
48 2168-2356/17 © 2017 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Time-Critical Systems Design

 The 1990s witnessed the convergence
between their high-performance processor mar-
ket and low-power (embedded) systems, resulting
in high-performance low-power design solutions,
extensively used in mobile devices. The present
era shows similar signs of convergence between
high-performance low-power mainstream products
and the real-time embedded market [1] in the quest
for high guaranteed performance. On the one hand,
mainstream devices increasingly incorporate soft-
ware functionalities that take part in critical systems
(e.g., health monitoring), and consequently, inherit
the sustained performance needs of the latter. On
the other hand, modern real-time systems include

Reconciling Time
Predictability and
Performance in Future
Computing Systems
Francisco J. Cazorla
Barcelona Supercomputing Center
and IIIA-CSIC

Jaume Abella, Enrico Mezzetti,
and Carles Hernandez
Barcelona Supercomputing Center

Tullio Vardanega
Università Degli Studi di Padova

Guillem Bernat
Rapita Systems Ltd.

Editor’s note:
This article presents hardware design approaches to achieve predictability
with measurement-based timing analysis.

—Tulika Mitra, National University of Singapore
—  Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg

—Lothar Thiele, ETH Zurich

critical and complex functions (e.g.,
decision-making in robotic applica-
tions, autonomous vehicle operation
in automotive, railway, and aero-
space) that are steadily increasing their
high-performance needs.

The level of guaranteed (hence
predictable) performance required
to sustain the execution of those

critical functions is therefore projected to rise to
unprecedented highs. For example, ARM fore-
casts for the automotive domain maintain that
advanced driver assistance features will require
a 100-fold increase in computing performance by
2024.1 Getting there at competitive costs will nec-
essarily yield very aggressive, parallel, and heter-
ogeneous computer designs such as the NVIDIA's
ISO26262-compliant Xavier processor. However,
the more stateful resources are deeply embedded
in high-performance processors, the more com-
plex the problem of asserting performance guar-
antees that also hold in the worst case, the bigger
the risk of incomplete or restricted information,
and the more pessimistic the results. Complexity
grows to reflect the inordinate increase in the state
space, and impairs certification. Pessimism grows, Digital Object Identifier 10.1109/MDAT.2017.2766558

Date of publication: 25 October 2017; date of current version:

23 March 2018.
1https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-
to-increase-100x-in-next-decade.php

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

https://www

49March/April 2018

with worthless results, owing to the need to treat
missing information conservatively.

This trend challenges the ability of measure-
ment-based timing analysis (MBTA)––the most
common and accessible technique for industrial
use––to deliver the sought assurance of perfor-
mance predictability in the form of worst-case exe-
cution-time (WCET) bounds. In particular, creating
test scenarios in which the application runs under
extreme execution conditions that upper-bound
those that can occur at operation is a hard chal-
lenge. The low-level hardware resources that are
highly contended in high-performance processors
(e.g., buses, request queues, and caches) make
it inordinately difficult for the user to ascertain
whether the execution conditions (e.g., contention
load) observed during testing correspond to what
can occur during operation. Hence, the question
whether the execution-time observations made in
the analysis are representative of the extreme situ-
ations that can arise at operation is very difficult
to answer. This quandary severely undermines the
reliability of the proffered results and withholds
users from convinced transitioning to high-perfor-
mance hardware when assurance of predictable
performance is required.

This paper lifts some of the impediments that
prevent the more widespread adoption of high-
performance processors in critical real-time systems
and, symmetrically, of timing analysis methods
in domains where performance predictability is
becoming a first-order requirement. To this end, we
present two complementary approaches to achieve
low-cost high-confidence and tight performance pre-
dictions with MBTA, for real-time systems running on
high-performance hardware.

1) Hardware designs that provide increased
observability. This approach augments the pro-
cessor hardware with the capability of producing
performance monitoring counters (PMCs) data to
expose key indicators of the internal timing behav-
ior of selected hardware resources. This wealth
of information allows determining whether the
execution conditions experienced during the test
campaign represent the worst-case situation. The
increased observability yielded by performance
monitoring units (PMUs) expressly designed to
expose hard-to-predict variable timing behavior,
combined with big-data analysis methods to treat

the PMC read-outs, increases the quality of MBTA
results dramatically.

2) Hardware designs that expose execution-
time variability. This approach allows the user to
rest assured that the execution-time measurements
taken during analysis do capture the full span of
variability that can occur during operation. This
assurance is obtained with hardware support that
enables the user to control the time variability of key
performance contributors (e.g., caches), at negligi-
ble costs for space and performance. This solution
is complemented with a timing analysis method that
uses probabilistic reasoning to predict the extreme
variability of the program’s WCET.

Solution 1 increases the observation power
offered by the processor hardware and lowers
the effort intensity of discerning the spectrum of
variability observed during timing analysis. Solu-
tion 2 changes the processor hardware to cause
the critical sources of variability to span their
full extent in manners that can be more easily
and conclusively captured during analysis. Their
combination enables the achievement of consid-
erably higher levels of guaranteed performance in
advanced processor platforms.

Common principles
MBTA studies the system’s timing in analysis sce-

narios, to determine upper bounds to the worst-case
execution-time behavior that may occur at opera-
tion. MBTA’s challenge is to construct analysis-time
scenarios that help compute WCET estimates that
upper-bound operation-time behavior. This evidently
requires ensuring that all factors with bearing on the
execution conditions that the program may incur dur-
ing operation are duly considered in the analysis. In
fact, the factors that originate from low-level hard-
ware resources are far more difficult to get at for the
user than those that proceed from the software. This
paper addresses the former challenge, with solutions
that entail simple changes to hardware design and
MBTA methods, which achieve quality results with-
out sacrificing performance. On those grounds, we
maintain that the adoption of the following design
principles yields an effective application of MBTA to
high-performance systems.

Performance predictability as a design require-
ment. Factoring predictability as a first-class citizen
in the hardware design up front strikes a much better

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

50 IEEE Design&Test

Time-Critical Systems Design

cost/benefit ratio than addressing it later, when pre-
dictability-geared modifications may not prove prac-
tical, affordable, or worse even sufficient. Having
failed to consider predictability early in the design
of some of its processors, ARM tried to reduce con-
tention interference by allowing second-level (L2)
cache space to be partitioned across cores, yet con-
tinuing to share the queues that stored the pending
L2 cache misses. This design decision was flawed
[2], as it let any single core clog and starve the oth-
ers by hoarding those queues. Other architectures
were conceived with predictability in mind from the
outset (e.g., precision timed machines (PRET) [3],
T-CREST [4]), yet at the cost of radical differences
from commercial off-the-shelf (COTS) designs, thus
hitting a most formidable obstacle to adoption by
chip manufacturers.

Performance-preserving predictability solutions.
Evidence suggests that hardware vendors would not
trade high average performance for time predictability,
as sacrificing the former hinders market penetration.
Conceivably therefore, support for predictability can
make it in hardware design only as long as it incurs
affordable overhead for chip area, power budget,
validation complexity, and harms neither program-
mability nor software portability. Accordingly, we
advocate the use of predictability features, e.g., for
cache placement/replacement and arbitration, which
are configurable at will (e.g., by simple enabling/
disabling) on account of specific traits of the applica-
tion. This vision contrasts with approaches that seek
lesser resource sharing and more task isolation by way
of ad-hoc hardware designs, such as scratchpads, spe-
cial caches, or NoC modifications that extend beyond
arbitration and require additional signals and proto-
cols in the router [4].

For the management and arbitration of shared
resources, for example, we vouch for solutions that
narrow the gap between worst-case and average
performance, specifically without sacrificing the
latter. Static XY-routing for NoCs and round-robin
or random arbitrations combined with smart vir-
tual channel allocation are good instances of that
notion, as they ease capturing worst-case scenarios
while also assuring a worst-case behavior not too far
apart from the average one. Conversely, adaptive
routing and dynamic virtual channel allocation solu-
tions increase that gap, often earning only marginal
improvement to the average case [5].

Renounce the absolute WCET. Blindly account-
ing for theoretical worst-case scenarios in complex
heterogeneous platforms is likely to lead to exceed-
ingly pessimistic estimates. For example, contending
shared hardware resources to saturation may cause
massive degradation of performance, and therefore
lead to insanely high WCET values. A more sensi-
ble concept seeks to keep a high overall utilization,
which yields good average performance, while
avoiding saturation situations by design, thereby
improving the worst case.

WCET analysis should leverage resource utiliza-
tion information to renounce the one-and-only abso-
lute upper-bound and concentrate instead on the
(least pessimistic) conditions that do upper-bound
those that can arise during operation. This notion is
often referred to as seeking partial time composability,
which aims to provide WCET estimates that relate
to specific utilization bounds for shared resources.
To secure the system as verified, those utilization
bounds shall then be enforced during operation, by
hardware or software means, to prevent applications
from exceeding their assigned quota.

A promising approach to derive performance
predictions under a postulated contention load
employs microbenchmarks [6], small user-level
programs designed to cause programmable con-
tention on specific target resources (e.g., caches
and buses). Running the application against the
microbenchmarks allows exploring the potential
impact of different levels of contention, and facil-
itates the derivation of performance guarantees in
those load scenarios.

Tracing and instrumentation support. Collecting
hardware events (e.g., execution time) as needed
for WCET estimation should be done without affect-
ing program behavior owing, e.g., to instrumentation
instructions. While modern processors provide pow-
erful tracing facilities, e.g., NXP’s Nexus or ARM’s
Coresight, high-speed tracing technology must evolve
to avert scalability issues as the core count increases.

Increased observability
This approach extends PMUs with predictability-

aware PMCs. With this approach, sketched in
Figure 1 with blue arrows, MBTA is fed with (possibly
large volumes of) PMC read-outs. In that manner,
not only MBTA can correlate PMC indicators with
execution-time measurements but also ascertain

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

51March/April 2018

whether the execution conditions incurred at oper-
ation are indeed covered in the analysis scenarios,
and thus better reason about representativeness.

Hardware extensions: Predictability-aware PMCS
Current processors embed sophisticated debug-

and-statistical PMUs (also known as DSU) that sup-
port a very large number of PMCs, hundreds in the
IBM POWER7 or the NXP P4080. PMCs are normally
used for profiling the application, improving average
performance, or debugging. Hence, the information
that they provide tends to ignore event types that are
deemed not relevant to those purposes; this is often
the case of the events that are critical to WCET esti-
mation. For instance, typical PMCs report the num-
ber of requests sent to the bus and the bus usage by
a given core, but do not report how long that core
waits for the bus. Indeed, with existing PMCs, one can
determine whether high bus contention may cause
the load-store instructions to clog the load-store
unit. Yet, knowing for how many cycles a program
was stalled by clogging of the load-store unit is not
sufficient for predictability analysis. Instead, one
would need PMCs that break down the load-store
unit stall time into the fraction of it due to the pro-
gram’s own memory activity and the fraction due to
contention in the bus, cache, memory, etc. PMCs for
the latter do not generally exist.

While predictability-aware PMCs are scarce in
current processors, they are rather easy to imple-
ment as simple extensions of existing counters.
As changes in the PMCs are very unlikely to affect
average performance, it should not be difficult to

persuade chip manufacturers of the importance of
predictability-aware PMCs for performance predicta-
bility, and eventually favor their adoption.

Example: AMBA-bus delay modeling
The advanced microcontroller bus architecture

(AMBA) is one of the most used bus interfaces.
Under the AMBA protocol, the arbitration process
involves several hardware blocks (the arbiter and
one or more masters) and several signals. Recently,
a method has been devised to monitor contention
in shared AMBA buses [7]. The method monitors
existing signals of the AMBA bus, as shown in Fig-
ure 2: HBUSREQ, which each master sets to request
the bus; and HGRANT, which the arbiter sets to iden-
tify the master that is granted access to the bus in
each cycle. If forwarded these signals, the PMU can
tell the number of cycles that a master i is stalled
by master j, by simply counting how long HGRANT
equals j and the HGRANT signal of master i is set.
The PMU can be equipped with a matrix of Nm × Nm
counters, for Nm masters: entry [i,j] then denotes the

Figure 1. Schematic view of the increased-observability approach (blue arrows) and
the variability-capturing approach (green dotted arrows) for increased performance
predictability. Common parts are shown in violet (dashed lines). “ET” stands for
execution time.

Figure 2. PMU snooping of AMBA signals (dotted lines)
for contention delay monitoring. Example with four
masters.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

52 IEEE Design&Test

Time-Critical Systems Design

cycle count that master i is waiting for master j. This
simple mechanism allows determining how long
one task is delayed by another task, which is key to
task consolidation, seeking assignments that cause
the lowest contention, which in turn allows deriving
WCET estimates in consolidated scenarios instead of
pathological ones.

MBTA extensions: Big-data and
statistical analysis

Predictability-aware PMUs allow MBTA to capture
much richer information for observation runs than
mere execution times. As MBTA usually requires
numerous test runs, with abundant quantities of
PMC values being read per run from the PMU, big
volumes of (heterogeneous) data are likely to be col-
lected, which makes a very clear case for big-data
analysis extensions to MBTA.

Combining the predictability-preserving fea-
tures outlined in “Common Principles” with the
increased-observability capabilities presented in this
section allows attenuating the jitter incurred by real-
time software programs instead of striving to eradi-
cate it with radical design changes (as pursued by
other approaches). The residual jitter is exposed via
PMCs to the timing analysis tool that can reason on
the factors that cause it, and consequently advise the
system engineer on how to attenuate them.

Big-data analysis can be used to extract the
most sensitive information out of the observation
measurements, telling what are relevant in them.
Regression methods, extreme value analysis, data
decomposition, and other statistical techniques can
then be used to predict the incidence of individual
factors of influence on the program under analysis.
That approach would conceivably yield tight WCET
estimates with quantifiable levels of confidence.

Extension to static timing analysis
Static timing analysis (STA) [8] is designed to

seek the assurance of a single-valued absolute
WCET result, however, pessimistic. STA, which has
critical dependence on accurate and trustworthy
knowledge on the processor internals, has proven its
potential with hardware designed with predictabil-
ity in mind [3], [4], and would certainly also benefit
from the inclusion of predictability-aware PMCs. Yet,
the need for open, documentary information is a
serious vulnerability when the processor parts are
subject to IP restrictions. Moreover, such features as

multilevel caches, decoupling buffers, manycores,
NoCs, and accelerators, which have been in use for
years in mainstream products, have such an intricate
internal behavior and tangled interactions with exe-
cution-time behavior that far exceed the capacity of
state-of-the-art abstract modeling. The width of the
state space to be comprehended and the quantity of
state variables in it forms a complexity wall that can-
not be overcome other than at the cost of massive
loss of information, and increase of pessimism.

STA will continue to be the reference timing anal-
ysis solution for more restricted scenarios and lower-
performance systems in which accurate abstract
modeling is still possible. However, on the whole, STA
can hardly be regarded as a practicable solution for
the quest of performance predictability across all
industrial domains. MBTA instead is bound to remain
the most viable option in that regard.

Capturing operation-time variability
This approach strives to cause the full range of

variation in the execution-time behavior that the
application can incur at operation to occur, without
the need for user intervention, in the measure-
ment observations taken at analysis. Whereas the
increased-observability solution enables measure-
ment observations to capture the impact of jittery
hardware resources, it requires further effort on the
timing analysis side to claim that what was observed is
fully representative of what can happen during oper-
ation. This approach, instead, selectively injects time
randomization in jittery hardware resources to allow
quantifying the representativeness of operation-time
variations covered in measurement observations.2
With those hardware modifications, MBTA can be
soundly augmented with probabilistic reasoning, to
allow quantifying the claim of representativeness,
while its application procedure remains rather simple.
This notion, which we further articulate in the sequel,
is captured in the green-colored elements of Figure 1.

Hardware extensions: Randomization and
upper bounding

To increase representativeness, a family of hard-
ware designs has been recently proposed, which
bases on two key properties: time randomization
and time upper-bounding [9].

2As discussed in “Hardware extensions: randomization and upper bounding,” this
form of predictability-geared randomization can be implemented with negligible
impact on average performance.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

53March/April 2018

Upper bounding. Hardware resources that exhibit
low jitter (e.g., the floating-point unit) are modified so
that they can be forced to work at their highest latency
during analysis, causing measurement observations to
upper-bound the operation-time jitter effect of their use.

Time randomization. This technique modifies the
design of hardware resources with high jitter and
keeps that modification active at both analysis and
operation, as the selective use of upper-bounding – as
done for low-jitter resources – would incur excessive
analysis pessimism. Randomization injected in those
resources causes all extent of variability that they can
incur to equally occur during analysis and operation,
which in turn enables quantified claims of probabil-
istic coverage (i.e., representativeness) to be made.
As execution time exhibits random variation, statis-
tically sufficient measurement observations made
during analysis suffice to represent the extreme tim-
ing behavior that may occur during operation, and
probabilistic reasoning can be applied to MBTA. This
is better illustrated in “Handling cache jitter.”

The feasibility of these hardware modifications
has been demonstrated in register-transfer level
(RTL) FPGA prototype of a COTS multicore that is
now in commercial offering.3

Handling cache jitter
The memory addresses at which the program

code and data are located (the memory mapping)
determine the cache sets to which they are assigned
(the cache layout). Different memory mappings
result in distinct cache layouts, with varying effect
on the program’s execution time.

With applications integrated out of parts devel-
oped by multiple suppliers, timing analysis—which
presides to software dimensioning––must be per-
formed as early as possible for each part, well before
the final mappings are known. Hence, the challenge
that caches present to MBTA is to assure that the pro-
gram configurations used in the measurement obser-
vations do capture the cache layouts that may occur
after final integration (which are of course unknown).
MBTA addresses that challenge by seeking to single
out the memory mappings that yield cache layouts
that lead to higher execution times. If it manages to
do so, then the cache impact is duly factored in the
analysis, else the results may be optimistic. However,
hoping to find the global worst-case cache layout
before final software integration experimentally is

not an option. Hence, no confidence can be had that
the test campaigns performed at unit and integration
level serendipitously find the worst-case cache lay-
out for all software programs of interest. Moreover,
even minor changes to the program code, which
may happen across incremental development (or
rarer changes to link directives), can affect the mem-
ory layout, yielding execution times that may inval-
idate the prior findings of MBTA. These difficulties
may degrade the confidence in the WCET estimates
product of MBTA, below the thresholds of regulated
domain practices, and therefore, compel the affected
industrial users to renounce caches altogether.

Cache randomization combines random replace-
ment (which many architectures use) and random
placement [10]. The latter breaks the dependence
between memory location and cache placement.
A random input value, that is changed across pro-
gram runs at times that do not interfere with system
operation, determines the (random) placement
function. In that manner, the actual address in mem-
ory becomes irrelevant to cache placement and so,
to execution time variation. Every single run yields a
random cache mapping that corresponds to a random
sample in the whole population of possible cache
layouts. As randomization stays enabled during oper-
ation and therefore prevents systematic pathologies,
this strategy allows making a sound probabilistic
argument on the coverage of the cache-layout prob-
lem space attained in measurement observations.
With cache placement, addresses are manipulated
with a random seed4 provided prior to program run
and changed after it. A permutation network or hash
logic (see the right part of Figure 3) places each of

Figure 3. Example of pWCET estimation (left) and
a randomized cache (right).3http://www.gaisler.com/index.php/products/processors/leon3

4Pseudo random number generators exist that deliver repetition-free series long
enough to prevent potential correlation of events in statistically significant spans.
The produced numbers can be used to generate random placements and replace-
ments in caches or for random arbitration policies.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

54 IEEE Design&Test

Time-Critical Systems Design

which addresses in a random and independent set
by changing the (random) seed across runs.

This approach frees MBTA users from the
obligation to model or control the whole space of
execution-time variations, and allows measurement
observations to be collected in a much more black-
box manner.

MBTA extension: Probabilistic reasoning on
predictability

Time randomization coupled with the applica-
tion of probabilistic reasoning to timing analysis
changes the WCET estimate concept from a single
fully assured limit value into a probability distribu-
tion that represents the maximum residual probabil-
ity at which a WCET threshold can be exceeded.

Such mutation is not unspeakable for a twofold
reason. First, no current timing analysis technique
can provide absolute guarantees that the com-
puted WCET bound will never be exceeded, simply
because all methods ultimately depend on precari-
ous inputs, whether worst-case scenarios for use with
MBTA, or precise hardware timing models for STA,
or assured flow facts for both. Second, the quality
of those analysis inputs (and their effect on reliabil-
ity and tightness of results) cannot be quantified in
general, which resorts users to qualitative judgment.
Probabilistic reasoning instead allows quantifica-
tion, much like what it does to model the appear-
ance of certain types of hardware faults in electronic
components.

Within a probabilistic mindset, MBTA can use
measurement observations to derive probabilis-
tic WCET (pWCET) estimates, so that any given
(extreme) execution-time bound is attached a prob-
ability of exceedance, which represents the highest
probability that it can be topped (see the left part of
Figure 3). In practice, the probability of exceedance
is set so low that the risk of overrunning the pWCET
can be deemed irrelevant by the applicable safety
regulations. The Extreme Value Theory and other
methods that predict the tail of a probability distri-
bution are fit for this use, and only need appropriate
tailoring to the pWCET problem case. Interestingly,
MBTA can use those methods in a black-box man-
ner as the hardware modifications described in this
paper ensure by construction that the measurement
observations taken at analysis are representative
of the execution-time distribution that can occur at
operation. In fact, this approach holds even in the

face of IP restrictions on hardware details as long
as IP owners design their components following
the principles needed to attain representativeness,
namely, time upper-bounding and randomization, as
described in [9]. Still, there is no practical way for
IP users to verify whether those principles hold, so
the degree of confidence on the pWCET estimates
depends on whether IP owners effectively adhere to
those principles.

A measurement-based probabilistic timing anal-
ysis process starts by collecting observations that
implicitly factor in the potential timing variability.
Subsequently, specialized statistical tests are applied
to assure that probabilistic methods (e.g., Extreme
Value Theory) can be used for pWCET estimation.
Those tests may check independence and identical
distribution across measurements, and the quality
and sufficiency of the data to deliver a prediction.
At that point, a pWCET estimation can be obtained
(see [11] for more details).

Impact on average performance
Randomization is often perceived to negatively

affect average performance. In fact, however, its
penalty largely depends on the granularity level at
which randomization is applied. Recent solutions
have shown it to have marginal impact on perfor-
mance and negligible cost on hardware. Some var-
iants of random placement and replacement poli-
cies for caches have been shown to stay within 1%
of the performance of deterministic caches [10]
on multilevel cache hierarchies. The key factor
in those proposals stems from the observation
that randomization can be performed at relatively
coarse granularity. Earlier proposals were oper-
ated on cache lines (i.e., for a dozen bytes), which
taxed average performance significantly. More
recent designs [10] operate on cache way bound-
aries (i.e., for kilobytes), which preserves spatial
and temporal locality, and therefore prizes aver-
age performance, and still suffices for probabilis-
tic reasoning. For arbitration, instead, experiments
on the BlueGene Torus Interconnection [12] have
shown that randomization provides performance
results very close to the state of the art. Ad-hoc
policies can of course be developed specifically
for given traffic profiles to achieve slightly better
results, but in the absence of specialization, the
average performance of randomized arbitration is
competitive.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

55March/April 2018

The evaluation of time-randomized multicores [10]
with avionics, space, and railway case studies has
shown that pWCET estimates are typically within
20% of the actual performance on time-deterministic
counterparts. Hence, bounds are lower than the usual
practice on time-deterministic architectures of add-
ing a 20% engineering margin on top of the highest
observed execution time. Moreover, time-randomized
architectures enable scientific reasoning and quantita-
tive evidence supporting pWCET estimates, thus facili-
tating certification against safety-related standards.

The demand for unprecedented levels of predict-
able performance compels a rising proportion of
application domains that exceed traditional real-
time systems, to use high-performance hardware.
This trend confronts MBTA with hard challenges.
First, the absolute worst conditions for software and
hardware sought for classic WCET determination
can become so pathological that any upper bound
on them is too high to be useful; much more sensible
and relevant is to define an estimate of the WCET
for the set of configuration states that the system
can really exhibit. Hardware and software design
as outlined in this paper can favor system config-
urations that lead to measurable and reasonable,
hence usable, estimates. Second, accounting for
the execution-time variability of hardware resources
with bearing on timing at operation is becoming
exceedingly difficult for the average user. This paper
explores two approaches to address this problem:
(1) hardware designs to provide control knobs that
improve observability and allow MBTA to extend
the representativeness of analysis-time observations
to operation-time situations; (2) design means to
cause the timing variability of jittery hardware that
can occur at operation to also arise during analysis
without the need for user control. The combination
of those two approaches spares the need for exceed-
ingly detailed timing models of the target hardware
and therefore scales to complex processors afforda-
bly. Both solutions offer a solid baseline to support
the quest for performance predictability across a
wide range of application domains.� 

Acknowledgments
This work has been partially supported by the

Spanish Ministry of Economy and Competitiveness
(MINECO) under Grant TIN2015-65316-P and the
HiPEAC Network of Excellence. Carles Hernandez

is jointly funded by the MINECO and FEDER funds
through Grant TIN2014-60404-JIN. Jaume Abella
has been partially supported by the MINECO under
Ramon y Cajal postdoctoral fellowship number
RYC-2013-14717.

 References
	 [1]	 High-Performance Embedded Architecture and

Compilation. HiPEAC vision. 2011, 2013, 2015,

and 2017.

	 [2]	 P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-

blocking caches to improve isolation in multicore

real-time systems,” in Proc. 2016 IEEE Real-Time

Embed. Tech. Appl. Symp. (RTAS), Vienna, Austria,

Apr. 2016, pp. 1–12.

	 [3]	 Precision Timed Machines. [Online]. Available: http://

chess.eecs.berkeley.edu/pret

	 [4]	 Time-Predictable Multicore Architecture for Embedded

Systems. [Online]. Available: http: //www.t-crest.org/

	 [5]	 M. Panic, C. Hernandez, J. Abella, A. Roca,

E. Quinones, and F. J. Cazorla, “Improving

performance guarantees in wormhole mesh NOC

designs.” in Proc. 2016 Des., Automat. Test in Europe

Conf. Exhibit. (DATE 2016), Dresden, Germany,

Mar. 2016, pp. 1485–1488.

	 [6]	 G. Fernandez, J. Jalle, J. Abella, E. Quinones,

T. Vardanega, and F. J. Cazorla, “Increasing

confidence on measurement-based contention

bounds for real-time round-robin buses” in Proc. 52nd

Ann. Des. Automat. Conf. (DAC ’15), New York, NY,

USA, 2015, pp. 125:1–125:6.

	 [7]	 J. Jalle, J. Abella, E. Quinones, L. Fossati,

M. Zulianello, and F. J. Cazorla, “AHRB: A

high-performance time-composable AMBA AHB bus,”

in Proc. 20th IEEE Real-Time Embed. Tech. Appl.

Symp. (RTAS 2014), Berlin, Germany, Apr. 2014.

	 [8]	 R. Wilhelm et al., “The worst-case execution-time

problem: Overview of methods and survey of tools.”

ACM Transact. Embed. Comput. Sys., pp. 7:1–7:53,

May 2008.

	 [9]	 L. Kosmidis et al., Fitting processor architectures for

measurement-based probabilistic timing analysis.

Microprocessors and Microsystems, vol. 47,

no. PB, pp. 287–302, 2016.

	[10]	 C. Hernandez, J. Abella, A. Gianarro, J. Andersson,

and F. J. Cazorla, “Random modulo: A new processor

cache design for real-time critical systems,” in Proc.

2016 53rd ACM/EDAC/IEEE Des. Automat. Conf.

(DAC), Jun. 2016, pp. 1–6.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

http://chess.eecs.berkeley.edu/pret
http://chess.eecs.berkeley.edu/pret

56 IEEE Design&Test

Time-Critical Systems Design

	[11]	 J. Abella, M. Padilla, J. Del Castillo, and

F. J. Cazorla, “Measurement-based worst-case

execution time estimation using the coefficient of

variation,” ACM Trans. Des. Autom. Electron. Syst.,

vol. 22, no. 4, pp. 72:1–72:29, 2017.

	[12]	 N. R. Adiga et al., “Blue gene/l torus interconnection

network,” IBM J. Res. Dev., vol. 49, no. 2.3, pp. 265–276,

2005.

Francisco J. Cazorla is the Director of the
Computer Architecture Operating System (CAOS)
research group at the Barcelona Supercomputing
Center and researcher at IIIA-CSIC. His research inter-
ests include hardware design and performance anal-
ysis of embedded real-time and high-performance
systems. He received a PhD in computer science
from the Polytechnic University of Catalonia in 2005.

Jaume Abella has been a Senior PhD
Researcher at Barcelona Supercomputing Center
since 2009. His research interests include timing and
functional verification of critical real-time systems,
and performance analysis. He received a PhD in
computer science from the Polytechnic University of
Catalonia in 2005. He is a member of HiPEAC.

Enrico Mezzetti is a researcher in the CAOS
group at BSC. His research interests include
industrial-level timing analysis of embedded real-time

systems with a special focus on multi and many core
platforms. He received a PhD in computer science
from the University of Bologna.

Carles Hernandez has been a PhD Researcher
at the Barcelona Supercomputing Center since 2012.
He has participated in several European research
projects and with the European Space Agency on
time predictable and reliable high-performance
processor designs. In 2012, he was an intern at the
IP verification group at Intel Munich.

Tullio Vardanega has been with the University
of Padova, IT, since 2002. His research interests
include high-assurance real-time systems and
software engineering methods to develop them. He
has a PhD in computer science from the Technical
University of Delft, The Netherlands, obtained
at the European Space Agency Research and
Technology Center.

Guillem Bernat is the CEO of Rapita Systems
Ltd., York, U.K. His research interests include real-
time safety critical systems. He received a PhD in
computer science from University of the Balearic
Islands, Palma, Spain, in 1998.

 Direct questions and comments about this article
to Francisco J. Cazorla, BSC at Nexus-II, 08034,
Barcelona, Spain; e-mail: francisco.cazorla@bsc.es.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 03,2020 at 12:05:43 UTC from IEEE Xplore. Restrictions apply.

