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Time-Critical Systems Design

 The 1990s witnessed the convergence 
between their high-performance processor mar-
ket and low-power (embedded) systems, resulting 
in high-performance low-power design solutions, 
extensively used in mobile devices. The present 
era shows similar signs of convergence between 
high-performance low-power mainstream products 
and the real-time embedded market [1] in the quest 
for high guaranteed performance. On the one hand, 
mainstream devices increasingly incorporate soft-
ware functionalities that take part in critical systems 
(e.g., health monitoring), and consequently, inherit 
the sustained performance needs of the latter. On 
the other hand, modern real-time systems include 
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critical and complex functions (e.g., 
decision-making  in robotic applica-
tions, autonomous vehicle operation 
in automotive, railway, and aero-
space) that are steadily increasing their 
high-performance needs.

The level of guaranteed (hence 
predictable) performance required 
to sustain the execution of those 

critical functions is therefore projected to rise to 
unprecedented highs. For example, ARM fore-
casts for the automotive domain maintain that 
advanced driver assistance features will require 
a 100-fold increase in computing performance by 
2024.1 Getting there at competitive costs will nec-
essarily yield very aggressive, parallel, and heter-
ogeneous computer designs such as the NVIDIA's 
ISO26262-compliant Xavier processor. However, 
the more stateful resources are deeply embedded 
in high-performance processors, the more com-
plex the problem of asserting performance guar-
antees that also hold in the worst case, the bigger 
the risk of incomplete or restricted information, 
and the more pessimistic the results. Complexity 
grows to reflect the inordinate increase in the state 
space, and impairs certification. Pessimism grows, Digital Object Identifier 10.1109/MDAT.2017.2766558
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with worthless results, owing to the need to treat 
missing information conservatively.

This trend challenges the ability of measure-
ment-based timing analysis (MBTA)––the most 
common and accessible technique for industrial 
use––to deliver the sought assurance of perfor-
mance predictability in the form of worst-case exe-
cution-time (WCET) bounds. In particular, creating 
test scenarios in which the application runs under 
extreme execution conditions that upper-bound 
those that can occur at operation is a hard chal-
lenge. The low-level hardware resources that are 
highly contended in high-performance processors 
(e.g., buses, request queues, and caches) make 
it inordinately difficult for the user to ascertain 
whether the execution conditions (e.g., contention 
load) observed during testing correspond to what 
can occur during operation. Hence, the question 
whether the execution-time observations made in 
the analysis are representative of the extreme situ-
ations that can arise at operation is very difficult 
to answer. This quandary severely undermines the 
reliability of the proffered results and withholds 
users from convinced transitioning to high-perfor-
mance hardware when assurance of predictable 
performance is required.

This paper lifts some of the impediments that 
prevent the more widespread adoption of high-
performance processors in critical real-time systems 
and, symmetrically, of timing analysis methods 
in domains where performance predictability is 
becoming a first-order requirement. To this end, we 
present two complementary approaches to achieve 
low-cost high-confidence and tight performance pre-
dictions with MBTA, for real-time systems running on 
high-performance hardware.

1) Hardware designs that provide increased 
observability. This approach augments the pro-
cessor hardware with the capability of producing 
performance monitoring counters (PMCs) data to 
expose key indicators of the internal timing behav-
ior of selected hardware resources. This wealth 
of information allows determining whether the 
execution conditions experienced during the test 
campaign represent the worst-case situation. The 
increased observability yielded by performance 
monitoring units (PMUs) expressly designed to 
expose hard-to-predict variable timing behavior, 
combined with big-data analysis methods to treat 

the PMC read-outs, increases the quality of MBTA 
results dramatically.

2) Hardware designs that expose execution- 
time variability. This approach allows the user to 
rest assured that the execution-time measurements 
taken during analysis do capture the full span of 
variability that can occur during operation. This 
assurance is obtained with hardware support that 
enables the user to control the time variability of key 
performance contributors (e.g., caches), at negligi-
ble costs for space and performance. This solution 
is complemented with a timing analysis method that 
uses probabilistic reasoning to predict the extreme 
variability of the program’s WCET.

Solution 1 increases the observation power 
offered by the processor hardware and lowers 
the effort intensity of discerning the spectrum of 
variability observed during timing analysis. Solu-
tion 2 changes the processor hardware to cause 
the critical sources of variability to span their 
full extent in manners that can be more easily 
and conclusively captured during analysis. Their 
combination enables the achievement of consid-
erably higher levels of guaranteed performance in 
advanced processor platforms.

Common principles
MBTA studies the system’s timing in analysis sce-

narios, to determine upper bounds to the worst-case 
execution-time behavior that may occur at opera-
tion. MBTA’s challenge is to construct analysis-time 
scenarios that help compute WCET estimates that 
upper-bound operation-time behavior. This evidently 
requires ensuring that all factors with bearing on the 
execution conditions that the program may incur dur-
ing operation are duly considered in the analysis. In 
fact, the factors that originate from low-level hard-
ware resources are far more difficult to get at for the 
user than those that proceed from the software. This 
paper addresses the former challenge, with solutions 
that entail simple changes to hardware design and 
MBTA methods, which achieve quality results with-
out sacrificing performance. On those grounds, we 
maintain that the adoption of the following design 
principles yields an effective application of MBTA to 
high-performance systems.

Performance predictability as a design require-
ment. Factoring predictability as a first-class citizen 
in the hardware design up front strikes a much better 
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cost/benefit ratio than addressing it later, when pre-
dictability-geared modifications may not prove prac-
tical, affordable, or worse even sufficient. Having 
failed to consider predictability early in the design 
of some of its processors, ARM tried to reduce con-
tention interference by allowing second-level (L2) 
cache space to be partitioned across cores, yet con-
tinuing to share the queues that stored the pending 
L2 cache misses. This design decision was flawed 
[2], as it let any single core clog and starve the oth-
ers by hoarding those queues. Other architectures 
were conceived with predictability in mind from the 
outset (e.g., precision timed machines (PRET) [3], 
T-CREST [4]), yet at the cost of radical differences 
from commercial off-the-shelf (COTS) designs, thus 
hitting a most formidable obstacle to adoption by 
chip manufacturers.

Performance-preserving predictability solutions. 
Evidence suggests that hardware vendors would not 
trade high average performance for time predictability, 
as sacrificing the former hinders market penetration. 
Conceivably therefore, support for predictability can 
make it in hardware design only as long as it incurs 
affordable overhead for chip area, power budget, 
validation complexity, and harms neither program-
mability nor software portability. Accordingly, we 
advocate the use of predictability features, e.g., for 
cache placement/replacement and arbitration, which 
are configurable at will (e.g., by simple enabling/ 
disabling) on account of specific traits of the applica-
tion. This vision contrasts with approaches that seek 
lesser resource sharing and more task isolation by way 
of ad-hoc hardware designs, such as scratchpads, spe-
cial caches, or NoC modifications that extend beyond 
arbitration and require additional signals and proto-
cols in the router [4].

For the management and arbitration of shared 
resources, for example, we vouch for solutions that 
narrow the gap between worst-case and average 
performance, specifically without sacrificing the 
latter. Static XY-routing for NoCs and round-robin 
or random arbitrations combined with smart vir-
tual channel allocation are good instances of that 
notion, as they ease capturing worst-case scenarios 
while also assuring a worst-case behavior not too far 
apart from the average one. Conversely, adaptive 
routing and dynamic virtual channel allocation solu-
tions increase that gap, often earning only marginal 
improvement to the average case [5].

Renounce the absolute WCET. Blindly account-
ing for theoretical worst-case scenarios in complex 
heterogeneous platforms is likely to lead to exceed-
ingly pessimistic estimates. For example, contending 
shared hardware resources to saturation may cause 
massive degradation of performance, and therefore 
lead to insanely high WCET values. A more sensi-
ble concept seeks to keep a high overall utilization, 
which yields good average performance, while 
avoiding saturation situations by design, thereby 
improving the worst case.

WCET analysis should leverage resource utiliza-
tion information to renounce the one-and-only abso-
lute upper-bound and concentrate instead on the 
(least pessimistic) conditions that do upper-bound 
those that can arise during operation. This notion is 
often referred to as seeking partial time composability, 
which aims to provide WCET estimates that relate 
to specific utilization bounds for shared resources. 
To secure the system as verified, those utilization 
bounds shall then be enforced during operation, by 
hardware or software means, to prevent applications 
from exceeding their assigned quota.

A promising approach to derive performance 
predictions under a postulated contention load 
employs microbenchmarks [6], small user-level 
programs designed to cause programmable con-
tention on specific target resources (e.g., caches 
and buses). Running the application against the 
microbenchmarks allows exploring the potential 
impact of different levels of contention, and facil-
itates the derivation of performance guarantees in 
those load scenarios.

Tracing and instrumentation support. Collecting 
hardware events (e.g., execution time) as needed 
for WCET estimation should be done without affect-
ing program behavior owing, e.g., to instrumentation 
instructions. While modern processors provide pow-
erful tracing facilities, e.g., NXP’s Nexus or ARM’s 
Coresight, high-speed tracing technology must evolve 
to avert scalability issues as the core count increases.

Increased observability
This approach extends PMUs with predictability-

aware PMCs. With this approach, sketched in 
Figure 1 with blue arrows, MBTA is fed with (possibly 
large volumes of) PMC read-outs. In that manner, 
not only MBTA can correlate PMC indicators with 
execution-time measurements but also ascertain 
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whether the execution conditions incurred at oper-
ation are indeed covered in the analysis scenarios, 
and thus better reason about representativeness.

Hardware extensions: Predictability-aware PMCS
Current processors embed sophisticated debug-

and-statistical PMUs (also known as DSU) that sup-
port a very large number of PMCs, hundreds in the 
IBM POWER7 or the NXP P4080. PMCs are normally 
used for profiling the application, improving average 
performance, or debugging. Hence, the information 
that they provide tends to ignore event types that are 
deemed not relevant to those purposes; this is often 
the case of the events that are critical to WCET esti-
mation. For instance, typical PMCs report the num-
ber of requests sent to the bus and the bus usage by 
a given core, but do not report how long that core 
waits for the bus. Indeed, with existing PMCs, one can 
determine whether high bus contention may cause 
the load-store instructions to clog the load-store 
unit. Yet, knowing for how many cycles a program 
was stalled by clogging of the load-store unit is not  
sufficient for predictability analysis. Instead, one 
would need PMCs that break down the load-store 
unit stall time into the fraction of it due to the pro-
gram’s own memory activity and the fraction due to 
contention in the bus, cache, memory, etc. PMCs for 
the latter do not generally exist.

While predictability-aware PMCs are scarce in 
current processors, they are rather easy to imple-
ment as simple extensions of existing counters. 
As changes in the PMCs are very unlikely to affect 
average performance, it should not be difficult to 

persuade chip manufacturers of the importance of 
predictability-aware PMCs for performance predicta-
bility, and eventually favor their adoption.

Example: AMBA-bus delay modeling
The advanced microcontroller bus architecture 

(AMBA) is one of the most used bus interfaces. 
Under the AMBA protocol, the arbitration process 
involves several hardware blocks (the arbiter and 
one or more masters) and several signals. Recently, 
a method has been devised to monitor contention 
in shared AMBA buses [7]. The method monitors 
existing signals of the AMBA bus, as shown in Fig-
ure 2: HBUSREQ, which each master sets to request 
the bus; and HGRANT, which the arbiter sets to iden-
tify the master that is granted access to the bus in 
each cycle. If forwarded these signals, the PMU can 
tell the number of cycles that a master i is stalled 
by master j, by simply counting how long HGRANT 
equals j and the HGRANT signal of master i is set. 
The PMU can be equipped with a matrix of Nm × Nm 
counters, for Nm masters: entry [i,j] then denotes the 

Figure 1. Schematic view of the increased-observability approach (blue arrows) and 
the variability-capturing approach (green dotted arrows) for increased performance 
predictability. Common parts are shown in violet (dashed lines). “ET” stands for  
execution time.

Figure 2. PMU snooping of AMBA signals (dotted lines) 
for contention delay monitoring. Example with four 
masters.
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cycle count that master i is waiting for master j. This 
simple mechanism allows determining how long 
one task is delayed by another task, which is key to 
task consolidation, seeking assignments that cause 
the lowest contention, which in turn allows deriving 
WCET estimates in consolidated scenarios instead of 
pathological ones.

MBTA extensions: Big-data and 
statistical analysis

Predictability-aware PMUs allow MBTA to capture 
much richer information for observation runs than 
mere execution times. As MBTA usually requires 
numerous test runs, with abundant quantities of 
PMC values being read per run from the PMU, big 
volumes of (heterogeneous) data are likely to be col-
lected, which makes a very clear case for big-data 
analysis extensions to MBTA.

Combining the predictability-preserving fea-
tures outlined in “Common Principles” with the 
increased-observability capabilities presented in this 
section allows attenuating the jitter incurred by real-
time software programs instead of striving to eradi-
cate it with radical design changes (as pursued by 
other approaches). The residual jitter is exposed via 
PMCs to the timing analysis tool that can reason on 
the factors that cause it, and consequently advise the 
system engineer on how to attenuate them.

Big-data analysis can be used to extract the 
most sensitive information out of the observation 
measurements, telling what are relevant in them. 
Regression methods, extreme value analysis, data 
decomposition, and other statistical techniques can 
then be used to predict the incidence of individual 
factors of influence on the program under analysis. 
That approach would conceivably yield tight WCET 
estimates with quantifiable levels of confidence.

Extension to static timing analysis
Static timing analysis (STA) [8] is designed to 

seek the assurance of a single-valued absolute 
WCET result, however, pessimistic. STA, which has 
critical dependence on accurate and trustworthy 
knowledge on the processor internals, has proven its 
potential with hardware designed with predictabil-
ity in mind [3], [4], and would certainly also benefit 
from the inclusion of predictability-aware PMCs. Yet, 
the need for open, documentary information is a 
serious vulnerability when the processor parts are 
subject to IP restrictions. Moreover, such features as 

multilevel caches, decoupling buffers, manycores, 
NoCs, and accelerators, which have been in use for 
years in mainstream products, have such an intricate 
internal behavior and tangled interactions with exe-
cution-time behavior that far exceed the capacity of 
state-of-the-art abstract modeling. The width of the 
state space to be comprehended and the quantity of 
state variables in it forms a complexity wall that can-
not be overcome other than at the cost of massive 
loss of information, and increase of pessimism.

STA will continue to be the reference timing anal-
ysis solution for more restricted scenarios and lower-
performance systems in which accurate abstract 
modeling is still possible. However, on the whole, STA 
can hardly be regarded as a practicable solution for 
the quest of performance predictability across all 
industrial domains. MBTA instead is bound to remain 
the most viable option in that regard.

Capturing operation-time variability
This approach strives to cause the full range of 

variation in the execution-time behavior that the 
application can incur at operation to occur, without 
the need for user intervention, in the measure-
ment observations taken at analysis. Whereas the 
increased-observability solution enables measure-
ment observations to capture the impact of jittery 
hardware resources, it requires further effort on the 
timing analysis side to claim that what was observed is 
fully representative of what can happen during oper-
ation. This approach, instead, selectively injects time 
randomization in jittery hardware resources to allow 
quantifying the representativeness of operation-time 
variations covered in measurement observations.2 
With those hardware modifications, MBTA can be 
soundly augmented with probabilistic reasoning, to 
allow quantifying the claim of representativeness, 
while its application procedure remains rather simple. 
This notion, which we further articulate in the sequel, 
is captured in the green-colored elements of Figure 1.

Hardware extensions: Randomization and 
upper bounding

To increase representativeness, a family of hard-
ware designs has been recently proposed, which 
bases on two key properties: time randomization 
and time upper-bounding [9].

2As discussed in “Hardware extensions: randomization and upper bounding,” this 
form of predictability-geared randomization can be implemented with negligible 
impact on average performance.
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Upper bounding. Hardware resources that exhibit 
low jitter (e.g., the floating-point unit) are modified so 
that they can be forced to work at their highest latency 
during analysis, causing measurement observations to 
upper-bound the operation-time jitter effect of their use.

Time randomization. This technique modifies the 
design of hardware resources with high jitter and 
keeps that modification active at both analysis and 
operation, as the selective use of upper-bounding – as 
done for low-jitter resources – would incur excessive 
analysis pessimism. Randomization injected in those 
resources causes all extent of variability that they can 
incur to equally occur during analysis and operation, 
which in turn enables quantified claims of probabil-
istic coverage (i.e., representativeness) to be made. 
As execution time exhibits random variation, statis-
tically sufficient measurement observations made 
during analysis suffice to represent the extreme tim-
ing behavior that may occur during operation, and 
probabilistic reasoning can be applied to MBTA. This 
is better illustrated in “Handling cache jitter.”

The feasibility of these hardware modifications 
has been demonstrated in register-transfer level 
(RTL) FPGA prototype of a COTS multicore that is 
now in commercial offering.3

Handling cache jitter
The memory addresses at which the program 

code and data are located (the memory mapping) 
determine the cache sets to which they are assigned 
(the cache layout). Different memory mappings 
result in distinct cache layouts, with varying effect 
on the program’s execution time.

With applications integrated out of parts devel-
oped by multiple suppliers, timing analysis—which 
presides to software dimensioning––must be per-
formed as early as possible for each part, well before 
the final mappings are known. Hence, the challenge 
that caches present to MBTA is to assure that the pro-
gram configurations used in the measurement obser-
vations do capture the cache layouts that may occur 
after final integration (which are of course unknown). 
MBTA addresses that challenge by seeking to single 
out the memory mappings that yield cache layouts 
that lead to higher execution times. If it manages to 
do so, then the cache impact is duly factored in the 
analysis, else the results may be optimistic. However, 
hoping to find the global worst-case cache layout 
before final software integration experimentally is 

not an option. Hence, no confidence can be had that 
the test campaigns performed at unit and integration 
level serendipitously find the worst-case cache lay-
out for all software programs of interest. Moreover, 
even minor changes to the program code, which 
may happen across incremental development (or 
rarer changes to link directives), can affect the mem-
ory layout, yielding execution times that may inval-
idate the prior findings of MBTA. These difficulties 
may degrade the confidence in the WCET estimates 
product of MBTA, below the thresholds of regulated 
domain practices, and therefore, compel the affected 
industrial users to renounce caches altogether.

Cache randomization combines random replace-
ment (which many architectures use) and random 
placement [10]. The latter breaks the dependence 
between memory location and cache placement.  
A random input value, that is changed across pro-
gram runs at times that do not interfere with system 
operation, determines the (random) placement 
function. In that manner, the actual address in mem-
ory becomes irrelevant to cache placement and so, 
to execution time variation. Every single run yields a 
random cache mapping that corresponds to a random 
sample in the whole population of possible cache 
layouts. As randomization stays enabled during oper-
ation and therefore prevents systematic pathologies, 
this strategy allows making a sound probabilistic 
argument on the coverage of the cache-layout prob-
lem space attained in measurement observations. 
With cache placement, addresses are manipulated 
with a random seed4 provided prior to program run 
and changed after it. A permutation network or hash 
logic (see the right part of Figure 3) places each of 

Figure 3. Example of pWCET estimation (left) and 
a randomized cache (right).3http://www.gaisler.com/index.php/products/processors/leon3

4Pseudo random number generators exist that deliver repetition-free series long 
enough to prevent potential correlation of events in statistically significant spans. 
The produced numbers can be used to generate random placements and replace-
ments in caches or for random arbitration policies.
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which addresses in a random and independent set 
by changing the (random) seed across runs.

This approach frees MBTA users from the 
obligation to model or control the whole space of 
execution-time variations, and allows measurement 
observations to be collected in a much more black-
box manner.

MBTA extension: Probabilistic reasoning on 
predictability

Time randomization coupled with the applica-
tion of probabilistic reasoning to timing analysis 
changes the WCET estimate concept from a single 
fully assured limit value into a probability distribu-
tion that represents the maximum residual probabil-
ity at which a WCET threshold can be exceeded.

Such mutation is not unspeakable for a twofold 
reason. First, no current timing analysis technique 
can provide absolute guarantees that the com-
puted WCET bound will never be exceeded, simply 
because all methods ultimately depend on precari-
ous inputs, whether worst-case scenarios for use with 
MBTA, or precise hardware timing models for STA, 
or assured flow facts for both. Second, the quality 
of those analysis inputs (and their effect on reliabil-
ity and tightness of results) cannot be quantified in 
general, which resorts users to qualitative judgment. 
Probabilistic reasoning instead allows quantifica-
tion, much like what it does to model the appear-
ance of certain types of hardware faults in electronic 
components.

Within a probabilistic mindset, MBTA can use 
measurement observations to derive probabilis-
tic WCET (pWCET) estimates, so that any given 
(extreme) execution-time bound is attached a prob-
ability of exceedance, which represents the highest 
probability that it can be topped (see the left part of 
Figure 3). In practice, the probability of exceedance 
is set so low that the risk of overrunning the pWCET 
can be deemed irrelevant by the applicable safety 
regulations. The Extreme Value Theory and other 
methods that predict the tail of a probability distri-
bution are fit for this use, and only need appropriate 
tailoring to the pWCET problem case. Interestingly, 
MBTA can use those methods in a black-box man-
ner as the hardware modifications described in this 
paper ensure by construction that the measurement 
observations taken at analysis are representative 
of the execution-time distribution that can occur at 
operation. In fact, this approach holds even in the 

face of IP restrictions on hardware details as long 
as IP owners design their components following 
the principles needed to attain representativeness, 
namely, time upper-bounding and randomization, as 
described in  [9]. Still, there is no practical way for 
IP users to verify whether those principles hold, so 
the degree of confidence on the pWCET estimates 
depends on whether IP owners effectively adhere to 
those principles.

A measurement-based probabilistic timing anal-
ysis process starts by collecting observations that 
implicitly factor in the potential timing variability. 
Subsequently, specialized statistical tests are applied 
to assure that probabilistic methods (e.g., Extreme 
Value Theory) can be used for pWCET estimation. 
Those tests may check independence and identical 
distribution across measurements, and the quality 
and sufficiency of the data to deliver a prediction. 
At that point, a pWCET estimation can be obtained 
(see [11] for more details).

Impact on average performance
Randomization is often perceived to negatively 

affect average performance. In fact, however, its 
penalty largely depends on the granularity level at 
which randomization is applied. Recent solutions 
have shown it to have marginal impact on perfor-
mance and negligible cost on hardware. Some var-
iants of random placement and replacement poli-
cies for caches have been shown to stay within 1% 
of the performance of deterministic caches [10] 
on multilevel cache hierarchies. The key factor 
in those proposals stems from the observation 
that randomization can be performed at relatively 
coarse granularity. Earlier proposals were oper-
ated on cache lines (i.e., for a dozen bytes), which 
taxed average performance significantly. More 
recent designs [10] operate on cache way bound-
aries (i.e., for kilobytes), which preserves spatial 
and temporal locality, and therefore prizes aver-
age performance, and still suffices for probabilis-
tic reasoning. For arbitration, instead, experiments 
on the BlueGene Torus Interconnection [12] have 
shown that randomization provides performance 
results very close to the state of the art. Ad-hoc 
policies can of course be developed specifically 
for given traffic profiles to achieve slightly better 
results, but in the absence of specialization, the 
average performance of randomized arbitration is 
competitive.
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The evaluation of time-randomized multicores [10] 
with avionics, space, and railway case studies has 
shown that pWCET estimates are typically within 
20% of the actual performance on time-deterministic 
counterparts. Hence, bounds are lower than the usual 
practice on time-deterministic architectures of add-
ing a 20% engineering margin on top of the highest 
observed execution time. Moreover, time-randomized 
architectures enable scientific reasoning and quantita-
tive evidence supporting pWCET estimates, thus facili-
tating certification against safety-related standards.

The demand for unprecedented levels of predict-
able performance compels a rising proportion of 
application domains that exceed traditional real-
time systems, to use high-performance hardware. 
This trend confronts MBTA with hard challenges. 
First, the absolute worst conditions for software and 
hardware  sought for classic WCET determination 
can become so pathological that any upper bound 
on them is too high to be useful; much more sensible 
and relevant is to define an estimate of the WCET 
for the set of configuration states that the system 
can really exhibit. Hardware and software design 
as outlined in this paper can favor system config-
urations that lead to measurable and reasonable, 
hence usable, estimates. Second, accounting for 
the execution-time variability of hardware resources 
with bearing on timing at operation is becoming 
exceedingly difficult for the average user. This paper 
explores two approaches to address this problem: 
(1) hardware designs to provide control knobs that 
improve observability and allow MBTA to extend 
the representativeness of analysis-time observations 
to operation-time situations; (2) design means to 
cause the timing variability of jittery hardware that 
can occur at operation to also arise during analysis 
without the need for user control. The combination 
of those two approaches spares the need for exceed-
ingly detailed timing models of the target hardware 
and therefore scales to complex processors afforda-
bly. Both solutions offer a solid baseline to support 
the quest for performance predictability across a 
wide range of application domains.� 
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