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In this paper, a matrix-based Padé rational interpolation used to couple a 3D eddy current code with linear Magneto-Hydrodynamic
(MHD) solver. This approach is a general methodology viable for multi-physic problems involving the coupling of an electromagnetic
model with another non-algebraic physical model, which has to be solved in a certain region of space. The matrix-based Padé
interpolation has been applied to a typical plasma physics problem of modelling the plasma response to external perturbation,
providing an accurate and reliable mathematical model viable for the feedback stabilization of Resistive Wall Modes (RWMs) in
fusion plasmas. The choice of matrix-based Padé interpolation gives a reliable approach for the considered problem, and can be
viewed a convenient formalism for the coupling strategy in this class of multi-physic problems.

Index Terms—3D quasi-static problems, Magneto-Hydrodynamic, Matrix-based rational interpolation, Matrix function interpolation,
Resistive Wall Modes.

I. INTRODUCTION

THE macroscopic dynamics of magnetically confined fu-
sion plasma can be described through MHD equations [1].

These equations predict, in some cases, the existing of ideal
MHD instabilities which cause the deformation the outer part
of the plasma surface and leads to a sudden and abrupt loss
of the confinement. Such instabilities are the main limitation
to the achievable performance. However, the eddy currents
induced by these instabilities in the conducting structures that
surround the plasma tend to counteract the instability itself,
slowing down the growth time from typical timescales of
microseconds to millisecond. Such modes are hence called
Resistive Wall Modes (RWMs).

Among the many computational tools developed for the
study of RWMs, both in order to give additional insight on
the RWM physics, and for activities related to its feedback
stabilization, only the CarMa code [6] takes rigorously into
account the real geometry of conducting structures, including
the thickness of the passive conductors. This code is the result
of the coupling between MARS [2], a linearized resistive MHD
equilibrium code, and CARIDDI [4], a 3D integral eddy current
code.

CarMa has been used, with applications to RWM modelling
and control system optimization. However, the code suffers
of some limitations related to the coupling strategy between
CARIDDI and MARS, because it neglects the plasma mass
(so-called massless approximation). Under this assumption, the
arising mathematical model is a linear time-invariant system,
which can be written in a state space form for control oriented
purposes. However, when the plasma pressure exceeds a certain
threshold, the growth rate of the RWM is too high, and the
assumption of neglecting the plasma inertia is no longer valid.
This makes CarMa unreliable for such operating regimes.

In this paper, a Padé matrix-based rational approximation is

used to interpolate the full set of linearized MHD equations
in Laplace domain, solved by MARS, in order to obtain
an approximated model of RWM behaviour suitable to the
coupling with the eddy currents equation solved by CARIDDI.
The exploitation of an approximated model of the mode
behaviour answer to the need to develop an approach viable
for control oriented purposes. This would not be feasible by
using the full set of linearized MHD equations. We stress the
fact that, although presented for a plasma physics application,
this is a general methodology, and can be used for general
multi-physic problems which involves the coupling of an
electromagnetic model with another non-algebraic physical
model. The idea of interpolating nonlinear dynamic equations
for feedback oriented purposes has been widely adopted, both
in plasma physics [2] and in other fields [3]. This work shows
a preliminary assessment of the reliability of Padé interpolation
used for this purpose, in order to be used for the development,
in a future work, of a model based feedback controller of
RWMs.

II. MODEL DESCRIPTION

A. Standard CarMa coupling strategy

The CarMa code is based on the control surface concept
to self-consistently couple MARS, a linear MHD solver, and
CARIDDI, a 3D code for the computation of eddy currents in
the metallic structures surrounding the plasma [6]. The cou-
pling surface, chosen to be axisymmetric and such that it does
not intersect neither the plasma boundary nor the conducting
structures, is needed to decouple the computational domains
related to the MHD problem and the eddy current problem.
This approach is useful when different formulations have to
be used in each subdomain, and allows the most convenient
approach to be used in each case. This approach has been
recently generalized for arbitrary shaped coupling surfaces [5].
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Introducing the coupling surface, the electromagnetic effects
of the plasma, seen from external environment, are described
as produced by an equivalent current density jeq flowing on
the coupling surface. The most important assumption for the
coupling strategy is that the plasma is assumed to be static. The
governing equations inside the plasma volume are then single
fluid, linearized MHD linear equations solved by the MARS
code neglecting plasma mass.

The analysis of the RWM feedback stabilization in tokamaks
requires, for a given magnetic field perturbation bN , the
separation of the plasma response in terms of jeq from the
magnetic field bex produced by the eddy current induced by
the perturbation. The relations needed to this purpose are given
in [6]:

jeq = FbN

bN = WbexN
⇒ jeq = FWbexN = PbexN (1)

where F ,W are static matricial relations needed to separate
respectively plasma and external contribution from the total
magnetic field perturbation. Such matrices are computed nu-
merically by MARS. In particular, since MARS works with the
Fourier harmonics in the poloidal angle for the decomposition
of the perturbed quantities on the poloidal plane, these relations
has dimension M×M , with M the total number of considered
harmonics.

The plasma response matrices are then taken into account
in the eddy current equation solved by CARIDDI [4], [6]:
the computational problem is treated through an integral for-
mulation which assumes the current density j in conducting
structures as primary unknown. With this formulation, only
the conducting domain must be discretized, and the regularity
conditions at infinity are automatically taken into account.
Assuming vanishing initial conditions and introducing Laplace
complex variable s, the resulting eddy current equation is:

sLi+Ri+ sMjeq = Dv (2)
where R and L are resistance and self inductance matrix of 3D
conducting structures, M is the mutual inductance between the
3D conducting structures and the equivalent current density jeq
on the coupling surface, i is the vector of the induced current
in the conducting structures, and v is the vector of voltages
applied to externally fed electrodes.

The CarMa eddy current equations is obtained combining,
with some manipulations, (1) and (2):

sL∗i+Ri = Dv (3)

where L∗ is the perturbed inductance operator that takes into
account the RWM contribution into the eddy current problem.
This formulation can be both used for stability computations
to understand if the RWM is stable/unstable looking for the
eigenvalue of the dynamical matrix A = −(L∗)−1R, and for
control oriented purposes, because it can be straightforwardly
written in a state space form. It is worth noting that CarMa
is able, in principle, to deal with conductors of any shape and
geometry.

In order to make such methods convenient for large-scale
problems, ”fast techniques” have been implemented in the
CARIDDI code [7]. Such techniques may be extended in
principle also to the new coupling scheme here proposed.

B. New coupling strategy based on a frequency dependent
plasma response

In the previous section, a static coupling strategy between
CARIDDI and MARS has been presented. However, when
growth rate of the RWM is high enough to be comparable
with the Alfvén time [1], plasma mass plays a crucial role
and cannot be neglected. If the mass-less approximation is
removed, the static coupling procedure is no longer available,
and all the quantities involved in plasma response matrix com-
putation should depend on the frequency of the perturbation
field. This means that, working in the Laplace domain, a certain
dependance of the matrix P on the complex Laplace variable
s is expected, giving rise to a matrix function P (s). This
behaviour is fully described by the set of linearized MHD
equations in the Laplace domain, solved by MARS, but a
direct coupling with CARIDDI to obtain a linear system of
equations as eq. (3) is no longer possible. For this reason, an
approximated model of the full MHD equations is desirable.
This approach is suitable not only for this application, but for
all the cases when the coupling of an electromagnetic model
with another non-algebraic physical model is required.

The dependence of the plasma response with respect to the
perturbation frequency s can be treated as a dynamical linear
system: eq. (1), together with eddy current equation (2), is
written as: {

sLi+Ri+ sMieq = Dv (4)
jeq = P (s)Qi (5)

where the matrix-based function P (s) is the frequency depen-
dent plasma response matrix and Q is a matrix mapping each
discrete current i into the magnetic field component bexN normal
to the coupling surface.

The behaviour of the matrix function P (s) is modelled by
means of Padé matrix based rational approximated of kth
order:

jeq = P (s)Qi =
Aks

k + ... +A0

Bksk + ... +E
Qi (6)

where E is the identity matrix and Ai,Bi are matricial
coefficients of dimension M ×M .

For a given interpolation order k, the coefficients of (6)
can be computed starting from the knowledge of 2k + 1 pairs
(si,P (si)), the basis points, along the complex plane. Among
these points, two particular choices can be:
• s = 0, to match the static response

A0 = P0 (7)

with this particular choice, the coefficient A0 is the same
matrix for the original CarMa code;

• |s|→ +∞, to match the response at infinity:

lim
|s|→+∞

P (s) = B−1k Ak = P∞ (8)

Performing 2k−1 times the response computations with MARS
to obtain P (si) for different value of s we obtain the required
information to compute coefficients Ai,Bi.

Using (6) in eq. (5) leads to:{
sLi+Ri+ sMjeq = Dv

jeq = (
∑

i s
iBi)

−1
(
∑

i s
iAi)Qi

(9)
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if we define x = [i jeq]
T , u = [Dv 0]T , system (9) can be

written as:

sk
[

0 0
−AkQ Bk

]
︸ ︷︷ ︸

Lak

x+ ...+ si
[

0 0
−AiQ Bi

]
︸ ︷︷ ︸

Lai

x+ ...

+ s

[
L M

−A1Q B1

]
︸ ︷︷ ︸

La1

x+

[
R 0
−P0Q E

]
︸ ︷︷ ︸

Ra

x = u (10)

with the new definition of the block matrices Ra,Lai. With a
compact formalism we obtain:( k∑

i=1

siLai

)
x+Rax = u (11)

It is worth noting that matrices Lai, i = 2, ..., k, are rank
deficient. Therefore the system of equations (11) is a kth order
system of Differential Algebraic Equations (DAE). This is due
to the fact that the eddy current equation has clearly a first-
order dynamic, whereas the plasma response equation has an
arbitrary kth order, which depends on the chosen interpolation
order. The way how the problem has been addressed will be
discussed further on.

The kth order system (11) can be written as a first order sys-
tem of differential equations through the change of variables:
x = y1,y1 = y2, ...,yk−1 = yk to obtain:

sL∗y +R∗y = u∗ (12)

where

L∗ =


E

E
. . .

Lak

 R∗ =


0 −E

0
. . .
. . . −E

Ra L1 · · · Lak−1


which is formally equivalent (3), but with a higher number of
degrees of freedom to take into account the plasma dynamics.
Before exploiting the equation (12) to work out a state space
model for control oriented purposes, it is useful if the model is
able to accurately describe RWM behaviour taking into account
plasma inertia.

It is worth noting that, if the interpolation order is k >
1, which is basically always the case, the matrix L∗ is rank
deficient for the block elements Lai, i 6= 1. This mean that
L∗ is not invertible, and the eigenvalues of the RL system
−(L∗)−1R∗, i.e. the growth/damping rates of the RWM, can
not be computed. On the other hand, it can be seen in eq.
(10) that the matrix R∗ is always invertible, because it is the
composition of the identity matrix with Ra, combination of
static quantities and therefore of full rank. A possible solution
is to compute the eigenvalues of the system −(R∗)−1L∗, to
obtain the growth/damping times of the instability rather than
the growth/damping rates: the resulting growth rates would be
the inverse of the growth times.

The regular structure of block matrices R∗,L∗ allows the
analytic computation of −(R∗)−1L∗:

− (R∗)−1L∗ = −


R−1a La1 · · · R−1a Ln−1 R−1a Lk

−E
. . .

−E


(13)

III. MODEL VALIDATION

Although this method is meant to be used for feedback
stabilization of RWMs, in this work a preliminary assessment
of the reliability of Padé interpolation is shown. For this reason,
the new coupling procedure has been used for the stability
analysis of a plasma equilibrium configuration with a circular
poloidal cross-section. The poloidal spectrum used for MHD
computations has M = 15 Fourier harmonics. This circular
equilibrium present a n = 1 unstable RWM, where n is the
toroidal mode number. To benchmark the new CarMa code,
MARS results are used as reference, requiring an axisymmetric
wall, although CarMa is able to deal with conductors of any
shape and geometry.

The effectiveness of rational interpolation is now discussed.
The function P (s) is a matricial function of s, meaning that
every entry p(m,m)(s) is a scalar function of s. On the other
hand, for a chosen si = γi+iωi, the quantity P (si) is a M×M
matrix. The reference P (s) has been computed by MARS for
the spectrum |s|∈ (−∞,+∞). To check the quality of the
Padé interpolation, in principle all the M2 scalar functions
p(m,m)(s) should be checked: here only the two major entries
of P (s) (i.e. the diagonal elements related to the harmonics
m = [0, 3], real and imaginary part) are shown in Figs. 1. In
particular, among the several interpolation degrees considered,
the k = 3 gives the most precise results. It can be seen from
Fig. 1 that the Padé interpolation with k = 3 is very accurate
for the all interval |s|, thus the interpolated matrix function is
able to reproduce the mode behaviour given by the full set of
linearized MHD equations.

The next step in the validation is to prove that the new
version of the CarMa code, based on the Padé approximation
of the plasma response, is able to deal with the inertia of the
plasma. To test this capability, a scan of the resistivity η of
the conducting structures is proposed: for the typical value of
the wall resistivity, i.e. η/ηref = 1, the wall has a strong

Fig. 1: Reference and interpolation for 2 major entries of P (s).
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Fig. 2: Unstable eigenvalue (real and imag. part) versus normalized
wall resistivity. Logarithmic scale.

stabilizing effect, making the mode to evolve as a RWM. As
the resistivity increases, the stabilization effect decreases: in the
limit of infinite resistivity, the wall is no longer stabilizing the
mode, which evolves as an ideal kink. In this regime the plasma
inertia plays a crucial role. Figure 2 compares, in logarithmic
scale, the mode unstable eigenvalue (real and imaginary part)
as function of normalized wall resistivity η/ηref computed
by MARS (reference, black), as well as the percentage error:
CarMa with 3rd order interpolation, is compared to static
CarMa (blue). In addition, also a version with 1st order
interpolation is shown (green). As can be seen, the new version
of CarMa with order k = 3 gives a very high accuracy.

An overall view of the axisymmetric mesh, together with
the eigenvector corresponding to the unstable mode, can be
seen in Fig. 3 for the case with η = ηref = 1. A quantitative
comparison of the eigenvector in the poloidal plane is shown
in Fig 4.

The sparsity pattern of the matrix −(R∗)−1L∗ is reported
in Fig. 5. Such matrix is sparse, except for a square dense
block on the upper left corner related to the R−1a L1 in (13),
which is exactly the standard CarMa matrix. For this reason,
the number of non-zeros is almost due to the original CarMa
block, even if the number of unknowns is higher to take into
account plasma dynamics. Thus the computational effort to
find the eigenvalues remains unchanged if sparse linear algebra
subroutines are used.

IV. CONCLUSION

In this paper, a new matrix-based Padé rational interpola-
tion used for a self consistent coupling scheme between a
3D eddy current code and a linear Magneto-Hydrodynamic
(MHD) solver. The goal of this approach is to deal with

Fig. 3: 3D view of eigenvector corresponding to the unstable mode.

Fig. 4: Unstable eigenvector: MARS (black), CarMa (red, circles).

Fig. 5: Sparsity pattern of (13) for 3rd order interpolation.

general multi-physic problems which involves the coupling of
an electromagnetic model with another non-algebraic physical
model which has to be solved in a given region of space. The
matrix-based Padé interpolation has been applied to plasma
physics problem of modelling the plasma response to external
perturbation, in order to develop a new version of the CarMa
code which does not rely on the assumption of neglecting the
plasma inertia, as the original version of CarMa does. The
arising new version of CarMa, based on this coupling strategy,
has shown the capability of model the RWM behaviour with
very high accuracy, including in the computation also the three
dimensional geometry of the conducting structures. The matrix-
based Padé interpolation has shown to be an effective method
when a simplified model of a full order model is required,
especially for control oriented purposes. Further development
would involve the use of state space model related to Eq. (12)
for the development of a feedback controller of the RWMs,
to be applied to several cases of interest, such as the realistic
devices ITER and JT-60SA.
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