Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Mater. Interfaces, DOI: 10.1002/admi.201901239

Mn₃O₄ Nanomaterials Functionalized with Fe₂O₃ and ZnO: Fabrication, Characterization, and Ammonia Sensing Properties

Lorenzo Bigiani, Dario Zappa, Chiara Maccato,* Alberto Gasparotto, Cinzia Sada, Elisabetta Comini, and Davide Barreca*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

Mn_3O_4 nanomaterials functionalized with Fe_2O_3 and ZnO: fabrication, characterization and ammonia sensing properties

Lorenzo Bigiani, Dario Zappa, Chiara Maccato,* Alberto Gasparotto, Cinzia Sada, Elisabetta Comini, and Davide Barreca*

[*] Dr. L. Bigiani, Prof. C. Maccato, Prof. A. Gasparotto Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy E-mail: <u>chiara.maccato@unipd.it</u>

Dr. D. Zappa, Prof. E. Comini Sensor Lab, Department of Information Engineering, Brescia University, 25133 Brescia, Italy

Prof. C. Sada Department of Physics and Astronomy, Padova University and INSTM, 35131 Padova, Italy

[*] Dr. D. Barreca CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy E-mail: davide.barreca@unipd.it

S-1. Characterization

S-1.1. Field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-

ray spectroscopy (EDXS)

Figure S1. Plane-view and cross-sectional field emission-scanning electron microscopy (FE-SEM) micrographs of a bare Mn₃O₄ sample.

Figure S2. EDXS spectrum for a Mn₃O₄/ZnO specimen.

Figure S3. Plane-view FE-SEM micrographs for Mn_3O_4/Fe_2O_3 and Mn_3O_4/ZnO samples after cycled gas sensing tests for one year (average dimensions = (180±40) nm and (170±40) nm for Mn_3O_4/Fe_2O_3 and Mn_3O_4/ZnO , respectively).

S-1.2. X-ray photoelectron spectroscopy (XPS)

Figure S4. Surface Mn3s photoelectron peaks for Mn_3O_4 and Mn_3O_4/Fe_2O_3 samples. In the case of Mn_3O_4/ZnO specimen, the signal is not reported since it is superimposed with the Zn3p one (<u>http://srdata.nist.gov/xps</u>).

S-1-3. Gas sensing tests and data analysis

Figure S5. Dynamic response for a Mn_3O_4 specimen upon exposure to ammonia concentration pulses. Working temperature = 300 °C.

sample	K	В
Mn ₃ O ₄ /Fe ₂ O ₃	4.9	0.83
Mn ₃ O ₄ /ZnO	5.4	0.83

Table S1. Parameters obtained by best fitting of the calibration curves (Response = $K \times C^B$) at a working temperature of 300 °C.

The width of the hole accumulation layer (HAL) in pure *p*-type Mn_3O_4 can be estimated by the following relation:^[1]

$$W_{\rm Mn304} = \left[\frac{2\varepsilon_{\rm Mn304}V_0}{qN_{\rm Mn304}}\right]^{1/2}$$
(S1)

where ε_{Mn3O4} is the Mn₃O₄ permittivity (7.94× ε_0 , where ε_0 is the vacuum dielectric permittivity = 8.854×10⁻¹² C²×N⁻¹×m⁻²),^[2] V₀ is the height of the potential barrier established by oxygen adsorption (1.1 eV),^[3] q is the electron charge (1.602×10⁻¹⁹ C), and N_{Mn3O4} is the hole density in Mn₃O₄ (2.25×10²⁴ m⁻³).^[4] The calculated W_{Mn3O4} value is 20.6 nm.

When $M_xO_y = Fe_2O_3$ or ZnO are loaded onto Mn_3O_4 , the HAL thickness is tuned due to the formation of $p-n Mn_3O_4/M_xO_y$ junctions, according to the equation:^[1]

$$W'_{Mn304} = \left[\frac{2\varepsilon_{Mn304}\varepsilon_{Mx0y}V_{C}N_{Mx0y}}{qN_{Mn304}(\varepsilon_{Mn304}N_{Mn304}+\varepsilon_{Mx0y}N_{Mx0y})}\right]^{1/2}$$
(S2)

where ε_{MxOy} and N_{MxOy} denote M_xO_y permittivity and majority carrier concentration, respectively ($\varepsilon_{Fe2O3} = 12.0 \times \varepsilon_0$,^[5] $N_{Fe2O3} = 5.62 \times 10^{25} \text{ m}^{-3}$;^[6] $\varepsilon_{ZnO} = 9.67 \times \varepsilon_0$,^[7] $N_{ZnO} = 6.50 \times 10^{25} \text{ m}^{-3}$),^[8] and V_C is the contact potential variation between M_xO_y and Mn_3O_4 , calculated as the difference between the corresponding work function values ($\Phi_{Mn3O4} = 4.4 \text{ eV}$,^[9] $\Phi_{Fe2O3} = 5.4 \text{ eV}$,^[10] $\Phi_{ZnO} = 5.3 \text{ eV}^{[8]}$).

The calculation yields $W'_{Mn3O4} = 19.5$ nm and 18.5 nm for Mn_3O_4/Fe_2O_3 and Mn_3O_4/ZnO junctions, respectively.

Figure S6. Dynamic responses of Mn_3O_4/ZnO and Mn_3O_4/Fe_2O_3 sensors to NH_3 concentration pulses after one year of cycled tests. Working temperature = 300 °C.

References

- [1] S.-W. Choi, A. Katoch, J.-H. Kim, S. S. Kim, ACS Appl. Mater. Interf. 2015, 7, 647.
- [2] L. Ben Said, R. Boughalmi, A. Inoubli, M. Amlouk, *Appl. Microsc.* 2017, 47, 131.

- [4] T. Larbi, M. Haj Lakhdar, A. Amara, B. Ouni, A. Boukhachem, A. Mater, M. Amlouk,*J. Alloys Compd.* 2015, 626, 93.
- [5] D. R. Lide, H. P. R. Frederikse, *Handbook of Chemistry and Physics*, 75th Ed., CRC
 Press, Inc.: Boca Raton,, 1995, pp. 12-53.
- [6] H. K. Mulmudi, N. Mathews, X. C. Dou, L. F. Xi, S. S. Pramana, Y. M. Lam, S. G.Mhaisalkar, *Electrochem. Commun.* 2011, *13*, 951.
- [7] F. S. Mahmood, R. D. Gould, A. K. Hassan, H. M. Salih, *Thin Solid Films* 1995, 270, 376.
- [8] T. Minami, T. Miyata, T. Yamamoto, Surf. Coat. Technol. 1998, 108-109, 583.
- [9] G. Maniak, P. Stelmachowski, F. Zasada, W. Piskorz, A. Kotarba, Z. Sojka, *Catalysis Today* 2011, *176*, 369.
- [10] Z. Fan, X. Wen, S. Yang, J. G. Lu, *Appl. Phys. Lett.* **2005**, *87*, 013113.

^[3] T. Larbi, B. Ouni, A. Boukhachem, K. Boubaker, M. Amlouk, *Mater. Res. Bull.* 2014, 60, 457.