
Software Time Reliability
in the Presence of Cache Memories

Suzana Milutinovic1,2, Jaume Abella1, Irune Agirre3, Mikel Azkarate-Askasua3,
Enrico Mezzetti1, Tullio Vardanega4, and Francisco Cazorla1,5

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{suzana.milutinovic,jaume.abella,enrico.mezzetti,francisco.cazorla}@bsc.es

2 Universitat Politècnica de Catalunya, Barcelona, Spain
3 IK4-IKERLAN, Arrasate-Mondragòn, Spain
{iagirre,MAzkarateAskasua}@ikerlan.es

4 University of Padova, Padova, Italy
tullio.vardanega@math.unipd.it

5 IIIA-CSIC, Barcelona, Spain

Abstract. The use of caches challenges measurement-based timing anal-
ysis (MBTA) in critical embedded systems. In the presence of caches,
the worst-case timing behavior of a system heavily depends on how code
and data are laid out in cache. Guaranteeing that test runs capture, and
hence MBTA results are representative of, the worst-case conflictive cache
layouts, is generally unaffordable for end users. The probabilistic variant
of MBTA, MBPTA, exploits randomized caches and relieves the user from
the burden of concocting layouts. In exchange, MBPTA requires the user
to control the number of runs so that a solid probabilistic argument can
be made about having captured the effect of worst-case cache conflicts
during analysis. We present a computationally tractable Time-aware
Address Conflict (TAC) mechanism that determines whether the impact
of conflictive memory layouts is indeed captured in the MBPTA runs and
prompts the user for more runs in case it is not.

Keywords: Probabilistic Timing Analysis ·WCET · Representativeness
· Cache memories

1 Introduction

Measurement-based timing analysis (MBTA) is widely adopted in the real-
time domain [22]. The obtained worst-case execution time (WCET) estimates,
however, are reliable insofar as the user is capable of designing test scenarios
whose conditions are close to those that can arise during operation. Complex
hardware and software, e.g. caches, introduce numerous sources of jitter (soj)
that are difficult to analyze and control. For example, how program objects,
such as code or stack, are assigned to memory defines their memory addresses,
which in turn determines how they are mapped to cache sets and, ultimately, the
program’s pattern of hits and misses. Controlling the effect of memory layout

2 S. Milutinovic et al.

to avoid incurring bad scenarios is not always feasible in practice. Existing
techniques are typically exploitable only at the end of the development process
as any analysis result obtained on single software units gets inevitably disrupted
after integration. This inherently clashes with the principle of incrementality
in software development and analysis, which is a fundamental cross-domain
industrial concern [16].

Measurement-Based Probabilistic Timing Analysis (MBPTA) [6, 2, 21] exploits
Extreme Value Theory (EVT) [14] and time-randomization to increase the
confidence on WCET estimates. MBPTA uses EVT to model the probability of
extreme events and, in particular, the combined probability of the events whose
impact is captured in the execution time observations. EVT treats the system
as a black box, focusing just on its output, hence providing no help to derive
an argument of whether all soj are properly covered. And here is where time
randomization comes to the rescue: higher coverage of soj can in fact be obtained
by injecting time randomization in the operation of complex jittery resources
to replace hard-to-control deterministic behavior, so that the corresponding soj
exhibit probabilistic behavior. Interestingly, this feature also allows reasoning
on whether enough measurement runs have been made, which will be the case
when the residual probability of missing a significant behavior of the soj becomes
provably negligible. For instance, if the extreme behavior of a soj has a probability
of appearance of Pevent = 0.1 per run, the probability of not observing it in
R = 1, 000 runs is Pnobs = (1− Pevent)

R = (1− 0.1)1000 = 1.7× 10−46.

Time-randomized caches (TRc) [11] are MBPTA’s preferred cache designs
and have been demonstrated on FPGA implementations [9]. TRc use random
placement, mapping memory addresses to random cache sets at each run, giving
rise to random cache (set) placements across runs. As in deterministic set-
associative caches, when the number of addresses mapped to a cache set exceeds
its associativity (W), systematic cache conflicts may occur and eventually result in
increased execution times. With TRc we do not need to control the cache mapping
to avoid or trigger some specific scenarios, as the effect of cache placement is
transparently exposed. Still, it must be guaranteed that the effect of placement
is conveniently captured at analysis time. And this is not given since, conflictive
cache placements may occur with a probability high enough to impact the timing
budget of the system, but low enough to defy observation in the analysis runs [3,
20, 17]. For example, for an application that accesses 5 addresses in its execution,
the probability that all of them are randomly mapped to the same set in a 32-set
4-way cache is 10−6 ≈ (1/32)4, which can be of relevance for the domain safety
standards. If R = 1, 000 analysis runs are performed, a typical value for MBPTA,
the probability of mapping the five addresses in at least one run to the same set
is very low (≈ 10−3). So far, this issue has been solved in limited scenarios, which
assume that either the program addresses memory uniformly [3] or it accesses a
small number (≤ 15) of cache lines [18].

In this paper we present the Time-aware Address Conflict (TAC) approach, a
general and computationally-tractable method that, from the program’s sequence
of accessed addresses, determines whether the number of runs performed by

Software Time Reliability in the Presence of Cache Memories 3

MBPTA, referred to as R, suffices to capture conflictive cache combinations with
sufficient probability. Else it derives a higher number of runs, referred to as R′, for
which this can be asserted. TAC derives a list of address combinations that, when
mapped to the same set, result in a high miss count. For each combination, TAC
determines its probability and by means of a light-weight cache simulator, the
number of misses that would be incurred when the addresses in each combination
were mapped to the same set – while the rest of the addresses are randomly
mapped. This results in a <probability, misscount> pair for each combination.
The user is then advised to explore random cache placements with the cache
simulator until the probabilistic worst-case miss-count (pWCMC) curve derived
with EVT eventually upperbounds the pairs determined by TAC. This occurs
when enough address combinations (R′) singled out by TAC have been simulated
and the number of observed miss counts becomes sufficient for EVT to converge
to an exponential tail approximation [6]. The user is then instructed to perform
R′ runs on the actual system to assure a reliable application of MBPTA.

Results with EEBMC Autobench [19] and a railway case study running
on a time-randomized FPGA show that TAC successfully identifies conflictive
address combinations and determines the number of runs R′ required to bring
the assurance level of the WCET obtained with MBPTA to a desired threshold.

2 Background

MBTA aims at deriving a WCET estimate that holds during system operation.
This requires evidence that measurements taken at analysis occur under conditions
similar to or worse than those that can arise during operation. Providing such
evidence is out of reach of standard MBTA approaches, as pointed out in Section 1.
MBPTA, by deploying EVT (see Figure 1), derives the probability that bad
behavior of several of the sources of jitter (soj), whose impact has been captured
in the analysis-time runs, is simultaneously triggered in the same run, leading
to high execution times. Furthermore, randomization makes that soj events
affecting execution time (including those leading to high execution times) have
a probability of appearance. Hence, a probabilistic argument can be built on
whether those events are captured in the measurements performed during the
analysis phase.

Representativeness defines whether the impact of any random relevant event
is properly upper-bounded at analysis time. Relevant events are those occurring
with a probability above a threshold (e.g. Prel = 10−9). With the number of
runs R carried out at analysis, only events with a relatively high probability
(observable probability or Pobs) are (probabilistically) likely to be observed in the
measurement runs. This number of runs (R) determines the lowest probability of
occurrence of an event such that the probability of not observing it in the analysis
time measurements is below a cutoff probability, e.g. 10−9. Pobs is a function of
the probability of occurrence per run of the event, Pevent, and the number of runs
R (observations) collected by MBPTA at analysis time. For instance, for a cutoff
probability of 10−9 and R = 1, 000 runs, we can guarantee that if Pevent ≥ 0.021

4 S. Milutinovic et al.

the event will not be observed with a probability smaller than 10−9 (and vice
versa). That is, 10−9 ≥ (1− 0.021)1000. It follows that with a higher number of
runs, events with lower probability can be captured, though this increases the
overhead on the user to deploy MBPTA. Hence, the relevant events that may not
be observed (for R = 1, 000) with a sufficiently high probability (e.g. > 10−9) are
those in the range Pevent ∈ [10−9, 0.021].

Benefits and properties of TRc: Software complexity in current complex
systems is handled via incremental software integration. In the timing domain,
caches make the memory layout of existing modules change across integration [16].
This has disruptive effects on time composability since the WCET estimate derived
for a software unit in isolation – during system early design stages – is not valid
as software integrates. This loss of time composability has potential significant
costs since, on every integration, regression tests are required to re-assess the
WCET estimate of already-integrated software. Furthermore, timing analysis
is pushed and compressed near the end of the development process where the
detection of timing violations leads to unacceptable increase in product cost and
time to market. TRc break the structural dependence among the memory address
given to program code/data and its cache set location. The user is not required to
control the effect of memory layout but just needs to make sure that its impact on
timing has been accounted for performing enough execution time measurements
at analysis time. This enables performing measurements in isolation factoring
in the impact of any cache alignment independently of the memory placement
produced by future integration. This has the potential of enabling incremental
software integration – and its benefits– in the presence of caches. TRc hash
addresses with a random number6 to compute the (random) sets where addresses
are placed [11]. The random number remains constant during program execution
so that an address is placed in the same set during the whole execution, but
it is randomly changed across executions so that the particular set where an
address is placed is also random and independent of the placement for the other
addresses across executions. Thus, the probability of any two addresses to be
placed in the same set is 1/S where S is the number of sets.

We call conflictive address combinations, aCi, those combinations of W + 1
or more addresses that, when mapped to the same set, cause a conflictive cache
(set) placement that results in a non-negligible increase in execution time. Table 1
summarizes notations used in this paper.

HoG (Heart of Gold) method [3]: HoG shows that, whenever up to
W addresses are mapped into the same set, after some random evictions, each
address can be stored in a different cache line in the set, thus not causing further
misses. Conversely, if more than W cache line addresses compete for the cache
set space, then they do not fit and evictions will occur often. This scenario
represents a random event with high impact on execution time as noticed also
in [20, 17]. Hence, a correct application of MBPTA requires ensuring that i)
either those events are captured in the measurement runs; or ii) their probability

6 Random numbers are generated with a pseudo-random number generator that pro-
vides sequences with long periods to prevent any correlation.

Software Time Reliability in the Presence of Cache Memories 5

Fig. 1: pWCET (EVT) estimate Fig. 2: Application of TAC.

is low enough to be considered irrelevant. HoG assumes that the impact of all
addresses on execution time is similar. This may happen when addresses are
accessed homogeneously. However, in the general case not every combination of
addresses – when mapped to the same set – results in an execution time increase
of the same magnitude. This general case is addressed in this paper.

ReVS (Representativeness Validation by Simulation) method [18]:
ReVS considers all combinations of the most accessed cache line addresses with a
cardinality bigger than W , i.e. ∀aCi : |aCi| > W , and captures their impact in a
cache simulator. However, the number of address combinations with a cardinality
bigger than W is huge:

∑U
k=W+1

(
U
k

)
for a sequence Qi, where U = |@(Qi)|.

Hence, evaluating in the cache simulator all potentially conflictive combinations
of addresses is not feasible in the general case due to its exponential dependence
on the number of addresses.

Overall, while MBTA lacks a quantitative measure of coverage of those events
that can affect execution time, MBPTA enables deriving a probabilistic argument
about whether events impacting execution time are captured in analysis-time
tests. Yet, current approaches to derive the number of runs are either non-
scalable [18] or assume homogeneous accesses over all program addresses [3]. TAC
provides a low-overhead solution to handle the more general case of arbitrary
access patterns. For controlled scenarios where ReVS can be applied, e.g. until
U = 15 addresses, ReVS provides exact results with which we compare TAC
results to show that TAC covers all conflictive aCi. We also evaluate TAC in
general scenarios, including a real industrial case study.

3 TAC Mechanism

For a sequence of addresses, TAC focuses on identifying address combinations,
aCi that, when mapped to the same cache set, cause high execution times. The
application of TAC comprises the following steps.
Step 1. List creation. Rather than considering all address combinations with
a cardinality bigger than W as ReVS does, TAC provides a list of potential
conflictive aCi ranked according to their expected impact on execution time

6 S. Milutinovic et al.

Table 1: Definitions used in this paper

Term Description
aCi; |aCi| Address combination, i.e. set of unique addresses; cardinality of aCi

K Cardinality of (number of addresses in) a combination
Qi Sequence of accesses
@(Qi); |@(Qi)| Set of unique addresses in Qi; Number of unique addresses in Qi

U Number of unique addresses in a sequence
Xi Subsequence of accesses between 2 accesses to the same address
q Number of distinct addresses in a subsequence Xi

R (R′) Number of measurements to collect determined by MBPTA (TAC)
T Number of conflictive combinations to return by TAC

(the size of the list is specified later in this section). To that end, TAC builds
an Address Guilt Matrix (section 3.1) to quickly retrieve those combinations of
addresses that, when mapped to the same set, can cause high miss counts.

Step 2. Impact calculation. Each combination in the list is evaluated with a
cache simulator. Several Monte-Carlo simulations are performed to derive the
number of misses occurring when the addresses in the combination collide in the
same set while the rest of the addresses are mapped randomly. The number of
combinations in this list is fixed and, therefore, independent of the number of
addresses in the program. ReVS, instead, simulates all combinations of addresses,
which has huge cost.

Step 3. Probability calculation. TAC upper-bounds the probability of occur-
rence of those aCi – and combinations of them. The probability of every aCi

to occur is: S × (1/S)
|aCi|, where |aCi| is the number of addresses in aCi. For

the combined probability of several aCi we pessimistically use the addition of
their individual probabilities. In reality, due to dependences among aCi, their
combined probability is smaller than that [18].

Step 2 and Step 3 result in a pair <probability, misscount> for each com-
bination. Figure 2 presents a synthetic example where pairs are represented
with different symbols: black triangles and squares represent the miss counts
obtained for all aCi – and their combinations – whose probability of occurrence
is above Prel. Meanwhile, their gray counterparts are those below Prel, which are
discarded by TAC since their probability is deemed as negligible.

Step 4. pWCMC curve. TAC uses MBPTA on the miss counts obtained from
cache simulations in which all addresses are randomly mapped, as it would occur
in reality, to obtain a probabilistic worst-case miss-count (pWCMC) curve (see
solid line in Figure 2). The number of simulations, R, is determined by MBPTA.

Step 5. Assessment. In Figure 2 triangles are those aCi (and their combina-
tions) whose miss count is covered by the pWCMC, while the miss counts of the
aCi marked with squares are not. Hence, by validating whether the pWCMC
curve upper-bounds all conflictive mappings (i.e. <probability, misscount> pairs),
we determine whether the number of runs R used by MBPTA suffices. If this is
not the case, more runs are performed until the validation step is passed with
R′ ≥ R runs. Whenever it is passed, the number of runs R′ is the minimum
number of execution time measurements that MBPTA needs to use.

Software Time Reliability in the Presence of Cache Memories 7

TAC builds on the correlation between miss counts and execution time that
has been positively assessed for our target platform in [18]. If such correlation
is weak, cache behavior would have low impact in execution time, which would
have higher dependence on other soj. However, those other soj do not challenge
MBPTA since probabilities of their events are higher than Pobs [3].

3.1 The Address Guilt Matrix

TAC follows an iterative process in which, across iterations, an incremental
number of addresses K (starting from K = W + 1) is considered to be mapped
to the same set. This creates a cache conflict scenario exceeding cache space
in one set. The process stops when K is large enough so that the probability
of occurrence of the event “K addresses mapped to the same set for the most
relevant combinations of K addresses” is below a given cutoff probability7 Pcff .
In practice, we only need the most relevant combination for each value of K since
EVT (part of MBPTA) already accounts for the probability of several of those
events occurring simultaneously. Our results for controlled scenarios show that
the worst combination is always among the TAC top-ranked ones, so we consider
only the T = 20 most relevant combinations for each value of K. In our future
work we will investigate how to choose an optimal parameter value for T.

TAC builds on the concept of guilt, which is intended to help identifying
those aCi that, if mapped to the same set, result in high miss counts. For a given
access Ai with a non-null cache miss probability, guilt provides an approximation
to the extent each intermediate access between Ai and Ai−1 causes Ai to miss in
cache. Note that this concept, although related, differs from the probability of
miss since we are not interested in how many misses each access experiences, but
how much certain addresses can impact each other address if placed in the same
cache set. For instance, given a direct-mapped (i.e. single way) cache and the
sequence Qi = {A1B1A2}, if both addresses A and B are mapped to the same
set, A2 will miss in cache, and the cause of that is access B1, so B1 takes full
guilt of A eviction. Later in this section we present an efficient mechanism to
approximate guilt for arbitrarily complex sequences.

From probability of miss to guilt. Approaches [4] have been proposed
to derive upper-bounds to the miss probability. However, in this work we are
interested in the actual impact rather than on upper-bounds, and on guilt rather
than on Pmiss. Approaches exist to approximate [11] Pmiss (P̃miss) in the context
of MBPTA. These approaches are as shown in Equation 1, where

∑
P̃miss(Xi)

corresponds to the accumulated miss probability of the intermediate accesses.

P̃miss = 1−
(
W − 1

W

)∑
P̃miss(Xi)

(1)

While this approach provides good P̃miss approximations [18], it does not
help identifying how much each intermediate access contributes to cause the miss.

7 Note that, while Prel stands for the threshold probability of relevant events at analysis
(e.g., 10−9), Pcff relates to the probability of events during operation (e.g., 10−15) [3].

8 S. Milutinovic et al.

TAC sorts address combinations based on their impact, which requires having
means to estimate the relative impact that each address and group of addresses
have on each other address (guilt) in terms of cache misses. To cover this gap we
propose the P̃guilty estimator (see Equation 2) that targets providing a precise
relative value for guilt as needed by TAC, rather than approximating Pmiss.

P̃guilty = 1−
(
W − 1

W

)exp

exp =

0, if q < W
q, if W ≤ q < K
K − 1, otherwise

(2)

When the number of intermediate addresses between Ai and Ai−1, q, is smaller
than the number of cache ways W , they all would fit in a cache way, so misses
may only be produced due to random replacement, whose impact is already
captured with the default number of runs of MBPTA [3]. Hence, we assume that
Ai results in a hit, so the guilt of intermediate accesses is 0. Hence, we ignore Ai

and look for the next occurrence of A until q ≥ W or we reach the end of the
sequence. The rationale behind this is that hits do not change cache state in TRc,
thus they can be ignored. On the other hand, ignoring intermediate accesses due
to having extra hits in between Ai and Ai−1 would be misleading. For instance,
let us consider W = 2 and Q1 = {A1B1A2C1A3}. We cannot assume that A3

will always hit in Q1 since sooner or later A will be evicted. Thus, A2 is ignored
and A3 considers the guilt of B1 and C1. It can also be observed that we enforce
exp to be smaller than K, the reason behind this is explained next.

Guilt estimation. When for an access Ai P̃guilty 6= 0, its value is ‘distributed’
among the intermediate accesses between Ai and Ai−1. Each access is assigned a
guilt value w.r.t. address A computed as shown in Equation 3. For instance given
a cache with W = 2 ways, the sequence Q1 = (A1B1C1D1A2) and K = 3, we
obtain that q = 3 and P̃guilty(A2) = 1−(1/2)2 = 0.75 according to Equation 2. In
this scenario we assign a guilt of 0.375 to each of the q = 3 intermediate accesses.
Note that the addition of guilt assigned to intermediate accesses is bigger than
P̃guilty. The idea is that for K = 3, TAC constructs 3-address combinations that
in this case can be any of ABC, ABD, ACD, BCD. In all those containing A,
we want to assign one half of the guilt to each of the two intermediate accesses.
That is, for ABC one half of the guilt is assigned to B and another half to C. At
any moment only K − 1 accesses will be simultaneously considered by TAC, so
the guilt of a given access is not decreased because of having other intermediate
accesses (more than K). As the value of K increases – as part of TAC iterative
process – those other intermediate accesses will be considered simultaneously.

guilt =

{
P̃guilty

exp , if exp > 0

0, otherwise
(3)

Based on the concept of guilt, which applies at access level, we build the
address guilt matrix (adgm). The adgm comprises as many rows and columns
as different (cache line) addresses are accessed in the program. Cell adgm[A][B]
captures the guilt of B on A, that is, a measure of to what extent misses of every
access Ai are caused by any access to Bj . The adgm is built for every value of

Software Time Reliability in the Presence of Cache Memories 9

K. From the adgm we infer information about the impact that each address
has on the evictions of each other address. To that end we use the technique in
Section 3.2, which covers Step 1 and Step 2. Steps 3 to 5 are applied as presented
before.

The metric, obtained from the guilt, does not have a semantic meaning in
the real world, yet it provides a way to rank address combinations so that if aCi
is ranked higher than aCj, the actual impact in miss count (and execution time)
of aCi is higher than that of aCj. This allows performing cache simulations for
those highly ranked address combinations to measure their actual impact.

3.2 Smart Search of Address Combinations

Exhaustive Search. As reference we use an algorithm that exhaustively searches
the adgm and later provide refinements to limit computational costs. For every
value of K we build all potential combinations of K addresses out of U , so
performing an Exhaustive Search. For each combination we query the adgm to
obtain the expected impact if those addresses were mapped to the same set. The
impact is obtained as follows: (1) for each address i in the combination aCi we
compute a value Mi obtained as the highest minimum impact that W other
addresses in the combination may have on it. Hence, we take the minimum Mi out
of the highest W values in the adgm (adgm[i][x] where x is any other address in
the combination). Note that we care only about those W addresses that can create
highest impact on the address of that row in the adgm, since W + 1 addresses
suffice to exceed the cache set space. Then, we select the minimum value out of
those to reflect that, if an address produces few evictions, the others will not
produce more evictions than that one because other accesses will become hits. (2)
Finally, we obtain the impact as the harmonic mean of all Mi values to, again,
reflect that the number of evictions is limited by the address producing the lowest
number of evictions. We exclude pairs for the same address (e.g., adgm[A][A])
since an address cannot create evictions on itself. If one or some of the addresses
have little impact on the other addresses, then its Mi value is much lower and so
the final impact, thus allowing to discard this combination. For instance, in the
combination aCi = {A,B,C,D,E, F}, if F has almost zero impact on the other
addresses, this combination will be discarded for K = 6. If the other 5 addresses
have high impact among them, they will be conveniently considered for K = 5.
Whenever all combinations are considered in the adgm (without performing any
cache simulation), we create a list of top ranked combinations (Step 1) for which
cache simulations are performed to measure miss counts (Step 2).

Smart Search. Since the computational cost of considering this Exhaustive
Search in the adgm is prohibitive, we propose a smart search algorithm that
comprises the following steps.

First, we discard the rows in the adgm whose P̃guilty is below 1% of the highest

P̃guilty in the table since their combinations with relevant addresses (P̃guilty above
the 1% threshold) will already be accounted by those other addresses, and their
impact on irrelevant addresses is deemed irrelevant as well. Then, we create
address buckets in each row of the adgm with all the addresses with the same

10 S. Milutinovic et al.

guilt value w.r.t. the address of that row. Empirically, we observed that EEMBC
and the railway case study produce a low number of buckets. Otherwise, some
difference is tolerated among addresses in the same bucket to reduce their count.

Second, the relevant buckets for a certain address are only those whose relative
impact w.r.t. the total guilt in the row is significant for the address of that row.
Such significance threshold Sth (1% in our case) is used to explore combinations
with meaningful impact. The remaining addresses (their guilt is below Sth) are
simply regarded as irrelevant.

Third, we generate the combinations of K elements for each row by making
all possible combinations with the address corresponding to that row and K − 1
elements from different buckets. For instance, assuming K = 4 and 2 buckets
(b1 and b2), we make all combinations of 4 addresses using the one of the row
and three addresses from the buckets: 3 from b1, 2 from b1 and 1 from b2, 1
from b1 and 2 from b2, and 3 from b2. We always choose those addresses with
the highest P̃guilty in each bucket. We take into account the size of the bucket
by computing how many combinations are expected to have the same impact
to the representative ones. For instance, if b1 and b2 contain 4 and 5 addresses
respectively, when picking 2 addresses from b1 and 1 from b2, we determine that
there are 30 different combinations meeting those constraints. This is used to set
the probability of the pair <probability, misscount> if these combinations have
a sufficiently high impact to be simulated.

Fourth, when all addresses have been analyzed and the list with T = 20
combinations8 for a particular value of K is obtained (Step 1), we perform cache
simulations to determine their miss counts (Step 2). In the case of addresses in
a bucket, we simulate only those with the highest P̃guilty and assume the same
impact for other combinations that could be generated with other addresses in
the bucket. While this may lead to a little pessimism in terms of the impact
of those addresses, such pessimism is very limited given that addresses belong
to the same bucket. This may result in pairs <probability, misscount> further
challenging the reliability of the pWCMC curve, thus potentially rejecting some
very tight (yet reliable) pWCMC estimates.

4 Evaluation

We model a pipelined in-order processor with 4KB 2-way-associative 32B-line
separated first level instruction (IL1) and data (DL1) caches. Both caches deploy
random placement and replacement policies [11], with DL1 implementing write-
back (IL1 is read-only). DL1/IL1 access latency is 1 cycle for hits with 3 extra
cycles for misses. The latter is added to the main memory latency (16 cycles).

We evaluate TAC on the EEMBC automotive benchmarks, widely used in the
community to capture real-time automotive application features [19]. On average
this suite has 6,500 Lines of Code, 2,500 Unique Instruction Addresses and 5,600

8 One combination may be the representative of many others if addresses belong to
buckets. Hence, simulating 20 combinations provides information of, at least, 20
actual address combinations, but generally many more than 20.

Software Time Reliability in the Presence of Cache Memories 11

Unique Data Addresses per benchmark. In particular we use these benchmarks:
a2time (a2), aifftr (at), aifirf (ar), aiifft (ai), basefp (ba), bitmnp (bi),
cacheb (ca), idctrn (id) and iirflt (ii). We consider all addresses accessed by
each benchmark. Additionally, we analyzed the same benchmarks in a controlled
scenario in which we focus on a subset of the most accessed (cache line) addresses
to allow for a comparison against ReVS, which hardly scales for higher values
of U. While in this scenario we cover on average 58% of the accesses across all
benchmarks – thus leaving some degree of uncertainty due to the remaining 42%
accesses that are neglected in [18] – it allows comparing TAC against ReVS, with
the latter guaranteeing exact results.

TAC vs ReVS. For this comparison we focus only on the U=15 most accessed
addresses for which ReVS is capable of exploring all address combinations.

Table 2 shows the number of runs that each of the methods regards as the
minimum to use for a reliable MBPTA application. We show results for both
IL1 and DL1. As shown, both approaches provide exactly the same number of
runs (R′) for these limited address traces. In particular, TAC identifies the same
address combinations most of the times or, alternatively, address combinations
with roughly the same impact as those regarded by ReVS as the most conflictive
ones for each value of K. The exception to this comes from the case in which ReVS
identifies for high values of K combinations which, in fact, are the addition of two
or more independent combinations. For instance, ReVS identifies combinations
for K = 6 that, in reality correspond to two combinations of K = 3 occurring at
the same time. As explained before, EVT needs to observe high-impact events,
but not their combination. Thus, this difference has no influence on R′.

Execution time cost. For U = 15 ReVS requires on average 27 hours per
benchmark with 1,000 cache simulations per address combination on a cluster
running 100 jobs in parallel. TAC is 148 times faster requiring 2 seconds on
average per program on a laptop computer to derive the address combinations
and their cost, and around 11 minutes per benchmark to run cache simulations
for the limited address combinations considered on the same cluster. For full
benchmarks, i.e. unrestricted U , ReVS could not be applied while TAC required 1
minute per program to generate the pairs <probability, misscount> and around
38 minutes per program to perform cache simulations in our cluster.

TAC evaluation on full benchmarks. In Table 3 we report the number of
runs required by TAC to guarantee that relevant events can only be missed with
a probability below a parametrizable residual threshold, e.g. 10−9. We also show
the runs requested by MBPTA together with the probability of missing those
events with the default number of runs required. MBPTA takes as input the
number of execution times belonging to the tail of the distribution that need to
be observed in measurements, in our case 50 values [2]. Then, starting from 300
runs, MBPTA inspects whether enough tail values are observed. If this is not the
case, it asks for more runs until this condition is satisfied and EVT converges.

As shown, R′ ≥ R: in many cases we observe that the likelihood of missing
critical address combinations in the default runs (R) determined by MBPTA
only is high. This does not mean that pWCET estimates are necessarily wrong,

12 S. Milutinovic et al.

Table 2: Runs for TAC and ReVS for
Prel = 10−9 and U = 15

R′IL1 R′DL1 R′

ReVS TAC ReVS TAC ReVS TAC
a2 58,360 58,360 540 540 58,360 58,360

at 6,840 6,840 5,500 5,500 6,840 6,840

ar 21,390 21,390 11,530 11,530 21,390 21,390

ai 8,920 8,920 8,770 8,770 8,920 8,920

ba 82,080 82,080 20,010 20,010 82,080 82,080

bi 4,640 4,640 3,510 3,510 4,640 4,640

ca 18,610 18,610 7,950 7,950 18,610 18,610

id 65,770 65,770 47,700 47,700 65,770 65,770

ii 18,310 18,310 49,760 49,760 49,760 49,760

Table 3: Results for complete EEMBC
benchmarks

TAC MBPTA
R′IL1 R′DL1 R′ lik.(R′) R lik.(R)

67,150 300 67,150 10−9 300 0.911

300 4,760 4,760 10−9 300 0.271

20,080 8,090 20,080 10−9 14,260 10−7

300 10,630 10,630 10−9 300 0.557

78,220 300 78,220 10−9 1,250 0.718

330 1,800 1,800 10−9 300 0.032

19,840 1,500 19,840 10−9 9,360 10−5

67,460 43,040 67,460 10−9 300 0.912

29,920 2,430 29,920 10−9 300 0.812

but indicates that there is non-negligible risk of not observing some high-impact
timing events in the analysis runs if TAC is not used.

When comparing the number of runs of TAC with full address traces w.r.t. only
15 addresses, we observe in most of the cases a limited variation in R′. However,
in some cases R′ decreases noticeably (e.g. R′IL1 for aifftr (at)) because there
are many combinations with similar impact that cannot be observed with only 15
addresses. This makes that the probability of observing one of those combinations
is much higher and thus, fewer runs are needed to observe one of them. In any
case, differently to ReVS, which is limited to 15 addresses, TAC can deal with
arbitrary access patterns without any explicit limit. Thus, TAC removes the
uncertainty brought by ReVS due to non-analyzed addresses.

5 Railway Case Study

We use as railway case study a safety function part of the European Vital
Computer (EVC): the central safety processing unit of the European Train Control
System (ETCS) reference architecture. The EVC is responsible of executing all
safety functions associated to the travelling speed and distance supervision. As
a fail-safe system, whenever an over-speed of the train is detected, the ETCS
must switch to a safe-state where the emergency break is active. This safety
function shall be provided with the highest integrity level defined in the railway
safety standards, SIL-4, and has strict real-time requirements. Accordingly, we
apply MBPTA to estimate the WCET for the safety function from the moment
of reading the input sensors until the activation of the safe-state. The end user
(IK4-IKERLAN) controls input vectors’ impact on execution path coverage and
in their current timing analysis practice they focus on observed paths. We stick
to those paths and apply TAC to all of them. We plan to cover scenarios where
the user lacks this control as part of our future work.

Address traces were collected from a LEON3-based FPGA board using existing
tracing capabilities of the platform. We have applied TAC to the case study
for 10 different input sets (TEST0 to TEST9). The case study comprises around
8,500 Lines of Code, 2,994 Unique Instruction Addresses and 597 Unique Data
Addresses for the largest input set.

Software Time Reliability in the Presence of Cache Memories 13

Table 4: Runs needed by TAC and MBPTA to achieve a confidence of 10−9.
IL1 DL1

R R′ R R′

TEST0 300(Y) 300(Y) 370(N) 1,300(Y)
TEST1 300(N) 600(Y) 3,800(Y) 3,800(Y)
TEST2 300(N) 600(Y) 300(N) 1,000(Y)
TEST3 300(N) 1,600(Y) 300(N) 850(Y)
TEST4 300(N) 1,200(Y) 750(N) 1,100(Y)
TEST5 300(N) 2,100(Y) 480(N) 900(Y)
TEST6 300(N) 500(Y) 890(Y) 890(Y)
TEST7 300(N) 500(Y) 300 (N) 4,400(Y)
TEST8 300(N) 700(Y) 300 (N) 2,300(Y)
TEST9 300(N) 4,800(Y) 1,740(Y) 1,740(Y)

Fig. 3: pWCMC for TEST7 (DL1) by applying MBPTA (R) and TAC+MBPTA (R’).

Table 4 reports the results we obtained, in terms of the number of runs that
MBPTA and TAC require in the miss domain. For each test we show whether (Y)
or not (N) MBPTA’s default number of runs (R) and that reported by TAC (R′)
suffice to upper-bound the pairs <probability, misscount>. As it can be seen, the
default application of MBPTA failed to upper-bound some address combinations
for data and instructions for many input sets. Furthermore, in those cases where
R < R′, confidence on having enough runs for a reliable application of MBPTA
cannot be had.

This is illustrated in Figure 3 for TEST7 and the DL1 where TAC <probability,
misscount> pairs (points in the plot) are not upper-bounded by the pWCMC
curve (lower straight line in the plot) when using R = 300, the number or runs
required by MBPTA. Instead, if we use R′ = 4, 400, as determined by TAC, the
pWCMC curve properly upper-bounds those pairs.

For this industrial application, TAC required, on average, 1, 828 runs per input
set, which is affordable in a usual test campaign. TAC took 1.3 minutes to derive
the conflictive combinations and 0.35 minutes per test for cache simulations.

14 S. Milutinovic et al.

6 Related Work

A recent work comparing static (deterministic) timing analysis techniques (SDTA)
and MBPTA [1] shows that there is not a dominant technique but the relation
between the application working set and the cache size is the factor affecting the
most which technique performs better.

MBPTA-compliant hardware. The concept of MBPTA-compliant hardware has
been defined in [13]. Hardware techniques provide MBPTA compliance for some
specific resources like caches [11] or buses [10]. Software randomization techniques
have been shown to enable the analysis of deterministic caches with MBPTA [12].
Time-randomized caches were originally proposed in [11]. Recently some variants
have been proposed combining benefits of modulo placement while keeping the
randomization required by MBPTA [9]. Some of these random placement designs
have been shown to be implementable in FPGA prototypes [9].

Probabilistic Analysis. Some works study random caches in terms of the
coverage of conflictive cache placements and complex timing effects, as noted in
[3, 17, 20]. Other studies cover aspects related to control-flow dependences and
data-dependences in the context of MBPTA. We refer the reader to [13, 23] for
details on how to handle control and data dependences.

Applying EVT on software programs brings the dependence of execution
times on input-data [23, 15] into the equation. Static and measurement based
approaches tackle input-data dependence by requiring program features like loop
bounds or recursion level to be bounded to derive WCET estimates. Hence, input
vectors mainly affect the paths traversed. Current practice in MBPTA, and our
assumption here, is to operate on a set of representative input vectors provided
by the user. This is also the practice followed by IK4-IKERLAN for the rail case
study. In the context of MBPTA, this assumption can be lifted by synthetically
extending the input set, with the same effect of full path coverage [23].

EVT has also been used to estimate WCET on top of non-MBPTA-compliant
(deterministic) architectures [7, 8, 5]. The main challenge of those architectures is
providing evidence of the representativeness of the execution time observations
passed to EVT. To the best of our knowledge, the representativeness challenge
has not been studied on non-MBPTA platforms [13].

7 Conclusions

MBTA cannot quantify the degree of coverage attained for the jitter caused by
platform events. For caches, while the end user can perform many tests, it is hard
to argue about whether conflictive cache mappings leading to high execution
times have been covered in the tests. In the context of MBPTA and building on
the properties of TRc, on every new run a random cache mapping is explored.
This enables building a coverage argument. Yet, it is necessary to determine the
number of runs to perform to capture conflictive cache mappings. We propose
TAC, a low-overhead mechanism that determines whether the number of runs is
enough to cover the cache mappings of interest to a given quantifiable threshold.

Software Time Reliability in the Presence of Cache Memories 15

If this is not the case, TAC requests an increased number of runs to the user until
the threshold is reached. Results with EEMBC Automotive and a real railway
case study show that TAC successfully identifies conflictive address combinations
and increases the number of runs accordingly so that reliable WCET estimates
can be obtained for programs with arbitrary access patterns.

Acknowledgments

The research leading to these results has received funding from the European
Community’s FP7 [FP7/2007-2013] under the PROXIMA Project (www.proxima-
project.eu), grant agreement no 611085. This work has also been partially sup-
ported by the Spanish Ministry of Science and Innovation under grant TIN2015-
65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially
supported by the Ministry of Economy and Competitiveness under Ramon y
Cajal postdoctoral fellowship number RYC-2013-14717.

References

1. Abella, J., Hardy, D., Puaut, I., Quiones, E., Cazorla, F.J.: On the comparison of
deterministic and probabilistic wcet estimation techniques. In: 2014 26th Euromicro
Conference on Real-Time Systems. pp. 266–275 (July 2014)

2. Abella, J., Padilla, M., del Castillo, J., Cazorla, F.: Measurement-based worst-case
execution time estimation using the coefficient of variation. ACM Trans. on Design
Automation of Electronic Systems ((to appear))

3. Abella, J., Quiones, E., Wartel, F., Vardanega, T., Cazorla, F.J.: Heart of gold:
Making the improbable happen to increase confidence in mbpta. In: 2014 26th
Euromicro Conference on Real-Time Systems. pp. 255–265 (July 2014)

4. Altmeyer, S., Davis, R.I.: On the correctness, optimality and precision of static prob-
abilistic timing analysis. In: 2014 Design, Automation Test in Europe Conference
Exhibition (DATE). pp. 1–6 (March 2014)

5. Bernat, G., Burns, A., Newby, M.: Probabilistic timing analysis: An approach
using copulas. J. Embedded Computing 1(2), 179–194 (2005), http://content.
iospress.com/articles/journal-of-embedded-computing/jec00014

6. Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L.,
Abella, J., Mezzetti, E., Quiones, E., Cazorla, F.J.: Measurement-based probabilistic
timing analysis for multi-path programs. In: 2012 24th Euromicro Conference on
Real-Time Systems. pp. 91–101 (July 2012)

7. Edgar, S., Burns, A.: Statistical analysis of wcet for scheduling. In: Proceedings
22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420). pp.
215–224 (Dec 2001)

8. Hansen, J.P., Hissam, S.A., Moreno, G.A.: Statistical-based WCET estimation
and validation. In: Holsti, N. (ed.) 9th Intl. Workshop on Worst-Case Execution
Time Analysis, WCET 2009, Dublin, Ireland, July 1-3, 2009. OASICS, vol. 10.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009), http://
drops.dagstuhl.de/opus/volltexte/2009/2291

9. Hernandez, C., Abella, J., Gianarro, A., Andersson, J., Cazorla, F.J.: Random
modulo: A new processor cache design for real-time critical systems. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). pp. 1–6 (June 2016)

16 S. Milutinovic et al.

10. Jalle, J., Kosmidis, L., Abella, J., Quiones, E., Cazorla, F.J.: Bus designs for time-
probabilistic multicore processors. In: 2014 Design, Automation Test in Europe
Conference Exhibition (DATE). pp. 1–6 (March 2014)

11. Kosmidis, L., Abella, J., Quiones, E., Cazorla, F.J.: A cache design for probabilisti-
cally analysable real-time systems. In: 2013 Design, Automation Test in Europe
Conference Exhibition (DATE). pp. 513–518 (March 2013)

12. Kosmidis, L., Curtsinger, C., Quiones, E., Abella, J., Berger, E., Cazorla, F.J.: Prob-
abilistic timing analysis on conventional cache designs. In: 2013 Design, Automation
Test in Europe Conference Exhibition (DATE). pp. 603–606 (March 2013)

13. Kosmidis, L., Quiones, E., Abella, J., Vardanega, T., Broster, I., Cazorla, F.J.:
Measurement-based probabilistic timing analysis and its impact on processor archi-
tecture. In: 2014 17th Euromicro Conference on Digital System Design. pp. 401–410
(Aug 2014)

14. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications.
EBL-Schweitzer, Imperial College Press (2000), https://books.google.es/books?
id=tKlgDQAAQBAJ

15. Lima, G., Dias, D., Barros, E.: Extreme value theory for estimating task execution
time bounds: A careful look. In: 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). pp. 200–211 (July 2016)

16. Mezzetti, E., Vardanega, T.: A rapid cache-aware procedure positioning optimization
to favor incremental development. In: 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). pp. 107–116 (April 2013)

17. Mezzetti, E., Ziccardi, M., Vardanega, T., Abella, J., Quiones, E., Cazorla, F.: Ran-
domized caches can be pretty useful to hard real-time systems. Leibniz Transactions
on Embedded Systems 2(1), 01–1–01:10 (2015), http://ojs.dagstuhl.de/index.
php/lites/article/view/LITES-v002-i001-a001

18. Milutinovic, S., Abella, J., Cazorla, F.J.: Modelling probabilistic cache represen-
tativeness in the presence of arbitrary access patterns. In: 2016 IEEE 19th Inter-
national Symposium on Real-Time Distributed Computing (ISORC). pp. 142–149
(May 2016)

19. Poovey, J.A., Conte, T.M., Levy, M., Gal-On, S.: A benchmark characterization of
the eembc benchmark suite. IEEE Micro 29(5), 18–29 (Sep 2009), http://dx.doi.
org/10.1109/MM.2009.74

20. Reineke, J.: Randomized caches considered harmful in hard real-time systems.
Leibniz Transactions on Embedded Systems 1(1), 03–1–03:13 (2014), http://ojs.
dagstuhl.de/index.php/lites/article/view/LITES-v001-i001-a003

21. Wartel, F., Kosmidis, L., Gogonel, A., Baldovino, A., Stephenson, Z., Triquet,
B., Quiones, E., Lo, C., Mezzetta, E., Broster, I., Abella, J., Cucu-Grosjean,
L., Vardanega, T., Cazorla, F.J.: Timing analysis of an avionics case study on
complex hardware/software platforms. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE). pp. 397–402 (March 2015)

22. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst. 7(3), 36:1–36:53 (May 2008), http://doi.acm.org/10.1145/1347375.
1347389

23. Ziccardi, M., Mezzetti, E., Vardanega, T., Abella, J., Cazorla, F.J.: Epc: Extended
path coverage for measurement-based probabilistic timing analysis. In: 2015 IEEE
Real-Time Systems Symposium. pp. 338–349 (Dec 2015)

