
A novel approach for pre-filtering event sources using the
von Mises–Fisher distribution

D. Costantin1,2,3 • G. Menardi3 • A.R. Brazzale3 •

D. Bastieri1,4,5 • J.H. Fan1,2

Abstract Searching for as yet undetected γ-ray
sources is one of the main stated goals of the Fermi
Large Area Telescope Collaboration. In this paper, we
explore the capability of a filtering method based on a
finite mixture of von Mises–Fisher distributions. The
proposed procedure is specifically designed to handle
data with support on the unit sphere. The assump-
tion of a parametric model for each high energy emit-
ting source allows us to derive an explicit expression
for both the direction of the sources and their angu-
lar resolutions. The corresponding measures are based
on the directional mean and the quantiles of the single
mixture components. Sound criteria of model selection
can provide an automatic way to determine the num-
ber of detected sources. Additionally, a likelihood-ratio
test is developed to evaluate their significance. The
procedure is tested on simulated data sets of photon
emissions from high energy sources within the energy
range [10 − 1, 000] GeV. A real data example consist-
ing of a sample of the Fermi LAT data collected over
a period of about 7.2 years within the energy range
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[10 − 1, 000] GeV, in a subregion of the γ-ray sky, is
furthermore provided.
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1 Introduction

The Large Area Telescope (LAT) onboard the Fermi
spacecraft is a powerful instrument for exploring the
high energy γ-ray sky (Atwood et al. 2009). It is a wide
field-of-view pair-conversion telescope which covers the
energy range from 20 MeV to more than 300 GeV (Ack-
ermann et al. 2012). The telescope aims at resolving the
high energy sky for as yet unidentified photon emitting
sources and diffuse emission, leading to a better under-
standing of the mechanisms that both create and ac-
celerate particles emitted by celestial objects. In more
than 10 years of activity, the Fermi LAT Collaboration
released various catalogs of multiple kinds of sources
which cover different energy ranges.

The standard procedure of the Fermi LAT for source
detection is targeted at obtaining the spectral param-
eters of the sources and their significance. It relies
on a single source model which implements two work-
ing steps. The former step estimates the locations
of the sources and provides a preliminary estimate of
their spectral parameters using the pointlike method
developed by Kerr (2011). This method requires the
sky map to be partitioned into multiple small regions,
called partition or pixelization, which is provided by
the HEALPix software (Górski et al. 1998). It creates
a series of tiles of equal area whose size may vary de-
pending on the needs of the analyzer. The second step
quantifies how much a source emerges from the back-
ground. The significance of the source is derived from a
Poisson regression which models the number of photons
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at each pixel. A first example of application is Mattox

et al. (1996). Further details are provided by (Hobson

et al. 2010, Section 7.4).

A different strategy for detecting high energy sources

relies on variable number source models (Hobson et al.

2010, Section 7.3). The number of sources is identi-

fied by examining the whole sky map in one go, with-

out the need of splitting it into smaller regions. A re-

cent application to the analysis of X-ray data can be

found in Jones et al. (2015), while a first attempt to

extend it to the γ-ray sky is developed by Sottosanti

et al. (2019). Both contributions develop a suitable

Bayesian mixture model which represents the diffuse

background component and identifies the directions of

the photon emitting sources. A further interesting ap-

proach, which uses Bayesian techniques, is described in

Selig and Enßlin (2015) and applied to the Fermi LAT

data by Selig et al. (2015). Here, the γ-ray sky map is

denoised, deconvolved and decomposed to obtain an in-

dividual reconstruction of the point-like photon fluxes

as well as the diffuse background component.

The aim of our work is to develop a model for the

high energy emitting sources present in the whole γ-

ray sky. In particular, we assume that background pro-

cesses were pre-filtered out, so that we can explicitly

focus on the detection of the emitting sources. Our

data consist in the directions of the photons observed by

the Fermi LAT which we model using a finite mixture

of parametric distributions with support on the unit

sphere. More specifically, we will use the von Mises–

Fisher distribution to represent the photon emission of

each single source. The model is estimated by max-

imum likelihood using the expectation-maximization

(EM) algorithm. Explicit expression for both, the di-

rections of the sources and their angular resolutions,

will be derived using the directional mean of the von

Mises–Fisher distribution and its quantiles. The deter-

mination of the number of potential sources is an inte-

grated part of the proposed procedure and is achieved

via the application of a likelihood-based criterion for

model selection. Additionally, a parametric bootstrap

likelihood-ratio test is developed to evaluate the signif-

icance of the identified sources.

The paper is organized as follows. Section 2.1 pro-

vides a description of the reference data, and specifies

the model. Its estimation, the determination of the

number of sources and the test for evaluating their sig-

nificance are detailed in Sections 2.2-2.4. The proce-

dure is illustrated in practice and validated in Section 3.

Some concluding remarks close the paper in Section 4.

2 Material and methods

2.1 Data and model specification

This contribution focuses on the photon emission of
high energy γ-ray sources, as observed by the Large
Area Telescope (LAT) onboard the Fermi spacecraft.
Each photon, also called event, is described by a pair
of Galactic coordinates which represent the direction of
the emission. Additional information is available, such
as the energy of the recorded photon, the time of the
detection and the event type which characterizes the
quality of the detection. These pieces of information
will be recalled and considered later in our analysis.

The goal of our analysis is to identify the positions
µ of the unobserved sources, and to provide a measure
δ of their angular resolution. To this aim, the Galac-
tic coordinates (l, b) of each photon are suitably trans-
formed into cartesian coordinates on the unit sphere
x = (x, y, z) ∈ S2. We furthermore assume that the
photon emission of each source can be described by the
von Mises–Fisher (vMF) distribution with probability
density function

f(x | µ, k) = c3(k)ekµ
Tx. (1)

The parameter µ is directly linked to the mean di-
rection of the distribution and has unit norm; k > 0
is a concentration parameter which characterizes how
widely the photon emission spreads around the mean
direction of the source. Figure 1 shows three exam-
ples of vMF distributions projected on the unit circle.
All three instances share the same direction µ but dif-
fer in their concentration, which takes on the values
k = 1, k = 10 and k = 100. When the concentration
is small, the vMF distribution reduces to the uniform
distribution on the unit sphere, while, on the contrary,
it collapses into a point mass centered at µ if the con-
centration k → ∞. The normalizing constant c3(k) is
defined as

c3(k) =
k1/2

(2π)3/2I1/2(k)
,

where Ir(·) represents the modified Bessel function of
the first kind and order r.

Model (1) is particularly suitable to model high en-
ergy photon emission, since it can be regarded as akin to
an isotropic Gaussian distribution on the unit sphere.
That is, the vMF distribution describes observations
on a sphere which are elliptically symmetrically dis-
tributed around their mean direction.

The assumption of a parametric model for each γ-ray
emitting source allows us to derive an explicit expres-
sion for both the direction of the sources and their an-
gular resolutions. Specifically, the parameter µ of the
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Fig. 1 Three examples of von Mises–Fisher distribution which share the same direction µ (arrow), but differ in their
concentration k, projected on the unit circle. The concentration increases from left to right: k = 1, k = 10, k = 100.

vMF distribution represents a natural measure of the
center of the source, while the quantiles of the same dis-
tribution provide a robust measure of its angular reso-
lution. Further distributions to model directional data
are described in Sra (2016) which, however, focus on
different characteristics of the data. Just to name one,
the Watson distribution is a bipolar distribution which
more suitably describes events which accumulated with
respect to a given axis.

Suppose there are N sources in the observed sky re-
gion. We model the photon emission of these multiple
sources using a mixture of parametric densities (see,
e.g. McLachlan et al. 2000)

f(x | Θ) =

N∑
j=1

αjfj(x | θj), (2)

where fj is the density of a vMF distribution with pa-
rameters θj = (µj , kj), and αj represents the probabil-
ity that the j-th vMF distribution stands in the model.

2.2 Model estimation

Estimation of model (2) can be obtained by maximizing
the likelihood of the observed events X = (x1, . . . ,xn),
xi ∈ R3, i = (1, . . . , n) with respect to all model param-
eters Θ = (θ1, . . . ,θN , α1, . . . , αN ). To do so, we regard
the mixture model (2) as an incomplete data structure
model, where we do not observe the component mem-
bership of each observation xi. This membership can
be represented by a binary vector zi = (zi1, . . . , ziN )
with zij = 1 if xi arises from component j, and 0
otherwise. The maximum likelihood estimates of the
model parameters are usually obtained by maximizing
the complete data log-likelihood

lnP (X,Z | Θ) =

N∑
j=1

n∑
i=1

ln(αzijfzij (xi | θzij )), (3)

where, however, we have to face the difficulty that the
zi are not observed. The Expectation-Maximization
(EM, Dempster et al. 1977) algorithm overcomes this
problem.

The EM algorithm is an iterative method which is
heavily used in the statistical literature for maximizing
the log-likelihood of observed data in the presence of
missing values, as the zi are. A complete formulation
of the EM algorithm to estimate the parameters of a
mixture of vMF distribution can be found in (Banerjee
et al. 2005, Appendix A.2). Hereinafter we provide a
summary of the main steps. The pseudo-code for its
implementation is listed in Algorithm 1. Given an ini-
tial, possibly random, guess about the parameter vector
Θ = (θj , αj)j=1,...,n, the algorithm computes the prob-
abilities τij that observation xi arises from component
j

τij =
αjfj(xi | θj)∑

j=1N αjfj(xi | θj)
.

The Expectation (E) step is used to determine the ex-
pectation of the complete data likelihood 3 given the
probabilities τij

E[lnP (X,Z | Θ)] =

N∑
j=1

n∑
i=1

ln(αj)τij

+

N∑
j=1

n∑
i=1

ln(fj(xi | θj))τij . (4)

The subsequent Maximization (M) step produces a
novel estimation of the model parameters Θ by
maximizing expression 4 under the constraints that∑n
j=1 αj = 1, µTj µj = 1 and kj ≥ 0. To this aim,

the Lagrangian

L({αj}Nj=1, λ) =

N∑
j=1

n∑
i=1

ln(αj)τij + λ(1−
N∑
j=1

αj) (5)
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Algorithm 1 Expectation-Maximization algorithm for a mixture of vMF distributions in S2

1: Input: A set of cartesian coordinate xi on S2
2: Initialize all (αj ,µj , kj), j = 1, . . . , N

3: repeat

4: {The E-step}
5: for i = 1 to n do

6: for j = 1 to N do

6: fj(xi | θj)← c3(kj)e
kjµ

T
j xi

7: end for

8: for j = 1 to N do

8: τij ← αjfj(xi|θj)∑j
l=1 αlfl(xi|θl)

9: end for

10: end for

11: {The M-step}
12: for j = 1 to N do

12: αj ← 1
n

∑n
i=1 τij

12: µj ←
∑n
i=1 p(j | xi,Θ)

12: r̄ ← ||µj ||/(nαj)
12: µj ← µj/||µj ||
13: end for

14: until convergence

is maximized with respect to αj , which leads to

α̂j =
1

n

n∑
i=1

τij .

Similarly, the Lagrangian

L({µj , kj , λj}Nj=1) =

N∑
j=1

n∑
i=1

ln(fj(xi | θj))τij

+

N∑
j=1

λj(1− µTj µj)

serves to maximize the expected likelihood with respect
to the vMF parameters (µj , kj), while assuring that the
constraint k > 0 is respected. After some algebra, it
follows that

µ̂j =
rj
||rj ||

and

I3/2(k̂j)

I1/2(k̂j)
=
||rj ||∑n
i=1 τij

, (6)

where rj =
∑n
i=1 xiτij . Since estimating k in Equation

6 involves a ratio of Bessel functions, numerical and
asymptotic approximations are available. As detailed in
Banerjee et al. (2005, Section 4.1), using an asymptotic
approximation combined with an empirically estimated
correction terml eads to the following estimate

k̂j =
r̄d− r̄3

1− r̄2
(7)

where r̄ = I3/2(kj)/I1/2(kj), which is more efficient in

the presence of high dimensional data.

Steps E and M are alternated until convergence of

the algorithm. Once model (2) is estimated, we can as-

sociate each event to the corresponding potential source

via the maximum a posteriori rule. That is, xi is as-

signed to component j if

τ̂ij =
αjfj(xi | θ̂j)∑
`=1N α̂`f`(xi | θ̂`)

(8)

is maximum among the set {τ̂ij}j= ...N .

2.3 Model choice

So far, model estimation has been performed by as-

suming that the number N of mixture components is

known. In fact, this is far from being a realistic assump-

tion, hence some criterion to select the number of com-

ponents is required. To this aim, the Bayesian Informa-

tion Criterion (BIC) Schwarz et al. (1978) is unarguably

the most common approach, as it is shown to consis-

tently estimate the number of mixture components un-

der some regularity conditions (see, e.g., McLachlan

et al. 2000, Chapter 6). In general, the more complex

the model, the higher the data likelihood. However,

to avoid overfitting, choosing the maximum likelihood

model, among competitors characterized by a different

number of parameters is not suggested. In this direc-
tion, the BIC provides a measure of goodness of fit
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by penalizing the model likelihood with respect to the

number of parameters. Formally,

BIC(N) =

n∑
i=1

log

N∑
j=1

f(xi | Θ̂)− 1

2
νN log(n), (9)

where νN is the number of parameters of a model with

N components. According to this criterion, we choose

the model which maximizes the BIC. A further possi-

bility is the Integrated Classification Likelihood (ICL)

criterion (Biernacki et al. 2000). With respect to the

BIC, this criterion uses a penalty which favours mixture

models with well-separated components.

Indeed, selecting the best model according to the

BIC, or any other selection criterion, does not exclude

the possibility of false positives. In other words, there

is no guarantee that all identified mixture components

correspond to real sources. Taking advantage of the

parametric nature of model (2), we hence developed

a measure of significance for the potentially detected

sources based on a likelihood ratio test (LRT) which

we specifically tailored the underlying context. Likeli-

hood ratio tests are well studied in statistics and widely

used in applications, because of their appealing asymp-

totic properties. Given two nested models, the LRT

compares the likelihood of the global model with the

likelihood of a reduced (null) model. The larger the

former is with respect to the latter, the more evidence

do the data provide against the null model.

However, spherical data are often much concentrated

around their location µ, while the classical asymptotic

results apply in cases where the concentration parame-

ter k is neither too small nor too large (Paindaveine and

Verdebout 2019). In addition, the common χ2 limiting

null distribution of the LRT statistics requires a set of

regularity conditions to hold, which are not satisfied by

general mixture models (Hartigan 1977, 1985). Because

of these two difficulties, we will compute the null dis-

tribution of the likelihood ratio test using a modified

parametric bootstrap procedure.

Consider model (2) and suppose we want to assess

the significance of the j0-th component, that is,

H0 : αj0 = 0 against H1 : αj0 > 0. (10)

We define the null model as

f0(x | Θ̂ \ {α̂j0 , θ̂j0})

= α̂∗1f(x | θ̂1) + · · ·+ α̂∗j−1f(x | θ̂j−1)+

+ α̂∗j+1f(x | θ̂j+1) + · · ·+ α̂∗Nf(x | θ̂N ), (11)

where α̂∗j = α̂j/(1 − α̂j0). Note that the values of the

vMF parameters θj and of the mixing proportions αj

are kept fixed to their estimated values θ̂j and α̂j . That
is, we assume that the directions µj of the “confirmed”
sources were correctly identified. Furthermore, the cor-
responding mixing proportions α̂j are renormalized so
as to sum up to one, and all events are re-allocated
to the N − 1 model components via the maximum a
posteriori rule (8).

The alternative hypothesis is represented by the em-
bedding model

f(x | Θ̂) = π0f(x | θ̂j0)+(1−π0)f0(x | Θ̂\{α̂j0 , θ̂j0}),

where the mixing proportion π0 ∈ [0, 1] is the only un-
known parameter which we estimate by maximum like-
lihood. Note that, if the omitted model component
corresponds to a true source, we expect the estimate of
π0 to be close to α̂j0 , and almost zero otherwise. The
two hypothesis in (12) can be rewritten as

H0 : π0 = 0 against H1 : π0 > 0. (12)

We define the likelihood ratio test as in Davison and
Hinkley (1997, §4.3.2)

T =
1

n

n∑
i=1

log
f(x | Θ̂)

f0(x | Θ̂ \ {α̂j0 ,θj0})
(13)

and compute its null distribution via parametric boot-
strapping. That is, we generate B samples of size n
from the mixture of vMF densities f0(x | Θ̂\{α̂j0 , θ̂j0})
and define the corresponding p-value as

p =
1 +

∑B
b=1(Tb > T )

1 +B
. (14)

Here, Tb denotes the test statistic (13) computed on the
b-th bootstrap sample and T the observed value. Once
that one non-significant component is removed from the
model, the mixing proportions αj can be renormalized
to guarantee they sum up to one, and the events re-
allocated to the remaning components via the maxi-
mum a posteriori rule (8).

2.4 Implementaion details

Event reconstruction is subject to several sources of
uncertainty. These include among others the quality
with which the photon direction is reconstructed by
the LAT, as outlined by the Fermi Science Support
Center (FSSC). In addition, high energy photon emit-
ting sources are typically highly concentrated. A pos-
sible side effect is that we encounter “overpowered” p-
values, which are detrimental if the aim of our LRT
is to pinpoint spurious sources. Indeed, two sources
may be qualified as different based on their p-values,

http://fermi.gsfc.nasa.gov/ssc/
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when a simple eye inspection of the map highlights
that they actually represent the same cluster. We hence
re-designed the classical procedure for likelihood ratio
testing to overcome these difficulties incorporating two
amendments.

First, we account for the uncertainty of the recon-
structed events by including into our analysis the 95%
containment angle (CA95) of the corresponding event
class (Ackermann et al. 2013).

More precisely, instead of using the original set of
observations, {(li, bi)}i=1,...,n, we rely upon a new set
of Galactic coordinates {(l∗i , b∗i )}i=1,...,n, where

l∗i = li + εi

b∗i = bi + εi

and εi ∼ N(0, CA952i ). This blurred set of observa-
tions incorporates the uncertainty on the data by nois-
ing the reconstructed events via the addition of a nor-
mal error term with standard deviation set to the recon-
structed 95% containment angle. Model (2) is then es-
timated using the cartesian transformation of the pairs
{(l∗i , b∗i )}i=1,...,n.

The second adaptation modifies the bootstrap pro-
cedure by including an additional component of vari-
ability which avoids overpowered p-values in the pres-
ence of highly concentrated clusters. This is achieved
by reducing all concentration parameters k of the null
model (11) by a fixed amount.

3 Model Validation

3.1 Empirical setting

This section presents the results of the application of
the proposed procedure on some sets of sources simu-
lated from one of the catalogues released from the Fermi
LAT collaboration and spread on the whole sky map,
and on a set of real data selected from a circumscribed
region.

For each of the considered data sets, a set of models
has been estimated with different number of mixture
components. Then the best one according to the BIC
has been selected. It is worth to note, however, that
similar, not reported, results hold by selecting the best
model according to the ICL criterion. The 5% signif-
icance of each component has been evaluated via the
likelihood ratio test described in Section 2.3, run with
500 bootstrap samples. Due to the limited number of
bootstrap samples, we have not provided any correc-
tion for multiple testing; however, it is worth highlight-
ing that the computed p-values cluster homogeneously
around values that are either very close to zero or one.

In both the simulated and the real data, the true

source of photon emission is known, as well as its posi-

tional error. Once that model (2) has been estimated

on the data, and cleaned out from the not significant

components via the test (13), each component is associ-

ated to the source which reports the minimum distance.

The association is judged to be successful if the distance

between the true and the detected source is below the

sum of the positional error of the true source and the

positional error of the detected one. The latter value is

computed in all analyses which follow as the distance

between the estimated centroid and the 95% quantile

of the estimated component.

As a benchmark, we have also applied to all data

sets the single linkage clustering method, associated

with the Minimum Spanning Tree (MST) of the data,

based on the angular distance between photons (see,

Campana et al. 2007, for a comprehensive development

of this procedure for the detection of γ-ray sources).

Since, in this case, there is no obvious method to select

the number of detected sources, for the sake of com-

parison, we set this number to the actual number of

sources, as reported by the catalogues released from

the the Fermi LAT.

All analyses have been performed within the R com-

puting environment (R Core Team 2019) with the aid

of the movMF package (Hornik and Grün 2014) as well

as some ad-hoc built routines.

3.2 A simple illustrative example

As a first step of our empirical work, we illustrate the

proposed procedure on the simulated toy example dis-

played in Figure 2. Five sources were simulated from

the 3FHL catalog (Ajello et al. 2017), using the Fermi

LAT tool gtobssim and the same instrument response

functions (IRFs) employed to produce the 3FHL cat-

alog, that is, Pass8. Each source emission has been

generated within an energy range [10 – 1,000] GeV as-

suming a power law (PL) spectrum. The simulated

sample is rather small, amounting to n = 88 photons.

The BIC leads to the choice of a mixture components

with N = 10 sources, whose estimated parameters are

listed in Table 1, along with all the results of the anal-

ysis. The LRT test confirms the 5% significance of the

5 sources.

The performance of the proposed method was eval-

uated according to two criteria. As a first criterion,

we associate the estimated sources with the true ones

which present minimum distance, and confirm the asso-

ciation if the distance between the true and the detected

source is below the sum of their positional errors. As a

summarizing measure of the quality of the association,

https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtobssim.txt
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ID L (deg) B (deg) nj
3FHL J0007.9+4711 115.31 -15.03 30

3FHL J0014.7-5801 118.08 -4.50 19

3FHL J1125.0-5806 -68.29 2.87 26

3FHL J1726.2-1710 7.63 10.03 9

3FHL J1153.2+4929 145.62 64.99 4

Fig. 2 Aitoff projection of photons simulated from 5 sources. The crosses identify the real source direction. Red colours
indicate a higher concentration of photons than those tending towards blue. Below, the 3FHL name of the sources, their
Galactic coordinates (L,B), and the number of simulated photons nj .

we compute the True Positive Rate (TPR) and the False

Positive Rate (FPR). The former index is defined as the

proportion of true sources correctly detected, while the

latter one corresponds to the proportion of estimated

components which are not associated with any source.

In all cases, the distance between the estimated and the

detected source does not exceed the tolerance threshold

given by the sum of the positional errors of the true and

the detected sources. The overall TPR takes its max-

imum value one and the FPR gets the optimal value

zero.

As a second evaluation criterion, in the case of sim-

ulated data, we take advantage of the knowledge of the

pertaining source of each simulated photon emission.

This allows us to discuss the use of the proposed model

not only with respect to the detected source location,

but also with respect to the ability of the estimated

model to associate the events to the pertaining detected

source. To this aim, a common measure of quality of

the classification is known as the Adjusted Rand In-

dex (ARI, Hubert and Arabie 1985). The ARI has

expected value 0 under random allocation while the

higher its value (with maximum set to 1), the better

the agreement between two partitions; negative values

are also possible, indicating a classification worse than

what would be expected under a random allocation.

The ARI of the classification of the photons simulated

in the toy example is equal to 0.67 before removing the

not significant components, and it grows to one when
the only significant components are considered, that is,

every simulated photon has been correctly allocated.

The performance of the competitor MST is also ex-

cellent in the considered setting. Note, however, that

the number of sources to detect has been set to the true

value 5.

3.3 Simulated data

The procedure has been afterwards validated on two

further more challenging examples, built by simulat-

ing all the sources with more than 3 photons registered

by the 3FHL catalogue. We consider photon emis-

sions from two time spans, the former covering an ob-

servational time of 2 years, from 247000129 MET to

309831982 MET (Figure 3, left), the latter within the

same observational time of the LAT, that is, of about

7.2 years, from 247000129 MET to 474175306 MET

(Figure 3, right). In the 2 years setting the number
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Table 1 Empirical results on the toy example of Figure 2. The Galactic coordinates of the estimated µj are provided,
along with the estimated k, number of allocated photons nj , the p-value of the test on each component p; n′

j represents the
number of photons assigned to the estimated source after removing the non significant components, ID is the label ID of
the true sources, whose coordinates are reported in Figure 2. Additionally, the distance d(µj , µ̂j) is provided, the angular
resolution of the estimated sources δj , and the sum of the angular resolutions of the estimated and the true sources ERRj .
The last column displays a Y for the confirmed components, that is, the ones for which the distance from the associated
true source is less than ERR. The lower panel displays the TPR, the FPR, the ARI before applying the test (ARI0), the
final ARI and the ARI of the MST competitor.

l (deg) b (deg) k nj p n′j ID d(µj , µ̂j) δj ERRj confirmed

1 115.30 -15.01 178623.48 17 0.002 30 3FHL J0007.9+4711 0.02 0.3 0.35 Y
2 114.91 -15.51 3595.84 13 0.988 - - - - - -

3 118.02 -4.55 54404.91 16 0.002 19 3FHL J0014.7+5801 0.08 0.6 0.63 Y
4 118.09 -4.56 4624.85 3 1 - - - - - -
5 -68.16 2.97 137635.91 19 0.002 26 3FHL J1125.0-5806 0.2 0.4 0.42 Y

6 -66.70 4.50 121550.16 3 1 - - - - - -
7 -68.57 2.53 617003.95 4 1 - - - - - -
8 7.63 10.05 5482.15 9 0.002 9 3FHL J1726.2-1710 0.02 1.9 1.94 Y
9 145.00 64.56 17709.63 4 0.002 4 3FHL J1153.2+4929 0.51 1.1 1.11 Y

TPR = 1
FPR = 0

ARI0 = 0.67
ARI = 1
ARI(MST) = 1

of simulated sources which emit more than 2 photons
amounts to 889 while in the 7.2 one it grows to 1,481.

The sky distribution of the data of both the time
range simulations is complex. On one hand there is
a strong overlapping between sources emissions in the
Galactic region. On the other hand the photons are
less concentrated in the extragalactic sky map. In
both cases, the number of photons emitted by the true
sources cover a wide range of values. The number of
photons emitted by a source ranges from 3 to 3,572.
The source that emits more photons, 3572, is the well
known Vela Pulsar (or PSR J0835-4510), lying on the
Galactic plane.

In principle, the proposed procedure would allow its
direct application to the whole data set. In fact, a
mixture model with 1,481 components (as it would be
if we detected all the sources) would be characterized
by more than 6 thousands parameters, a large number
which is expected to jeopardize the accuracy of the es-
timates and the computational feasibility. For this rea-
son, we follow an alternative route, consisting in split-
ting our main goal in multiple minor sub-goals. Specifi-
cally, the sphere surface is cut into 36 regions, obtained
by the cross-product of the following partitions of the
latitude and longitude values:

l ∈ [(0, 60), (60, 120), (120, 180), (180, 240), (240, 300),

(300, 360)]

b ∈ [(−90,−45), (−45,−22.5), (0, 22.5), (22.5, 45), (45, 90)]

Instead of estimating the model on these separate

regions, which would possibly make difficult the iden-

tification of sources which lie between two adjacent

cuts, we enlarge each of the regions by 10 degrees along

both dimensions. For instance, the region (120, 180)×
(22.5, 45) is enlarged to (115, 185) × (17.5, 50) and the

model is estimated on this enlarged region. After-

wards, we restrict the model to the only detected (and

confirmed) sources with directional mean lying in the

smaller cut.

Other criteria of splitting the data and analyzing

them separately could be considered. For instance,

we also evaluated the use of random subsets sampled

from the whole sky map. However, as expected, this

choice has resulted less effective than the above illus-

trated space cut approach, because it does not account

for the spatial correlation of the data.

Consistently with the toy example, for each cut we

have evaluated the performance of the proposed proce-

dure in terms of TPR, FPR, and ARI. Results of the

single cuts are listed in Tables 2 and 3. In terms of clas-

sification, the increase of the ARI after removing the

not significant components confirms the effectiveness of

the proposed test. The high values of the ARI show an

excellent ability of the method to correctly allocate the

photons to the pertaining source. The only few excep-

tions of lower values of the ARI refer to the cut regions

where the information provided by the Fermi LAT is
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Fig. 3 Aitoff projection of all photons generated from the 3FHL catalog sources. (Left) In a 2 years simulation, the
number of simulated photons is 20, 474. Out of 1, 556 sources, 63 sources (4%) do not emit within the selected time and
energy range. (Right) In ∼ 7.2 years simulation, the number of simulated photons is 73, 389. Simulated sources 1, 556, of
these 1, 481 sources emit a number of photons > 3.

itself less reliable, due to a consistent presence of the

background.

The classification of the proposed procedure is over-

all comparable withe one of the MST method, whose

results are biased by the head start provided to the

procedure by suggesting the true number of sources to

detect.

With respect to the association of the estimated and

the true sources based on their distance, very low values

of the FPR indicate that the procedure does not detect

nonexistent sources. The TPRs, on the other hand, are

not completely satisfactory, as the proposed procedure

tends to underestimate the true number of sources. In

fact, the disagreement between low values of the TPR

and high values of the ARI, in some cut, suggest that

the undetected sources are the one with fewer photons.

Results are consistent for the 2 years and the 7.2 years

settings, with slightly worse results in the latter case

where the number of data and sources is much higher.

Once that a model has been estimated and the spu-

rious components removed at each sub-region, we are

able to combine all the models together by taking ad-

vantage of its mixture structure. Specifically, given the

estimated cut models {f (l)(· | Θ̂l)}l=1,...,36, each with

structure of the (2), the overall merged model will take

the form

f(x | Θ̂) =
1

36

36∑
l=1

f (l)(x | Θ̂l)

Results deriving from the model merging unavoidably

worsen the partial results, especially in the 7.2 years

setting, where more events are observed, possibly also

lying between the region cuts, which may lead to an

incorrect allocation of some photons.

3.4 Real data analysis

Although our method was designed to be applied on
data after a pre-processing step expected to filter out
the background, we tentatively apply the developed
strategy to a set of real data, collected by the Fermi
LAT over the period 247000129 − 474175306 (MET),
that is, of about 7.2 years. The data present a rather
complex structure, exhibiting not only contributions
from source emissions but also from two different back-
ground components. The first component includes a
diffuse γ-ray emission, given by the interactions of
Galactic cosmic rays with gas and radiation fields,
which mainly affect the Galactic plane; the second com-
ponent is the residual all-sky emission, characterized
by an isotropic distribution in the sky, referred to as
the extragalactic γ-ray background (Ackermann et al.
2015). The photons coming from all these astrophysical
processes cannot be distinguished by the observer.

The analysis has been restricted to photons with en-
ergy range from 10 to 1, 000 GeV, where both back-
ground components are expected to be limited, and
to a sky map portion identified by the range defined
by the latitude, and respectively, logitude extremes
(120, 180) × (45, 90). In this region, the diffuse γ-ray
emission is expected to be neglectable. Besides the
favouring setting, the background, in the considered
data, amounts to about the 90%. At the selected en-
ergy range, a further advantage is that also the 95%
containment angle of the direction of the reconstructed
photons, by normal incidence (and a certain classifica-
tion of the event), is expected to be smaller than at
lower energy.

Figure 4 illustrates the whole sky map from which
the real data were drawn. Results are reported in Ta-
ble 4. While they are remarkably worsened, with re-
spect to the simulated setting, the overall performance



10

of the procedure are overall quite satisfactory, given

the consistent presence of background data. In the

considered cut, the model identifies 26 out of the 55

sources. Among these, the 50% has distance less than

0.27 degrees from the associated true source. The TPR

amounts to 0.47 and the FPR to 0.19.

4 Discussion

In this paper we propose a pre-filtering method based

on a finite mixture of von Mises–Fisher distributions

which is specifically designed to handle observations

with support on the unit sphere. The intent is to

model and cluster the γ-ray photons recorded by the

Fermi LAT as they occur in the 3-dimensional space.

Every mixture component is supposed to represent a

high energy emitting source. The model is estimated

by maximum likelihood using the EM algorithm. The

number of mixture components is determined accord-

ing to the BIC, though the ICL criterion could equally

well be used. We furthermore developed a paramet-

ric bootstrap procedure to assess the significance of the

identified sources.

We tested and benchmarked our algorithm on a num-

ber of simulated data sets of increasing complexity. The

proposed procedure performed optimally on the toy ex-

ample of Section 3.2, where it identified all five sources

present in the analyzed sky region and correctly as-

signed all detected photons to their corresponding emit-

ting source. The algorithm furthermore performed well

on the two additional, more challenging examples of

Section 3.3, which consider whole-sky photon emission

over 2 and about 7.2 years of observation, respectively.

Identifying the 889 and 1,481 sources present in these

two data sets is challenging because of both, the over-

lapping of the sources and the high variability of the

number of photons emitted by the sources. We were ca-

pable of identifying around 60% of the sources present

in both analyzed sky regions within a median distance

of 0.15 and 0.09, respectively, and a FPR of only 4%.

The ARIs amount to 0.79 and 0.65, respectively, which

reveals that a large portion of the γ-ray photons get

correctly assigned to their emitting source.

The procedure was also tested on the real data set

presented in Section 3.4 which considers the photons

collected by the Fermi LAT over the period 247000129

– 474175306 (MET) with energy ranging from 10 to

1,000 GeV in the sky region defined by (120, 180) ×
(45, 90). Despite we did not filter out the background,

as required by our procedure, our finite mixture model

performed remarkably well. We identified almost half

of the sources present within an angular distance of less

than 0.27 degrees from the associated true sources and

a FPR of 0.19.

Though our procedure has proved to perform more

than satisfactorily on both, simulated and real, data,

there are some margins of improvement.

First, our procedure requires that the diffuse and

isotropic γ-ray background be filtered out. Future re-

search will focus on how to introduce an additional com-

ponent into the mixture model to represent the back-

ground. A possibility is to mimic the flat though locally

irregularly shaped background with a mixture of vMF

distributions all characterized by a very low values of k.

A further aspect which needs be considered is that the

vMF distribution is a good approximation for point-

like sources, but it may behave less satisfactorily when

diffuse sources need be modelled. In addition, the emis-

sions of the sources could scatter in a non circular way

around their center. An alternative to the vMF is the

Fisher-Bingham distribution, which accounts for differ-

ent shapes around the estimated direction (Mardia and

Jupp 2009, p. 174). The major drawback of this distri-

bution is that there is no integral representation of the

normalizing constant and a total o 8 parameters need

be estimated.

From the statistical point of view, we want to gain

more insight into the ad hoc bootstrap procedure. Pre-

liminary investigation (results not shown here) revealed

that the amount of variability we introduce in the boot-

strap little influences the significance of the sources pro-

vided it is larger than a factor of 10. Although all FPRs

encountered in our analysis are acceptable, a suitable

form of correction for the look-elsewhere-effect needs be

introduced especially if we aim at data sets with a very

high number of sources.

A last point of improvement is on the computational

side. Currently, we are not capable of analyzing the

whole sky map in a go. Indeed, the computational bur-

den for the two simulated whole-sky data sets had to

be distributed over a suitable number of adjacent cuts.
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Fig. 4 Image maps of all photons in the real data, within the energy range 10− 1, 000 GeV, collected over a period of 7.2
years. Image scale of 0.1 degrees/pixel and in logarithm scale. Brighter colors indicates brighter sources.
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Table 2 Summarizing results for the single space regions: N is the number of true sources in the region, N̂ the number
of estimated sources, d(µj , µ̂j) is the median distance between the true and the detected sources, δ is the median positional
error of the estimated sources in each cut, ERR is the median sum of the positional error of the true and estimated sources,
TPR is the True Positive Rate in the cut, FPR is the False Positive Rate in the cut, ARI0 and ARI are the ARI values
before and after removing the not significant components while ARI(MST) is the ARI resulting from the application of the
MST clustering method. Results refer to the 2 years data.

cut N N̂ d(µj , µ̂j) δ ERR TPR FPR ARI0 ARI ARI
(MST)

1 (0, 60)× (−90,−45) 19 11 0.13 0.59 0.63 0.58 0.08 0.27 0.5 0.99
2 (60, 120)× (−90,−45) 16 11 0.19 1.24 1.27 0.69 0.08 0.83 0.9 0.99

3 (120, 180)× (−90,−45) 22 15 0.22 0.98 1.01 0.68 0 0.74 0.81 0.77
4 (180, 240)× (−90,−45) 16 13 0.13 0.54 0.59 0.81 0 0.59 0.92 0.68
5 (240, 300)× (−90,−45) 24 15 0.22 0.93 0.96 0.62 0 0.53 0.8 0.7
6 (300, 360)× (−90,−45) 16 13 0.11 0.61 0.62 0.81 0 0.74 0.88 0.72

7 (0, 60)× (−45,−22.5) 16 12 0.39 0.85 0.89 0.75 0 0.77 0.58 0.66
8 (60, 120)× (−45,−22.5) 20 16 0.12 0.61 0.64 0.8 0 0.71 0.97 0.62
9 (120, 180)× (−45,−22.5) 24 19 0.15 0.55 0.58 0.79 0 0.71 0.97 0.92

10 (180, 240)× (−45,−22.5) 18 12 0.48 1.27 1.33 0.67 0 0.7 0.79 0.91
11 (240, 300)× (−45,−22.5) 28 14 0.14 0.51 0.55 0.5 0 0.6 0.94 0.99
12 (300, 360)× (−45,−22.5) 18 14 0.17 1.01 1.04 0.78 0 0.75 0.92 0.71
13 (0, 60)× (−22.5, 0) 43 23 0.13 0.59 0.64 0.53 0 0.55 0.57 0.71

14 (60, 120)× (−22.5, 0) 34 23 0.19 0.78 0.81 0.68 0 0.74 0.87 0.88
15 (120, 180)× (−22.5, 0) 33 10 0.18 0.64 0.66 0.3 0 0.26 0.83 0.88
16 (180, 240)× (−22.5, 0) 24 10 0.18 0.98 1 0.42 0.17 0.16 0.41 0.75
17 (240, 300)× (−22.5, 0) 30 16 0.21 1.14 1.16 0.53 0 0.14 0.87 0.99

18 (300, 360)× (−22.5, 0) 42 19 0.13 0.66 0.68 0.45 0.05 0.48 0.67 0.93
19 (0, 60)× (0, 22.5) 36 13 0.31 1.32 1.35 0.36 0 0.5 0.35 0.75
20 (60, 120)× (0, 22.5) 45 22 0.17 0.73 0.77 0.49 0.08 0.57 0.7 0.92

21 (120, 180)× (0, 22.5) 48 23 0.17 0.68 0.71 0.48 0 0.49 0.74 0.86
22 (180, 240)× (0, 22.5) 38 19 0.26 0.75 0.78 0.5 0 0.41 0.92 0.89
23 (240, 300)× (0, 22.5) 20 11 0.2 0.82 0.84 0.55 0.08 0.1 0.67 0.86
24 (300, 360)× (0, 22.5) 44 16 0.18 0.9 0.92 0.36 0 0.54 0.68 0.61

25 (0, 60)× (22.5, 45) 14 9 0.36 0.72 0.76 0.64 0.18 0.4 0.59 0.92
26 (60, 120)× (22.5, 45) 33 13 0.14 0.86 0.9 0.39 0.13 0.44 0.67 0.84
27 (120, 180)× (22.5, 45) 40 21 0.3 1.45 1.48 0.52 0 0.54 0.88 0.93

28 (180, 240)× (22.5, 45) 16 5 0.36 1.56 1.59 0.31 0 0.67 0.4 0.74
29 (240, 300)× (22.5, 45) 19 12 0.42 2.07 2.12 0.63 0 0.79 0.88 0.8
30 (300, 360)× (22.5, 45) 21 13 0.17 1.02 1.06 0.62 0 0.73 0.89 0.95
31 (0, 60)× (45, 90) 19 13 0.14 0.74 0.79 0.68 0 0.38 0.92 0.93

32 (60, 120)× (45, 90) 22 16 0.12 0.81 0.83 0.73 0 0.81 0.94 0.94
33 (120, 180)× (45, 90) 31 18 0.07 0.49 0.51 0.58 0.05 0.3 0.65 0.94
34 (180, 240)× (45, 90) 20 10 0.3 0.97 0.98 0.5 0 0.14 0.6 0.43

35 (240, 300)× (45, 90) 18 12 0.21 0.91 0.94 0.67 0 0.73 0.91 0.96
36 (300, 360)× (45, 90) 16 11 0.12 0.69 0.71 0.69 0.08 0.67 0.91 0.89

889 516 0.15 0.77 0.80 0.58 0.04 0.79 0.41
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Table 3 Cf. Table 2. Results refer to the 7.2 years data.

cut N N̂ d(µj , µ̂j) δ ERR TPR FPR ARI0 ARI ARI
(MST)

1 (0, 60)× (−90,−45) 36 18 0.11 0.6 0.65 0.5 0.1 0.22 0.53 0.96
2 (60, 120)× (−90,−45) 29 21 0.08 0.44 0.5 0.72 0 0.56 0.88 0.74

3 (120, 180)× (−90,−45) 32 26 0.07 0.57 0.62 0.81 0 0.74 0.91 0.64
4 (180, 240)× (−90,−45) 35 20 0.11 0.49 0.53 0.57 0 0.35 0.85 0.79
5 (240, 300)× (−90,−45) 41 28 0.12 0.61 0.64 0.68 0.03 0.36 0.82 0.84
6 (300, 360)× (−90,−45) 30 24 0.08 0.45 0.5 0.8 0 0.64 0.87 0.68

7 (0, 60)× (−45,−22.5) 31 19 0.14 0.72 0.77 0.61 0 0.72 0.79 0.61
8 (60, 120)× (−45,−22.5) 36 21 0.1 0.54 0.57 0.58 0 0.55 0.91 0.6
9 (120, 180)× (−45,−22.5) 44 28 0.09 0.56 0.59 0.64 0 0.53 0.95 0.89

10 (180, 240)× (−45,−22.5) 31 18 0.17 0.66 0.7 0.58 0 0.47 0.85 0.96
11 (240, 300)× (−45,−22.5) 49 26 0.13 0.43 0.48 0.53 0.07 0.43 0.77 0.94
12 (300, 360)× (−45,−22.5) 38 27 0.08 0.53 0.56 0.71 0 0.66 0.91 0.68
13 (0, 60)× (−22.5, 0) 65 37 0.11 0.51 0.53 0.57 0.08 0.48 0.7 0.31

14 (60, 120)× (−22.5, 0) 55 37 0.1 0.51 0.55 0.67 0.05 0.57 0.82 0.71
15 (120, 180)× (−22.5, 0) 54 24 0.07 0.54 0.56 0.44 0.04 0.18 0.93 0.89
16 (180, 240)× (−22.5, 0) 39 20 0.09 0.65 0.67 0.51 0.05 0.15 0.48 0.75

17 (240, 300)× (−22.5, 0) 44 22 0.05 0.54 0.56 0.5 0.04 0.1 0.45 0.98
18 (300, 360)× (−22.5, 0) 68 30 0.09 0.5 0.53 0.44 0 0.37 0.94 0.5
19 (0, 60)× (0, 22.5) 52 28 0.11 0.65 0.69 0.54 0 0.45 0.73 0.86
20 (60, 120)× (0, 22.5) 56 31 0.08 0.59 0.63 0.55 0.06 0.44 0.78 0.82

21 (120, 180)× (0, 22.5) 61 27 0.09 0.57 0.6 0.44 0 0.43 0.78 0.7
22 (180, 240)× (0, 22.5) 57 29 0.07 0.6 0.63 0.51 0.03 0.22 0.68 0.8
23 (240, 300)× (0, 22.5) 46 19 0.1 0.71 0.77 0.41 0.1 0.07 0.78 0.65
24 (300, 360)× (0, 22.5) 66 39 0.09 0.53 0.56 0.59 0 0.39 0.83 0.66

25 (0, 60)× (22.5, 45) 30 15 0.09 0.69 0.74 0.5 0.06 0.24 0.72 0.88
26 (60, 120)× (22.5, 45) 59 28 0.14 0.48 0.5 0.47 0.03 0.39 0.61 0.81
27 (120, 180)× (22.5, 45) 57 33 0.1 0.77 0.81 0.58 0.03 0.44 0.86 0.72

28 (180, 240)× (22.5, 45) 40 19 0.15 0.58 0.65 0.48 0 0.61 0.77 0.74
29 (240, 300)× (22.5, 45) 37 22 0.07 0.58 0.62 0.59 0 0.68 0.81 0.75
30 (300, 360)× (22.5, 45) 49 29 0.1 0.58 0.62 0.59 0 0.52 0.91 0.75
31 (0, 60)× (45, 90) 34 20 0.09 0.51 0.53 0.59 0.05 0.26 0.61 0.93

32 (60, 120)× (45, 90) 47 28 0.07 0.48 0.53 0.6 0.03 0.61 0.86 0.85
33 (120, 180)× (45, 90) 57 28 0.04 0.36 0.38 0.49 0.18 0.18 0.58 0.95
34 (180, 240)× (45, 90) 33 13 0.06 0.56 0.6 0.39 0.07 0.11 0.84 0.42

35 (240, 300)× (45, 90) 36 25 0.09 0.54 0.57 0.69 0 0.52 0.9 0.92
36 (300, 360)× (45, 90) 29 17 0.09 0.75 0.79 0.59 0 0.49 0.9 0.94

1481 890 0.09 0.54 0.57 0.60 0.04 0.65 0.41

Table 4 Cf. Table 2. Results refer to the real data. For this reason, the pertaining source of each photon is not known,
hence the ARI cannot be computed.

cut N N̂ d(µj , µ̂j) δ ERR TPR FPR

(120, 180)× (45, 90) 55 26 0.27 1.35 1.38 0.47 0.19
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