write the equation

δg(x, y)− Ξg(x, y) + αxDxg + αyDyg = δtγ/2(Φ(x) + Φ(y) +A) +

tγ/2(−∆GxΦ(x) + αxDxΦ + (−∆GyΦ(y) + αyDyΦ))−
γ(γ − 2)tγ/2−2(Φ(x) + Φ(y) +A)(x2 − y2)2(x1 − y1)2

−γtγ/2−1(Φ(x) + Φ(y) +A)(x1 − y1)2 −
4γtγ/2−1(x1 − y1)(x2 − y2)(x1x2 + y1y2) +

αγtγ/2−1(Φ(x) + Φ(y) +A)(x− y)2 ≥ δtγ/2(Φ(x) + Φ(y) +A) +

tγ/2(2α(Φ(x) + Φ(y))− 2Lα)− γtγ/2−1(Φ(x) + Φ(y) +A)(x1 − y1)2 −
4γtγ/2−1(x1 − y1)(x2 − y2)(x1x2 + y1y2) +

αγtγ/2−1(Φ(x) + Φ(y) +A)(x− y)2,

where in the last inequality we used (16). Hence by the definition of t = |x − y|2
we have

δg(x, y)− Ξg(x, y) + αxDxg + αyDyg ≥
δ|x− y|γ(Φ(x) + Φ(y) +A) +

|x− y|γ(2α(Φ(x) + Φ(y))− 2Lα)− γ|x− y|γ−2(Φ(x) + Φ(y) +A)(x1 − y1)2 −
4γ|x− y|γ−2(x1 − y1)(x2 − y2)(x1x2 + y1y2) +

+αγ|x− y|γ−2I(Φ(x) + Φ(y) +A)(x− y)2.

Recall that g̃(x, y) = CF g(x, y), hence g̃ satisfies:

δg̃(x, y)− Ξg̃(x, y) + αxDxg̃ + αyDy g̃ ≥

CF |x− y|γ
(

2α(Φ(x) + Φ(y))− 2Lα + (δ − γ)(Φ(x) + Φ(y) +A) +

+αγ(Φ(x) + Φ(y) +A)− 4γ(x1x2 + y1y2)

)
.

Hence

δg̃(x, y)− Ξg̃(x, y) + αxDxg + αyDy g̃ ≥

CF |x− y|γ
(

(Φ(x) + Φ(y))(δ + (2α− γ) + γα)) +

A(δ + (α− 1)γ)− 2γ|x1x2 + y1y2| − 2Lα

)
.
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(We used that |(x1 − y1)(x2 − y2)| ≤ 1
2 (x− y)2.) Since α > 1 and γ ∈ (0, 1],

δg̃(x, y)− Ξg̃(x, y) + αxDxg + αyDy g̃ ≥

CF |x− y|γ
(

(Φ(x) + Φ(y)) +

γα(Φ(x) + Φ(y)) +A(δ + (α− 1)γ)− 4γ(x1x2 + y1y2)− 2Lα

)
>

CF |x− y|γ(Φ(x) + Φ(y)).

The last inequality is obtained noting that:
1) Since α > 1 we can find Kα > 0 such that αΦ(x)− 4γx1x2 > −Kα.
2) Since α > 1 we can choose A sufficiently large such that A(δ+ (α− 1)γ)− 2Lα−
Kα > 0.
Hence we obtain a contradiction of (15). �

Remark 5. Note that if we consider a drift term of the type: b(y) = (−α1y1,−α2y2)
we can obtain the same result as before taking γ = 1 with α1 > 1 and α2 > 0. The
calculations are tedious and we omit them.

3.2. The convergence result.

Theorem 3.2. Assume α > 1 and that, for F (·) = −H(x, ·, p,X, 0)

F ,
∂F

∂y2
and

∂2F

∂y22
are bounded Lipschitz continuous functions. (17)

Then, the solution V ε of (5) converges locally uniformly in (0, T )×Rn ×R2 to the
unique viscosity solution V of (6) where H and g are defined in (7)-(8).

Proof. The arguments of the proof are analogous to those of [13, Theorem 2.1]; we
only sketch them.

1. Well posedness of problem (5) and growth properties of V ε.

Proposition 3. For any ε > 0 there exists a unique continuous viscosity
solution V ε to problem (5) such that

|V ε(t, x, y)| ≤ C0(1 + |x|), ∀(t, x, y) ∈ (0, T )× Rn × R2

for some positive constant C0 independent on ε. In particular {V ε}ε is a
family of locally equibounded functions.

Proof. The proof is the same as [13, Proposition 2.1]. �

2. The cell problem.
Let us consider the sequence of solutions of the approximated cell problem

(10) {uδ}δ. Using Proposition 1 we can define (at least for a subsequence) the
lim
δ→0

(uδ(y)− uδ(0)) := w(y) and using the Lemma 3.1 lim
δ→0
−δuδ(0) =: λ.

Thanks to Proposition 1 w is a global Lipschitz function and using the
stability properties of viscosity solutions (w, λ) is a solution of the ergodic
problem (9).

Moreover:
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Proposition 4. The constant λ = −
∫
R2 H(x, y, p,X, 0)dm(y) (m is the in-

variant measure founded in Theorem 2.1) is the unique constant such that the
cell problem (9) admits a solution w with an at most linear growth at infinity.
Moreover w is globally Lipschitz continuous, satisfies

|w(y)− w(0)| ≤ C
[
1 + log(y41 + y22 + 1)

]
∀y ∈ R2 (18)

and it is unique up to an additive constant within the function with an at most
linear growth at infinity.

Proof. We refer the reader to Remark 3 to characterize λ.
Estimate (18) follows from an analogous estimate for uδ that can be proved

as in [13, Lemma 3.4] taking as supersolution of (10) the function g(y1, y2) =
C1 log(y41 + y22) which satisfies

δg − tr(σσtD2g) + αyDg ≥ C1

(
2y61 − 10y21y

2
2

(y41 + y22)2
+ α

4y41 + y22
y41 + y22

)
≥ F (y),

for y ∈ R2 \ BR, with suitable C1 and R sufficiently large. Hence repeating
the same argument as in [13, Lemma 3.4] we get the result. �

3. C2-regularity of the corrector.

Proposition 5. Let w be the solution of the cell problem (9) founded in

Proposition 4. Then w ∈ C2,β
loc (R2), for some β ∈ (0, 1).

Proof. In this proof, β denotes a constant which may change from line to line.
The corrector w solves

− tr(σ(y)σT (y)D2w(y)) + αyDw(y) = G(y) (19)

with G(y) := λ−H(x, y, p̄, X̄, 0). First let us get the global Lipschitz continu-

ity of ∂w
∂y2

and ∂2w
∂y22

. Deriving equation (19) with respect to y2 (remark that

this is possible because G is regular enough thanks to (17)) we obtain that
the function u := ∂w

∂y2
is bounded by Proposition 1 and it solves in the sense

of distributions

− tr(σσTD2u) + αyDu+ αu =
∂G

∂y2
. (20)

From Proposition 1 and [13, Lemma 3.5], we get that ∂w
∂y2

is globally Lipschitz

continuous in R2. Deriving again equation (20) with respect to y2 we obtain

that the function ∂2w
∂y22

is globally Lipschitz continuous in R2.

Using the global Lipschitz continuity of ∂w
∂y2

and Proposition 1 in (19),

we infer: ∂2w
∂y21
∈ L∞loc. Again, by the Lipschitz continuity of ∂w

∂y2
, we obtain

∆w ∈ L∞loc; by standard elliptic theory, Dw ∈ C0,β
loc . Using the global Lipschitz

continuity of ∂2w
∂y22

in (19), we get ∂2w
∂y21
∈ C0,β

loc . Again, by the Lipschitz conti-

nuity of ∂2w
∂y22

, we have ∆w ∈ C0,β
loc . Applying standard theory, we accomplish

the proof. �

4. Conclusion.
We adapt the classical perturbed test function method (see [1, 6, 9]) to

prove the convergence. To this end, we argue as in [13, Theorem 2.1] using
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the Liouville property for L, the regularity of the corrector and the existence
of a Lyapunov function (W (y) = y21 + y22).
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