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On a p-adic invariant cycles theorem
By Bruno Chiarellotto at Padova, Robert Coleman at Berkeley,

Valentina Di Proietto at Strasbourg and Adrian Iovita at Padova/Montreal

Abstract. For a proper semistable curve X over a DVR of mixed characteristics and
perfect residue field we prove the “invariant cycles theorem” with trivial coefficients, i.e. that
the group of elements of the first de Rham cohomology group of the generic fiber of X annihi-
lated by the monodromy operator coincides with the first rigid cohomology group of its special
fiber. This is done using an explicit description of the monodromy operator on the de Rham
cohomology of the generic fiber of X with coefficients a convergent F -isocrystal (see [11])
and the proof exhibits an interesting interplay between this cohomology group and the com-
binatorics of the graph of the reduction of X . The result was proved in a different way in the
case the DVR has finite residue field in [4]. We also study the case where the coefficients are
unipotent convergent F -isocrystals on the special fiber of X (without log-structure): we show
that the invariant cycles theorem does not hold in general in this setting and give a sufficient
condition for non-exactness.

1. Introduction

Let V be a complete discrete valuation ring of mixed characteristics, K its fraction field
and k the residue field, which we assume to be perfect. Let W WD W.k/ denote the ring of
Witt-vectors with coefficients in k seen as a subring of V and let K0 denote its fraction field.

For a proper variety X over V with semistable reduction and special fiber Xk , via the
theory of log schemes and the work of Hyodo–Kato one defines a monodromy operator on the
de Rham cohomology groups of its generic fiberXK . It has been known for some time now that
associated to this operator there is an analogue of the classical invariant cycles sequence [4]

H i
rig.Xk/˝K0

K ! H i
dR.XK/! H i

dR.XK/:

The exactness of such a sequence is implied by the weight-monodromy conjecture [4] if the
residue field k is finite. Hence the above invariant cycles sequence is exact if X is a curve or
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a surface (which are the cases in which the weight-monodromy conjecture is known) and in
this case the first map is even injective if i D 1, i.e. the following sequence is exact:

(1.1) 0! H 1
rig.Xk/˝K0

K ! H 1
dR.XK/! H 1

dR.XK/:

In these cases (i.e. in the cases in which the sequence (1.1) is exact) we obtain an interpretation
of the part of the de Rham cohomology which is annihilated by the monodromy operator: it is
the rigid cohomology group of the special fiber. On the other hand the same exact sequence
gives us an interpretation à la Fontaine of the first rigid cohomology group, in fact we can
translate the exactness as follows: since

Dst.H
1
ét.XK �K/;Qp/ D H

1
log�crys.Xk/˝K;

DND0st D Dcrys;

it follows that

H 1
rig.Xk/ D Dcrys.H

1
ét.XK �K/;Qp/:

In [9] and [10] another definition of a monodromy operator was given in the case X is
a curve with semistable reduction using the combinatorics of the curve together with the use of
the analytic spaces associated to the generic fiber. The authors in [11] also considered the case
of cohomology with coefficients and generalized the definition of the monodromy operator
on the de Rham cohomology with coefficients non-trivial log-F -isocrystals and they showed
that it coincides with the previous definition given by Faltings [13]. Using this definition of
the monodromy operator we are able (see Section 5) to re-prove the exactness of the invari-
ant cycles sequence (1.1) without any hypothesis on the finiteness of the residue field. It is then
natural to ask if such an invariant cycles sequence (1.1) is still exact when the log-F -isocrystals
are induced from convergent F -isocrystals on the special fiber. This is one of the motivations
of the present article. As a matter of fact, the invariant cycles sequence (1.1) involves the trivial
convergent F -isocrystal on the special fiber of X and its rigid cohomology. Hence we start
with coefficients which a priori do not have singularities being convergent on the special fiber
without any log structure. But, even for the simplest non-trivial coefficients on a curve (i.e. the
unipotent ones) the sequence fails sometimes to be exact and we give a sufficient condition
(see Theorem 10). Underlying our work, of course, is the aim of giving a cohomological inter-
pretation for the part of the cohomology on which the monodromy operator acts as zero.

Of course the invariant cycles theorem can be studied also in the `-adic and respec-
tively the complex settings, where it is known for semi-simple perverse sheaves or D-modules
of geometric origin and it follows from the decomposition theorem ([1, Corollaire 6.2.8],
[18, Theorem 19.47], [20, Theorem 1], [12, Theorem, Section 1.7]). Our p-adic setting deals
with unipotent, non-trivial coefficients, which are therefore not semi-simple. We did not find
any evidence of a similar result for reducible coefficients in the `-adic or complex settings,
although we believe that such results should hold.

Here it is the plan of our article. In Section 2 we introduce notation and recall results on
rigid spaces which will be used in the article, in the third section we recall some properties
of the monodromy operator on the de Rham cohomology with coefficients on a curve as in-
troduced by Coleman and Iovita and of the associated invariant cycles sequence. In Section 4
we give some properties of such a monodromy operator: in particular for general convergent
F -isocrystals we prove that the rigid cohomology of the convergent F -isocrystal injects on the
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part of the de Rham cohomology of the associated log-F isocrystal where the monodromy acts
as zero. In Section 5, we then re-prove ([4]) the invariant cycles theorem for trivial coefficients
in a combinatorial way along the lines of the work in [11]. In Section 6 we study the invariant
cycles sequence for unipotent convergent F -isocrystals and we prove a sufficient conditions for
the non-exactness of the sequence. Finally we give an explicit example of this on a Tate curve.

Acknowledgement. We thank Benoit Larose for suggestions and helpful discussions on
graph theory. We also thank Thomas Zink for pointing out to one of us that it would be interest-
ing to study a Fontaine type interpretation of the rigid cohomology of a smooth proper variety
in characteristic p. Thanks are also due to Claude Sabbah for interesting email exchanges on
questions pertaining to this research.

2. Notation and settings. A Mayer–Vietoris exact sequence

We assume the notations in Section 1. Let X be a proper curve over V (of mixed charac-
teristic) that is semistable, which means that locally for the Zariski topology there is an étale
map to Spec.V Œx; y�=xy � �/ and we suppose that the special fiber has at least two irreducible
components and all components are smooth. We denote by Xk the special fiber of X which we
suppose connected, by XK its generic fiber and by X rig

K its rigid analytic generic fiber. We
suppose that the intersection points of the components of Xk are k-rational. As X is a proper,
regular curve over V , Theorem 2.8 of [17] implies that X is a projective V -scheme.

Following [10] we associate to Xk a multigraph Gr.Xk/ whose definition we now recall.
To every irreducible component Cv of Xk we associate a vertex v and if v;w are vertices,
an oriented edge e with origin v and end w corresponds to an intersection point Ce of the
components Cv and Cw . Let v and w be two vertices which correspond to the components Cv
and Cw , let us suppose that they intersect in n � 1 points P1; : : : ; Pn, then they correspond
to n edges in Gr.Xk/ with origin in v and end w denoted by Œv; w�1; : : : ; Œv; w�n. To simplify
the notation if e is an oriented edge with origin v and end w, we write e D Œv; w�. We denote
by V the set of vertices and by E the set of oriented edges.

We have the specialization map

sp W X rig
K ! Xk

defined in [2]. For every v 2 V we define

Xv WD sp�1.Cv/

and for every e 2 E
Xe WD sp�1.Ce/:

The set Xe is an open annulus in X
rig
K and Xv is what is called a wide open subspace

in [8, Proposition 3.3], that means an open of X rig
K isomorphic to the complement of a finite

number of closed disks, each contained in a residue class, in a smooth proper curve over K
with good reduction. If Cv and Cw intersect in Ce, then Xv \Xw D Xe:

One can prove that ¹Xvºv2V is an admissible covering of X rig
K (see [8]) and that wide

opens are Stein spaces so that we can use the covering ¹Xvºv2V to calculate the de Rham
cohomology of X rig

K using a Čech complex. Moreover one can prove that the first de Rham
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cohomology of a wide open is finite ([8, Theorem 4.2]) proving a comparison theorem with the
de Rham cohomology of an algebraic curve minus a finite set of points.

Let .E;r/ be a module with integrable connection onX rig
K . Given the admissible covering

¹Xvºv2V which has the property that the intersection of any collection of three distinct Xv is
void, we can write the Mayer–Vietoris sequence:

(2.1)
L
v2V H

0
dR.Xv; .E;r//

˛ //
L
e2E H

0
dR.Xe; .E;r//

// H 1
dR.X

rig
K ; .E;r//

//
L
v2V H

1
dR.Xv; .E;r//

ˇ
//
L
e2E H

1
dR.Xe; .E;r//.

Let us remark that every cohomology group that appears in the long exact sequence
except for H 1

dR.X
rig
K ; .E;r// can be calculated as the cohomology of the global sections of the

de Rham complex, due to the fact that every wide open is Stein.
From equation (2.1) we can deduce the short exact sequence

(2.2) 0 �! H 1.Gr.Xk/;E/

�! H 1

dR.X
rig
K ; .E;r/// �! Ker.ˇ/ �! 0;

where H 1.Gr.Xk/;E/ WD Coker.˛/.

3. The monodromy operator and the rigid cohomology

We consider again a proper and semistable curve X , its generic fiber XK and its asso-
ciated rigid space X rig

K . We recall the construction of the monodromy operator in [11, Sec-
tion 2.2].

By our assumptions there is a proper scheme P overW , smooth aroundXk and such that
we have a global embeddingX ,! P �Spec.W/ Spec.V/ D PV . Let us denote by Pk its special
fiber and by P rig

K0
and P rig

K the rigid analytic spaces associated to P and PV ; then one has the
following diagram:

P
rig
K0

��

spP

~~

Xk // Pk // P ,

where the map between P rig
K0

and Pk is the specialization map that we denote by spP . We also
have a specialization map spPV

W P
rig
K ! Pk . One can consider the tubes sp�1P .Xk/ WD �XkŒP

and YK WD sp�1PV
.Xk/ D �XkŒPV

. Let now E be a convergent F -isocrystal on Xk . It has a real-
ization on �XkŒP , .E;r/, and we denote by .E;r/K its base change to K. It is a module with
connection on YK . We will denote by the same symbol its restriction to X rig

K . We may then
define the first rigid cohomology group with coefficients in E as

H 1
rig.Xk; E/ WD H

1
dR.�XkŒP ; .E;r//;

which is a finite dimensional K0-vector space. We also consider

H 1
rig.Xk; E/K WD H

1
dR.�XkŒPV

; .E;r/K/ D H
1
dR.YK ; .E;r/K/:
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On the other hand we can proceed as before and consider X rig
K , the rigid analytic space

associated to XK . We then have a morphism of rigid spaces

' W X
rig
K ! YK

given by the immersion of X into PV , which induces the pull-back map in cohomology

(3.1) '� W H 1
rig.Xk; E/K WD H

1
dR.YK ; .E;r/K/! H 1

dR.X
rig
K ; .E;r/K/:

In the notations above we define following [11] a K-linear map

N W H 1
dR.X

rig
K ; .E;r/K/! H 1

dR.X
rig
K ; .E;r/K/:

Due to the fact that wide opens are Stein spaces, every element Œ!� in H 1
dR.XK ; .E;r/K/ can

be described as a hypercocycle ..!v/v2V ; .fe/e2E /, with .!v/ in �1Xv
˝ EXv

and fe in EXe

that verifies that !vjXe
� !wjXe

D r.fe/ if e D Œv; w�.
Let us remember that every Xe is an ordered open annulus; we can define a residue map

Res W H 1
dR.Xe; .E;r/K/! H 0

dR.Xe; .E;r/K/

as follows. The module with connection .E;r/K has a basis of horizontal sections e1; : : : ; en
on Xe because Xe is a residue class ([11, Lemma 2.2]). Hence if z is an ordered uniformizer
of the ordered annulus Xe, every differential form �e 2 H

1
dR.Xe; .E;r/K/ can be written as

�e D
Pn
iD1.ei ˝

P
j ai;j z

jdz/ with ai;j 2 K. Then Res.�e/ D
Pn
iD1 ai;�1ei , and it is an

isomorphism of vector spaces.
For a cohomology class Œ!� represented as before by ..!v/v2V ; .fe/e2E / we defineN as

the composition of the following maps:

QN W H 1
dR.X

rig
K ; .E;r/K/!

M
e2E

H 0
dR.Xe; .E;r/K//;

Œ!� 7! .Res.!vjXe
/eDŒv;w�/

and the map

i W
M
e2E

H 0
dR.Xe; .E;r/K/!

M
e2E

H 0
dR.Xe; .E;r/K/=

M
v2V

H 0
dR.Xv; .E;r/K/


�! H 1

dR.X
rig
K ; .E;r/K/;

.fe/e2E D .0; fe=Im.˛//v2V ; e2E ;

and ˛ as in (2.1) and  as in (2.2).
Hence N is defined as N D i ı QN . Note that N 2 D 0.

In order to give an interpretation of the monodromy operator on the de Rham coho-
mology defined above we will introduce the log formalism. The curve X can be equipped
with a log structure, associated to the special fiber Xk which is a divisor with normal cross-
ing and Spec.W / with the log structure given by the closed point. Pulling them back to Xk
and to Spec.k/ respectively, we may consider Xk and Spec.k/ as log schemes, and when we
want to treat them as log schemes, we denote them by X�

k
and Spec.k/�: The log structure
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on Spec.W / induces a log structure on Spf.W /, and again when we want to treat it as a log
formal scheme, we denote it by Spf.W /�. We note that in the case of the trivial isocrystal
by [16] the de Rham cohomology groups of the generic fiber coincide with the log-crystalline
ones of X�

k
, base-changed to K. This result holds also in our case with coefficients. In fact if

we start with a convergent F -isocrystal on Xk , then one can associate to it a log-convergent
F -isocrystal on X�

k
and then a log(-crystalline) F -isocrystal on X�

k
([21, Theorem 5.3.1]):

we again denote it by E.

Proposition 1. In the previous hypothesis and notations if we start with a convergent
F -isocrystal E on Xk and we denote by .E;r/ its realization on �XkŒP , then the cohomol-
ogy of the restriction H i

dR.X
rig
K ; .E;r/K/ coincides with the log-crystalline cohomology of the

associated log-F -isocrystal on X�
k

, H i
log�crys.X

�
k
; E/˝K0

K. The monodromy operators co-
incide as well.

Proof. We are in the case of [13]. The Frobenius structure will imply that the relative
log cohomology arising from the deformation gives a locally free module, but it will guarantee
also that the exponents of the associated Gauss–Manin differential system are non-Liouville
numbers: hence we may trivialize the system by the Transfer Theorem [7]. For the coincidence
of the monodromy operators we refer to [11].

Using '� of (3.1) and the monodromy operator N , we can form the following sequence:

(3.2) H 1
dR.YK ; .E;r/K/

'�

��! H 1
dR.X

rig
K ; .E;r/K/

N
��! H 1

dR.X
rig
K ; .E;r/K/:

We quote the following theorem from [4], where k is finite, XK is a variety of dimensions 1
or 2 and Xk is projective (see also [19]).

Theorem 2. In the sequence (3.2) if E is the trivial isocrystal, then the map '� is
injective and Im.'�/ D Ker.N /.

In the next section we will prove that if E is not necessarily the trivial isocrystal, then
in the sequence (3.2) the map '� is injective and Im.'�/ � Ker.N /. Moreover if E is the
trivial isocrystal, we will give a new proof of Theorem 2 using the explicit description of the
monodromy operator as introduced before.

Remark 3. According to [11] for the definition of the monodromy operator on the de
Rham cohomology we did not need either the Frobenius structure or an isocrystal: we just
needed a connection on the generic fiber with the property that its restriction to any residue
class is trivial. In general we do not know the interpretation of such an operator in terms of the
integral structures.

4. The behavior of the monodromy operator

We would like to study the properties of the monodromy operator as defined in the pre-
vious section and, in particular, the exactness of the sequence (3.2).
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As in Section 2 let us consider the multigraph Gr.Xk/ associated to Xk , with vertices
in V and edges in E . For v 2 V we denote by Xv WD sp�1X .Cv/ and Yv WD sp�1PV

.Cv/; because
the definition of ', we have that '.Xv/ � Yv. In the same way we denote by Xe WD sp�1X .Ce/

and Ye WD sp�1PV
.Ce/; because of the definition of ', we have that '.Xe/ � Ye.

Let us note that Ye is a polydisk because PV is smooth. We choose the admissible cover-
ing of X rig

K given by ¹Xvºv2V to calculate the de Rham cohomology using Čech complexes.
As before letE be an F -convergent isocrystal onXk , we can also use the Mayer–Vietoris

spectral sequence for rigid cohomology with coefficients in E ([23, Theorem 7.1.2]). We use
the finite closed covering of Xk given by ¹Cvº. Since the intersection of every collection of
three distinct components is empty, the spectral sequence degenerates to a Mayer–Vietoris long
exact sequence ([14, Theorem 4.6.1])

(4.1)
L
v2V H

0
rig.Cv; E/

˛ //
L
e2E H

0
rig.Ce; E/

// H 1
rig.Xk; E/

//
L
v2V H

1
rig.Cv; E/

� //
L
e2E H

1
rig.Ce; E/,

whose base-change to K can be described in terms of the de Rham cohomology of YK as

(4.2)
L
v2V H

0
dR.Yv; .E;r/K/

˛ //
L
e2E H

0
dR.Ye; .E;r/K/

��L
v2V H

1
dR.Yv; .E;r/K/

�

��

H 1
dR.YK ; .E;r/K/

oo

L
e2E H

1
dR.Ye; .E;r/K/.

Now we study the exactness property of the sequence (3.2).

Lemma 4. If E is a convergent isocrystal and .E;r/ is the coherent module with inte-
grable connection induced by it, then the map '� in the sequence (3.2) is injective.

Proof. We fix an irreducible component Cv of Xk and we would like to prove that the
following sequence is exact:

(4.3) 0! H 1
dR.Yv; .E;r/K/! H 1

dR.Xv; .E;r/K/!
M
e2Ev

H 0
dR.Xe; .E;r/K/;

where the last map is the residue map and Ev WD ¹e W there exists a vertex w with e D Œv; w�º.
As Cv is proper and smooth, the above sequence will be isomorphic to the following sequence:

(4.4) 0! H 1
crys.Cv; E/˝K ! H 1

log�crys.C
��
v ; E/˝K !

M
e2Ev

H 0
dR.Xe; .E;r/K/;

where C��v is the log scheme given by the component Cv with the log structure induced by the
divisor given by the intersection points of Cv with the other components. The two sequences
are isomorphic as

H 1
crys.Cv; E/˝K Š H

1
dR.Yv; .E;r/K/
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since Cv is proper and smooth,

H 1
log�crys.C

��
v ; E/˝K Š H 1

dR.Xv; .E;r/K/

by [11, Lemma 5.2]. Moreover the second one is exact because it is the Gysin sequence for
rigid cohomology.

For the convenience of the reader we recall that the Gysin sequence for rigid cohomology,
in our setting is the following ([5, Proposition 2.1.4]):

(4.5) 0! H 1
rig.Cv; E/˝K ! H 1

rig.Uv; E/˝K !
M
e2Ev

H 0
dR.Xe; .E;r/K/;

where Uv is the complement in Cv of all the points of Cv that intersect the other components
of Xk .

The isomorphism H 1
rig.Uv; E/ Š H

1
log-crys.C

��
v ; E/ follows from [22, Section 2.4] and

[22, Theorem 3.1.1]. Moreover

H 0
dR.Xe; .E;r/K/ Š H

0
dR.Ye; .E;r/K/

because Ye and Xe are residue classes and E has a basis of horizontal sections on each residue
class, which means that both H 0

dR.Xe; .E;r/K/ and H 0
dR.Ye; .E;r/K/ are isomorphic to Kd

where d is the rank of E as OXK
-module. Moreover by the Gysin isomorphism in degree zero

([5, Proposition 2.1.4]), with the same notations as before, we have

H 0
rig.Cv; E/ Š H

0
rig.Uv; E/;

which implies that
H 0

dR.Xv; .E;r/K/ Š H
0
dR.Yv; .E;r/K/;

using the same techniques as before.
Using the Mayer–Vietoris long exact sequence for rigid cohomology (4.2), we can pass

to the following short exact sequence:

(4.6) 0 �! H 1.Gr.Xk/;EK/
ı
�! H 1

dR.YK ; .E;r/K// �! Ker.�/ �! 0,

where H 1.Gr.Xk/;EK/ WD Coker.˛/.
Putting together Mayer–Vietoris sequences for the coverings ¹Xvº and ¹Yvº respectively

we obtain the following diagram:

(4.7)
L
eH

0
dR.Xe; .E;r/K/

//

�

vv

L
eH

0
dR.Xe; .E;r/K/

0 // H 1.Gr.Xk/;EK/

// H 1

dR.XK ; .E;r/K/
�X //

Res

OO

L
vH

1
dR.Xv; .E;r/K/

OO

0 // H 1.Gr.Xk/;EK/
ı //

OO

H 1
dR.YK ; .E;r/K/

'�

OO

�Y //
L
vH

1
dR.Yv; .E;r/K/

'�

OO

// 0

0

OO

and by the Snake Lemma one can conclude that '� WH 1
dR.YK ; .E;r/K/!H 1

dR.XK ; .E;r/K/

is injective.

Brought to you by | Universita degli Studi di Padova
Authenticated

Download Date | 3/10/20 5:13 PM



Chiarellotto, Coleman, Di Proietto and Iovita, On a p-adic invariant cycles theorem 63

Remark 5. Let us note that in (4.7) the monodromy operator on H 1
dR.XK ; .E;r/K/

acts as N D  ı � ı Res.

Lemma 6. If E is a convergent F -isocrystal and .E;r/ is the coherent module with
integrable connection induced by it, then in the sequence (3.2)

N ı '� D 0:

Proof. Let us consider an element Œ!� 2 H 1
dR.YK ; .E;r/K/. Then '�Œ!�, which is

an element of H 1
dR.XK ; .E;r/K/, can be represented by a hypercocycle ..˛v/v2V ; .ge/e2E /

where ˛v 2�1Xv
˝EXv

and ge in EXe
and they verify that ˛vjXe

�˛wjXe
Dr.ge/ if e D Œv; w�.

We want to calculate N.'�.Œ!�//. We now look at the diagram (4.7). By the definition of N
one can see that

N.'�.Œ!�// D  ı � ı Res.'�.Œ!�// D  ı � ı ResjXe
.�X .'

�Œ!�//:

By the commutativity of the diagram (4.7),

ResjXe
.�X .'

�Œ!�// D ResjXe
.'�.�Y .Œ!�///:

If we denote by !v D �Y .Œ!�/, then we have to compute ResjXe
.'�.!v//:

ResjXe
.'�.!v// D Res.'�.!v/jXe

/ D Res.'�.e//

where e 2 EYe
˝�1Ye

, but as Ye is an open polydisk we have thatH 1
dR.Ye; .E;r/K/ D 0 and

so Res.��.e// D 0 as claimed.

From the above lemma we can conclude that Im.'�/ � Ker.N /. Now we would like to
characterize in terms of residues the elements of H 1

dR.XK ; .E;r/K/ which are in the image
of the map '�.

Let us take an element Œ!� 2 H 1
dR.XK ; .E;r/K/. As before we can choose a represen-

tative ! D ..!v/v2V ; .fe/e2E /, with .!v/ in EXe
˝�1Xv

and fe in EXe
, which verifies that

!vjXe
� !wjXe

D r.fe/ if e D Œv; w�.
In the next lemma we prove a necessary and sufficient condition for an element of the

cohomology group H 1
dR.XK ; .E;r/K/ to be in the image of the map '�.

Lemma 7. Let us take an element Œ!� 2 H 1
dR.XK ; .E;r/K/ and take a representa-

tive ! D ..!v/v2V ; .fe/e2E / as above. Then ResXe
.!vjXe

/ D 0 for every e 2 E if and only
if Œ!� 2 Im.'�/.

Proof. Let us see first that if ResXe
.!vjXe

/ D 0 for every e 2 E , then Œ!� 2 Im.'�/:
If ResXe

.!vjXe
/ D 0, thanks to the exact sequence (4.3) there exists a v 2 H 1

dR.Yv; .E;r/K/

such that '�.v/ D !v for every v 2 V . As the map �Y in (4.7) is surjective, there exists
an ˛ 2 H 1

dR.YK ; .E;r/K/ such that �Y .˛/ D .!v/v2V :
Now �X .Œ!� � '

�.˛// D 0, hence, looking again at the diagram (4.7), there exists an
element c 2 H 1.Gr.Xk/;EK/ such that Œ!� � '�.˛/ D .c/. By the commutativity of the di-
agram (4.7) there exists an element � 2 H 1

dR.YK ; .E;r/K/ such that '�.�/ D .c/: (One can
choose � D ı.c/.)
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Conversely if Œ!� D '�.˛/ for ˛ 2 H 1
dR.YK ; .E;r/K/; then

.!v/v2V D '
�.�Y .˛// WD '

�.˛v/v2V :

Hence ResjXe
.!v/ D ResjXe

.'�.˛v// for every v 2 V : But as in the proof of Lemma 6 one
can prove that from this it follows that ResjXe

.!v/ D 0 for every v 2 V .

5. The constant coefficients case

In this section we show that if E is the trivial convergent F -isocrystal, then the condition
in Lemma 7 is fulfilled. This will imply that the sequence in (3.2) is exact and it will give a new
proof of Theorem 2, i.e. the exactness of the invariant cycles sequence under the assumption
that k is perfect instead of finite. The realization of E on X rig

K is the structure sheaf with trivial
connection .OXK

; d /.
We would like to prove that if Œ!� 2 H 1

dR.X
rig
K / is such that N.Œ!�/ D 0, then one can

find a hypercocycle .!v; fe/ representing it such that ResXe
.!vjXe

/ D 0: hence we may apply
Lemma 7 and conclude.

Let .!v; fe/ be a hypercocycle representing Œ!� and consider ResXe
.!vjXe

/; if Œ!� is
in Ker.N /, then .ResXe

.!vjXe
//e D 0 in H 1.Gr.Xk/;OK/, that means that

.ResXe
.!vjXe

//e 2 Coker
�M
v2V

H 0
dR.Xv/!

M
e2E

H 0
dR.Xe/

�
:

On the other hand, thanks to the Residue Theorem on Wide Opens ([8, Proposition 4.3]),
for every irreducible component Cv in Xk; the family .ResXe

.!vjXe
//e verifies that

(5.1)
X
e2Ev

ResXe
.!vjXe

/ D 0;

where the notation Ev refers, as before, to the set ¹e W there exists a vertex w with e D Œv; w�º:
Hence to prove that ResXe

.!vjXe
/ D 0 we are left to prove that if .ResXe

.!vjXe
//e

is an element of CoKer.
L
v2V H

0
dR.Xv/!

L
e2E H

0
dR.Xe// and for every v it verifies thatP

e2Ev
ResXe

.!vjXe
/ D 0, then .ResXe

.!vjXe
//e D 0 for all e. So we are reduced to a linear

algebra and graph theory problem, which we can translate as follows.
Let F be a field of characteristic 0. Let G be a connected multigraph with n vertices

and m edges. Let us denote by V the set of all vertices and by E the set of all oriented edges.
We associate to G a vector space V D

L
e2E F modulo the relations ae D �a Ne, where if

e D Œv; w�, then Ne D Œw; v�. Then there is a map

� W
M
v2V

F !
M
e2E

F ;

.av/v2V 7! .ae/e2E ;

where ae D av � aw if e D Œv; w�. We consider two vector subspaces W and T of
L
e2E F

where
W D ¹.ae/e2E W .ae/e2E 2 Im.�/º;

T D

²
.ae/e2E W

X
e2Ev

ae D 0 for all v 2 V

³
:
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Proposition 8. With notations as before we have W \ T D 0.

Proof. An element .ae/e2E which belongs to W and to T is described by the following
equations:

ae D av � aw

and X
e2Ev

ae D 0 for all v 2 V :

We can rewrite the equations as follows:

(5.2) deg.v/av D aw1
C � � � C awsv

for all v 2 V ;

where w1; : : : ; wsv are the vertices connected to v by an edge and by deg.v/ WD sv we denote
the cardinality of the set of the vertices connected to v. Requiring thatW \ T D 0 is equivalent
to requiring that the linear system in (5.2) has a 1-dimensional space of solutions, generated
by the vector .1; : : : ; 1/. This is equivalent to requiring that the matrix associated to the system
in (5.2) has rank n � 1, i.e. that there exists at least one minor of rank n � 1 whose determinant
is non-zero.

This last condition is independent of the field F , hence to prove that W \ T D 0 it is
enough to prove that the equations in (5.2) imply that av D awi

for allwi and for all v assuming
that F is a totally ordered field. We assume in what follows that F is a totally ordered field of
characteristic 0. Let us suppose by absurd that the equations in (5.2) do not imply that av D aw
for all w. Let us call

av0
D min
v2V

av;

which exists because our assumption that our field F is totally ordered; then av0
� av for

all v 2 V . If av0
D av for all v 2 V , we are done; if not, there exists a v1 such that av0

< av1
.

Moreover we can suppose that v1 is connected to v0 by an edge because if not, then this
means that av0

D av for all v connected to v0 by an edge. Then if we now fix a v ¤ v0 that
is connected to v0, we can consider all the w that are connected to it by an edge; if av D aw
for all these w, we can go on as before. In the end we will find that all the av are equal for
all v 2 V which proves the claim.

Hence we suppose that there exists a v1 such that av0
< av1

for v1 connected to v0 by
an edge. We consider equation (5.2) for v D v0 and we get the contradiction

deg.v0/av0
< aw1

C � � � C awsv
:

With this proposition we end the proof of the exactness of the invariant cycles sequence
for trivial coefficients.

Remark 9. We would like now to give another proof of Proposition 8 more in the spirit
of graph theory: it uses [3, Proposition 4.3, Proposition 4.8] and [15, Lemma 13.1.1].

Proof. The matrix associated to the linear system in (5.2) is an n � nmatrixA D .ai;j /,
where for i ¤ j , ai;j D �1hi;j if there are hi;j edges between the vertex vi and vj and 0 oth-
erwise, and ai;i D deg.vi /: We will prove that the rank of the matrix A is n � 1.

The matrix A is called the Laplacian matrix associated to the multigraph G; we will see
that A D DDt and that D is an n �m matrix with rank n � 1.
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The following are equivalent:

(i) there exists an .n � 1/ � .n � 1/ minor of A with determinant different from zero,

(ii) the rank of A is .n � 1/,

(iii) the dimension of the kernel of A is 1,

(iv) Ker.Dt / D Ker.A/:

Assertion (i) is independent of the field F , so we may suppose that F is the field of real num-
bers R.

We will prove assertion (iv). Let us suppose that z is a vector in Rn that is in Ker.A/.
We want to prove that z 2 Ker.Dt /. As z 2 Ker.A/, we have

Az D 0;

DDtz D 0;

ztDDtz D 0:

But the last equality implies that the vector Dtz has inner product with itself in Rn equal to
zero, that means that Dtz is the zero vector, i.e. z 2 Ker.Dt /; as we wanted.

We are left to prove that A D DDt and that D is an n �m matrix with rank n � 1. We
consider the matrixD associated to the multigraphG defined as follows:D is an n �mmatrix
such that .D/i;j D 1 if the vertex vi is such that ej D Œvi ;��, .D/i;j D �1 if the vertex vi is
such that ej D Œ�; vi �, and .D/i;j D 0 otherwise.

Now if we consider .DDt /i;j , this is the inner product of the rows di and dj . They have
a non-zero entry in the same column if and only if there is an edge between vi and vj , and
these entries are one �1 and one C1, hence .DDt /i;j is given by �1 times the number of
edges between vi and vj . Moreover .DDt /i;i is the number of entries in di different from
zero, which means the degree of vi . This proves that A D DDt .

Let us see now thatD has rank n � 1. On every column there is aC1 and a �1, hence the
sum of all the elements on the columns are zero, hence the rank of D is less or equal to n � 1.
Let us suppose to have a linear relation

(5.3)
X
i

aidi D 0;

where as before di is the row corresponding to the vertex vi and suppose that not all the ai are
zero. Choose a row dk for which ak ¤ 0. This row has non-zero entries in the columns corre-
sponding to the edges that intersect vi . For every such column there is only one other row dl
with a non-zero entry in that column. Hence we should have that al D ak , hence al D ak for
all vertices vl adjacent to vk . Hence all the ak are equal as the multigraph G is connected,
and the equation in (5.3) is a multiple of

P
i di D 0: But .a1; : : : ; an/ that verifies (5.3) is

in Ker.Dt /, hence we have proven that Ker.Dt / is 1-dimensional generated by .1; : : : ; 1/, the
rank of Dt is .n � 1/ as well as the rank of D.

6. Unipotent coefficients

In this section we study the sequence (3.2) when the coefficients are unipotent F -iso-
crystals. In particular we prove that, unlike the case of constant coefficients, the sequence
in (3.2) is not necessarily exact. We give a sufficient condition for non-exactness.

Brought to you by | Universita degli Studi di Padova
Authenticated

Download Date | 3/10/20 5:13 PM



Chiarellotto, Coleman, Di Proietto and Iovita, On a p-adic invariant cycles theorem 67

LetE be a unipotent convergent F -isocrystal for which the sequence in (3.2) is exact and
let us consider the following extension in the category of convergent F -isocrystals:

(6.1) 0 �! E
˛
�! F

ˇ
�! O �! 0;

where O is the trivial F -isocrystal. Let us also consider the element x 2 H 1
rig.Xk; E/ corre-

sponding to the class of this extension (x is then fixed by the Frobenius operator; see [5, Propo-
sitions 1.3.1 and 3.2.1] and [6]). Let us suppose that x ¤ 0. In the sequel we use sequence (3.2)
for the isocrystals E, F and O; to avoid confusion we denote the first maps by ��

E
, ��

F
and ��

O

respectively and the monodromy operators by NE , NF and NO respectively.
Our assumptions imply thatH 1

rig.Xk; E/˝K is isomorphic via '�
E

to Ker.NE/, and this
last group contains the image of NE , as this operator has square zero.

Theorem 10. If '�
E
.x ˝ 1/ D NE.y/ for y 2 H 1

dR.XK ; .E;r/K/, then if we denote by

˛dR W H
1
dR.XK ; .E;r/K/! H 1

dR.XK ; .E;r/K/

the map induced in cohomology by ˛ of the sequence (6.1), the following holds:

Ker.NF / D .H
1
rig.Xk; F /˝K/˚ .˛dR.y/K/:

Proof. Let us consider the following commutative diagram:

(6.2) H 0
rig.Xk/˝K

i0
O //

ı0
rig
��

H 0
dR.XK/

N 0
O //

ı0
log�crys
��

H 0
dR.XK/

ı0
dR
��

H 1
rig.Xk; E/˝K

'�
E //

˛rig

��

H 1
dR.XK ; .E;r/K/

NE //

˛dR

��

H 1
dR.XK ; .E;r/K/

˛dR

��

H 1
rig.Xk; F /˝K

'�
F //

ˇrig

��

H 1
dR.XK ; .F ;r/K/

NF //

ˇdR

��

H 1
dR.XK ; .F ;r/K/

ˇdR

��

H 1
rig.Xk/˝K

'�
O //

rig

��

H 1
dR.XK/

NO //

dR

��

H 1
dR.XK/˝K

dR

��

H 2
rig.Xk; E/˝K

i2
E //

��

H 2
dR.XK ; .E;r/K/

N 2
E //

��

H 2
dR.XK ; .E;r/K/

��

H 2
rig.Xk; F /˝K

//

��

H 2
dR.XK ; .F ;r/K/

//

��

H 2
dR.XK ; .F ;r/K/

��

H 2
rig.Xk/˝K

// H 2
dR.XK/

// H 2
dR.XK/.

Let us consider '�
E
.x ˝ 1/ 2 '�

E
.H 1

rig.Xk; E/˝K/ D Ker.NE/, with '�
E
.x ˝ 1/ D NE.y/

and y 2 H 1
dR.XK ; .E;r/K/. We remark that the class of 1 in H 0

rig.Xk/˝K D K is sent to
the class x ˝ 1 in H 1

rig.Xk; E/˝K by the map ı0rig.
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Let us prove first that NF .˛dR.y// D 0. By the commutativity of the diagram (6.2) we
have that

NF .˛dR.y// D ˛dR.NE.y// D ˛dR.'
�
E.x ˝ 1// D ˛dR.ı

0
dR.1// D 0;

hence ˛dR.y/ 2 Ker.NF /: We claim that z D ˛dR.y/ … '
�
F
.H 1

rig.Xk; F /˝K/: Let us sup-
pose that z D ˛dR.y/ D '

�
F
.b/, with b 2 H 1

rig.Xk; F /˝K. Then

'�O.ˇrig.b// D ˇdR.'
�
F .b// D ˇdR.z/ D ˇdR.˛dR.y// D 0:

As '�
O

is injective, we have ˇrig.b/ D 0, hence b 2 Ker.ˇrig/ D Im.˛rig/, i.e. there exists an
element a 2 H 1

rig.Xk; E/˝K such that ˛rig.a/ D b: So

z D ˛dR.y/ D '
�
F .b/ D '

�
F .˛rig.a// D ˛dR.'

�
E.a//;

from which it follows that

y � '�E.a/ 2 Ker.˛dR/ D Im.ı0dR/:

But the image of ı0dR is generated by '�
E
.x˝1/, as vector space, hence y�'�

E
.a/ D m'�

E
.x˝1/

for some m 2 K. Now

NE.y/ �NE.'
�
E.a// D NE.m'

�
E.x ˝ 1// D 0;

hence
NE.y/ D NE.'

�
E.a// D 0;

but
NE.y/ D '

�
E.x ˝ 1/ D 0;

which is absurd.
We are left to prove that for all ˛ 2 KerNF there exist elements ˇ 2 H 1

rig.Xk; F /˝K

and t 2 K such that ˛ D '�
F
.ˇ/C t˛dR.y/: Let us calculate

NO.ˇdR.˛// D ˇdR.NF .˛/// D 0;

hence
ˇdR.˛/ 2 Ker.NO/ D Im.'�O/;

so that there exists an element  2H 1
rig.Xk/˝K such that '�

O
./D ˇdR.˛/. By Lemma 11 we

have rig./ D 0. Hence there exists an element ˇ 2 H 1
rig.Xk; F /˝K such that ˇrig.ˇ/ D :

Let us consider now the element ˛ � '�
F
.ˇ/I it is in Ker.ˇdR/ because

ˇdR.˛ � '
�
F .ˇ// D ˇdR.˛/ � '

�
O.ˇrig.b// D ˇdR.˛/ � '

�
O./ D 0:

Hence there exists an element u 2 H 1
dR.XK ; .E;rE/K/ such that ˛dR.u/ D ˛ � '

�
F
.ˇ/: Now

˛dR.NE.u// D NF .˛dR.u// D NF .˛ � '
�
F .ˇ// D 0

because ˛ 2 Ker.NF / and NF .'
�
F
.ˇ// D 0 by Lemma 6. Then NE.u/ 2 Ker.˛dR/ D Im ı0dR,

i.e
NE.u/ D t'

�
E.x ˝ 1/ D tNE.y/;

for some t 2 K and u � ty 2 Ker.NE/ D '
�
E
.H 1

rig.Xk; E/˝K/. Hence there exists an ele-
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ment ˇ0 2 H 1
rig.Xk; E/˝K such that u D ty C '�

E
.ˇ0/: So

˛ � '�F .ˇ/ D ˛dR.u/ D ˛dR.ty C '
�
E.ˇ
0// D t˛dR.y/C ˛dR.'

�
E.ˇ
0//;

which means that
˛ D '�F .ˇ/C t˛dR.y/C ˛dR.'

�
E.ˇ
0//;

but '�
F
.ˇ/C ˛dR.'

�
E
.ˇ0// D '�

F
.ˇ/C '�

F
.˛rig.ˇ

0//; hence we are done.

Lemma 11. With the same hypothesis and notations as in the previous theorem, the co-
boundary map rig W H

1
rig.Xk/˝K ! H 2

rig.Xk; E/˝K induced by the exact sequence (6.1)
is the zero map.

Proof. Clearly, the vanishing of the co-boundary map rig is equivalent to the fact that
the map j W H 2

rig.Xk; E/˝K ! H 2
rig.Xk; F /˝K is injective.

Let us first make more explicit the group H 2
rig.Xk; G/˝K, where G is any one of the

isocrystals E;F;O and .G ;r/ is the module with integrable connection induced by G. Let us
recall the notations of Section 3: we consider the diagram

Xk ,��! Pk
spPV
 ��� PK

with Pk smooth and let YK WD sp�1PV
.Xk/. Then H i

rig.Xk; G/˝K D H
i
dR.YK ; .G ;r/K/.

The relevant part of the Mayer–Vietoris exact sequence for the admissible covering ¹Yvºv
of YK then readsM

e

H 1
dR.Ye; .G ;r/K/! H 2

dR.YK ; .G ;r/K/

!

M
v

H 2
dR.Yv; .G ;r/K/!

M
e

H 2
dR.Ye; .G ;r/K/:

As Ye is a wide open polydisk, H i
dR.Ye; .G ;r/K/ D 0 for i � 1, therefore we have a natural

isomorphism H 2
dR.YK ; .G ;r/K/ Š

L
vH

2
dR.Yv; .G ;r/K/:

Moreover, as Cv which is the irreducible component of Xk corresponding to v was sup-
posed smooth, it follows that we have canonical isomorphisms

H i
dR.Yv; .G ;r/K/ Š H

i
crys.Cv; G/˝K:

In particular, if we denote by Zv a smooth proper curve over K whose reduction is Cv and
which contains the wide open Xv, then the isocrystal G can be evaluated on Zv to give a sheaf
with connection which we will denote again by .G ;r/. Then

H i
dR.Yv; .G ;r/K/ Š H

i
dR.Zv; .G ;r/K/ for all i � 0.

Therefore we have a natural isomorphism

H 2
rig.Xk; G/˝K Š

M
v

H 2
dR.Zv; .G ;r/K/:

For every vertex v we denote as before Ev D ¹e W there exists a vertex w with e D Œv; w�º.
For every vertex v and e 2 Ev we denote byDe the residue disk of the point in Cv correspond-
ing to e in Zv. Let us then remark that the family ¹Xv;Deºe2Ev

is an admissible covering
of Zv and Xv \De D Xe for every e 2 Ev. We will represent classes in H 2

dR.Zv; .G ;r/K/

by hypercocycles for the above covering.
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We now prove the injectivity of the map j W H 2
rig.Xk; E/˝K ! H 2

rig.Xk; F /˝K. Let
z 2H 2

rig.Xk; E/˝K D
L
vH

2
dR.Zv; .E;r/K/ such that j.z/D 0. Let zv 2H 2

dR.Zv; .E;r/K/

be the v-component of z and jv W H 2
dR.Zv; .E;r/K/! H 2

dR.Zv; .F ;r/K/ be the v compo-
nent of j . Obviously jv.zv/ D 0 and it would be enough to show that this implies zv D 0 for
every v.

Let .!e/e2Ev
be a 2-hyper cocycle representing zv, where !e 2 H 0.Xe;EK ˝�

1
Zv
/ for

all e. Then jv.zv/ will be represented by the 2-hyper cocycle .˛.!e//e2Ev
, where ˛ is defined

by the exact sequence of isocrystals on Xk below:

0 �! E
˛
�! F

ˇ
�! O �! 0:

As extension on XK this is given by the class '�
E
.x ˝ 1/ D NE.y/ 2 H

1
dR.XK ; .E;r/K/ and

therefore, for every v, the sequence

0 �! H 0.Xv;EK/
˛
�! H 0.Xv;FK/

ˇ
�! H 0.Xv;OXK

/ �! 0

is exact because Xv are wide opens and moreover, it is naturally split as an exact sequence
of OXv

-modules with connections because '�
E
.x ˝ 1/ D NE.y/ can be represented by .0v; fe/

with fe 2 H 0
dR.Xe; .E;r/K/. Let s W H 0.Xv;OXK

/! H 0.Xv;FK/ be such a section of ˇ.
We remark that it is determined by s.1/, which is an element of H 0

dR.Xv; .F ;r/K/ such
that ˇ.s.1// D 1.

Therefore, s determines, for every e 2 Ev, a splitting of the exact sequence

0 �! H 0.Xe;EK/
˛e
�! H 0.Xe;FK/

ˇe
�! H 0.Xe;OXK

/ �! 0

which will also be called se (it is determined by the element se.1/ D s.1/jXe
/.

Now the sequence

(6.3) 0 �! H 0
dR.Xe; .E;r/K/

˛e
�! H 0

dR.Xe; .F ;r/K/
ˇe
�! H 0

dR.Xe; .OXK
; d // �! 0

is exact and se induces a natural splitting of it.
The isocrystalG (which is any one ofE;F;O regarded as a sheaf with connection onZv)

has a basis of horizontal sections onDe, for every e 2 Ev. Therefore the natural restriction map
H 0

dR.De; .G ;r/K/! H 0
dR.Xe; .G ;r/K/ is an isomorphism. Thus the exact sequence (6.3)

implies that the sequence

(6.4) 0 �! H 0
dR.De; .E;r/K/

˛e
�! H 0

dR.De; .F ;r/K/
ˇe
�! H 0

dR.De; .OXK
; d // �! 0

is exact and naturally split, where we denote the splitting by se. By tensoring (6.4) with �1De

we obtain that the sequence

0 �! H 0.De;EK ˝�
1
De
/
˛e
�! H 0.De;FK ˝�

1
De
/
ˇe
�! H 0.De; �

1
De
/ �! 0

is exact, naturally split as sequence of ODe
-modules with connection and everything is com-

patible with restriction to Xe.
Using these splittings, we write

H 0.Xv;FK ˝�
1
Xv
/ D H 0.Xv;EK ˝�

1
Xv
/˚H 0.Xv; �

1
Xv
/

and similarly for sections over Xe and De.
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Now we go back to proving that jv is injective for all v. Suppose that jv.zv/ D 0, i.e. for
every e 2 Ev,

˛e.!e/ D �vjXe
� �ejXe

� r.fe/;

where �v 2 H 0.Xv;FK ˝�
1
Xv
/; �e 2 H

0.De;FK ˝�
1
De
/; fe 2 H

0.Xe;FK/.
Using the decompositions above, we write (uniquely)

�v D �v;E C �v;O; �e D �e;E C �e;O; fe D fe;E C fe;O;

with �v;E 2 H 0.Xv;EK ˝�
1
Xv
/, �e;E 2 H 0.De;EK ˝�

1
De
/ etc.

Using the fact that the decompositions respect the connections and the restrictions to Xe,
we obtain

!e �
�
�v;E jXe

� �e;E jXe
� r.fe;E /

�
D �v;OX

jXe
� �e;OX

jXe
� dX .fe;O/:

As the decomposition is a direct sum decomposition, the left hand side and the right hand side
are zero.

Therefore !e D �v;E jXe
��e;E jXe

�r.fe;E / for every e 2 Ev and we have zv D 0.

A. Appendix: An example for a Tate curve

In this section we use explicit calculations to confirm Theorem 10, i.e. that the se-
quence (3.2) is not exact for a certain non-trivial unipotent F -isocrystal E on a specific Tate
curve.

Let X be a Tate elliptic curve over K with invariant q, where q 2 mV D .�/. We con-
sider x 2 H 1

rig.Xk/. By Lemma 6, '�
O
.x ˝ 1/ in H 1

dR.XK/ is such that N.'�
O
.x ˝ 1// D 0;

since H 1
dR.XK/ is a 2-dimensional K-vector space, we have Im.N / D Ker.N /, hence we get

'�
O
.x ˝ 1/ 2 Im.N /. In particular in this case the hypothesis of Theorem 10 are satisfied.

Every element inH 1
rig.Xk/ corresponds to an extension of the trivialF -isocrystal by itself

([5, Proposition 1.3.1]), hence the element x corresponds to the following exact sequence:

0! O ! E ! O ! 0:

As before we consider '�
O
.x ˝ 1/ 2 H 1

dR.XK/ and the exact sequence of modules with con-
nections induced by the one above:

0! .OXK
; d /! .E;r/K ! .OXK

; d /! 0:

We suppose from now on that ord�q D 3: Then the graph associate to X is a triangle with
vertices I; II; III and edges ŒI; II�; ŒII; III�; ŒI; III�.

The element '�
O
.x ˝ 1/, as hypercocycle, can be written as .0v; ge/ with ge 2 H 0.Xe/;

in particular d.ge/ D 0, so ge 2 K. Moreover since E is an F -isocrystal, the class x is fixed
by the Frobenius of H 1

rig.Xk/ ([5, Proposition 3.2.1]), in particular we can take ge 2 Qp for
every e.

The OXK
-module EK is locally free: onXv it has a basis given by e1;v; e2;v and onXw it

has a basis given by e1;w ; e2;w : If onXe we choose the basis e1;v; e2;v, then the matrix relating
this basis to e1;w ; e2;w is given by

�
1 ge

0 1

�
and the connection on Xe is given by the direct sum

of the two trivial connections.
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Now we consider .!v; fe/ 2 H 1
dR.XK ; .E;r/K/. Then

!v D h1;ve1;v C h2;ve2;v;

!w D h1;we1;w C h2;we2;w ;

!wjXe
D .h1;w C geh2;w/e1;v C h2;we2;w ;

with h1;v and h2;v elements of �1Xv
and h1;w and h2;w elements of �1Xw

. Let us suppose now
that .!v; fe/ 2 Ker.NE/; which means that

NE.!v; fe/ D .0;ResjXe
!v/ D 0 in H 1

dR.XK ; .E;r/K/;

but as the map from H 1.Gr;EK/ to H 1
dR.XK ; .E;r/K/ is injective, we have that ResjXe

!v is
zero as element of H 1.Gr;EK/.

Let us write the system which tells us that an element

ae D .a
1
e ; a

2
e / 2 H

1.Gr;EK/ D
L
eH

0
dR.Xe; .E;r/K/L

vH
0
dR.Xv; .E;r/K/

;

written in coordinates with respect to the basis ev;1; ev;2, is zero:´
a1ŒI;II� D a

1
I � a

1
II � gŒI;II�a

2
II;

a2ŒI;II� D a
2
I � a

2
II;

´
a1ŒII;III� D a

1
II � a

1
III � gŒII;III�a

2
III;

a2ŒII;III� D a
2
II � a

2
III;´

a1ŒI;III� D a
1
I � a

1
III � gŒI;III�a

2
III;

a2ŒI;III� D a
2
I � a

2
III :

Moreover from the Gysin sequence ([5, Proposition 2.1.4]), applied to every component Cv
of Xk (on every wide open Xv, .E;r/K is the direct sum of two copies of .OXK

; d /), we can
derive the following equations:8̂̂<̂

:̂
a1ŒI;II� C a

1
ŒI;III� D 0;

a1ŒII;III� C a
1
ŒII;I � D 0;

a1ŒIII;I � C a
1
ŒIII;II� D 0;

8̂̂<̂
:̂
a2ŒI;II� C a

2
ŒI;III� D 0;

a2ŒII;III� C a
2
ŒII;I � D 0;

a2ŒIII;I � C a
2
ŒIII;II� D 0:

Putting together the previous equations and writing a linear system in terms of the elements av,
we find the following matrix:

A D

0BBBBBBBBB@

2 0 �1 �gŒI;II� �1 �gŒI;III�

0 2 0 �1 0 �1

�1 �gŒII;I � 2 0 �1 �gŒII;III�

0 �1 0 2 0 �1

�1 �gŒIII;I � �1 �gŒIII;II� 2 0

0 �1 0 �1 0 2

1CCCCCCCCCA
;

where gŒI;II� D �gŒII;I �, gŒII;III� D �gŒIII;II� and gŒI;III� D �gŒIII;I �: The matrix A has determi-
nant equal to zero and dimension of the rank equal to 4. Two generators of the kernel are the
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following vectors:

K1 D .1; 0; 1; 0; 1; 0/;

K2 D

�
1

3
gŒI;II� C

2

3
gŒI;III� C

1

3
gŒII;III�; 1;�

1

3
gŒI;II� C

1

3
gŒI;III� C

2

3
gŒII;III�; 1; 0; 1

�
:

If we now writeK1,K2 as elements ofH 1.Gr;EK/, i.e. as elements of
L
eH

0
dR.Xe; .E;r/K/,

we find the following vectors:

H1 D .0; 0; 0; 0; 0; 0/;

H2 D

�
�
1

3
gŒI;II� �

1

3
gŒII;III� C

1

3
gŒI;III�; 0;�

1

3
gŒI;II� �

1

3
gŒII;III� C

1

3
gŒI;III�; 0;

1

3
gŒI;II� C

1

3
gŒII;III� �

1

3
gŒI;III�; 0

�
:

These computations show that the kernel ofNE consists of .!v; fe/ 2 H 1
dR.XK ; .E;r/K/ such

that ResjXe
!v equals H1 or H2. The elements .!v; fe/ of H 1

dR.XK ; .E;r/K/ which are such
that ResjXe

!v D H1 are the elements that come from H 1
rig.Xk; E/˝K.

Let us consider now the subvector space

V D ¹.!v; fe/ W ResjXe
!v D tH2 with t 2 Kº

Clearly the elements of '�
E
.H 1

rig.Xk; E/˝K/ are contained in the vector space V and one can
see that V='�

E
.H 1

rig.Xk; E/˝K/ is a 1-dimensional vector space, in fact two elements in V
are multiples one of the other modulo an element of '�

E
.H 1

rig.Xk; E/˝K/.
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