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ABSTRACT

Among the various segmentation techniques, a widely used family
of approaches are the ones based on region merging, where an initial
oversegmentation is progressively refined by joining segments with
similar characteristics. Instead of using deterministic approaches
to decide which segments are going to be merged we propose to
exploit a convolutional neural network which takes a couple of
segments as input and decides whether to join or not the segments.
We fitted this idea into an existent iterative semantic segmentation
scheme for RGB-D data. We were able to lower the number of free
parameters and to greatly speedup the procedure while achieving
comparable or even higher results, thus allowing for its usage in free
navigation systems. Furthermore, our method could be extended
straightforwardly to other fields where region merging strategies
are exploited.
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1 INTRODUCTION

One of the key tools for free navigation and autonomous driving
systems is a fast and accurate semantic segmentation method able
to recognize the different objects and structures in the environment
to be explored. This task encompasses two main components, the
segmentation of the image into the different regions and objects it
contains and the semantic labeling assigning each region to one of
the possible classes.
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Region merging is one of the most widely used families of algo-
rithms for image segmentation. Many different approaches have
been proposed for this task, mostly based on the idea of starting
from an initial oversegmentation and then use some deterministic
similarity criteria to decide which couples of segments are going to
be combined during the steps of the merging algorithm. The relia-
bility of the similarity criteria is the key issue for these methods.
Several different clues, e.g., color, texture or edge information (and
also depth or surface normals if 3D data is available) can be used for
the task, but it is very challenging to combine all this information
to provide reliable decisions on which segments need to be merged.

In this work we propose a different approach to guide the region
merging process and we train a Convolutional Neural Network
(CNN) in order to build a classifier able to select which couples of
segments need to be fused. We sampled random couples of seg-
ments from a large dataset (i.e., the NYUDv2 dataset [27] containing
both color and depth information) and we used the ground truth
segmentation information to compute the labels for the training
data indicating if the two segments need to be merged. In this way
we obtain a CNN classifier able to control the merging process.
We fitted it into a region merging framework derived from [23].
First of all an initial oversegmentation is performed from color and
depth data [8]. Additionally, an initial semantic labeling that will
be used to aid the segmentation has been computed with a simple
CNN. The network for this task has been derived from the work of
[21], however any semantic labeling network can be used. Notice
that the aim of this work is not to present an advanced semantic
classifier based on deep learning, but instead it focuses on the re-
gion merging process. Then a list of couples of segments candidate
to be merged is built and sorted on the basis of the similarity of
the semantic labeling. Finally the algorithm iteratively extracts a
couple of segments from the list and uses the CNN classifier to
decide whether they are going to be merged or not; the procedure
stops when the list is empty. This leads to a final segmentation
and semantic labeling which improves the accuracy of the initial
semantic classification. This approach could be beneficial in many
real world situations such as free navigation, grasping objects in
robotics or in facing road scenarios in autonomous driving [19].

2 RELATED WORK

Image segmentation is a long-term research problem that remains
challenging despite the huge number of proposed approaches. Re-
cently, due to the diffusion of depth cameras, various works ex-
ploited the idea of using an associated depth map (see [32] for a
review) as done also in this paper.

Segmentation of RGB-D data with region splitting and merging
has been proposed in various works [11, 14, 22, 24, 28]. In [14] a
statistical planar region merging scheme is used, while [24] exploits
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Figure 1: Overview of the proposed approach.

a Markov Random Fields (MRFs) model and a tree-structured seg-
mentation. The work of [22] recursively splits segments that do
not represent a single surface, while [23] uses the same criteria in
a region merging scheme (that will be exploited as starting point
for this work) starting from an initial oversegmentation.
Semantic segmentation, i.e., the combination of segmentation
and semantic labeling, is one of the most challenging high-level
tasks toward the direction of complete scene understanding and it
is typically solved by using machine learning approaches [5, 16, 30,
33]. In [29] multiple segmentations are employed to generate the
regions to be used for object detection and recognition. Multiple seg-
mentations are used also by [4] that deals with the problem of object
segmentation using a sequence of constrained parametric min-cut
problems. Markov Random Fields (MRFs) and Conditional Random
Fields (CRFs) have been exploited in various works [9, 15, 24]. Bet-
ter performance, however, have been obtained with recent deep
learning algorithms [2, 3, 7, 10, 13, 17, 25, 31]. In [7, 10] a scheme
involving CNN at multiple scales has been adopted. The method of
Wang et al. [31] exploits two different CNNs for color and depth,
and a feature transformation network. Finally, remarkably good
performance can be obtained with Fully Convolutional Networks
(FCNs) [18, 25], auto-encoders [2] or residual networks [17].

3 ARCHITECTURE OF THE PROPOSED
APPROACH
The proposed algorithm encompasses three main steps as depicted

in Fig. 1. In the first, a 9-dimensional representation is built from
the input information for each pixel py containing the CIELab color

values [Lg, a, b ], the 3D coordinates [xg, yg, zx | and orientation
data (i.e., the normal vectors ny = [nz, nZ, ni]) In the second step,
an initial oversegmentation is computed using the approach of [8],
that is an extended version of the normalized cuts algorithm [26].
Then, a simple CNN is used to get an initial semantic segmentation.
We employed the deep learning architecture presented in [21] in
order to allow a direct comparison with this approach, that uses
a deterministic segment merging strategy inside the same frame-
work used in this paper. Notice that, as expected, more advanced
deep learning architectures have better performance, but proposing
novel deep learning architectures for semantic labeling is not the
aim of this work, that is focused on the region merging procedure.
The last step, that is the main contribution of this work, is the
iterative region merging procedure. The algorithm finds all the
couples of adjacent segments, on the basis of the initial overseg-
mentation, and places them in the list £ of merging candidates.
Let us denote with S; and S; a generic couple of segments to be
merged. As proposed in [20, 21] it is possible to use the contents
of the last layer of the CNN classifier as per-pixel descriptors cj
(by interpolating the data from the reduced resolution of the CNN
output to the original image resolution) that can then be averaged
on each segment obtaining the segment-wise descriptors sj and s;.
The two descriptors can be viewed as Probability Density Functions
(PDFs) and the similarity of the two segments can be estimated by
computing the Bhattacharyya coefficient between s; and s, i.e..:

bij = Xy lsitsjt. , where t indexes the elements of the last layer

(i.e., the class scores). The list £ is then sorted on the basis of b; j,
with more similar segments at the top of the list. The entries with
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Figure 2: Architecture of the proposed neural network. The dimensionality of the input data is different depending on the

usage of IppF or I,.

similarity b; j smaller than a threshold Ts;m, are discarded and will
not be considered for the merging operations.

Finally, the iterative procedure extracts the first couple of seg-
ments from the list £ and feeds it to the CNN classifier that decides
whether it is going to be merged or not. We exploited and compared
two variants of the deep network, one using normal information
ny and the other using pixel descriptors ¢y, see Section 4 for details
on how the classification is performed. If the couple is not going to
be fused it is simply removed from £, otherwise a new segment
corresponding to the union of the two is created. In this case, all
the couples containing S; and S; are removed from £ while the
adjacency between the newly created segment and the contiguous
ones is checked and eventually new couples are added to the list in
the position corresponding to their similarity values. The procedure
is repeated iteratively in a tree structure until no more merging
operations are possible.

4 NEURAL NETWORK FOR REGION
MERGING

In order to select the couples of segments to be merged we replaced
the commonly used deterministic similarity metrics with a classifier
based on deep neural networks. We developed a CNN that takes in
input features coming from two segments candidate for merging
and outputs a single binary value indicating if the two segments
need to be fused or not.

To produce the input data for the training we used the NYUDv2
dataset [27]. First of all we performed an initial oversegmentation
of the images and depth maps in the dataset using the approach of
Section 3. Then for each segmented image we randomly extracted
10 couples of adjacent segments, leading to a total of 14490 data
samples.

We considered two possible types of input features. In the first,
for each pixel of a candidate segment we get the array cj containing
the output of the last layer of the semantic classifier (the output of
the softmax before taking the argmax) interpolated to the image
resolution, i.e., the same data used for the computation of the b; ;
values used to sort the list £. The dataset labels belong to 15 classes
(including the unknown and the unlabeled classes), consequently
in this case the input data has 15 channels. The values for all the
other pixels not contained in the considered segment are set to 0.
This leads to a matrix IppF of size 560x425x30 (15 channels for the
representation of the first candidate segment and 15 for the second

candidate segment) that represents the input data for the neural
network.

The second option, instead, is to use the normal information ny in
place of the descriptors ci. Using the same approach we obtain a
matrix I,, of size 560x425x6 (there are 3 components of the normal
vector for each of the two segments). We selected the orientation
data since it led to a higher accuracy than color or 3D positions in
the experiments.

Notice that the first approach leads to a more descriptive repre-
sentation, but has a higher dimensionality and introduces a depen-
dency on the other deep network used for the semantic part. Using
normal information is faster and simpler with a limited impact on
the final accuracy.

The ground truth labels for the training have been computed
by analyzing the region in the ground truth segmentation corre-
sponding to the two segments and setting the label to true if more
than 85% of the region belongs to a single segment (notice that the
boundaries in the oversegmentation, in general, could not accu-
rately match the ground truth ones).

The input matrix Ippr (or I,) is then fed to the neural network.
The CNN is made of 6 convolutional layers (symmetrical padding
is used for the boundaries), each followed by a ReLU activation and
by a 2x2 max pooling except the last layer. The architecture of the
network is depicted in Fig. 2, notice that larger convolutions are
used at the beginning and smaller ones in the last layers. All the
layers have 4 filters except the last one, while the pooling operations
are designed in order to progressively reduce the resolution until a
single feature is produced at the end of the network. The proposed
architecture is quite simple, but notice that the available amount
of training data is limited and the segments have a quite scarce
information content: many of them have quite uniform properties
and the key insights to be exploited are the differences between the
data in the two segments. We also tried more complex architectures
but they led to overfitting issues.

The networks have been trained for 50 epochs using the Ten-
sorFlow framework with a batch size of 32 samples. We used the
ADAM optimizer for the loss composed by the sum of a cross-
entropy term and a L2-regularization term. For the neural network
based on the PDFs we used a similarity threshold Ts;, = 0.8, a
learning rate of 107 and a regularization constant of 1073, For the
neural network based on the normal vectors we used Tgjm = 0.75,
a learning rate of 10 and a regularization constant of 5. The
training took around 3 hours with the version based on normals and
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11 hours for the one exploiting PDFs (where the input vectors have
a higher dimensionality) on a NVIDIA Titan X GPU. Inspecting the
behavior of the algorithm it is possible to see that the accuracy is
good on large segments but there are some issues on couples with
small segments, which have a limited associated information and
are intrinsically difficult to classify.

5 EXPERIMENTAL RESULTS

The performance of the proposed approach have been evaluated on
the NYUDv2 dataset [27]. This dataset contains 1449 depth maps
and color images of indoor scenes acquired with a first generation
Kinect sensor divided into a training set with 795 scenes and a test
set with the remaining 654 scenes. For results evaluation we used
the ground truth labels from [12], and we clustered the original
894 categories into 15 classes using the mapping of [6]. As done
in competing works [6, 10, 21] we excluded from the evaluation of
the results the unknown and unlabeled classes.

Approach Pixel Accuracy  Class Accuracy
Couprie et al. [7] 52.4% 36.2%
Hickson et al. [16] 53.0% 47.6%
A. Wang et al. [30] 46.3% 42.2%
J. Wang et al. [31] 54.8% 52.7%
A. Hermans et al. [15] 54.2% 48.0%
D. Eigen et al. [10] 75.4% 66.9%
Pagnutti et al. [21] 67.2% 54.4%
Semantic CNN 64.4% 51.7%
Our method (normals) 66.6% 53.6%
Our method (PDFs) 67.2% 54.5%

Table 1: Average pixel and class accuracies on the test set of
the NYUDv2 dataset for some state-of-the-art methods from
the literature and for the proposed method.

The numerical results for the semantic segmentation task are
shown in Table 1. We report both the per-pixel accuracy and the
average class accuracy (the latter is smaller since less frequent
classes are also harder to recognize in many cases). The proposed
approach using the PDFs obtains a mean pixel accuracy of 67.2%
and a class accuracy of 54.5%.

To evaluate this result, first of all notice that the output of the
classification performed by the initial semantic CNN of Section
3 has a mean pixel accuracy of 64.4% and a mean class accuracy
of 51.7%. The improved accuracy shows how the segmentation
procedure allows to refine the classification leading to more accu-
rate boundaries and removing artifacts and noise from the original
classification.

A second interesting comparison is with the approach of [21],
that exploits the same initial semantic CNN together with a complex
deterministic region merging procedure based on surface fitting
clues. That approach has an average pixel accuracy of 67.2% and a
class accuracy of 54.4%. Notice that the proposed method has very
similar performance, indeed it achieves even slightly higher class
accuracy, but it is much simpler, faster and, especially, does not rely
on several hand-tuned thresholds as [21].

Michieli et al.

These considerations can also be evaluated visually by compar-
ing the images in Fig. 3, where the results on four sample scenes
from the test set are shown. In particular, it is possible to appreci-
ate how the merging procedure refines the semantic segmentation
output leading to more accurate boundaries (e.g., look at the bed
in the second row or the table in the fourth row). Furthermore by
comparing the third and the fourth columns it is possible to see that
the proposed approach achieves similar results compared to [21].
There are some minor refinements but there is no clear winner,
although the proposed approach is much simpler and faster.

Table 1 shows also the comparison with some competing ap-
proaches for which the results in the 13 classes setting are available.
Notice how the proposed method is able to get good results and com-
pete with more complex deep learning architectures even starting
from the initial classification performed by a simple CNN. Recent
more complex deep learning architectures, e.g., [10], have a higher
semantic accuracy, however we do not aim at proposing advanced
deep learning models for semantic segmentation. The target of the
proposed work, instead, is to show how a deep neural network
can efficiently control a region merging process and how this idea
can be used to improve the accuracy of an initial semantic segmen-
tation, even if performed by simple and not extremely powerful
approaches. It is noticeable that by refining the boundaries with
segmentation information it is possible to obtain an accurate repre-
sentation of the shapes without using multi-resolution networks,
skip connections, auto-encoders or other advanced deep network
models.

It is possible to evaluate the performance of the proposed ap-
proach also using segmentation metrics (i.e., looking only at the
segments’ shapes without considering the class labels). Two com-
monly used metrics are the Rand Index (RI) and the Variation of
Information (Vol) (see [1] for details on the metrics). The mean RI
score (higher is better) on the test set increased from 0.82 of the
CNN output to 0.87, while the mean VoI (lower is better) decreased
from 2.77 to 2.00.

Finally we present some observation on the computation time,
since one of the main claims is that this approach is faster than the
previous deterministic method. We focus on the iterative region
merging procedure: the proposed deep network can be evaluated in
22ms if normals are employed or 101ms if PDFs are used on an Intel
Core i7-8700K CPU @3.70GHz. By using the GPU for the inference
the computation time can be strongly reduced: for example, on a
NVIDIA GeForce GTX 1070 the inference call requires on average
2ms in case of normals, and 10ms in case of PDFs. As a comparison
the method of [21] based on surface fitting required on average
58ms for each evaluation. Notice that the oversegmentation and
semantic classification steps are the same for both methods (and
can be replaced with other superpixel segmentation schemes or
different deep networks). Another interesting aspect is related to
the stability of the proposed approach, which always requires the
same amount of time for each couple of segments, while the com-
putation time of [21] is heavily dependent on the area to be fitted.
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Figure 3: Semantic labeling of 4 sample scenes from the NYUDv2 dataset (images 465, 947, 1256 and 1349). The figure shows
the color images, the labeling from the semantic CNN, the refined labeling obtained with [21] and by exploiting the proposed
approach and finally the ground truth labels (best viewed in color).

6 CONCLUSION AND FUTURE WORK

In this paper we proposed a novel region merging strategy for
RGB-D data segmentation where the decision on the segments to
be merged is driven by a CNN binary classifier that replaces de-
terministic criteria, along with several free parameters, used up
to now. We showed how the proposed classifier is able to reliably
select the merging operations to be performed and we fitted it into
an iterative region merging framework for semantic segmentation,
although the framework allows wider applications where candidate
segments, of arbitrary nature, need to be evaluated for merging.
Experimental results show how it obtains the same performance of
complex deterministic schemes with a smaller computation time
and without using several hand-tuned thresholds. The faster com-
putation time and the better generalization properties allow to use
this approach in challenging tasks where a reliable semantic under-
standing of the scene is required, like in autonomous driving or in
free navigation systems.

Further research will be devoted to combining the proposed
approach with state-of-the-art deep learning approaches, to bet-
ter focus the attention of the CNN on the boundary between the
candidate segments and to its application in different fields where
region merging strategies can be exploited. We will also extend
the approach to video information, that is typical of autonomous
navigation applications, by introducing temporal constraints into
the proposed framework.
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