
Seeking Time-Composable Partitions of Tasks for

COTS Multicore Processors

Gabriel Fernandez∗†, Jaume Abella†, Eduardo Quiñones†,
Luca Fossati§, Marco Zulianello§, Tullio Vardanega¶, Francisco J. Cazorla†‡

∗ Universitat Politècnica de Catalunya, Spain
†Barcelona Supercomputing Center, Spain

‡Spanish National Research Council (IIIA-CSIC), Spain
§European Space Agency, The Netherlands

¶University of Padova, Italy

Abstract—The timing verification of real-time singlecore sys-
tems involves a timing analysis step that yields an Execution Time
Bound (ETB) for each task, followed by a schedulability analysis
step, where the scheduling attributes of the individual tasks,
including the ETB, are studied from the system level perspective.
The transition between those two steps involves accounting for
the interference effects that arise when tasks contend for access
to shared resource. The advent of multicore processors challenges
the viability of this two-step approach because several complex
contention effects at the processor level arise that cause tasks
to be unable to make progress while actually holding the CPU,
which are very difficult to tightly capture by simply inflating the
tasks’ ETB. In this paper we show how contention on access to
hardware shared resources creates a circular dependence between
the determination of tasks’ ETB and their scheduling at run
time. To help loosen this knot we present an approach that
acknowledges different flavors of time composability, examining
in detail the variant intended for partitioned scheduling, which we
evaluate on two real processor boards used in the space domain.

I. INTRODUCTION

Research on timing analysis for multicore processors is

still in its infancy. This is particularly the case for COTS

hardware, which to date, to the best of our knowledge, has

been addressed with some success only for well-behaved –

hence not especially realistic – variants. The difficulty with

the timing analysis of software programs running on multicore

processors thus is a serious impediment to their adoption in

real-time systems industry. As asserting a single, tight, safe

and absolute worst-case execution-time (WCET) bound for

COTS multicore processors is still an open problem, which

far exceeds the state of the art in timing analysis, in this paper

we use the term Execution Time Boud, or ETB, in place of

the more common WCET.

Transposing to multicore processors the practice in place

for traditional singlecore processors, we note that the timing

analysis of a real-time system involves essentially two steps.

The first step derives for each application program an ETB,

computed assuming that the program runs in isolation. In the

second step, all system-level overheads such as interrupts,

blocking times when arbitrating access to shared resources in

the program, and the preemptions that result from dynamic

scheduling are taken into account, compositionally (that is to

say, by capturing holistically all interference effects that result

from composing software programs into the final system).

Response-time analysis [19], [7] is one of the techniques

typically used in the latter step, which is fed with the ETB of

individual tasks, which is assumed given. In that two-step

process, the ETB computed considering tasks in isolation is

augmented with the time duration in which the task, though

notionally holding the CPU, cannot actually progress. This

timing approach in which ETB is inflated to account for

system-level effects has been shown to work sufficiently well

in singlecore architectures.

Task scheduling is one of the system functions that affects

the mosts tasks’ timing behavior. This is so because task

scheduling determines when and how tasks may pre-emptively

interleave, hence the extent of pre-emption effects that each

task may suffer. In COTS multicore systems, task scheduling

affects task pre-emption much like in singlecore systems.

Unlike singlecore systems, however, scheduling in multicore
systems also determines the tasks that may potentially run at
the same time in the processor and hence, can conflict in the
access to hardware shared resources. The latter factor, which
has a massive impact on the tasks’ timing behavior, creates
a nasty circular dependence between task scheduling and
ETB determination in the timing analysis for COTS multicores.

Attempting to compositionally extend in response-time

analysis the magnitude of the ETB obtained for individual

programs in isolation, with the effects of inter-task conflicts

on access to processor resources is impractical in the general

case. This is so because tasks may conflict so frequently

(e.g. on every access to the on-chip bus) and for so many

resources (caches, buses, queuing buffers, etc.) that the amount

of knowledge to characterize the application usage of hardware

resources required rapidly gets out of control. This calls for

an alternative solution, in which on-chip contention effects are

accounted for as part of the ETB determination.

The much-sought property of time composability [28],

[15], when transposed to a multicore processor, stipulates that

the timing behavior of an individual task is not affected by

the activity of its co-runners. Time composability is generally

2015 IEEE 18th International Symposium on Real-Time Distributed Computing

1555-0885/15 $31.00 © 2015 IEEE

DOI 10.1109/ISORC.2015.43

208

considered as an all-or-nothing metric: if the ETB of a task

varies depending on the tasks’ actual co-runners, then that

ETB is non-time-composable. This full extent of time com-

posability (in force of which we have fully time composable,

fTC, ETB) can be obtained by forcing the timing analysis tool

to contemplate a-priori all sources of worst-case contention

that a task may possibly experience on access to hardware

shared resources. As we discuss in this paper, however, this

provision may be overly pessimistic and defeat the purpose

of transitioning the system from singlecore to a multicore

processor architecture.

This paper aims to break the circular dependence between

the timing analysis and scheduling while ensuring effective

containment of pessimism. To that end, this paper makes a

threefold contribution, as follows:

1) We show that the traditional fTC-centric approach is accept-

able only if the interference effects of contention for processor

resource sharing are low, which typically is the case when

the core count is low (≤ 4) and the hardware resources

being shared cause modest contention impacts. We present

realistic scenarios where these conditions do not hold and the

provisions of fTC ETB are exceedingly pessimistic.

2) We consider the flavors of time composability first in-

troduced in [12]. We develop the notion of sufficient time

composability, and of partially time-composable (pTC) ETB,

which proceeds from it and solely considers the contention
conditions that the task of interest can effectively incur at run

time as a result of actual scheduling decisions. In that respect,

pTC trades tightness in the resulting upper bounds for ease

of determination. In particular we introduce two variants of

pTC , called allocation-aware time-composability (aTC) and

task set-aware time-composability (tsTC), respectively devised

for partitioned and global scheduling.

3) We develop an aTC-aware allocation algorithm, called

aTC-allocator, which performs timing analysis in an iterative

fashion, integrated with reasoning on task scheduling. For

an m-core processor, aTC-allocator starts by assuming that

any given set of m tasks in the task set of interest can

simultaneously run. aTC-allocator considers all the contention

conditions that may occur among those m co-runners. As

the allocation progresses, at every step of task-to-core as-

signment, aTC-allocator discards the contention conditions

generated by the tasks that have been assigned to the same

core, since they no longer can be co-runners of each other.

This procedure progressively reduces the inflation effects in

the ETB computed for each individual task, and culminates

with finding a feasible assignment, if one exists. We compare

aTC and fTC on two real COTS processors used in the space

domain, a dual-core LEON3-based GR712RC board, and a

quad-core LEON4 ML510 board. Our results show that for

the GR712RC fTC ETB incur acceptable pessimism, which

makes fTC ETB usable on that processor. Conversely, we show

that, while the fTC ETB on the ML510 are too pessimistically

inflated, aTC considerably reduces the pessimism by tuning

the ETB of individual tasks to the contention conditions

determined by the chosen task-to-core assignment.

The remainder of this paper is organized as follows:

Section II discusses some related work. Section III presents

our approaches based on pTC to break the circular depen-

dence between timing analysis and task scheduling in COTS

multicores. We present our aTC-aware allocator in Section IV.

Section V presents the difficulties in deriving ETB under each

pTC approach. Section VI presents results for two real COTS

multicore processors: the GR712RC and the NGMP; Finally,

Section VII summarizes the main conclusions of this study.

II. RELATED WORK

Contention on access to hardware shared resources at the

processor level is a much studied topic in the state of the art.

[10] provides a taxonomic summary of relevant works.

Contention for off-chip resources such as the bus is ad-

dressed predominantly with TDMA buses [32], for which the

worst case of interest for timing analysis is the worst possible

alignment of task requests to their TDMA slots. The works

that assume dynamic arbiters instead (cf. e.g., [31]) consider

the particular pattern of accesses that each contending task

may make to the bus. Notably however, several of the latter

type of works [33], [32] make assumptions that prevent their

use in the two COTS processors considered in this paper.

In particular, they model just one off-chip shared resource

that can process one request at a time only and in which

requests are synchronous (so that the contending task is stalled)

and cannot be split into several asynchronous requests. They

further assume that on-chip shared resources (e.g. core-to-

cache bus, caches, etc.) are replicated per core or partitioned

across tasks, so that tasks incur no contention effects when

accessing on-chip resources. These works study specific task

models in which programs can be divided into superblocks

for which both maximum and minimum access bounds and

ETB can be derived.

Hardware support has been proposed to either eliminate

or control contention on access to hardware resources, e.g.:

TDMA or UBD in buses [23]; partitioning for caches [23];

real-time aware controllers for memory [3], [25]. Those solu-

tions simplify timing analysis as contention effects are nullified

when the hardware design eliminates contention interference

by construction or easily determined when hardware features

bound contention interference [22]. Solutions of this kind

ultimately enable the use of the two-step analysis process

inherited from the singlecore practice. However, to the best

of our knowledge, no current commercial multicore processor

provides complete isolation from contention interference or

full control of it. Although some multicore processors do

implement cache partitioning [2], [5], the above techniques can

only be sensibly used if all hardware shared resources (which,

in the case of the NGMP, means on-chip interconnection,

shared cache, and core to memory bus) are suitably controlled.

It is worth noting in this regard that several works [26], [25]

209

show how, in real processors, contention on access to memory

alone may more than double the execution time of tasks

considered in isolation. It therefore follows that controlling

contention interference from cache effects alone in real-world

multicore processors is most evidently not enough to attain

isolation in the time domain among tasks. The problem is

that the execution time of a software program running on

COTS multicore processors may be inordinately affected by

the contention effects that the co-runners of that task may cause

on the hardware shared resources.

One solution to this predicament might be to use an

analysis approach that, for all the tasks that may run in parallel,

studies statically, at a very fine grain of detail on an abstract

model of the processor, the accesses that they may make to

hardware shared resources and how they might contend with

one another [18], [16]. This technique may lead to determine

ETB that are considerably tighter than what we can arrive at,

but at the cost of a much more onerous and complex effort,

which trades time composability for tightness, since its results

can only apply to a given task configuration that cannot be

varied without invalidating the analysis results.

Finally, the authors of [9] propose design principles to

make multicore processors more predictable in the time dimen-

sion. For as interesting as it may be, however, this approach

cannot be applied to existing COTS technology and therefore

does not have the same goals as we do.

III. BREAKING THE TIMING ANALYSIS - SCHEDULING

DEPENDENCE

Time composability is generally regarded as all-or-nothing

binary metric. When applied to the ETB for a task, therefore,

any variability in the computed bound that results from the

determination of the actual co-runners of the task of inter-

est, is deemed a fatal disruption of time composability. The

implication is that the ETB for a task can be said to be

fTC if it accounts for the worst-case contention conditions
that can be generated by any other potential co-runner of that

task in the system. As we show in this work, although using

fTC ETB does indeed break the circular dependence between

timing analysis and scheduling, in many cases the resulting

values are too pessimistic to be of any practical use.

A. Generalizing Time Composability

Our proposal to attack this dependence consists in deter-

mining Partially Time Composable (pTC) ETB for each task.

The idea behind this approach is to reduce the search space

for the contention conditions to consider in the computation

of pTC ETB. The resulting set of pTC ETB remains valid

as long as the contention conditions for which they have

been derived are maintained throughout system operation. The

contention conditions for a task are meant to cover all hardware

factors of influence on its timing behavior. In the case of

multicore processors, the contention conditions for task τi are

determined by the load that the task’s co-runners may place

on the hardware shared resources, which ultimately determines

the extent of hardware contention that τi may incur at run time.

Under our pTC approach, each task τi is associated mul-

tiple ETB, one for each of the possible set of contention

conditions that need to be considered. For that approach to

be usable, the scheduling of tasks at run time must ensure

that the contention conditions that every task encounters at run

time stay within the boundary of those that were considered

when the corresponding ETB was derived, so that the results

of schedulability analysis can be safely asserted.

We assume a task set T = {τ1, τ2, ..., τn}. For parti-

tioned scheduling, which is the main focus of this paper,

individual tasks are statically assigned to one of m groups1,

Φ = (ϕ1, ϕ2, · · · , ϕm), where m stands for the number of

cores in the processor. In presenting our approach we use the

following terms, which are specific to partitioned scheduling.

• We call group mates (gmi) of a given task τi, those tasks

allocated to the same core that τi is assigned to, called ϕi.

That is, gmi = {τj}, τj ∈ ϕi ∧ τj �= τi.

• Similarly, we call siblings (sbi) of a given task τi, those

tasks allocated to a different group from the one to which τi
is assigned. That is, sbi = {τk}, τk /∈ ϕi. It follows that the

union of a task, its group-mates and its siblings forms the

whole task set T = {τi ∪ gmi ∪ sbi}, ∀τi ∈ T .

We also use other terms that equally apply to partitioned

and global scheduling:

• We call co-runner tasks (cri) of a given task τi at a given

instant t in which task τi is being executed, the set of m− 1
tasks running in parallel with τi at t.

• We call workload at time t, the set of tasks that simultane-

ously run at t. Hence, the co-runners of a task τi at t, together

with τi itself form the workload at time t. With partitioned

scheduling the group mates and siblings of any task τi are

determined by the task-to-core assignment algorithm, while

τi’s co-runners are determined by the scheduling algorithm

used on individual cores.

• The potential co-runners of τi are all the tasks that may run

in parallel with τi at any point in time during system execution.

With partitioned scheduling, the potential co-runners of τi’s are

only its siblings sbi. With global scheduling the potential co-

runners of τi are all the tasks in the task set since any subset

of m − 1 of them can run simultaneously at a given point in

time with τi.

In this work we consider four flavors of time composability

with decreasing resilience of the computed ETB to variations

in the contention conditions captured by the analysis. We

introduce them next and develop them in the subsequent

sections.

1We use the term group, allocation and core indistinctly to refer to the

partition of interest.

210

• Full TC (fTC) ETB. fTC considers the worst possible

contention effects that a task may suffer, in the general case

(thus owing to the nature of the hardware, not contingent on

the particular activity of the tasks in the task set), when at-

tempting to access hardware shared resources. This definition,

which may sound inflationary, serves the purpose of allowing

fTC ETB values to be independent of the nature of the task’s

co-runners as well as of their scheduling at run time.

• Task-set TC (tsTC) ETB apply to global scheduling when

no task-to-core assignment is predetermined. With tsTC, the

ETB estimate Ci derived for τi has to be time-composable

with respect to the contention conditions that can occur at run

time for any potential workload of tasks in the task set.

• Allocation-based TC (aTC) ETB. This formulation, which

applies to partitioned scheduling when some task-to-core as-

signment Φ is given, has the ETB estimate Ci, derived for τi
to be time-composable for the contention conditions that can

occur for Φ, is guaranteed to be higher than execution time

that τi’s may incur under any scheduling of its siblings in Φ.

That is to say, Ci covers all the contention conditions that τi’s
siblings may generate.

• Non time composable (nTC) ETB. This is the weakest

form of time composability, and we report it here only for

the sake of taxonomic completeness, without discussing it

further in this paper. An nTC ETB computed for task τi, in

fact, is determined for the specific contention conditions that

can be generated from a given set of co-runners with given

characteristics (for execution time, access to hardware shared

resources, and competing alignments at run time), and it is

only valid for that particular case. This variant is too feeble

to be used in practice because any, however minor, variation

in the assumed characteristics varies the contention conditions

for which the ETB was determined and invalidates it.

On the basis of the above notions, we can now study the

degree of pessimism incurred by each TC approach of interest,

and how that affects incremental verification.

Fully Time-Composable ETB. The use of fTC ETB in

the development of multicore real-time systems presents obvi-

ous benefits since the bounds computed in that manner for

a task always upper bound the contention effects that the

task’s co-runners may cause on hardware shared resources

present on the target processor. The primary benefit is that

individual subsystems can be independently developed and

incrementally integrated and qualified without risks of timing-

related regression at system level. Furthermore, the use of

fTC ETB breaks the circular dependence between timing
analysis and scheduling caused by the contention effects
arising upon system integration and therefore allows using

the Execution Time Analysis and the Response Time Analysis

techniques much like done for singlecore systems.

Section V discusses how to determine the fTC ETB for a

given task τi for the COTS processors considered this work.

The dark side of fTC ETB is that the upper-bound values

computed with it may be overly pessimistic. The fTC ETB we

obtained for some EEMBC benchmarks [27] on the NGMP

processor (cf. Section VI for details) are up to 5.8x higher

than the ETB obtained in configurations where no contention

arises. The main corollary of this result is that the price in
overestimation paid to enable incremental verification – which

is the common way to approximate time composability – may
defy the whole point of using multicores in real-time systems.

Task-set Time Composable ETB. Under task-set time

composability the contention conditions of interest for each

task are narrowed down to those that can actually occur con-

sidering the execution of the specific task set and its specific

scheduling regime. Task-set time composability is designed for

use with global scheduling in that when partitioned scheduling

is used, further reductions in pessimism can easily be obtained

by canceling contention effects ruled out by the task-to-core

assignment decisions.

Once tsTC ETB are derived for each task, the scheduler

has full freedom to schedule tasks on any core, similarly to

the case of fTC ETB. However, unlike for fTC, any change in

the workload invalidates all results and requires a full repeat

of the timing analysis stage for all tasks in the task set.

The challenge is to determine, for every individual task, an

ETB that upper bounds its execution time for any scheduling

scenario across all cores. In this regard, in the general case, for

any task τi in the task set T , all tasks τj{j �=i} are siblings of

τi and its potential co-runners. To attain tsTC the contention

conditions of interest must therefore cover all possible schedul-

ing scenarios that may occur for T across all cores, with

tsTC ETB for τi capturing the resulting worst-case contention

situation. Section V discusses how to compute tsTC ETB.

Allocation-based Time Composable ETB. This variant

of time composability is designed for use with partitioned

scheduling. Below we identify two partition scheduling sce-

narios in which aTC may be applied.

Task-to-core assignment is given. In this case, which

transposes to multicore processors the practice in use with

singlecore processor systems in several application domains,

where the system integrator assigns individual scheduling

partitions to individual subsystem suppliers. For the purposes

of this paper and equally applicable to singlecore and multicore

processors, a scheduling partition corresponds to a slice of

CPU time, regardless of whether statically or dynamically

assigned. The supplier develops the contracted software, nor-

mally organized in a schedule of tasks, to fit in the assigned

partition. As in the multicore processor scenario the partition

is pre-allocated to a core, the task-to-core assignment is given.

From the timing analysis perspective, the problem reduces to

determining an ETB for each task in each partition, knowing

their respective assignment.

Task-to-core allocation is not given. In this case the prob-

lem is to determine how to assign tasks to cores and then derive

a ETB for each task such that the final allocation is feasible.

211

TABLE I. TAXONOMY OF TIME COMPOSABILITY APPROACHES.

LEGEND: +++ (HIGH), ++ (MODERATE), + (LOW) AND - VERY LOW.

global partit. overes- increment. Execution

sched. sched. timation verific. Conditions

fTC � � +++ +++ All possible tasks

tsTC � � ++ ++ Tasks in the task set

aTC � + + Sibling tasks

nTC - none Particular workload

We need an approach that associates several ETB to each task

τi, one for every possible task-to-core assignment, such that

the task’s aTC ETBai is time composable for a particular

allocation ai, of the task set. In Section IV we develop an

allocation algorithm that is aware of time composability.

B. Putting it all together

Table I presents the time composability approaches dis-

cussed in this work. fTC can be used with global and par-

titioned scheduling. It cleanly breaks the dependence among

timing analysis and scheduling. Hence, at the cost of some

pessimism in the computation of ETB, it allows good control

of feasibility in the face of incremental system integration.

tsTC works with global scheduling but is vulnerable to changes

in the behavior and characteristics of the tasks in the system.

This drawback makes this approach less apt for incremental

development. aTC is fit for partitioned scheduling and, in

general, arrives at tighter ETB than tsTC, although only for

the contention conditions determined for the considered task-

to-core assignment and for the assumed per-core scheduling.

It is worth noting that the contention conditions captured

for fTC are more conservative than those considered in tsTC,

which in turn, are more pessimistic than those accounted

for aTC. Owing to their conservatism, the ETBs derived for

fTC and for tsTC can in principle be used with any schedul-

ing regime. In that manner, theoretically greater schedulable

utilization may possibly be sought (as offered for example by

certain global scheduling algorithms [30], [8]) to compensate

for the increase in pessimism in the assumed ETB load.

The particular time composability approach to use ulti-

mately depends on the development needs and constraints.

IV. ATC-AWARE ALLOCATION ALGORITHM

From the taxonomy of Time Composability approaches

presented in the previous section, we focus on aTC for the

more general case in which the task-to-core allocation is

not given. To support aTC we have developed an allocation

algorithm, called aTC-allocator, that is aware of aTC ETB. In

particular, the goal of an aTC-based allocation algorithm is to

reduce the wasted capacity in the task set (tswc) as a way to

tighten the ETB derived for each task.

Our aTC allocator associates several ETB to each task

τi, one for every possible task-to-core assignment, such that

the task’s aTC ETBai is time composable for a particular

allocation ai, of the task set. For every task τi in the system,

this requires: (1) understanding which tasks are group-mates

to τi, as they are assigned to the same partition as τi; (2)

understanding which tasks are siblings to τi, as they are

assigned to other partitions than that of τi; and (3) obtaining

an aTC ETB that upper bounds τi’s execution time against a

specific set of co-runners. This limits the scope of the analysis

to consider that particular set of co-runners and the load

that they can place on hardware shared resources. Section V

discusses how to compute aTC ETB.

We use the following terms in defining aTC allocator.

• Task wasted (CPU) capacity (twc). We define twc for a task

τi that runs in a workload, as the CPU time budget allocated to

τi to account for the contention interference it can suffer from

the contention caused by tasks running on other cores. Let

Cisol
i denote the ETB for τi when run in total isolation, hence

suffering no contention interference. Let C
wldj

i denote the

ETB estimate for τi when run as part of workload wldj . The

latter bound accounts for the CPU budget inflation incurred

by τi owing to the suffered contention interference. The task
wasted capacity is defined as: twc

wldj

i = C
wldj

i − Cisol
i .

• Workload wasted (CPU) capacity (wwc). We define wwc as

the addition of the twc of all tasks in a workload. That is,

wwcj =
∑i=kj

i=1 twc
wldj

i , where kj is the number of tasks in

workload wldj .

• Allocated task wasted capacity (atwc). Under partitioned

scheduling, for a given τi in a partition Φ, we define atwci
as the maximum twci in any of the workloads that can be

constructed that include τi: atwci = max
wldj∈combs(Φ)

twc
wldj

i ,

where combs(Φ) stands for all potential schedules wldj of

the task set containing τi, given partition Φ.

• Task-set wasted CPU (tswc). Finally, once a feasible assign-

ment has been set for each individual task in the task set, we

define task set wasted capacity as the sum of atwci for all

tasks in the task set ∀τi ∈ T .

aTC-allocator accounts as wasted capacity all duration of

CPU time that a task is stalled due to contention interference.

Hence, the zero-waste case occurs when all forms of contention

interference that stem from contention on access to hardware

shared resources are avoided. While this is not achievable in

practice in a real-world multicore processor, using the zero-

waste case as the ideal target for algorithm 1 helps reducing

the wasted capacity per task (atwci ∀τi ∈ T) which in

turn reduces the tasks’ ETB and increases the useful CPU

utilization attained by the system.

Interestingly, before any task τi is allocated, the ETB as-

sumed for every task in the task set is the tsTC ETB. That

is, given that initially (when no partition yet exists) the task

under study can be grouped with any other task, it must be

assumed that all other tasks in the workload can be siblings

and hence potential co-runners of τi. In subsequent iterations

this approach progressively assigns tasks to cores. If a new

task τj is assigned to a group where τi is, then τj cannot be

a co-runner of τi, which causes a potential reduction in the

212

Algorithm 1 aTC allocator (T , W , lscht(), C)

Input: The task set(T), the ETB for each task under any

configuration of siblings(W), local schedulability test lscht()
and the list of cores C)

Output: A task allocation (Φ).

1: W ← sort by wwc(W)

2: while W not empty do
3: C ← sort by spare capacity(C)

4: cj ← first(C)
5: while cj ∈ C do
6: tuplei ← find tuple(W, lscht(), cj)

7: if tuplei �= ∅ then
8: break

9: end if
10: end while
11: if cj /∈ C then
12: return nonschedulable

13: end if
14: alloc(tuplei, cj)

15: update capacity(cj)

16: remove overlapping tuples(W)

17: end while
18: return C

ETB estimate for τi. At any given step therefore, the ETB of

any task τi is time composable with its siblings and with the

not-yet assigned tasks assumed to be siblings of tasks in all

groups. In this way, at every step when a task is assigned to

a group ϕj , the ETB of all tasks in ϕj is reduced since the

just-assigned task cannot be co-runners of the tasks in ϕj .

The aTC-allocator receives as input all possible permu-

tations of task tuples, denoted W , where each tuple contains

between 1 and m tasks (m stands for the number of cores).

Those tuple represent all potential workloads that can occur

at any point in time. The workload wasted capacity (wwc) for

each tuple, i.e. the addition of the twc for all tasks in a tuple, is

derived by running the tuple on the target platform as described

in Section V. wwc represents the CPU capacity that would be

wasted if the tasks in the tuple were co-runners.

The algorithm starts by sorting tuples by their wwc (line 1)

from higher to lower, and it also sorts cores by spare capacity

(line 3), from lowest to highest. The algorithm then seeks the

tuple with highest wwc such that it fits in the core with lowest

spare capacity (line 6). A single-core (local) schedulability test

(lscht()) is used to that end. If a tuple, tuplei, is found it is

assigned to that core, corej (line 14), preventing the tasks

in that tuple from being co-runners and suffer that wwc. The

capacity of corej is updated by recomputing and then adding

the utilization of all the tasks that were already in corej plus

those in tuplei. The re-computation is necessary because now

it is certain that the tasks already assigned to corej will not

be co-runners to the tasks in tuplei, so the ETB of all of them

will monotonically decrease (line 15). Next, tuplei and every

other tuple containing any of the tasks in tuplei are removed

from W (line 16).

If no tuple fits in the core with the lowest capacity, the

process starts with the second core with lowest spare capacity

(lines 5 – 10). If no tuple is found to fit in any of the cores,

the task set is not schedulable (lines 7 – 9). Conversely, if all

tasks are assigned and the schedule is feasible, the algorithm

returns the task set partition.

aTC requires deriving for each task an ETB that covers

certain contention conditions. In this case, at each step of

the algorithm, the timing analysis stage requires providing

a ETB computed considering all the siblings of the task of

interest as its co-runners at this time. Only tasks that are group

mates of that task are not considered. The next section details

how to obtain those ETB.

V. DERIVING ETB UNDER DIFFERENT

CONTENTION CONDITIONS

As we mentioned earlier, the research on timing analysis

for COTS multicore is not mature yet. The difficulty essentially

lies in getting an accurate appreciation of the impact that

contention in the use of processor shared resources can have

on task execution time and on their ETB. To the best of our

knowledge, state-of-the-art timing analysis techniques cannot

assert a tight, safe and absolute worst-case value for COTS

multicore processors.

In this paper we use pure measurements to determine ETB.

Measurement-based timing analysis is a common practice for

timing analysis on real processors in industrial domains that

include space, automotive and elements of avionics [34], [17],

[20]. End-to-end measurements are collected in controlled

conditions and the ETB is derived by adding an engineering

margin to the Longest Observed Execution Time (LOET) [20].

We acknowledge the uncertainty generated by measurements

and the requirements their use places on the user to provide

input vectors capable of reducing this uncertainty. Various

approaches have been proposed to build confidence arguments

in conformance with the requirements and practices of the spe-

cific application domain (e.g. automotive, space or avionics).

The work in [14] reviews how safety assurance guarantees

relate to stipulating bounds on execution time.

Deriving fTC ETB. Given a task set, T , in order to

provide fully time-composable ETB CfTC
i for each task, we

employ a recent approach based on microbenchmarks, also

known as resource stressing kernels (RSK) [29], [21], [13],

[11]. RSK are specialized, single-phase user-level programs

designed to stress each of the hardware shared resources in

the processor. Running task τi against a RSK represents a very

pessimistic scenario of the inter-task interference that τi may

experience during operation.

In [29], [13], the authors show that RSK produce greater

contention interference on access to hardware shared resources

than any real application or other benchmark that they could

compare with. We therefore maintain that τi’s fTC ETB can

be determined when τi runs in parallel with that RSK.

213

During analysis, we run each task against the particular set

of RSK designed for the target platform of interest. While τi
runs we make sure that in the other cores the chosen RSK

(rski) runs at all times. With this method, the fTC ETB for

τi is computed as: C
fTC
i = maxrski∈RSK(ET rski

i), where

ET rski
i is the execution time of τi when running against rski.

Challenges in deriving tsTC ETB and aTC ETB. We

identify three main factors affecting the contention conditions

of a given running task: its contention for access to hardware

shared resources with its co-runners, its execution phases (with

respect to the profile of use of hardware shared resources)

and its input vectors. To enable partially Time Composable

approaches it is necessary to understand all these factors and

cover their timing effect to a sufficient level of confidence.

In this regard, the use of COTS multicores and measurement-

based analysis techniques introduces some uncertainty that has

to be offset when building confidence arguments in accordance

with the requirements and practices of the application domain.

In the absence of hardware support to contain or control

contention interference, there is no established practice to

derive tsTC and aTC ETB, which we can relate to. Our

current solution is to perform experiments in which we tweak

the sources of interference as can be done from the input

vectors and the interleaving of tasks’ execution phases. This

technique is obviously sub-optimal in that it does not deliver

full certainty, but it does nonetheless help appreciate the system

resilience (respectively, vulnerability) to contention effects.

In order to account for the contention conditions generated

on task τi by a given set of co-runners we make successive runs

of the workload in which we shift the time at which we start

the execution of each task in the workload with respect to τi.
Figure 1 provides a schematic view of the case for a dual core

arrangement. τi runs on core 0, c0. At each run we shift the

release offset of each task by a shifting factor, which leads to

different shifting points. The granularity of the shifting factor

and the number of cores in the processor determine the number

of experiments to carry out (which ultimately is limited by the

time that can be afforded for timing analysis during system

development). This process is repeated for different input data

vectors if the program’s execution is sensitive to them. In our

experimental setting, the EEMBC Automotive benchmarks we

used present a stable single behavior so we observed negligible

difference for different release offsets.

The challenge with global scheduling, which is the as-

sumed scheduling regime for tsTC, is that, in theory, all tasks

(grouped in workloads of m, where m is the number of cores)

can run in parallel at any given point in time. This means

that every task in the task set is a potential co-runner of

any other task, in a great variety of actual schedules, which

obviously leads to high ETB values to upper bound the many

different contention conditions that may arise. Meanwhile, with

partitioned scheduling, the choice for aTC, the schedules of

interest are a much smaller set, limited to the interleaving of

τi’s siblings.

Fig. 1. Schematic view of experimental methodology to compute ETB esti-

mates (dual core case). τj in Core 1 is shifted in each run.

VI. EXPERIMENTAL EVALUATION

In the following we evaluate one possible realization of the

fTC ETB and aTC ETB approaches for two industrial-quality

COTS processors used in the space domain: a GR712RC

platform implementing a dual-core LEON3; and a ML510

platform implementing a quad-core LEON4.

A. Experimental Setup

The GR712RC platform has 2 LEON3 processors (see

Figure 2(a)), each comprising private first-level 16KB data and

16KB instruction caches. Cores are connected to the on-chip

SRAM and the memory controller through an AMBA AHB

bus [1]. The memory controller connects both cores to the

off-chip SDRAM and SRAM devices. In the GR712RC the

effect of the slowdown that a task suffers is mainly due to

contention interference on accessing to the on-chip bus.

The ML510 platform contains a Virtex 5 FPGA that

implements a prototype design of the NGMP, a SPARC V8

quad-core processor, developed by Aeroflex Gaisler and the

European Space Agency, featuring the latest LEON core

design, called LEON4 [4], [2]. Owing to FPGA space limi-

tation, the ML510 platform does not have an on-core floating

point unit. The LEON4 is a 32-bit 7-stage pipeline processor,

comprising an always-taken branch predictor and private data

and instruction caches of 16KB each. Both the instruction and

the data caches have 32-byte lines and are 4-way associative.

The data cache employs a write-through with no-write-allocate

miss policy. Each LEON4-core connects to a shared 256KB L2

cache through an AMBA AHB processor bus with 128-bit data

width and round-robin arbitration policy. The L2 cache uses

the LRU replacement algorithm implementing a write-back,

write-allocate policy. The L2 cache connects to the memory

controller through a single memory channel shared by all cores

(see Figure 2(b)). In the NGMP, the effect of the slowdown that

a task (benchmark) suffers is due to contention interference in

accessing the on-chip bus, the on-chip shared L2 cache and

the memory bandwidth [13].

Benchmarks. In this work, for application load we used the

EEMBC Autobench benchmark suite [27], which is deemed to

capture well some elements of real-world real-time application

behavior and for this reason is widely used in academic

research. We chose benchmark programs that make use of

214

(a) GR712RC (LEON3) (b) ML510 (LEON4)

Fig. 2. Block diagram of the part of the NGMP and GR712RC architectures

analyzed in this paper

caches at various levels of intensity, from low to high: aifirf
(AI), bitmnp (BI), cacheb (CA), canddr (CN), pntrch
(PN), puwmod (PU), rspeed (RS) and ttkprk (TT). We

further used a space-specific synthetic program known as Next

Generation DSP Benchmark (nDSP)2.

We developed a random task set generator based on [24].

The generated task sets all implement the equivalent of a

sporadic task model, in which the arrival times of jobs of

the same task are separated by a minimum inter-arrival time,

referred to as the task period, and the tasks are independent.

The task sets are generated such that the total utilization of

every task set equals Uisol =
∑n

i=1
Cisol

i

Pi
, with n > m where

m is the number of cores, n in the number of tasks, and Cisol
i

is the ETB of τi when run in isolation. In the first step of

our procedure Uisol is ‘divided’ between the n tasks. For the

experiments discussed in this paper, we assigned 40% of Uisol

to 20% of the n tasks, and 60% of the remaining Uisol to

the remaining 80% of the tasks (similar results are obtained

with other proportions). In the second step, each of the n tasks

is then assigned timing load of a randomly chosen EEMBC

executed on the real hardware. For each Uisol utilization we

randomly generated 1,000 workloads.

B. Results with fTC ETB

Figure 3 shows the fTC ETB computed for EEMBC and

nDSP for the GR712RC and the NGMP, plotted against the

ETB obtained in isolation, i.e. CfTC
i /Cisol

i , which reveals a

wide range of variations.

For the GR712RC, the fTC ETB appear to be only

marginally higher than Cisol
i , with a maximum increase of

55% and an average of 23%. For this board we may therefore

use fTC ETB with acceptable pessimism in the determination

of the schedulable utilization, for this choice breaks the circular

dependence between ETB estimation and task scheduling and

consequently simplifies the overall analysis process. For the

NGMP instead, the fTC ETB, i.e. CfTC
i , are significantly

higher than Cisol
i , with a maximum increase of 5.8x and an

average of 3.65x. This inflation is the consequence of larger

contention interference arising from the use of more cores and

more hardware shared resources. For the NGMP therefore,

using fTC ETB would result in a significant loss of CPU

capacity, which calls for the use of aTC.

2http://www.esa.int/TEC/OBDP/SEMFOU1VW3H 0.html

(a) GR712RC (LEON3) (b) ML510 (LEON4)

Fig. 3. Effect of contention interference on EEMBC and nDSP when running

on the NGMP and the GR712RC

C. Results with aTC ETB

In order to gauge the efficacy of the algorithm presented

in this work, we compared it against an alternative approach,

called DSE or Design Space Exploration, which exhaustively

explores all possible feasible allocations for every generated

task set. The DSE approach is very time consuming and only

serves the purpose of showing a challenging comparison here;

e.g. for the case of 20 tasks DSE execution time can be up to 3

orders of magnitude higher than aTC. No such heavy approach

would really be needed to apply the proposed method. As

we mentioned before, for every selected task set utilization

in isolation (Uisol) we generate 1,000 random workloads, all

formed with EEMBC programs. For each such workload, DSE

generates all potentially feasible allocations. For a task set

with n tasks and a multicore processor with m cores, the total

number of possible allocations is n!
m!(n−m)! .

In Figure 4 the X-axis shows the Uisol of each task set

and the Y-axis shows the success rate, i.e. the ratio of feasible

partitions among all possible task-to-core assignments per

task set. Diamonds show the success ratio obtained using the

aTC-allocator while the squares for the DSE. Interestingly,

the aTC-allocator success ratio appears to be quite close to

that of DSE, which allows concluding that our algorithm is

sufficiently good at finding feasible partitions. Notably, the

success ratio decreases when the total utilization in isolation

reaches 2.4 − 2.5 out of 4, which is consistent with state-of-

the-art results in the analysis of schedulable utilization with

partitioned scheduling [6]. In the next section we analyze in

detail why aTC-allocator does not reach good success rates

for higher utilizations.

D. Schedulable utilization

In singlecore systems, the total utilization of a task set

is determined by the simple addition of the utilization of

individual tasks considered in isolation. Specific scheduling

algorithms for singlecore processors have specific schedula-

ble utilization thresholds, which determine necessary but not

sufficient conditions for the feasibility of the task set. Task

sets whose utilization falls below the applicable threshold

are deemed feasible, with no feasibility guarantees provided

otherwise. The efficacy of a given scheduling algorithm can

thus be assessed by looking at the ratio of task sets that are

feasibly scheduled from those deemed feasible.

215

(a) 15 tasks

(b) 20 tasks

Fig. 4. Success ratio in finding feasible partitions of task sets with aTC-
allocator and with the DSE on the NGMP

In multicores, to compute the utilization of a task we can

either use its ETB in isolation, Cisol
i or its fTC ETB (CfTC

i).

The utilization associated to a task set varies in each case. It is

Uτi∈T
isol =

∑n
i=1 C

isol
i and Uτi∈T

fTC =
∑n

i=1 C
fTC
i . Those two

ETB are, respectively, a lower bound and an upper bound to

the effective task utilization whose actual value will depend on

the contention interference incurred in operation for the chosen

task-to-core assignment. The source of the complexity lies in

the fact that ETB of a task in a multicore conceptually com-

bines two elements which are difficult to determine exactly:

the time the task actually uses the CPU to progress, and the

time during which the task holds the CPU but is stalled while

suffering contention interference. When partitioned scheduling

is used, for example, the task-to-core assignment determines

which tasks can run in parallel and consequently interfere with

each other. This in turn allows determining the ETB for all

tasks under that particular allocation (Cact
i). It follows that, in

that case, the actual CPU utilization of the task set cannot be

determined until the task-to-core assignment is fixed.

To overcome this difficulty, we use the DSE algorithm to

find the feasible (partitioned) task sets and the resulting total

utilization. At that point, we can apply our method to determine

the actual effective utilization (Uτi∈T
act =

∑n
i=1 C

act
i) of the

task sets that DSE deems feasible and see which of them stay

feasible after using the aTC-allocator.

Figure 5(a) shows, for every feasible assignment found

with the DSE algorithm, the total utilization of the task set

considering the contention effects arising after the partitioning

(Uact, Y axis) found with aTC-allocator, in relation to the total

utilization computed considering tasks running in isolation

(a) Relation between Uisol and Uact

(b) Execution time overheads

Fig. 5. Other metrics for evaluating the performance of aTC-allocator

(Uisol, X axis). We can see that, at Uτi∈T
isol values around 2.4

and 2.5, where aTC-allocator and DSE stop finding feasible

assignments (cf. figure 4), the Uτi∈T
act values reach 3.65-3.75

and 3.8-3.9 respectively. This shows that aTC-allocator nearly

fills all the cores.

E. Other considerations with aTC ETB

Run time in the offline analysis. aTC-allocator takes

considerable time to run in the analysis phase for a real COTS

multicore processor. We identify three main contributors to this

need: the generation of all possible tuples, i.e.W , the execution

of those tuples on the target multicore for determining the

ETB, and the time required by the aTC-allocator itself to

compute feasible assignments. The generation of all tuples

comprising all potential combinations (tuples) of {m,m −
1, ..., 1} tasks in T takes less than 2 minutes for any task set

size, (see Figure 5(b)), on a Dell Latitude E6420 embedding

an Intel Core i7 processor at 2.40GHz. The execution of all

tuples in our ML510 board takes around 3 hours. Of course

the duration of this step depends on the frequency of the board

– 70 Mhz in our case – and the size of the applications under

analysis. The execution of aTC-allocator for the problem at

hand takes little less than 13 minutes.

Computational complexity. It is clear that our ap-

proach moves complexity into timing analysis to derive those

aTC ETB. Most of the experimentation time is expected to

be consumed in determining the aTC ETB. In the absence of

hardware support for controlling contention interference, the

evidence about the impact of such interference is obtained by

exposing the task under different configurations of its potential

216

co-runners. The experimentation time required may be larger if

the tasks have release offsets and operation modes which need

to be co-executed to capture their effect. Moreover, the cost

may grow exponentially with the number of tasks and cores.

Whereas reducing that overhead is part of our future work, to

the best of our knowledge, there currently is no other viable

proposal for the timing analysis of real-time tasks running on

a COTS multicore processor that does not provide full support

for contention control or removal.

VII. CONCLUSIONS

The advent of multicore processors challenges the viability

of the two-step timing analysis approach followed for sin-

glecore systems: contention interference effects in a multicore

are much more complex in nature and fine in grain than what

can be captured in compositional response time analysis by

simply widening the tasks’ ETB with the time intervals during

which tasks cannot progress due to inter-task interference. This

creates a dependence between the ETB derived for a task and

its scheduling at run time. If fTC ETB estimates can be derived

with low impact on pessimism this dependence is broken. If

they cannot be derived we sketch a solution based on the new

concept of pTC ETB for partitioned scheduling. We regard

the problem for global scheduling to be harder to solve in a

tractable manner.

We show two real processors representative of both cases:

while in the dual-core LEON3-based GR712RC it is possible

to use for each task its fTC ETB without incurring high

overheads, this is not so for the quad-core NGMP as the

fTC ETB may be 5.8x higher than in isolation (i.e. assuming

no inter-task interference).

ACKNOWLEDGMENTS

The research leading to this work has received funding

from: the European Union’s Horizon 2020 research and in-

novation programme under grant agreement No 644080(SA-

FURE); the European Space Agency under Contract 789.2013;

and COST Action IC1202, Timing Analysis On Code-Level

(TACLe). This work has also been partially supported by

the Spanish Ministry of Science and Innovation under grant

TIN2012-34557. Jaume Abella has been partially supported by

the Ministry of Economy and Competitiveness under Ramon

y Cajal postdoctoral fellowship number RYC-2013-14717.

REFERENCES

[1] AMBA Bus Specification. http://www.arm.com/products-/system-
ip/amba/amba-open-specifications.php.

[2] NGMP Preliminary Datasheet. http://microelectronics-
.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6.pdf.

[3] B. Akesson et al. Predator: a predictable SDRAM memory controller.

In CODES+ISSS, 2007.

[4] J. Andersson et al. Next generation multipurpose microprocessor. In

DASIA, 2010.

[5] ARM Ltd. The ARM Cortex-A9 processors (white paper).

http://www.arm.com/files/pdf/armcortexa-9processors.pdf, 2009.

[6] A. Bastoni et al. An empirical comparison of global, partitioned, and

clustered multiprocessor EDF schedulers. In RTSS 2010.

[7] A. Burns. Preemptive priority-based scheduling: An appropriate en-

gineering approach. In Advances in Real-Time Systems, chapter 10.

Prentice Hall, 1994.

[8] D. Compagnin et al. Putting RUN into practice: Implementation and

evaluation. In ECRTS 2014.

[9] C. Cullmann et al. Predictability considerations in the design of multi-

core embedded systems. In ERTS, 2010.

[10] G. Fernandez et al. Contention in multicore hardware shared. resources:

Understanding of the state of the art. In WCET Workshop, 2014.

[11] G. Fernandez et al. Increasing confidence on measurement-based

contention bounds for real-time round-robin buses. In DAC, 2015.

[12] G. Fernandez et al. Introduction to partial time composability for COTS

multicores. In ACMS SAC, 2015.

[13] M. Fernández et al. Assessing the suitability of the NGMP multi-core

processor in the space domain. EMSOFT, 2012.

[14] P. Graydon and I. Bate. Safety assurance driven problem formulation

for mixed-criticality scheduling. In MCS Workshop, 2013.

[15] S. Hahn et al. Towards compositionality in execution time analysis –

definition and challenges. In CRTS, December 2013.

[16] T. Kelter et al. Static analysis of multi-core TDMA resource arbitration

delays. Real-Time Systems, 2013.

[17] R. Kirner and P. Puschner. Obstacles in worst-case execution time

analysis. In ISORC, 2008.

[18] Y. Li et al. Timing analysis of concurrent programs running on shared

cache multi-cores. In RTSS, 2009.

[19] J. Mathai et al. Finding response times in a real-time system. Comput.
J., 29(5):390–395, 1986.

[20] E. Mezzetti and T. Vardanega. On the industrial fitness of WCET

analysis. WCET Workshop, 2011.

[21] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing

architectures in avionics. In EDCC, 2012.

[22] M. Panić et al. Parallel many-core avionics systems. EMSOFT ’14,

2014.

[23] M. Paolieri et al. Hardware support for WCET analysis of hard real-

time multicore systems. In ISCA’09.

[24] M. Paolieri et al. IA3: An interference aware allocation algorithm for

multicore hard real-time systems. In RTAS’11.

[25] M. Paolieri et al. Timing effects of DDR memory systems in hard

real-time multicore. ACM TECS, 2013.

[26] R. Pellizzoni et al. Worst case delay analysis for memory interference

in multicore systems. In DATE, 2010.

[27] J. Poovey. Characterization of the EEMBC Benchmark Suite. North

Carolina State University, 2007.

[28] P. Puschner et al. Towards composable timing for real-time software.

In STFSSD, 2009.

[29] P. Radojković et al. On the evaluation of the impact of shared resources

in multithreaded cots processors in time-critical environments. In ACM

TACO 2012.

[30] P. Regnier et al. RUN: optimal multiprocessor real-time scheduling via

reduction to uniprocessor. In RTSS 2011.

[31] S. Schliecker et al. Bounding the shared resource load for the

performance analysis of multiprocessor systems. In DATE, 2010.

[32] A. Schranzhofer et al. Timing analysis for TDMA arbitration in resource

sharing systems. In RTAS, 2010.

[33] A. Schranzhofer et al. Timing analysis for resource access interference

on adaptive resource arbiters. In RTAS, 2011.

[34] I. Wenzel et al. Measurement-based timing analysis. In ISoLA, 2008.

217

