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Abstract. We give sufficient conditions to reach a target for a suitable dis-

cretization of a control affine nonlinear dynamics. Such conditions involve
higher order Lie brackets of the vector fields driving the state and so the dis-

cretization method needs to be of a suitably high order as well. As a result,

the discrete minimal time function is bounded by a fractional power of the
distance to the target of the initial point. This allows to use methods based

on Hamilton-Jacobi theory to prove the convergence of the solution of a fully

discrete scheme to the (true) minimum time function, together with error es-
timates. Finally, we design an approximate suboptimal discrete feedback and

provide an error estimate for the time to reach the target through the discrete
dynamics generated by this feedback. Our results make use of ideas appear-

ing for the first time in [3] and now extensively described in [12]. Numerical

examples are presented.

1. Introduction. Let S ⊂ Rn be closed and consider the minimum time T (ξ) to
reach S subject to the controlled dynamics ẋ = f(x, u), u ∈ U ⊂ Rm, starting from
x(0) = ξ. The work [1] opened the door to the approximation of the minimum time
function T through numerical schemes for a suitable boundary value problem of
Hamilton-Jacobi type. The first paper on this subject was [3], where a semidiscrete
scheme was developed under the assumption of Lipschitz continuity of T in a neigh-
borhood of S. Such requirement is equivalent to the so called Petrov controllability
condition, which essentially amounts to saying that for all x ∈ ∂S there exists a
control ux such that f(x, ux) makes a negative (bounded away from zero) scalar
product with an external normal to S. Equivalently – forgetting for a moment the
regularity to be imposed on S and f to say that – for every x close enough to S
there exists a control ux such that f(x, ux) points towards S.

Finer controllability conditions are well known in the literature, in particular
when S is an equilibrium point of the dynamics and f(x, u) = f0(x) + g(x)u. They
are called higher order conditions, in the sense that for every x close enough to S
there exists a Lie bracket of the vector fields which points towards S. If this Lie
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bracket can be approximated by admissible trajectories of the controlled dynamics,
by switching between suitable controls ±u, then one can prove that it is possible
to reach S in finite time from a neighborhood, and T is Hölder continuous with
a suitable exponent depending on the maximal order of the Lie brackets. This is
the case, for example, if S is the origin and the dynamics is linear and satisfies the
classical Kalman rank condition. More in general, in [17, 18], see also references
therein, higher order controllability conditions were established for a rather general
target and some classes of nonlinear, control affine, dynamics, and several examples
were presented.

Taking into account the above discussion, we believe it is natural generalizing to
the case of higher order controllability numerical methods which were established
under the first order condition. To this aim, all the PDE tools were developed
in [1, 3, 4]. The idea is first considering a one step discretization method for the
dynamics, namely a discrete controlled dynamical system which approximates the
given continuous time system. If one can reach the target S, subject to this ap-
proximate discrete dynamics, within a time which is bounded by a fractional power
of the distance to S of the initial point, then the approximate time converges to
the true one as the time discretization step tends to zero. What remains to do,
then, is transferring to a suitable discrete approximate dynamics the controllability
which holds for the continuous time system. In the k-th (k ≥ 1) order case, at
each step the gain in the distance to the target is a k-th power of the time length.
Thus, the order of the numerical scheme must be at least k + 1, in order not to
destroy this gain. This is exactly what is done here: we prove that some controlla-
bility conditions on the original dynamics are also sufficient for a suitable one step
discretization to reach the target and prove the desired estimate on the time (see
Sections 4.1, 4.2, and 4.3). That given, a fully discrete approximation together with
error estimates follows from well established arguments (see Sections 4.4 and 4.5).

The last part (Section 5) of the paper is devoted to the design of an approximate
feedback. It is well known that the steepest descent feedback (i.e., the feedback
u(x) suggested by the dynamic programming equation, see, e.g., [7]) is - in general -
discontinuous, and so the O.D.E. ẋ = f(x, u(x)) may not admit solutions. Moreover,
it is well known that generalized solutions (of Krasovskĭı or Filippov type) are
not always satisfactory, as they even may not reach the target (see, e.g. [20]).
Following a well established method (see, e.g., [9, 12, 10]), the idea is substituting
the continuous time dynamical system with a discrete one: this way, the problem of
existence of solutions is bypassed. The approximate feedback is obtained, as one can
expect, by choosing a control which minimizes a discretized Hamiltonian. Of course
the point is proving that this strategy is suboptimal. To this aim, in order to be
sure to reach the desired target S, one needs to consider the problem of reaching a
suitable shrinking of S. In Section 3 we show that higher order sufficient conditions
for both discrete and continuous time controllability are indeed robust with respect
to a shrinking of S, provided the target is regular enough. Essentially we allow
S to be nonsmooth but rule out outward angles and inward cusps; technically, we
require S to be wedged and to satisfy a uniform internal sphere condition.

In Section 6, two 2-dimensional numerical examples are presented.

2. Preliminaries. Let S ⊂ Rn be a closed set and δ > 0 be given. We set, for
x ∈ Rn, dS(x) = min {‖y − x‖ : y ∈ S} and

Sδ = {x ∈ Rn : dS(x) ≤ δ} .
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Denoting Sc as the complement of S, Sc = Rn \ S, we also define

S−δ = {x ∈ Rn : dSc(x) ≥ δ} .
Of course S−δ may be empty, but we will consider mainly cases where this behavior
does not occur. The interior of S will be denoted by intS.

We recall now some concepts of nonsmooth analysis which will be used through-
out the paper. Among many reference books on the subject we choose to quote here
[8], which also contains an introduction to control problems. We say that v ∈ Rn is
a proximal normal to S at x ∈ S if there exists σ = σ(v, x) ≥ 0 such that

〈v, y − x〉 ≤ σ ‖y − x‖2 , ∀y ∈ S.
The set of such vectors is the proximal normal cone to S at x, NP

S (x). The cone
of limiting normals is denoted by NL

S (x), and consists of those v ∈ Rn for which
there exist sequences {xi} ⊂ S, and {vi}, with vi ∈ NP

S (xi), such that xi → x and
vi → v. This cone never trivializes if x ∈ ∂S, the boundary of S. If S is convex,
then NP

S = NL
S = NS , the normal cone of Convex Analysis. The Clarke normal

cone NC
S (x) equals the closed convex hull of NL

S (x).
Let Ω ⊆ Rn be given and f : Ω → R be an upper semicontinous function.

Then the hypograph of f , hypo(f), is (locally) closed and one can define (super-)
differentiability concepts, through normal cones to hypo(f). In particular, the
proximal superdifferential of f , ∂P f(x), is the set of those v ∈ Rn such that
(−v, 1) ∈ NP

hypo(f)(x, f(x)).

Our controllability results will be largely based on some properties of the distance
function, in connection with suitable regularity assumptions on the target. We now
recall such assumptions.

Definition 2.1. (1) Let S ∈ Rn be closed and let ρ > 0. We say that S satisfies a
ρ–internal sphere condition if S is the union of closed spheres of radius ρ, i.e., for
any x ∈ S there exists y such that x ∈ Bρ(y) ⊂ S.
(2) We say that S has reach ρ if the inequality

〈v, y − x〉 ≤ ‖v‖
2ρ
‖y − x‖2

holds, for every x ∈ S, v ∈ NP
S (x), y ∈ S.

Relations between the above concepts were studied in detail in [19]. We recall,
in particular, that if S has reach ρ, then the closure of its complement, Sc, satisfies
a ρ–internal sphere condition, but the converse is not true in general. The main
property of the distance we are going to use is its semiconcavity. We say that a
function f : Ω→ R is locally semiconcave if for every x ∈ Ω there exists a ball Br(x)
and a positive constant C such that

λf(y) + (1− λ)f(y′) ≤ f(λy + (1− λ)y′) + C ‖y − y′‖2 (2.1)

for all y, y′ ∈ Br(x) and all λ ∈ [0, 1]. Global semiconcavity means that the above
inequality is satisfied by every y, y′ ∈ Ω such that the segment [y, y′] ⊂ Ω with the
same constant C. The constant C appearing in (2.1) is labeled as semiconcavity
constant.

The following results are well known (see, e.g., Proposition 2.2.2 in [6] and Section
4 in [13]).

Proposition 2.2. Let S ⊂ Rn be closed. Then the distance function dS satisfies
the following properties:



4296 GIOVANNI COLOMBO AND THUY T. T. LE

(i) dS is locally semiconcave in Rn \ S. More precisely, given a set K ⊂ Rn \ S
such that infx∈K d(x, S) = δ > 0, dS is semiconcave in K with semiconcavity
constant equal to 1

δ .

(ii) If S satisfies a ρ- internal sphere condition, then dS is semiconcave in Sc with
semiconcavity constant 1

ρ .

(iii) If S has reach ρ > 0, then dS is differentiable, and ∇dS is locally Lipschitz,
in Sρ \ S.

Using the metric projection, i.e., the set

πS(x) = {y ∈ S : ‖y − x‖ = dS(x)} ,
it is possible to characterize the (super-)differential of the distance function (see,
e.g, Corollary 3.4.5 in [6] and Section 4 in [13]). We have, for all x ∈ Rn \ S,

∂P dS(x) =
x− coπS(x)

dS(x)
,

where “co” denotes the convex hull. Moreover, if S has reach ρ > 0 and x ∈ Sρ \S,
then πS(x) is a singleton and

∇dS(x) =
x− πS(x)

dS(x)
,

and ∇dS(x) ∈ NP
S (πS(x)).

We now are going to recall some basic notations of control theory. Consider the
control system

ẏ(t) = f(y(t), u(t)) (2.2)

with u(t) ∈ U for a.e. t, U ⊂ Rm a compact set, together with the initial condition

y(0) = ξ. (2.3)

Under standard assumptions, for any u(·) measurable and any ξ, the solution
y(·, ξ, u) of (2.2 and (2.3) is unique and globally defined. Let S ⊂ Rn be a nonempty
compact set, the target. For each measurable control u(·) and ξ /∈ S we set

t(u, ξ) = min {t : y(t, ξ, u) ∈ S} ≤ +∞. (2.4)

We define the minimum time function to reach S from ξ as

T (ξ) = inf {t(u, ξ) : u(t) ∈ U a.e., u(·) measurable} .
Under standard assumptions, the infimum is attained, provided it is not +∞. We
set also

R = {ξ ∈ Rn : T (ξ) < +∞} ,
the reachable set.

In the next section we will recall some sufficient conditions in order that R be a
neighborhood of S and T is Hölder continuous in R.

3. Continuous time controllability.

3.1. Lie brackets and estimates on bang-bang trajectories. Consider the
affine control system in Rn

ẋ = f(x) +

M∑
i=1

gi(x)ui, (3.1)
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where f, gi : Rn → Rn are C∞-maps and ui ∈ [−1, 1], i = 1, ...,M , together with
the initial condition

x(0) = ξ. (3.2)

For the sake of simplicity , we set F (x, u) := f(x) +
∑M
i=1 gi(x)ui and denote by

U all measurable functions from a real interval with values a.e. in [−1, 1]M . The
standard assumptions on F and the target set S we need are the following:

Assumptions 3.1. (1) f, gi are C∞ and all partial derivatives are Lipschitz with
Lipschitz constant L > 0, i = 1, ...,M ; moreover,

‖f(y)‖ , ‖gi(y)‖ ≤ K0(1 + ‖y‖)
for all y ∈ Rn, where K0 is a positive constant.
(2) S is compact.

Such assumptions will be always supposed to be satisfied in this sequel and we
label them as standard assumptions on the dynamics.

Given the target S ⊂ Rn, we will state some sufficient conditions in order to
reach S from every ξ in a neighborhood in finite time and give an upper bound for
the minimum time T (ξ). Such conditions involve Lie brackets of the vector fields
f, g1, ..., gM . We recall their definition for general C1 vector fields X,Y . We set

[X,Y ](x) = ∇X(x)Y (x)−∇Y (x)X(x),

and higher order brackets are defined recursively, provided X,Y are smooth enough.
Let now ΦXt and ΦYt , t ≥ 0, be the flows generated by the vector fields X and Y ,
namely ΦXt (ξ), respectively ΦYt (ξ), are the solution at time t of the Cauchy problems

ẋ = X(x), x(0) = ξ; ẋ = Y (x), x(0) = ξ.

It is well known that ΦXt (·) and ΦYt (·) are diffeomorphisms for all t ≥ 0 small
enough. The formal Lie bracket between ΦXt and ΦYt is defined by setting

[ΦX ,ΦY ]t(ξ) = (ΦXt )−1 ◦ (ΦYt )−1 ◦ (ΦXt ) ◦ (ΦYt )(ξ)

The procedure may be iterated and the order of such iterations can defined by
induction. If Φ is either ΦXt (·) or ΦYt (·), then ord(Φ) = 1; otherwise, if A and B are
nested Lie brackets of ΦXt (·) and ΦYt (·), we set ord([A,B]) = ord(A)+ord(B). The
power of a Lie bracket B, pw(B), is set to 1 if B consists of a single diffeomorphism,
while pw([A,B]) = 2×pw(A)+2×pw(B). The following classical result establishes
a relation between the two types of Lie brackets.

Theorem 3.2. Let {Xi}i∈N be smooth vector fields and let B be a nested formal

Lie bracket of order k̄ ∈ N of the corresponding flows
{

ΦXit

}
i∈N

, for t > 0 small

enough, B = B(ΦXi1 , ...,ΦXik ), k ≤ k̄. Then

∂j

∂tj
B(ΦXi1 , ...,ΦXik ) |t=0 = 0, ∀1 ≤ j < k̄,

1

k̄!

∂k̄

∂tk̄
B(ΦXi1 , ...,ΦXik ) |t=0 = B(Xi1 , ..., Xik).

In what follows we will consider iterated Lie brackets of the vector fields f ± gi,
i = 1, ...,M , where f, gi appear in (3.1), possibly with f ≡ 0. We denote by L the
set of all iterated Lie brackets of the above vector fields.

Let B be such a non-vanishing Lie bracket with order k, ord(B) = k, and power
pw(B). Let xBξ (·) be the trajectory of (3.1) and (3.2) corresponding to B, namely



4298 GIOVANNI COLOMBO AND THUY T. T. LE

the trajectory which uses bang-bang controls ±1, according to the vector fields
appearing in B. We obtain immediately from Theorem 3.2 the following expansion:

xBξ (pw(B)t) = ξ +B(ξ)tk + o(tk), t→ 0+, (3.3)

where for each compact C containing ξ, there exists KC > 0 such that∥∥o(tk)
∥∥ ≤ KCt

k+1 for all t small enough. (3.4)

Now we proceed by applying the above approximation (3.3) to an estimate of the
distance from the target of suitable trajectories of (3.1).

Proposition 3.3. Let S be a closed set and let ξ /∈ S. Let B be a non-vanishing
Lie bracket of order k of the vector fields f ± gi, i = 1, ...,M . Let xBξ (·) be the

corresponding trajectory of (3.1) and (3.2). Let t > 0 and assume that xBξ (s) /∈ S
for all s ∈ [0, t]. Let ζ ∈ ∂P dS(ξ). Then we have, for every compact set C containing
ξ,

dS

(
xBξ (pw(B)t)

)
≤ dS(ξ) + 〈ζ,B(ξ)〉 tk +K

(
tk+1 +

t2k

dS(ξ)

)
, (3.5)

where K depends only on the constant KC appearing in (3.4.
Moreover, if S satisfies a ρ-internal sphere condition, then 1

dS(ξ) can be substi-

tuted by 1
ρ , and xBξ (·) may touch S.

Proof. Set xBξ (pw(B)t) = xt. By putting together Proposition 2.2 (i), (ii) and (3.3),
(3.4) we obtain

dS(xt) ≤ dS(ξ) + 〈ζ, xt − ξ〉+
K

dS(ξ)
‖xt − ξ‖2

≤ dS(ξ) + 〈ζ,B(ξ)〉 tk +K ′tk+1 +
K̄t2k

dS(ξ)
,

for suitable constants K ′, K̄ satisfying the desired properties.

Remark 3.4. The regularity requirements on f and gi can be weakened if Lie
brackets only up to a fixed order k are considered. Actually, in most of our results
we need only that, for a given k ∈ N, f and gi, i = 1, . . . ,M , are of class Ck and all
partial derivatives up to the order k are Lipschitz with the same constant.

3.2. Hölder continuity of the minimum time function. We state here two
controllability results, proved in [18], which are at the basis of our results. We treat
separately the case where the target S satisfies an internal and an external sphere
condition.

We say that a Lie bracket B is compatible with the controlled dynamics (3.1)
if the (direct and reversed) flows appearing in the formal Lie bracket of Theorem
3.2 are flows of (3.1). A simple sufficient condition ensuring compatibility is, of
course, the drift f to be zero. More in general, compatibility can be seen as a time
reversibility of the dynamics. In Section 4.3, controllability conditions which do not
require time reversibility will be given for the case of second order Lie brackets.

Theorem 3.5 (see Corollaries 5.9 and 5.11 in [18]). Let S be compact and let one
of the two following assumptions be valid. Either,
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(IS) let S be satisfying a ρ–internal sphere condition and assume there exist δ > 0,
µ > 0, and k ∈ N such that for every ξ ∈ S2δ \S there exist ζξ ∈ ∂P dS(ξ) and
a compatible Bξ ∈ L, with ord(Bξ) ≤ k, enjoying the following property:

〈ζξ, Bξ(ξ)〉 ≤ −µ. (3.6)

Or, alternatively,

(ES) let S have reach ρ > 0 and assume there exist 0 < δ < ρ
2 , µ > 0, and

k ∈ N such that for every ξ ∈ Sδ \ S there exists a compatible Bξ ∈ L, with
ord(Bξ) ≤ k, enjoying the following property:

〈∇dS(ξ), Bξ(ξ)〉 ≤ −µ. (3.7)

Then the minimum time function to reach S from ξ subject to the dynamics (3.1),
T (ξ), is (finite and) Hölder continuous with exponent 1

k on Sδ. More precisely,
there exists a constant Λ, depending only on ρ, δ, µ and on the vector fields f, gi, i =
1, ...,M , such that for all ξ1, ξ2 ∈ Sδ it holds

|T (ξ1)− T (ξ2)| ≤ Λ ‖ξ1 − ξ2‖1/k . (3.8)

Remark 3.6. Observe that assumptions (IS) and (ES) are of a different nature,
because an external sphere condition is assumed either on the closure of the com-
plement of S (case (IS)), or on S (case (ES)). If S satisfies both an internal and an
external sphere condition, then its boundary is of class C1,1.

In section 3, we will need to ensure that small time controllability holds not
only with respect to S, but also to a suitable shrinking or enlargement of S. The
following are the relevant statements. The first one requires, in addition to the
internal sphere condition, a uniform external cone condition (see (3.10) in Theorem
3.7 below). Of course, such additional requirement is satisfied if the boundary of
the target is of class C1,1.

Theorem 3.7. Let the assumption (IS) hold and let k, ρ, δ, µ > 0 be as in (IS).
Let LL be the Lipschitz constant of all B ∈ L, ord(B) ≤ k, on Sδ and set

CB := max {‖B(x)‖ : x ∈ Sδ, B ∈ L, ord(B) ≤ k} . (3.9)

Assume furthermore that there exists 0 < µ′ < µ
2 such that

max
{
‖ζ ′ − ζ‖ : ‖ζ‖ = ‖ζ ′‖ = 1, ζ, ζ ′ ∈ NC

S (x), x ∈ S
}
<

µ′

CB
. (3.10)

Then there exists 0 < σ̄ < ρ, depending only on µ′, CB and LL, such that for all
0 < σ < σ̄ assumption (IS) holds for S−σ. More precisely, for every ξ ∈ Sδ \ S−σ
there exist ζξ ∈ ∂P dS−σ (ξ) and Bξ ∈ L, with ord(Bξ) ≤ k, enjoying (3.6) with
min{µ, µ′} in place of µ. Consequently, if the Lie brackets appearing in (IS) are
compatible, the minimum time function to reach S−σ is finite and Hölder continuous
with exponent 1

k on Sδ. Moreover, the constant Λ appearing in (3.8) can be chosen
independently of σ.

Proof. We claim first that if 0 < σ̄ < ρ, then S−σ̄ satisfies a uniform (ρ− σ̄)-internal
sphere condition. Indeed, recalling Corollaries 16 and 19 in [19], the external cone
condition implies that (intS)c has ρ-positive reach. Therefore, if 0 < σ̄ < ρ, then
(intS−σ̄)c has (ρ − σ̄)-positive reach. Invoking again Corollaries 16 and 19 in [19]
we obtain that S−σ̄ satisfies a uniform (ρ− σ̄)-internal sphere condition.
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Consequently, in order to prove that the minimum time function to reach S−σ
(0 < σ < σ̄) is Hölder on Sδ it is enough to establish the analogue of (3.6) for S−σ
as claimed in the statement of the theorem.

To this aim, fix first ξ ∈ Sδ \ S. We claim that

∂P dS(ξ) = ∂P dS−σ (ξ).

Indeed, set ξ̄ = πS(ξ). Since Sc has positive reach, S has at ξ̄ both an internal

and an external nontrivial proximal normal. Thus ζ̄ :=
ξ̄ − ξ
dS(ξ)

is the unique unit

normal to Sc at ξ̄. Define, for 0 ≤ t < ρ, ξt = ξ̄ + tζ̄. Observe that, by the
internal ρ-positive reach condition, ξ̄ is the unique projection of ξt onto Sc, so that,
in particular, dSc(ξt) = t. Therefore, ξσ ∈ S−σ, and so dS−σ (ξ) ≤ dS(ξ) + σ. On
the other hand, for all ξ′ ∈ S−σ one has obviously ‖ξ′ − ξ‖ ≥ dS(ξ) + σ, whence

dS−σ (ξ) = dS(ξ) + σ, (3.11)

and the claim follows. By (IS), there exist Bξ ∈ L, ord(Bξ) ≤ k, and ζξ ∈ ∂P dS(ξ),
such that (3.6) holds. Since ∂P dS(ξ) = ∂P dS−σ (ξ) the proof is completed for the
case ξ ∈ Sδ \ S. Observe that in this case one can choose µ′ = µ.

Fix now ξ ∈ S \ S−σ. Let x be the unique projection of ξ onto Sc. Assume
first that NP

S (x) 6= {0} and let ζ be the (unique) unit vector in NP
S (x). Let xn =

x+ ζ
n , n ∈ N. Then, since ∇dS(xn) = ζ for all n large enough, the assumption (IS)

yields that there exist Bn ∈ L, ord(Bn) ≤ k, such that

〈ζ,Bn(xn)〉 ≤ −µ, ∀n large enough.

Since the order of the Bn’s is bounded, up to a subsequence we may assume that
Bn(x) = B(x) is independent of n. Therefore, by passing to the limit we obtain

〈ζ,B(x)〉 ≤ −µ. (3.12)

Let now NP
S (x) = {0} and let ζ ∈ NL

S (x), ‖ζ‖ = 1. By definition of limiting normal,
there exist sequences {xn} ⊂ S, {ζn} ⊂ Rn such that ζn ∈ NP

S (xn), ‖ζn‖ = 1,
xn → x, and ζn → ζ as n→∞. Then, for every n there exists Bn ∈ L, ord(Bn) ≤ k,
such that

〈ζn, Bn(xn)〉 ≤ −µ.
By passing to the limit as above, we obtain (3.12).

Now we wish to prove that an inequality of the type (3.12) holds at ξ. Recalling
that x = πSc(ξ). As before, we assume first that NP

S (x) 6= {0}. Then, since S
has both an inner and an outer nonvanishing proximal normal at x, we have that
NP
S (x) = ζR+ = −NP

Sc
(x) for a suitable unit vector ζ, and

dS−σ (ξ) = σ − dSc(ξ). (3.13)

Thus dS−σ is differentiable at ξ and moreover

∇dS−σ (ξ) = −∇dSc(ξ) = ζ.

By the uniform Lipschitz continuity of Lie brackets of order ≤ k, we obtain from
(3.12) that

〈ζ,B(ξ)〉 ≤ 〈ζ,B(x)〉+ LL ‖ξ − x‖ ≤ −µ+ LLσ.

Therefore, if σ < σ̄ := µ−µ′
LL

we obtain

〈ζ,B(ξ)〉 ≤ −µ′,
which was to be proved.
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Assume now again that NP
S (x) = {0}. Recalling Lemma 5 in [22]1, we have

that NC
S (x) = −NP

Sc
(x). Therefore, by (3.13), ζ ′ := ∇dS−σ (ξ) = x−ξ

‖x−ξ‖ ∈ N
C
S (x).

By the assumption (IS), there exist a unit vector ζ ∈ NL
S (x) and a Lie bracket

B ∈ L, with ord(B) ≤ k, such that 〈ζ,B(x)〉 ≤ −µ. Recalling (3.10) we obtain

‖ζ − ζ ′‖ < µ′

CB
. By putting the above inequalities together, we finally have

〈ζ ′, B(ξ)〉 = 〈ζ ′ − ζ,B(ξ)〉+ 〈ζ,B(x)〉+ 〈ζ,B(ξ)−B(x)〉 < µ′ − µ+ LLσ.

Therefore, if σ ≤ σ̄ := µ−2µ′

LL
we finally reach 〈ζ ′, B(ξ)〉 < −µ′. The proof is

concluded.

The second perturbation result is concerned with the case where the target S
has positive reach.

Proposition 3.8. Let the assumption (ES) of Theorem 3.5 hold and let 0 < σ < δ.
Then the minimum time to reach Sσ from Sδ \ Sσ (is finite and) satisfies (3.8),
where the constant Λ is independent of σ.

Proof. It is enough to observe that if ξ ∈ Sδ \ Sσ, then dSσ (ξ) = dS(ξ)− σ.

Remark 3.9. Observe that, under the assumptions of Proposition 3.8, the enlarge-
ment of Sσ satisfies an internal sphere condition, and so, as far as it is enough to
consider an approximation of the target, one can concentrate only on the (IS) case.

4. A higher order scheme for the minimum time function. This section
is devoted to designing a suitable fully discrete scheme for the approximation of
T . We follow the well established method based on dynamic programming, which
was first designed by Bardi and Falcone [3] (see also [4], [2], and [11] and references
therein). We apply to T the Kružkov transform and then, through discrete dynamic
programming, we approximate the viscosity solution of a suitable boundary value
problem. Since, due to controllability assumptions which are based on higher order
Lie brackets, T is not locally Lipschitz, we need to use a scheme which is of a
suitably high order in time and of first order in space.

This section is divided into a number of subsections. First we present a higher
order one step semidiscrete scheme for our dynamics (3.1), taking controls subject to
suitable switchings. Given a step size h, for every initial condition ξ we construct
a discrete trajectory which converges as h → 0 to a suitable trajectory of (3.1).
Moreover, the time needed to reach the target is bounded by a fractional power of
dS(ξ) (discrete controllability). Next we apply Kružkov transform to T , and relying
on a discrete dynamic programming principle and a convergence results due to [3]
we prove that a discrete value function vh converges to the transformation v of T ,
also providing an error estimate. Finally, we introduce a fully discrete scheme and
prove its convergence and a related error estimate.

4.1. Time discretization. Given the control system (3.1), (3.2), we write

ẋ = F (x, u), x(0) = ξ, (4.1)

where F (x, u) = f(x) +
∑M
i=1 gi(x)ui, u = (u1, ..., uM ) ∈ [−1, 1]M . Given a fixed

step h > 0 small enough, we approximate (4.1) by a one step (q+1)-th order scheme

1The statement of Lemma 5 in [22] actually requires S to be convex, but this is used only to
provide wedgedness, which indeed we assume.
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which has the form {
yn+1 = yn + hΦ(yn, An, h)

y0 = ξ
(4.2)

where An is a M × l matrix, An = (u1
n, ..., u

l
n) with uin ∈ [−1, 1]M . Here l > 0

depends on the specific method. We make the following assumptions on the method:{
lim
h→0

Φ(ξ, (ū, ..., ū), h) = F (ξ, ū) (l copies of ū),

‖Φ(ξ1, A, h)− Φ(ξ2, A, h)‖ ≤ LΦ ‖ξ1 − ξ2‖ .
(4.3)

In order to prove the discrete controllability, we now consider the following Cauchy
problem, instead of (4.1)

ẋ = F (x, υ) = f(x) +

M∑
i=1

gi(x)ui, x(0) = ξ (4.4)

where υ = (u1, ..., uM ), ui ∈ {−1, 1}, is supposed to be constant in an interval
[0, τ ], 0 < τ ≤ 1. Let 0 < h < τ and k ∈ N, k ≥ 1, be given. Here k will play
the role of the order of a suitable Lie bracket which will be identified later. We
consider the one step order scheme (4.2) for (4.4). In this case, the control matrix
A is generated by l copies of υ, therefore the conditions (4.3) can be rewritten, by
an abuse of notation, in the following way:{

lim
h→0

Φ(ξ, υ, h) = F (ξ, υ),

‖Φ(ξ1, υ, h)− Φ(ξ2, υ, h)‖ ≤ LΦ ‖ξ1 − ξ2‖ .
Furthermore, we require a suitably high order of approximation, namely

‖xυ(h, ξ)− (ξ + hΦ(ξ, υ, h))‖ ≤ CΦh
q+2, (4.5)

where q ≥ k and xυ(·, ξ) is the exact solution of (4.4). The classical Runge-Kutta
method, for example, enjoys the above properties (see [16]).

Set {
ξ0 = ξ,

ξn+1 = ξn + hΦ(ξn, υ, h),
(4.6)

and, for N ∈ N, N ≥ 1,

h =
τ

N
. (4.7)

Then there exists CΦ such that

‖xυ(τ, ξ)− ξN (τ, ξ, υ)‖ ≤ CΦh
q+1, (4.8)

for all h small enough (see, e.g., Theorem 3.6 in [16]). Observe that the point
ξN (τ, ξ, υ) defined through (4.6) and (4.7) depends on the M -tuple υ. We denote
this point by y(υ, τ, h, ξ), i.e.,

y(υ, τ, h, ξ) := ξN (τ, ξ, υ).

Let p ∈ N, p ≥ 1. We consider now a p-tuple u of M -tuples of controls ui ∈ {−1, 1},
namely u = (υ1, ..., υp), where υj = (uj1, ..., u

j
M ) ∈ {−1, 1}M and subsequently

apply the process (4.6), with υj in place of υ, N times for each j. More precisely,
we set 

y1 = y(υ1, τ, h, ξ),

...

yj = y(υj , τ, h, yj−1),

(4.9)
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where j = 2, ..., p. We denote the point yp constructed above by yp(u, τ, h, ξ).
Let xu(τ, ξ) be the final point of the exact solution of (4.4) corresponding to the

p-tuples of controls u. More precisely, we set
x1 = xυ1(τ, ξ),

...

xm = xυm(τ, xm−1), m = 2, . . . , p.

By applying (4.8) subsequently on p intervals of length τ , we obtain

‖xp − yp‖ ≤ Cphq+1, (4.10)

where Cp is a suitable constant depending only on p,Φ.

4.2. Discrete controllability. The following result falls in the framework of (ap-
proximate) discrete controllability: under assumptions including either (IS) or (ES),
given 0 < η < δ, for all ξ ∈ Sδ \ Sη we construct a finite sequence of points
of the types yp described just above, say y1, ..., yn(ξ), and of increasing times ti,
i = 0, ..., n(ξ) − 1, such that dS(yn(ξ)) < η and the time to reach yn(ξ), namely∑n(ξ)−1
i=0 pi+1(ti+1 − ti), is bounded from above by dS(ξ)1/k. The number of dis-

cretization steps, namely [(ti+1 − ti)/h] where h > 0 is fixed, will be labeled here
for simplicity as N .

Theorem 4.1. Let S ⊂ Rn be closed and let δ, ρ, µ > 0, k ∈ N, k ≥ 1 be given, with
δ < 1. Assume that for every ξ ∈ S2δ \S there exist ζξ ∈ ∂P dS(ξ) and a compatible
Bξ ∈ L, with ord(Bξ) ≤ k, such that

〈ζξ, Bξ(ξ)〉 ≤ −µ. (4.11)

Let 0 < η < δ be given and consider a one step (q + 1)-th order scheme with q ≥ k.
Then for every ξ ∈ Sδ \ Sη there exist a number of steps N , independent of ξ,
and finite sequences of natural numbers pi+1, of pi+1-tuples

{
ui+1

}
of M -tuples of

±1, of points {yi}, and of times {ti}, ti+1 > ti, i = 0, ..., n(ξ) − 1, satisfying the
properties 

t0 = 0, y0 = ξ,

yi+1 = ypi
(
ui+1, pi+1(ti+1 − ti),

ti+1 − ti
N

, yi

)
,

i = 0, ..., n(ξ)− 1,

yn(ξ) ∈ Sη,

n(ξ)−1∑
i=0

pi+1(ti+1 − ti) ≤ C
(
dS(ξ)

)1/k
, (4.12)

for a suitable constant C independent of ξ. Here ypi is defined according to (4.9).

Proof. Fix ξ ∈ Sδ \ Sη. By our assumptions, there exist ζξ ∈ ∂P dS(ξ) and a Lie
bracket Bξ ∈ L with ord(Bξ) ≤ k such that (4.11) holds. Now we are going to prove
that there exist a time 0 < t1 ≤ 1, a number p1 ≥ 1, a (finite) sequence of M -tuples

of ±1, say u1 = (υ1
1 , ..., υ

p1

1 ), υj1 ∈ {−1, 1}M , corresponding to Bξ through Theorem
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3.2, such that the trajectory x
Bξ
ξ (·) of (3.1), (3.2) associated to this sequence of

controls satisfies the following properties for all t ∈ [0, t1]:
dS

(
x
Bξ
ξ (p1t)

)
>
dS(ξ)

2
,

dS

(
x
Bξ
ξ (p1t)

)
≤ dS(ξ)− µtk +K

(
tk+1 +

2t2k

dS(ξ)

)
,

(4.13)

where K is the constant appearing in (3.5). Indeed, in order to obtain the first
inequality in (4.13), recalling (3.3), (3.4), and (3.9) it is enough to choose 0 < t1 ≤ 1
such that

(CB +KSδ)t
k
1 ≤

dS(ξ)

2
, (4.14)

where KSδ is the constant appearing in (3.4) with Sδ in place of C, while the
second one follows from (3.5) in Proposition 3.3 together with (4.11). In particular,
we obtain

0 < dS

(
x
Bξ
ξ (p1t1)

)
< 2δ.

Observe furthermore that there exists a constant pk (the maximal power of a Lie
bracket of order ≤ k in Rn) depending only on k, such that

p1 ≤ pk.

Let N ∈ N, N ≥ 1, and set h1 = t1
N . We assume N to be so large that the

discretization error corresponding to the step size h1 satisfies (4.8). Let y1 be the
point yp1(u1, p1t1, h1, ξ) constructed according to (4.6), (4.9). By (4.10) we have∥∥∥xBξξ (p1t1)− y1

∥∥∥ ≤ Cpkhq+1
1 . (4.15)

Remembering that q ≥ k and putting together the above inequality and (4.13), we
receive

dS(y1) ≤ dS(ξ)− µtk1 +K
(
tk+1
1 +

2t2k1
dS(ξ)

)
+ Cpk

( t1
N

)k+1

.

We rewrite the above estimate as

dS(y1) ≤ dS(ξ)− µtk1 +
(
K +

Cpk
Nk+1

)
tk+1
1 +

2K

dS(ξ)
t2k1

=: dS(ξ)− µtk1 +K1t
k+1
1 +

K2

dS(ξ)
t2k1 .

(4.16)

By imposing the supplementary conditions

t1K1 +
K2

dS(ξ)
tk1 ≤

µ

2
and Cpkt

k+1
1 ≤ Nk+1dS(ξ)

4
, (4.17)

we obtain from (4.13), (4.15), and (4.16)

dS(ξ)

4
≤ dS(y1) ≤ dS(ξ)− µ

2
tk1 . (4.18)

Observe that all conditions previously imposed on t1 (in particular (4.14) and (4.17))
are satisfied if

0 < t1 = min

1, k

√
Nk+1dS(ξ)

4Cpk
, k

√
µdS(ξ)

4K2
,
µ

4K1
, k

√
dS(ξ)

2(CB +KSδ)

 . (4.19)
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Assume now that we have constructed recursively times ti, numbers pi, controls

ui = (υ1
i , ..., υ

pi
i ), υji ∈ {−1, 1}M and points yi up to i = ī, such that

ti−1 < ti,

ti − ti−1 = min

t1, k
√
Nk+1dS(yi−1)

4Cpk
, k

√
µdS(yi−1)

4K2
, k

√
dS(yi−1)

2(CB +KSδ)

 ,

and
dS(yi−1)

4
≤ dS(yi) ≤ dS(yi−1)− µ

2
(ti − ti−1)k. (4.20)

We are now going to construct the next step. By the assumptions, there exist a
Lie bracket Byī and ζyī ∈ ∂P dS(yī) such that

〈
ζyī , Byī(yī)

〉
≤ −µ. By applying

again Proposition 3.3 and the argument designed for t1 we find a time t̄i+1, a

number pī+1 ≤ pk, a control uī+1 ∈ {−1, 1}M×pī+1 , and a point yī+1 satisfying the
properties

0 < t̄i+1 − t̄i < t1, (4.21)

t̄i+1 := t̄i + min

 k

√
Nk+1dS(yī)

4Cpk
, k

√
µdS(yī)

4K2
, k

√
dS(yī)

2(CB +KSδ)

 , (4.22)

from which, taking into account (4.21) and (4.22), we obtain finally

dS(yī)

4
≤ dS(yī+1) ≤ dS(yī)−

µ

2
(t̄i+1 − t̄i)k,

which concludes our construction.
Now we are going to show that we can reach Sη after finitely many iterations

n(ξ) and that (4.12) holds. To this aim, set

α = min

{
1,

µ

4K1

}
, β = min

{
1

k
√

2(CB +KSδ)
, k

√
Nk+1

4Cpk
, k
√

µ

4K2

}
.

Then, for every i ∈ N, we have ti+1− ti = min
{
α, β k

√
dS(yi)

}
. Observe that (4.20)

implies that the sequence {dS(yi)} is strictly decreasing. Therefore, there exists an
index ī such that for all i ≥ ī we have

ti+1 − ti = β k
√
dS(yi). (4.23)

Let d = limi→∞ dS(yi). From (4.20) and (4.23) we obtain, for all i ≥ ī,

dS(yi+1)− dS(yi) ≤ −
µβk

2
dS(yi),

from which necessarily d = 0. Therefore, there exists some index n(ξ) such that
dS(yn(ξ)) ≤ η. Finally, we deal with (4.12). Owing again to (4.20) and (4.23), we
have for all i ≤ n(ξ)− 1

dS(yi+1)− dS(yi) ≤ −
µ

2
(ti+1 − ti)k = −µ

2
min

{
αk−1, βk−1dS(yi)

k−1
k

}
(ti+1 − ti).

Thus,

ti+1 − ti ≤
2

µ

(
dS(yi)− dS(yi+1)

βk−1dS(yi)
k−1
k

+
dS(yi)− dS(yi+1)

αk−1

)
.
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By summing the above inequalities and recalling that pi ≤ pk for each i, we obtain

n(ξ)−1∑
i=0

pi+1(ti+1 − ti) ≤
2pk
µ

n(ξ)−1∑
i=0

(
dS(yi)− dS(yi+1)

βk−1 dS(yi)
k−1
k

+
dS(yi)− dS(yi+1)

αk−1

)

≤ 2pk
µ

∫ dS(ξ)

0

(
1

βk−1r
k−1
k

+
1

αk−1

)
dr

≤ 2pk
µ

(
k

βk−1
k
√
dS(ξ) +

1

αk−1
dS(ξ)

)
,

which, recalling that dS(ξ) < δ < 1, implies (4.12) and concludes our proof.

The second result of this subsection requires some regularity on the target S.
Under suitable conditions we prove that the discretized trajectory reaches the target
(not a neighborhood) after finitely many steps of constant length, and establish an
estimate of the type (4.12). Such upper bound will be used in the proof of the
convergence of a suitable discretized value function to the viscosity solution of a
Hamilton-Jacobi equation.

To this aim, we define the discrete minimum time as follows. Given a step size
h > 0 and a sequence of control matrices {Ai} ⊂ [−1, 1]Ml, we recall the discrete
dynamics defined in the previous subsection for the control system (4.1){

yn+1 = yn + hΦ(yn, An, h)

y0 = ξ.
(4.24)

We define the function

nh({Ai} , ξ) = min {n ∈ N : yn ∈ S} ≤ +∞, (4.25)

where nh = ∞ if yn never reaches S. Let Nh(ξ) be the minimum number of steps
to reach S, namely,

Nh(ξ) = min
{Ai}∈[−1,1]Ml

{nh({Ai} , ξ)} . (4.26)

The discrete minimum time function is now defined by setting

Th(ξ) = hNh(ξ). (4.27)

We define also the discrete reachable set Rh by Rh = {ξ ∈ Rn : Nh(ξ) < +∞}.

Theorem 4.2. Let the assumptions of Theorem 3.7 hold and let the target S, ρ,
σ, k be as S, ρ, σ̄, k in Theorem 3.7. Consider the discrete dynamics (4.24),
generated by a one step scheme Φ which satisfies (4.3) and (4.5) for some q ≥ k,
and the discrete minimum time function (4.27).

Then there exist δ̄, h̄, C > 0 such that for every 0 < δ < δ̄, h ≤ h̄, ξ ∈ Sδ \ S,
we have

Th(ξ) ≤ C k
√
dS(ξ). (4.28)

Proof. Fix x0 ∈ ∂S and consider ξ ∈ Bσ/2(x0) \ S. Recalling the proof of Theorem
3.7, we obtain that S−σ satisfies a (ρ − σ)-internal sphere condition, and so the
distance function to S−σ, dS−σ (·), is semiconcave with constant (ρ−σ)−1. According

to (3.11), ∂P dS−σ (ξ) = ∂P dS(ξ). Then, for each ζξ ∈ ∂P dS(ξ) we obtain

dS−σ (y) ≤ dS−σ (ξ) + 〈ζξ, y − ξ〉+
1

ρ− σ
‖y − x‖2



DISCRETE CONTROLLABILITY, THE MINIMUM TIME FUNCTION 4307

for every y ∈ Bσ(x0).
Recalling (3.3) and (3.4), we can find p ≥ 1, a sequence of bang-bang controls

{±1}, say u = (υ1, ..., υp) ∈ {−1, 1}M×p and t ∈ (0, 1], such that the corresponding

trajectory x
Bξ
ξ (·) of (3.1), (3.2) has the form (3.3), i.e.,

x
Bξ
ξ (pt) = ξ +Bξt

k + o(tk), (4.29)

where ‖o(tk)‖ ≤ KBσ t
k+1. If furthermore (CB +KBσ )tk < σ

2 , where we recall that
CB was defined in (3.9), then putting together (4.29), (3.5) and the estimate on the
semiconcavity constant of dS−σ we have also

dS−σ

(
x
Bξ
ξ (pt)

)
≤ dS−σ (ξ)− µtk +KBσ t

k+1 +

(
CB +KBσ

)2
ρ− σ

t2k. (4.30)

Set t = Nh, N ∈ N, and let y be the point yp(u, pNh, h, ξ) constructed according
to (4.6), (4.9). From (4.10) we receive∥∥xBξ (pNh)− y

∥∥ ≤ Cphq+1. (4.31)

By putting together (4.30) and (4.31), we obtain now

dS−σ (y) ≤ dS−σ (ξ)− µ(Nh)k +
(
KBσ + Cp

)
(Nh)k+1 +

(
KBσ + CB

)2
ρ− σ

(Nh)2k.

Then

dS−σ (y) ≤ dS−σ (ξ)− µ

2
(Nh)k,

provided

Nh < min

{
1, k
√

σ

2(CB +KBσ )
,

µ

4(KBσ + Cp)
, k

√
µ(ρ− σ)

4
(
KBσ + CB

)2
}

=: α. (4.32)

On the other hand, we want to impose the condition dS−σ (ξ)− µ
2 (Nh)k ≤ σ, which

yields dS−σ (y) ≤ σ and so y ∈ S. This condition, in view of (3.11), is equivalent to

Nh ≥ k

√
2dS(ξ)

µ
. (4.33)

Now, in order to make (4.32) and (4.33) compatible, we impose a condition on
dS(ξ), namely

2
dS(ξ)

µ
≤ 2

δ

µ
< αk.

Then, to reach S it is enough to choose N? ∈ N and h? so that

N?h? = k

√
2dS(ξ)

µ
.

Due to the compactness of S, we finally obtain

Th(ξ) ≤ pN?h? = p k

√
2dS(ξ)

µ
≤ C k

√
dS(ξ),

for a suitable constant C, which is the desired estimate.

Remark 4.3. A result similar to Theorem 4.2 can be proved without restrictions
on δ > 0 (except δ < 1).
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Indeed, the following statement can be proved.
Under the assumptions of Theorem 4.2, let 0 < δ < 1, k ∈ N be such that for

every ξ ∈ Sδ \ S there exist ζξ ∈ ∂P dS(ξ) and Bξ ∈ L, with ord(Bξ) ≤ k, such that
(4.11) holds. Let 0 < σ < δ. Then for every step size h small enough, there exists a
number N? such that for every ξ ∈ Sδ \S we can find controls υ1, ..., υN? for which
we can reach Sδ by N? iterations of (4.24).

The proof is a combination of arguments of the proofs of Theorems 4.1 and (4.2).

4.3. A further result on discrete controllability. We consider now the case
where the approximation of trajectories of (3.1), (3.2) with Lie brackets contains
also lower order terms. This case occurs in general when the drift term f does
not vanish or when the system is not necessarily time reversible. Our reference is
the second order controllability result proved by [17]. For simplicity we treat only
one of the sufficient conditions proved in [17, Proposition 4], but an entirely similar
result can be obtained with the other one.

Proposition 4.4 (Proposition 4 in [17]). Consider the controlled system (3.1),
(3.2) with M = 1 and let the target S satisfy the ρ-internal sphere condition. Let
δ, µ > 0 be given and assume that for all x ∈ Sδ \S there exists a control u ∈ [−1, 1],
and ζx ∈ ∂P dS(x) such that the following inequalities hold:
Either
(IS.0) 〈f(x) + g(x)u, ζx〉 ≤ −µ,
or
(IS.1) 〈f(x), ζx〉 ≤ 0,

(IS.2) 〈2∇f(x)f(x) + u[f, g](x), ζx〉+ 4
ρ ‖f(x)‖2 ≤ −µ.

Then R contains S in its interior and T is Hölder continuous with exponent 1/2 in
R.

Remark 4.5. Robustness of the controllability condition of Proposition 4.4 with
respect to a shrinking S−σ of the target.

Let ρ > σ > 0 and S satisfy the same properties as in Theorem 3.7, namely ρ-
internal sphere condition and wedgedness. By the same arguments as in the proof
of Theorem 3.7, for every ξ ∈ Sδ \ S−σ the inequality (IS.2) still holds with some
ζξ ∈ ∂P dS−σ (ξ) and a suitable µ′ ≤ µ in place of µ. In order to preserve the discrete
controllability under a shrinking of the target, the condition (IS.1), instead, needs
to be strengthened as follows:
(IS’.1) for all ξ ∈ Sδ \ S−σ there exists ζξ ∈ ∂P dS−σ such that 〈f(x), ζx〉 ≤ 0.

The following result contains our second order discrete controllability condition
in the case where the drift term cannot be neglected.

Theorem 4.6. Let the target S, and ρ, δ, σ be as S, ρ, δ, σ̄ in Theorem 3.7 and let
the assumptions (IS.0), (IS’.1) and (IS.2) hold true for x ∈ Sδ \S−σ. Consider the
discrete dynamics (4.24) generated by the one step scheme Φ which satisfies (4.3)
and (4.5) for some q ≥ 2, and the discrete minimum time function (4.27).

Then there exist δ̄, h̄, C > 0 such that for every 0 < δ1 < δ̄, h ≤ h̄, ξ ∈ Sδ1 \ S,
we have

Th(ξ) ≤ C
√
dS(ξ).

Proof. Fix x0 ∈ ∂S and consider ξ ∈ Bσ/2(x0)\S. By the same argument as at the

beginning of the proof of Theorem 4.2, for each ζξ ∈ ∂P dS(ξ) we obtain

dS−σ (y) ≤ dS−σ (ξ) + 〈ζξ, y − ξ〉+
1

ρ− σ
‖y − x‖2 (4.34)
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for every y ∈ Bσ(x0). Assume first that (IS’.1) and (IS.2) hold at ξ. Recalling
Lemma 1 in [17], for every ū ∈ [−1, 1] and t ∈ (0, 1], if we follow first the flow of
f + ūg and then of f − ūg, each one for a time t, the corresponding trajectory xξ(·)
of (3.1), (3.2) has the form

xξ(2t) = ξ + 2tf(ξ) + t2
(
2Df(ξ)f(ξ) + u[f, g](ξ)

)
+ o(t2), (4.35)

where ‖o(t2)‖ ≤ KBσ t
3, for a suitable constant KBσ . Set now

Cf := max {‖f(x)‖ : x ∈ Sδ \ S−σ} ,
Cff := max {‖Df(x)f(x)‖ : x ∈ Sδ \ S−σ} ,
Cfg := max {‖[f, g](x)‖ : x ∈ Sδ \ S−σ} ,

and M1 = (2Cf + 2Cff +Cfg +KBσ ) and assume that M1t <
σ
2 . Then, by putting

together (4.35), (4.34), (IS’.1), and (IS.2) we have also

dS−σ

(
xξ(2t)

)
≤ dS−σ (ξ)− µt2 +KBσ t

3 +
M2

2

ρ− σ
t4, (4.36)

where M2 := 2Cff + Cfg +KBσ .
Consider now the one step method (4.2) with q = 2 and set t = Nh and u :=

{ū,−ū}. Then let y := y(u, 2Nh, h, ξ) be the final point of the discrete dynamical
system (4.9) after choosing ū for the first N iterations and −ū for other N . From
(4.10) we receive

‖xξ(2Nh)− y‖ ≤ C2h
3. (4.37)

By putting together (4.36) and (4.37), we obtain now

dS−σ (y) ≤ dS−σ (ξ)− µ(Nh)2 +
(
KBσ + C2

)
(Nh)3 +

M2
2

ρ− σ
(Nh)4,

so that

dS−σ (y) ≤ dS−σ (ξ)− µ

2
(Nh)2,

provided

Nh < min

{
1,

σ

2M1
,

µ

4(KBσ + C2)
,

√
µ(ρ− σ)

4M2
2

}
=: α. (4.38)

On the other hand, we want to impose the condition dS−σ (ξ)− µ
2 (Nh)2 < σ, which

yields dS−σ (y) ≤ σ and so y ∈ S. This condition, in view of (3.11), is equivalent to

Nh ≥

√
2dS(ξ)

µ
. (4.39)

Now, in order to make (4.38) and (4.39) compatible, we impose

2
dS(ξ)

µ
≤ 2

δ

µ
< α2.

Then, to reach S it is enough to choose N? ∈ N and h? so that

N?h? =

√
2dS(ξ)

µ
.
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where h? < h̄, δ1 < δ̄ := min
{

1, σ, µα
2

2

}
. Due to the compactness of S, we finally

obtain

Th(ξ) ≤ 2N?h? = 2

√
2dS(ξ)

µ
,

which is the desired estimate.
Assume now that (IS.0) holds at x. In this case (4.34) yields, for a suitable

constant M3

dS−σ

(
xξ(t)

)
≤ dS−σ (ξ)− µt+

M3

ρ− σ
t2.

Then the argument is analogous and simpler than the previous one. Note that in
this case the estimate on the discrete time is

Th(ξ) ≤ CdS(ξ).

4.4. The discrete dynamic programming approach and convergence. Fol-
lowing the well established literature on the dynamic programming approach (see
[3], [12] and references therein) we consider the Kružkov transformation, namely we
define

v(x) = 1− e−T (x), (4.40)

and recall that v is the unique bounded viscosity solution of the boundary value
problem {

v(x) + supu∈[−1,1]M {〈−F (x, u),∇v(x)〉} = 1 in Rn \ S,
v(x) = 0 on S

(4.41)

where F (x, u) = f(x) +
∑M
i=1 gi(x)ui (see Theorem IV.2.6 and Proposition II.2.5 in

[2]).
We define also, for a given step size h > 0,

vh(x) = 1− e−Th(x), (4.42)

where Th(x) is the discretized minimum time function which was defined in (4.27).
Observe that vh(x) is the value function of a discrete optimal control problem,
namely,

vh(x) =

{
min{Ai}⊂[−1,1]Ml J

h
x ({Ai}) for x ∈ Rh

1 for x /∈ Rh,
(4.43)

where

Jhx ({Ai}) = 1− e−hnh({Ai},x) =
( nh({Ai},x)−1∑

j=0

e−jh
)

(1− e−h)χSc(x), (4.44)

and χSc(x) = 1 if x /∈ S and 0 otherwise. Following Theorem 2.3 in [3], we observe
that vh is the unique bounded solution of the following problem:{

V (x) = A(V (x)) ∀x ∈ Rn \ S
V (x) = 0 ∀x ∈ S

(4.45)

where A(V (x)) = infA∈[−1,1]Ml
{
e−hV (x+ hΦ(x,A, h))

}
+ 1− e−h.

Furthermore, owing to (4.28) and Remark 4.3, there exists a constant C such
that

Th(x) ≤ C k
√
dS(x),∀x ∈ R.
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Therefore, by Theorem 3.3 in [3], we obtain the following

Theorem 4.7. Let the assumptions of Theorem 4.2 hold and let v, vh be defined
according to (4.40), (4.42), respectively. Then vh → v locally uniformly in Rn and
hNh → T locally uniformly in R.

4.5. Fully discrete scheme and error estimates. Let S ⊂ Rn be a compact
nonempty set and let the assumptions of Theorem 4.2 or of Theorem 4.6 hold
on some compact neighborhood of S, Sδ. Before continuing, we observe that it is
enough to consider any one step method which has at least (k+1)-th order of conver-
gence. To make a slightly more general approach, in the sequel we always consider
a method with order higher or equal to k + 1. We will describe our results only
for the case of Theorem 4.2, since the other one requires only small modifications.
We recall that error estimates for pursuit evasion differential games, under Hölder
continuity assumptions but with a first order time discretization, were obtained in
[21].

We recall that, according to Theorem 3.5, under our assumptions the minimum
time T is Hölder continuous on Sδ and there exists a constant C such that

T (x) ≤ C k
√
dS(x), ∀x ∈ Sδ \ S. (4.46)

This inequality implies that v(x) ∈ C0,1/k(Sδ) (see, e.g., [2, Remark 1.7, p. 230]).
Moreover, the discrete minimum time function Th is finite on Sδ and satisfies

Th(x) ≤ C k
√
dS(x), ∀x ∈ Sδ \ S, (4.47)

provided h > 0 is small enough (see Theorem 4.2).
We consider the dynamical system (4.1) and its corresponding one step (q+1)-th

order scheme (4.2). We make the following assumptions on the scheme to preserve
the order of the method:

(A.1) For any x ∈ Rn and any measurable u : [0, h)→ [−1, 1]M there exists a M × l
(where l depends on the chosen method) matrix A ∈ [−1, 1]Ml such that

‖y(h, x, u)− yh(h, x,A)‖ ≤ Chq+2, (4.48)

where C is a constant, q ≥ k, and y(h, x, u) stands for the exact solution of
(4.1) following the control u and yh(h, x,A) = x+ hΦ(x,A, h).

Conversely,

(A.2) for any matrix A ∈ [−1, 1]Ml, there exists a measurable control u : [0, h) →
[−1, 1]M such that (4.48) holds.

Such assumptions are used, for example, in [14, 11]. Higher order one step methods
satisfying (4.48) for control systems of the type considered here are constructed in
[15]. The assumption (A.2) is satisfied by taking u to be piecewise constant (with
entries of A) on subsequent intervals of length h/l.

We now deal with space discretization. For convenience we recall that vh(x) =
1− e−Th(x) is the unique bounded solution of the problem{

vh(x) = infA∈[−1,1]Ml
{
e−hvh(x+ hΦ(x,A, h))

}
+ 1− e−h on Rn \ S

vh(x) = 0 on S
(4.49)

provided that h > 0 is small enough.
Let Γ = {xi : i = 1, ..., I} be a space grid for the domain Ω ⊂ R, with Ω = ∪jSj ,

such that the diameter of each cell Sj corresponding to Γ is less than or equal to
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∆x. Let

W k = {ω : Ω→ R : ω(·) ∈ C(Ω), Dω(x) = aj ,∀x ∈ Sj ,∀j}
be the class of piecewise linear functions on Ω. We look for an approximate solution

of (4.49) belonging to W k. For any φ(·) defined on Ω, let I1
Γ[φ](x) =

∑I
i λi(A)φ(xi),

where x =
∑I
i λi(A)xi, λi(A) ∈ [0, 1],

∑I
i=1 λi(A) = 1 for any A ∈ [−1, 1]Ml, see

[9] for more information.
Now we are going to replace (4.49) with its fully discrete version by substitut-

ing vh(xi + hΦ(xi, A, h)) with I1
Γ[vh](xi + hΦ(xi, A, h)). More precisely, in order

to construct a fully discretized minimum time function we set Γ? := {x ∈ Γ :
there exists a control matrix A such that x + hΦ(x,A, h) ∈ Ω} and consider the
problem
v∆x
h (x) = minA∈[−1,1]Ml

{
e−hI1

Γ[v∆x
h ](x+ hΦ(x,A, h))

}
+ 1− e−h if x ∈ Γ? \ S,

v∆x
h (x) = 0 if x ∈ Γ? ∩ S,
v∆x
h (x) = 1 if x ∈ Γ \ Γ?.

(4.50)
Let V be a function on the grid Γ and define the operator A∆x

h [V ](x) by setting,
for all x ∈ Γ \ S,

A∆x
x [V ](x) = min

A∈[−1,1]Ml

{
e−hI1

Γ[V ](x+ hΦ(x,A, h))
}

+ 1− e−h.

By using the same arguments of Section 5.2 in [12], it not difficult to prove that
A∆x
h is monotone, namely if V1(x) ≤ V2(x) for all x ∈ Γ, then

A∆x
h [V1](x) ≤ A∆x

h [V2](x).

Moreover, A∆x
h [·] considered componentwise is a contraction from RI to RI with

contraction coefficient e−h. Therefore the fixed point problem (4.50) has indeed a
unique solution for all 0 < h < 1 and ∆x > 0, which we label v∆x

h . Notice that v∆x
h

is computed only at the grid nodes, but it can be extended by interpolation over
the whole of Ω. More precisely, from now on, for every x ∈ Ω v∆x

h (x) means that{
v∆x
h (x) is the solution of (4.50) if x ∈ Γ,

v∆x
h (x) = I1

Γ[v∆x
h ](x) if x ∈ Ω \ Γ.

(4.51)

The next results are devoted to error estimates. The first lemmas deal with the
(semi)discrete minimum time function. More precisely we will prove that ‖v −
vh‖∞,Ω ≤ Ch

q+1
k . We denote by ‖·‖∞,Ω the usual supremum norm taken on Ω and

recall that the functions n({Ai} , x) and Nh(x) were defined in (4.25) and (4.26),
respectively.

Lemma 4.8. Assume that (4.46) holds in a neighborhood Sδ of the target S (in
particular this happens under the assumptions of Theorem 4.2), together with (A.2).
Then there exist two positive constants h̄ and C such that

T (x)− hNh(x) ≤ Ch
q+1
k , for any x ∈ Ω, h ≤ h̄.

Proof. For any fixed x ∈ Ω, we choose a sequence of control matrices {Ai} ⊂
[−1, 1]Ml such that n({Ai} , x) = Nh(x). According to (A.2) and to the fact that
x belongs to the compact set Ω, there exists a measurable control u, with ui(t) ∈
[−1, 1]M a.e., such that

‖y(hNh(x), x, u)− yh(hNh(x), x, {Ai})‖ ≤ CΦh
q+1.
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By choosing h ≤ q+1

√
δ
CΦ

, we obtain y(hNh(x), x, {ui}) ∈ Sδ. Then due to (4.46)

we obtain the inequality

T (x) ≤ hNh(x) + C(CΦh
q+1)1/k.

Equivalently, T (x)− hNh(x) ≤ Ch
q+1
k , for a suitable constant C.

The analogous estimate for hNh(x) − T (x) can be obtained by using (A.1) in
place of (A.2).

Lemma 4.9. Assume that (4.47) and (A.1) hold in a neighborhood Sδ of the target
S. Then there exist h̄ and C > 0 such that

hNh(x)− T (x) ≤ Ch
q+1
k , for any x ∈ Ω, h ≤ h̄.

Proof. Let u be an optimal control steering x to S and fix a discretization step
h > 0 small enough. By (A.1), there exists a sequence of control matrices {An},
n = 0, . . . , N < +∞, with entries in [−1, 1] such that

‖y(T (x), x, u)− yh(T (x), x, {An})‖ ≤ CΦh
q+1.

Then by choosing h ≤ q+1

√
δ
CΦ

, we obtain yh(hNh(x), x, {An}) ∈ Sδ. Thus by

(4.47), we receive

hNh(x) ≤ T (x) + Ch
q+1
k

and the proof is concluded.

In the sequel, for the sake of simplicity, we will sometimes use the same letter
for different constants. Combining Lemma 4.8 and (4.9), we obtain

|hNh(x)− T (x)| ≤ Ch
q+1
k (4.52)

and applying the mean value theorem, from (4.52) we obtain

|v(x)− vh(x)| ≤ Ch
q+1
k . (4.53)

Remembering that C may depend on |x|, we can choose a global constant C such
that (4.53) holds for every x ∈ Ω. Thus we obtain a uniform estimate for v, namely

‖v(x)− vh(x)‖∞,Ω ≤ Ch
q+1
k . (4.54)

The following result is devoted to establishing an error estimate for the fully
discrete value function, namely an upper bound for

∥∥v(x)− v∆x
h (x)

∥∥
∞,Ω.

Theorem 4.10. Assume that the assumptions of Lemmas 4.9 and 4.8 hold. Then
there exist suitable constants C1, C2, h̄ such that for every h ∈ (0, h̄]∥∥v − v∆x

h

∥∥
∞,Ω ≤ C1h

q+1
k −1 + C2

(∆x)1/k

h
.

Proof. Recalling the semidiscrete and the fully discrete dynamic programming prin-
ciple, for any x ∈ Γ \ S we have

vh(x) = inf
A∈[−1,1]Ml

{
e−hvh(x+ hΦ(x,A, h))

}
+ 1− e−h, (4.55)

v∆x
h (x) = inf

A∈[−1,1]Ml

{
e−hI1

Γ[v∆x
h ](x+ hΦ(x,A, h))

}
+ 1− e−h. (4.56)
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Let A? be an optimal control matrix in (4.55). Then for any x ∈ Γ we obtain

v∆x
h (x)− vh(x) ≤ e−hI1

Γ[v∆x
h ](x+ hΦ(x,A?, h))− e−hvh(x+ hΦ(x,A?, h))

≤ e−h
(∣∣I1

Γ[v∆x
h ](x+ hΦ(x,A?, h))− I1

Γ[vh](x+ hΦ(x,A?, h))
∣∣

+
∣∣I1

Γ[vh](x+ hΦ(x,A?, h))− I1
Γ[v](x+ hΦ(x,A?, h))

∣∣
+
∣∣I1

Γ[v](x+ hΦ(x,A?, h))− v(x+ hΦ(x,A?, h))
∣∣

+
∣∣v(x+ hΦ(x,A?, h))− vh(x+ hΦ(x,A?, h))

∣∣)
≤ e−h

∥∥v∆x
h − vh

∥∥
∞,Γ + C2(∆x)1/k + C1h

q+1
k

where in the last inequality we used the monotonicity of I1
Γ[·], the Hölder continuity

of v(·), and (4.54). In an entirely similar way, we also obtain

vh(x)− v∆x
h (x) ≤ e−h

∥∥v∆x
h − vh

∥∥
∞,Γ + C1h

q+1
k + C2(∆x)1/k.

Thus (1− e−h)
∥∥vh − v∆x

h

∥∥
∞,Γ ≤ C1h

q+1
k +C2(∆x)1/k. Since 1− e−h = h+O(h2),

by possibly modifying C1 and C2 we receive, for all x ∈ Γ,∥∥vh − v∆x
h

∥∥
∞,Γ ≤ C1h

q+1
k −1 + C2

(∆x)1/k

h
.

Therefore, for every x ∈ Ω,

v∆x
h (x)− vh(x) ≤ |I1

Γ[v∆x
h ](x)− I1

Γ[vh](x)|+ |I1
Γ[vh](x)− I1

Γ[v](x)|
+ |I1

Γ[v](x)− v(x)|+ |v(x)− vh(x)|
≤
∥∥v∆x
h − vh

∥∥
∞,Γ + ‖vh − v‖∞,Ω + |I1

Γ[v](x)− v(x)|
+ ‖v − vh‖∞,Ω

≤ C1h
q+1
h −1 + C2

(∆x)1/k

h
.

Analogously, we receive the same estimate for the reversed direction, i.e.,

vh(x)− v∆x
h (x) ≤ C1h

q+1
h −1 + C2

(∆x)1/k

h
.

Thus, we have ∥∥v∆x
h − vh

∥∥
∞,Ω ≤ C1h

q+1
k −1 + C2

(∆x)1/k

h
, (4.57)

for every x ∈ Ω. Putting together (4.54) and (4.57), we obtain the error estimate
of the fully discrete value function∥∥v(x)− v∆

h (x)
∥∥
∞,Ω ≤ C1h

q+1
h −1 + C2

(∆x)1/k

h

The proof is complete.

5. Design of approximate feedback controls and error estimates for the
cost function. This section is devoted to constructing (approximate) suboptimal
feedback controls, together with obtaining an error estimate for the related cost
function.
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Recall that the semidiscrete dynamic programming principle (SDDPP) was stated
in (4.49). The semidiscrete feedback is defined, for a given time discretization step
h, by picking any control matrix Ah(x) such that

Ah(x) ∈ argminA∈[−1,1]Ml
{
e−hvh(x+ hΦ(x,A, h))

}
.

We define also a sequence of control matrices Ah(ym), where ym is the solution of
the discrete dynamical system{

ym+1 = ym + hΦ(ym, Ah(ym), h)

y0 = x.

According to (A.2), there exists a measurable control uh(ym), corresponding to each
Ah(ym), such that

‖y(h, ym, uh(ym))− yh(h, ym, Ah(ym))‖ ≤ Chq+2.

Let S−σ be a shrinking of the target S. Consider the (SDDPP) for S−σ, namely

vh,σ(x) = inf
A∈[−1,1]Ml

{
e−hvh,σ(x+ hΦ(x,A, h))

}
+ 1− e−h, vh,σ(x) = 0 on S−σ.

(5.1)
Let Ah,σ(ym), uh,σ(ym) be defined as Ah(ym), uh(ym) above and set

A?,mh,σ := Ah,σ(ym) and u?h,σ(s) := uh,σ(ym), (5.2)

for s ∈ [mh, (m+ 1)h), m = 1, . . .. Set also

J(u, x) = 1− e−t(u,x), Jh,σ({Ai}, x) = 1− e−hnh,σ({Ai},x),

where t(u, x) was defined in (2.4) and nh,σ is the smallest integer n (if any) such that
yh(nh, x, {Ai}) belongs to S−σ. The first result of this section is concerned with an
error estimate for the cost function J(u?h,σ(·), x) compared with infu(·)∈U J(u(·), x),
under suitable assumptions.

Proposition 5.1. Assume that there exists h̄ > 0 such that, for 0 < h < h̄, (A.1),
(A.2), and the assumptions of Theorem 4.2 hold, where σ is chosen sufficiently
small. Then J(u?h,σ(·), x) ≤ infu(·)∈U J(u(·), x) + ε(σ, h) for every x ∈ Ω, where

ε(σ, h)→ 0, as σ, h→ 0.

Proof. Recall that, according to Theorem 4.2, for all x̄ ∈ S \ S−σ we have

Th,σ(x̄) ≤ C k
√
σ =: ω(σ), (5.3)

where k is the maximal order of Lie brackets appearing in Theorem 4.2. Let x ∈
Ω \ S and assume there exists N ∈ N and a sequence of control matrices {A?,mh,σ },
m = 1, . . . , N , constructed according to (5.2) such that yh(Nh, x, {A?,mh,σ }) ∈ S−σ.

By the assumption (A.2), there exists a corresponding control u?h,σ(·) ∈ U such that

y(Nh, x, u?h,σ) ∈ S with 0 < h < h̄, whence we obtain

J(u?h,σ(·), x) ≤ Jh,σ({A?,mh,σ }, x) = vh,σ(x).

Thus

J(u?h,σ(·), x)− inf
u(·)∈U

J(u(·), x) ≤ Jh,σ({A?,mh,σ }, x)− v(x)

= vh,σ(x)− vh(x) + vh(x)− v(x) ≤ ε(σ, h),

where we used the mean value theorem and (5.3), together with (4.54). Note that
the desired estimate is trivial for any x ∈ Ω where there does not exist any sequence
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of control matrices {A?,mh,σ } which steers x to S−σ or for any x ∈ S ∩ Ω. The proof
is complete.

We consider now the fully discrete version of (5.1) and use it to define our ap-
proximate feedback.

Definition 5.2. Let the space mesh Γ, with cell diameter ∆x, for the domain Ω
and σ > 0 and h > 0 be fixed. For each x ∈ Ω \ S−σ we define the approximate
(fully discrete) feedback Aσ∆x,h(x), relative to ∆x, h and S−σ, by picking any

Aσ∆x,h(x) ∈ argminA∈[−1,1]Ml
{
e−hI1

Γ[v∆x
h,σ](x+ hΦ(x,A, h))

}
. (5.4)

As we did for the semidiscrete case, we consider the sequence of control matrices
Aσ∆x,h(ym), where ym is computed by{

ym+1 = ym + hΦ(ym, A
σ
∆x,h(ym), h)

y0 = x.

Again, according to (A.2), there exists a measurable control uσ∆x,h(ym) correspond-

ing to Aσ∆x,h(ym) such that∥∥y(h, ym, u
σ
∆x,h(ym))− yh(h, ym, A

σ
∆x,h(ym))

∥∥ ≤ Chq+2. (5.5)

Let

u?,σ∆x,h(s) := uσ∆x,h(ym), A?,σ,m∆x,h := Aσ∆x,h(ym) (5.6)

for s ∈ [mh, (m+ 1)h), m = 1, . . . , N .
We are interested in estimating the difference between the cost J(u?,σ∆x,h(·), x),

resp. Jh({A?,σ,m∆x,h }, x), and the value function v(x). We prove first a preliminary

lemma, similar to Theorem 1.7 in [9].

Lemma 5.3. Let v∆x
h,σ(·) and A?,σ,m∆x,h be defined, respectively, by (4.51) and (5.6).

Then, for every x ∈ Ω, Jh,σ({A?,σ,m∆x,h }, x) ≤ v∆x
h,σ(x) + ε(h,∆x)

1−e−h , where ε(h,∆x) :=

C1h
q+1
k −1 + C2

(∆x)1/k

h .

Proof. Recall that for all x ∈ Γ \ S the equality

v∆x
h,σ(x) = e−hI1

Γ[v∆x
h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h

holds. We are now interested in estimating the difference between v∆x
h,σ(x) and

e−hI1
Γ[v∆x

h,σ]
(
x + hΦ(x,Aσ∆x,h(x), h)

)
+ 1 − e−h for every x ∈ Ω \ S. Recalling that

the dynamic programming principle for S−σ reads as

vσ(x) = min
u∈U

{
e−hvσ(y(h, x, u)) + 1− e−h

}
,

let

u?σ(x) ∈ argminu∈U
{
e−hvσ(y(h, x, u)) + 1− e−h

}
and A?σ ∈ [−1, 1]Ml be such that

‖y(h, x, u?σ(x))− yh(h, x,A?σ(x))‖ ≤ Chq+2.

Then we have

e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h − v∆x
h,σ(x)

≤ e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h − vσ(x) + |vσ(x)− v∆x
h,σ(x)|

≤ e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,A?σ(x), h)) + 1− e−h − (e−hvσ(y(h, u?σ, x)) + 1− e−h)
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+ |vσ(x)− v∆x
h,σ(x)|

≤ e−h|I1
Γ[v∆x

h,σ](x+ hΦ(x,A?σ(x), h))− I1
Γ[vσ](x+ hΦ(x,A?σ(x), h))|

+ |I1
Γ[vσ](x+ hΦ(x,A?σ(x), h))− vσ(x+ hΦ(x,A?σ(x), h))|

+ |vσ(x+ hΦ(x,A?σ(x), h))− vσ(y(h, u?σ, x))|+ |vσ(x)− v∆x
h,σ(x)|

≤ C1h
q+1
k −1 + C2

∆x1/k

h
.

Therefore, for every x ∈ Ω \ S we obtain

e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h − v∆x
h,σ(x) ≤ C1h

q+1
k −1 + C2

∆x1/k

h
,

or equivalently

1− e−h ≤ v∆x
h,σ(x)− e−hI1

Γ[v∆x
h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + C1h

q+1
k −1 + C2

∆x1/k

h
.

(5.7)
By multiplying both sides of (5.7) by e−mh and taking x = ym, we obtain

e−mh(1−e−h) ≤ e−mh
(
v∆x
h,σ(ym)−e−hI1

Γ[v∆x
h,σ](ym+hΦ(ym, A

?,σ,m
∆x,h )

)
+e−mhε(h,∆x).

Let N be the minimum number of steps to reach S−σ(h) by {ym}. Then, by summing
over m, we obtain

N−1∑
m=0

e−mh(1− e−h) ≤
N−1∑
m=0

e−mh
(
v∆x
h,σ(ym)− e−hI1

Γ[v∆x
h,σ](ym + hΦ(ym, A

?,σ,m
∆x,h , h))

)
+ ε(h,∆x)

N−1∑
m=0

e−mh.

After simplifying, the proof is complete.

Now we are ready to state and prove the main result of this section. It shows
that the feedback defined by (5.4) through numerical approximation is suboptimal.
For the sake of clarity, we choose ∆x = hq+1 and set γ := q+1

k − 1 (> 0).

Theorem 5.4. Let the assumptions of Proposition 5.1 hold. Then, for every x ∈ Ω,

J(u?,σ∆x,h(·), x) ≤ inf
u(·)∈U

J(u(·), x) +R(σ, h),

moreover,
Jh({A?,σ,m∆x,h }, x) ≤ inf

u(·)∈U
J(u(·), x) +R(σ, h),

where R(σ, h) = C
(

hγ

1−e−h + ω(σ)
)

, C being a suitable constant, and u?,σ∆x,h(·),
{A?,σ,m∆x,h } and ω(σ) are defined according to (5.6), (5.3), respectively.

Proof. From (4.57) we obtain∥∥v∆x
h,σ − vh,σ

∥∥
∞,Ω ≤ C

′hγ ,

whence, recalling Lemma 5.3 we have

Jh,σ({A?,σ,m∆x,h }, x)− vh,σ(x) ≤ v∆x
h,σ(x) +

ε(h,∆x)

1− e−h
− vh,σ(x) ≤ Chγ

1− e−h
. (5.8)

If {A?,σ,m∆x,h } does not steer x to S−σ through {ym}, then Jh,σ({A?,σ,m∆x,h }, x) = 1. Thus

J(u?,σ∆x,h(·), x) ≤ Jh,σ({A?,σ,m∆x,h }, x). Otherwise, let N? be the minimum number
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of steps to reach S−σ by {ym}. By the assumption (A.2), there exists a control
u?,σ∆x,h(·) ∈ U such that y(hN?, x, u?,σ∆x,h) ∈ S for 0 < h < h̄ small enough, and so

J(u?,σ∆x,h(·), x) ≤ Jh,σ({A?,σ,m∆x,h }, x). Therefore

J(u?,σ∆x,h(·), x)− inf
u(·)∈U

J(u(·), x) ≤ Jh,σ({A?,σ,m∆x,h }, x)− v(x)

= Jh,σ({A?,σ,m∆x,h }, x)− vh,σ(x) + vh,σ(x)− vh(x)

+ vh(x)− v(x)

≤ R(σ, h),

(5.9)
where the last inequality is due to (5.8) and the mean value theorem, together with
(5.3), and (4.54) as in the proof of Proposition 5.1. To prove Jh({A?,σ,m∆x,h }, x) ≤
infu(·)∈U J(u(·), x) +R(σ, h), we just remark that Jh({A?,σ,m∆x,h }, x) ≤ Jh,σ({A?,σ,m∆x,h },
x), then by following the same procedure as (5.9) the proof is concluded.

6. Examples. This section is devoted to showing the output of an implementation
of our scheme to two examples where the minimum time function is not Lipschitz.
The papers [17, 18] contain several cases – including the two ones we are going to
describe – where the assumptions of Theorem 3.5 are satisfied. Since in our examples
the target is smooth, the assumptions of Theorem 3.7, on which all results of the
Sections 4.5 and 5 devoted to algorithms are based, are satisfied as well.

The simplest example where our method applies is the well known double inte-
grator, ẍ = u, |u| ≤ 1. It is well known that the minimum time to reach the origin
subject to this dynamics is Hölder continuous with exponent 1/2 on the whole of
R2. Our method applies when the target satisfies the assumptions of Theorem 4.6.
In the second example contained in [17, Section 6], it is shown that such assump-
tions are satisfied (with k = 2) if the target is a ball centered at the origin with any
radius r small enough. The following figures show the discrete trajectories obtained
via the numerical feedback (Figure 1) and the graph of the value function (after
Kružkov transformation, Figure 2). The computed trajectories agree with the theo-
retical computations which can be made through Pontryagin’s Maximum Principle.
In particular, the two optimal trajectories which reach the target tangentially are
correct.

The second example is bilinear and is taken from [18, Example 5.19], up to the
factor 1/8 in place of 10−3. The dynamics is{

ẋ1 = −x2

8 − x2u

ẋ2 = x1

8 + 2x1u,
(6.1)

where |u| ≤ 1, and the target is the unit ball. In [18] the authors prove that the
assumptions of Theorem 4.6 are satisfied with k = 2. To be more precise, it is not
difficult to prove that the first order condition (IS.0) is satisfied in the complement of
the union of two strips centered at the axes, while in the two strips the second order
conditions (IS’.1) and (IS.2) hold. The following figures are the analogues of Figures
1 and 2 for the dynamics (6.1). Observe that if the initial point is close enough to
the target, the estimated optimal trajectory is a “bang” one, while otherwise the
estimated trajectory has some switchings. The plot of the value function reveals
that the time to reach the target is rapidly decreasing. This is not surprising,
since the minimum time function, due to the second order controllability condition,
is majorized only by the square root of the distance to the target. Equivalently,
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Figure 1. Double integrator: computed optimal trajectories (ra-
dius of the target r = 0.1, h = 0.025, ∆x = 0.02, 3rd order Runge-
Kutta scheme. Only trajectories issuing from the two horizontal
segments are shown.
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Figure 2. Double integrator: graph of the value function, same
parameters as in Figure 1.

approaching to the target is very slow (like a sailor which has to beat to windward
and therefore proceeds slowly in the desired direction).

Acknowledgments. The authors are indebted with M. Falcone for really many
useful discussions.
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Figure 3. Dynamics (6.1): computed optimal trajectories, h =
0.05, ∆x = 0.027, 3rd order Runge-Kutta scheme. Only trajecto-
ries issuing from the two horizontal segments are shown.
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