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Abstract. We provide a result on the coherent states decomposition for
functions in L2(Tn) where Tn := (R/2πZ)n. We study such a decom-
position with respect to the quantum dynamics related to semiclassical
elliptic Pseudodifferential operators, and we prove a related invariance
result.
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1. Introduction

Let us introduce the usual class of semiclassical coherent states on Rn

φ(x,ξ)(y) := αh e
i
h (x−y)·ξe−

|x−y|2
2h , (x, ξ) ∈ R2n, y ∈ Rn, 0 < h ≤ 1

(1.1)
with the L2(Rn) - normalization constant αh := 2−

n
2 (πh)−3n/4, and where h

is a ‘semiclassical parameter’. For any ψ ∈ S ′(Rn) the coherent state decom-
position reads, in the distributional sense, as

ψ(x0) =

∫
R2n

φ?(x,ξ)(x0)
(∫

Rn

φ(x,ξ)(y)ψ(y)dy
)
dxdξ (1.2)

as shown for example in Prop. 3.1.6 in [11].
We now observe that for the flat torus Tn := (R/2πZ)n the well known inclu-
sion L2(Tn) ⊂ S ′(Rn) implies that distributional equality (1.2) make sense
also for functions in L2(Tn).
The first aim of our paper is to prove the decomposition of any ϕ ∈ L2(Tn)
with respect to the family of periodic coherent states Φ given by the pe-
riodization of (1.1). In view of this target, we recall that the periodization
operator Π(φ)(y) :=

∑
k∈Zn φ(y − 2πk) maps S(Rn) into C∞(Tn), as shown

for example Thm. 6.2 in [15]. Thus, we can define for all 0 < h ≤ 1

Φ(x,ξ)(y) :=
∑
k∈Zn

φ(x,ξ)(y − 2πk) (x, ξ) ∈ Tn × hZn, y ∈ Tn. (1.3)
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Notice that the family of coherent states in (1.3) is well posed also for ξ ∈ Rn
and the related phase space is Tn×Rn. However, our target is to show that the
decomposition of periodic functions can be done with respect to the minimal
set of coherent states in (1.3) for ξ ∈ hZn ⊂ Rn. Furthermore, we notice that
the phase space Tn × hZn is necessary in order to deal with a well defined
setting of toroidal Weyl operators acting on L2(Tn) and more in general with
semiclassical toroidal Pseudodifferential operators (see Sect. 2).

The first result of the paper is the following

Theorem 1.1. Let ϕh ∈ C∞(Tn) be such that ‖∆xϕh‖L2 ≤ c h−M for some
c > 0,M ∈ N, ‖ϕh‖L2 = 1 with 0 < h ≤ 1, h−1 ∈ N and let Φ(x,ξ) be as in
(1.3). Then,

ϕh =
∑
ξ∈hZn

∫
Tn

〈Φ(x,ξ), ϕh〉L2 Φ?(x,ξ) dx+OL2(h∞). (1.4)

Moreover, there exists f(h) > 0 depending on ϕh such that

ϕh =
∑

ξ∈hZn, |ξ|≤f(h)

∫
Tn

〈Φ(x,ξ), ϕh〉L2 Φ?(x,ξ) dx+OL2(h∞). (1.5)

The following inclusion involving the set of frequencies ξ ∈ hZn ⊂ Rn
allows to consider decomposition (1.4) minimal with respect to (1.2). The
above result shows also that the sum over the frequencies can be taken in the
bounded region |ξ| ≤ f(h), i.e. we can consider a finite sum by taking into
account an O(h∞) remainder in L2(Tn).
An analogous result of (1.4) in the two dimensional setting is shown in prop.
60 of [7] by the use of a different periodization operator. Same construction
of coherent states as in [7] for T2 is used in [4], [8] for the study of quantum
cat maps and equipartition of the eigenfunctions of quantized ergodic maps.
In the paper [10], covariant integral quantization using coherent states for
semi-direct product groups is implemented for the motion of a particle on
the circle and in particular the resolution of the identity formula is proved.
Another class of coherent states on the torus are defined also in [9], with a
related resolution of the identity, in the understanding of the Quantum Hall
effect. We also recall [3] where coherent states and Bargmann Transform are
studied on L2(Sn). The literature on coherent states are quite rich, and thus
we address the reader to [1].
We now devote our attention to the periodic coherent states decomposition for
eigenfunctions of elliptic semiclassical toroidal Pseudodifferential operators
(see Section 2). We will see that the formula (1.4) can be reduced in view of
a phase-space localization of eigenfunctions.

This is the content of the second main result of the paper.

Theorem 1.2. Let Oph(b) be an elliptic semiclassical Ψdo as in (2.1) and
h−1 ∈ N. Let E ∈ R, and let ψh ∈ C∞(Tn), ‖ψh‖L2 = 1 s.t. ‖∆xψh‖L2 ≤
c h−M and which is eigenfunction of the eigenvalue problem on Tn

Oph(b)ψh = Ehψh
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where Eh ≤ E for any 0 < h ≤ 1. Then, there exists g(h,E) ∈ R+ such that

ψh =
∑

ξ∈hZn, |ξ|≤g(h,E)

∫
Tn

〈Φ(x,ξ), ψh〉L2 Φ?(x,ξ) dx+OL2(h∞). (1.6)

We notice that for the operators −h2∆x + V (x) all the eigenfunctions
with eigenvalues Eh ≤ E fulfill ‖∆xψh‖L2 ≤ c h−2. In particular, we have the
asymptotics g(h,E) → +∞ as h → 0+. We also underline that the function
g(E, h) and the estimate on remainder OL2(h∞) do not depend on the par-
ticular choice of ψh. This implies that all these eigenfunctions take the form
(1.6) and therefore also any finite linear combination of eigenfunctions of kind∑

1≤α≤N cα ψh,α where |cα| ≤ 1. We remind that Weyl Law on the number

N (h) of eigenvalues Eh,α ≤ E (with their multiplicity) for semiclassical ellip-
tic operators (see for example [17]) readsN (h) ' (2πh)−n(vol(U(E))+O(1)).
The proof of the above result is mainly based on a uniform estimate for our
toroidal version of the Fourier-Bros-Iagolnitzer (FBI) transform

(T ψh)(x, ξ) := 〈Φ(x,ξ), ψh〉L2

on the unbounded region given by all x ∈ Tn and ξ ∈ hZn such that
|ξ| > g(h,E). The FBI transform on any compact manifold has already been
defined and studied in the literature, see for example [18].
We remind that, in the euclidean setting of R2n, the function Th(ψh)(x, ξ) :=
〈φ(x,ξ), ψh〉L2(Rn) is the usual version of the FBI transform, which is well
posed for any ψh ∈ S ′(Rn). This is used to study the phase space localiza-
tion by the Microsupport of ψh (see for example [11]), namely MS(ψh) the
complement of the set of points (x0, ξ0) such that Th(ψh)(x, ξ) ' O(e−δ/h)
uniformly in a neighborhood of (x0, ξ0). In the case of the weaker esti-
mate Th(ψh)(x, ξ) ' O(h∞) one can define the semiclassical Wave Front
Set WF (ψh). Is well known (see [11]) that the Microsupport (or the semi-
classical Wave Front Set) of eigenfunctions for elliptic operators is localized in
the sublevel sets U(E) := {(x, ξ) ∈ R2n | b(x, ξ) ≤ E}, i.e. MS(ψh) ⊆ U(E).
The well posedness of WF (ψh) and MS(ψh) in the periodic setting can be
seen starting from the euclidean setting and thanks to distributional inclu-
sion L2(Tn) ⊂ S ′(Rn), (see for example section 3.1 of [5]). The semiclassical
study in the phase space for eigenfunctions in the periodic setting has also
been studied in [20] with respect to weak KAM theory.
In our Theorem 1.2 we are interested to show another kind of semiclassi-
cal localization, namely to localize the bounded region Ω(E, h) := {(x, ξ) ∈
Tn × Rn | x ∈ Tn, |ξ| ≤ g(E, h)} which will be bigger than MS(ψh), h -
dependent and such that the coherent state decomposition of ψh can be done
up to a remainder OL2(h∞).

We now focus our attention to the decompositon (1.6) under the time
evolution.

Theorem 1.3. Let ϕh ∈ C∞(Tn), L2 - normalized such that

ϕh =
∑

1≤j≤J(h)

cj ψh,j
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where ψh,j are given in Thm. 1.2 and J(h) ≤ J0h
−Q for some J0, Q >

0. Let Oph(b) be an elliptic semiclassical Ψdo as in (2.1) and Uh(t) :=
exp{(−iOph(b)t)/h}. Then, there exists `(h) > 0 s.t. for any t ∈ R

Uh(t)ϕh =
∑

ξ∈hZn, |ξ|≤`(h)

∫
Tn

〈Φ(x,ξ), Uh(t)ϕh〉L2 Φ?(x,ξ) dx+OL2(h∞). (1.7)

The equality (1.7) shows that time evolution under the L2 - unitary map
Uh(t) does not change such a decomposition, since `(h) does not depend
on time. The function `(h) is not necessarily the same as the function f(h)
contained in Theorem 1.1 but we have that `(h) ≥ f(h). In other words,
this quantum dynamics preserves the coherent state decomposition (1.5).
The same result holds for any eigenfunctions in Thm. 1.2 since in this case
Uh(t)ψh = exp{(−iEht)/h}ψh. Notice that here we can assume that Q > n,
namely the linear combination (1.3) can be done with more eigenfunctions
than the ones that have eigenvalues Eh ≤ E with fixed energy E > 0. Notice
also that we have 〈Φ(x,ξ), Uh(t)ϕh〉L2 = 〈Uh(−t)Φ(x,ξ), ϕh〉L2 for any t ∈ R
and that the time evolution of the periodization of coherent states has been
used in [19] in the context of optimal transport theory.

2. Semiclassical toroidal Pseudodifferential operators

Let us define the flat torus Tn := (R/2πZ)n and introduce the class of symbols
b ∈ Smρ,δ(Tn×Rn), m ∈ R, 0 ≤ δ, ρ ≤ 1, given by functions in C∞(Tn×Rn;R)
which are 2π-periodic in each variable xj , 1 ≤ j ≤ n and for which for all
α, β ∈ Zn+ there exists Cαβ > 0 such that ∀ (x, ξ) ∈ Tn × Rn

|∂βx∂αξ b(x, ξ)| ≤ Cαβm〈ξ〉m−ρ|α|+δ|β|

where 〈ξ〉 := (1 + |ξ|2)1/2. In particular, the set Sm1,0(Tn ×Rn) is denoted by
Sm(Tn × Rn).
We introduce the semiclassical toroidal Pseudodifferential Operators by

Definition 2.1. Let ψ ∈ C∞(Tn;C) and 0 < h ≤ 1,

Oph(b)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b(x, hκ)ψ(y)dy.

This is the semiclassical version (see [13], [14]) of the quantization by
Pseudodifferential Operators on the torus developed in [15] and [16]. See also
[2] for the notion of vector valued Pseudodifferential Operators on the torus.

We now notice that we have have a map Oph(b) : C∞(Tn) −→ D′(Tn).
Indeed, remind that u ∈ D′(Tn) are the linear maps u : C∞(Tn) −→ C such
that ∃ C > 0 and k ∈ N, for which |u(φ)| ≤ C

∑
|α|≤k ‖∂αxφ‖∞ ∀φ ∈ C∞(Tn).

Given a symbol b ∈ Sm(Tn ×Rn), the toroidal Weyl quantization reads (see
Ref. [13], [14])

Opwh (b)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b
(
y,
h

2
κ
)
ψ(2y − x)dy.
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In particular, it holds

Opwh (b)ψ(x) = (Oph(σ) ◦ Tx ψ)(x)

where Tx : C∞(Tn) → C∞(Tn) defined as (Txψ)(y) := ψ(2y − x) is linear,
invertible and L2-norm preserving, and σ is a suitable toroidal symbol related

to b, i.e. σ ∼
∑
α≥0

1
α!4

α
ξD

(α)
y b(y, hξ/2)

∣∣
y=x

, where 4ξjf(ξ + ej) − f(ξ) is

the difference operator (see Th. 4.2 in Ref. [15]).
The typical example is given by

Oph(H) =
(
− 1

2
h2∆x + V (x)

)
ψ(x)

= (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉
(1

2
|hκ|2 + V (x)

)
ψ(y)dy

namely the related symbol is the mechanical type Hamiltonian H(x, ξ) =
1
2 |ξ|

2 + V (x). Also in the case of the Weyl operators we have

−1

2
h2∆x + V (x) = Opwh (H)

for the same symbol (see for example [14]).
In our paper we are interested in uniform elliptic operators, namely such that
the symbol b ∈ Sm(Tn × Rn) fulfills for some constants C, c > 0 the lower
bound

|b(x, ξ)| ≥ C 〈ξ〉m

for any x ∈ Tn and |ξ| ≥ c. This property guarantees bounded sublevels
sets for b and discrete spectrum for the operator Oph(b) for any fixed 0 <
h ≤ 1. As we see in Theorem 1.2, this assumption permits also to prove the
semiclassical localization of all the eigenfunctions within these sublevels sets,
and this localization can be studied by our semiclassical coherent states (1.3).

3. Main Results

Proof of Theorem 1.1 We remind that Φ(x,ξ)(y) := Π(φ(x,ξ))(y) and Π(φ)(y) :=∑
k∈Zn φ(y − 2πk). Thus,

Φ(x+2πβ,ξ)(y) =
∑
k∈Zn

φ(x+2πβ,ξ)(y − 2πk) =
∑
k∈Zn

φ(x,ξ)(y − 2πk − 2πβ)

= Φ(x,ξ)(y).

We mainly adapt, in our toroidal setting, the proof of Prop. 3.1.6 shown in
[11] written for the euclidean setting. Thus, we define the operator T ? on
functions Ψ ∈ L2(Tn × hZn) as

(T ?Ψ)(y) :=
∑
ξ∈hZn

∫
Tn

Ψ(x, ξ)Φ?(x,ξ)(y) dx.
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It can be easily seen that T ? equals the adjoint of the operator (T ψ)(x, ξ) :=
〈Φ(x,ξ), ψ〉L2(Tn), i.e.

〈T ?Ψ, ψ〉L2(Tn) = 〈Ψ, T ψ〉L2(Tn×hZn).

Thus, ∀ψ1, ψ2 ∈ C∞(Tn) ⊂ L2(Tn) we have

〈T ? ◦ T ψ1, ψ2〉L2(Tn) = 〈T ψ1, T ψ2〉L2(Tn×hZn).

It remains to prove that

〈T ψ1, T ψ2〉L2(Tn×hZn) = 〈ψ1, ψ2〉L2(Tn) +O(h∞) (3.1)

which implies

T ? ◦ T = Id mod O(h∞) (3.2)

on L2(Tn), and equality (3.2) is exactly the statement (1.4).
In order to prove (3.1), we recall that the periodization operator Π can be
rewritten in the form (see Thm. 6.2 in [15]):

Π(φ) = F−1Tn

(
FRnφ

∣∣∣
Zn

)
. (3.3)

where F−1Tn stands for the inverse toroidal Fourier Transform, and FRn is the
usual euclidean version. In view of (3.3) it follows

(T ψ)(x, ξ) := 〈Φ(x,ξ), ψ〉L2(Tn) = 〈FRnφx,ξ|Zn ,FTnψ〉L2(Zn)

=
∑
k∈Zn

φ̂x,ξ(k)?ψ̂(k),

where φ̂x,ξ(k) := FRnφx,ξ(k) and ψ̂(k) := FTnψ(k). Thus,

〈T ψ1, T ψ2〉L2(Tn×hZn)

=
∑
ξ∈hZn

∫
Tn

( ∑
k∈Zn

φ̂x,ξ(k)?ψ̂(k)
)?( ∑

µ∈Zn

φ̂x,ξ(µ)?ψ̂(µ)
)
dx.

We can rewrite this equality, in the distributional sense, as

〈T ψ1, T ψ2〉L2(Tn×hZn)

=
∑

k,µ∈Zn

ψ̂1(k)?ψ̂2(µ)
∑
ξ∈hZn

∫
Q

φ̂x,ξ(k)φ̂x,ξ(µ)?dx

where Q := [0, 2π]n and ψ1, ψ2 ∈ C∞(Tn). Now let ξ = hα with α ∈ Zn, so
that

〈T ψ1, T ψ2〉L2(Tn×hZn)

=
∑

k,µ∈Zn

ψ̂1(k)?ψ̂2(µ)
∑
α∈Zn

∫
Q

φ̂x,hα(k)φ̂x,hα(µ)?dx
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By using the explicit form of φ̂x,hα and the condition h−1 ∈ N, a direct
computation shows that

〈T ψ1, T ψ2〉L2(Tn)

=
∑

k,µ∈Zn

ψ̂1(k)?ψ̂2(µ)
[( ∑

α∈Zn

eiα(k−µ)
)

+O(h∞)
]

(3.4)

where O(h∞) does not depend on the functions ψ1, ψ2. We now use the as-
sumption ‖∆xψ‖L2 ≤ c h−M for some fixed c,M > 0 so that Fourier compo-

nents fulfill |ψ̂k| ≤ |k|−2(2π)n/2c h−M , and ‖ψ‖L2 = 1 gives |ψ̂0| ≤ (2π)n/2.
Consequently,∑

k∈Zn

|ψ̂1(k)| ≤ (2π)n/2 + (2π)n/2c
∑

k∈Zn\{0}

|k|−2 h−M , (3.5)

and ∣∣∣ ∑
k,µ∈Zn

ψ̂1(k)?ψ̂2(µ)
∣∣∣ ≤ ∑

k∈Zn

|ψ̂1(k)|
∑
µ∈Zn

|ψ̂2(µ)|. (3.6)

To conclude, since δ(k − µ) =
∑
α∈Zn eiα(k−µ), we get

〈T ψ1, T ψ2〉L2(Tn×hZn) =
∑
k∈Zn

ψ̂1(k)?ψ̂2(k) +O(h∞)

= 〈ψ1, ψ2〉L2(Tn) +O(h∞). (3.7)

The estimates (3.5) - (3.6) together with (3.4) ensure that the remainder in
(3.7) has order O(h∞).
In order to prove (1.5), we observe that

ϕh =
∑
ξ∈hZn

∫
Tn

〈Φ(x,ξ), ϕh〉L2 Φ?(x,ξ) dx+O(h∞).

is given by an L2-convergent series. Thus, for any fixed ϕh we can say that
there exists f(h) > 0 such that

ϕh =
∑

ξ∈hZn,|ξ|<f(h)

∫
Tn

〈Φ(x,ξ), ϕh〉L2 Φ?(x,ξ) dx+O(h∞).

�

Proof of Theorem 1.2 We apply the statement of Thm. 1, for a set of lin-
early independent eigenfunctions ψh,i generating all the eigenspaces linked
to eigenvalues Eh ≤ E and fi(h) > 0 given by Thm. 1.1.

ψh,i =
∑

ξ∈hZn,|ξ|<fi(h)

∫
Tn

〈Φ(x,ξ), ψh,i〉L2 Φ?(x,ξ) dx+Rh,i

where ‖Rh,i‖L2 = O(h∞).
Moreover, we recall that the Weyl Law on the number N (h) of eigenvalues
Eh ≤ E (counted with their multiplicity) for semiclassical elliptic operators
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(see for example [17]) reads N (E, h) ' (2πh)−n(vol(U(E)) +O(1)). We de-
fine:

g(E, h) := max
1≤i≤N (E,h)

fi(h).

Since any eigenfunction ψh linked to Eh ≤ E will be written as ψh =∑
i〈ψh,i, ψh〉ψh,i then the linearity of decomposition (1.4) ensures also the

decomposition (1.6) for such ψh. Namely,

ψh =
∑

ξ∈hZn, |ξ|≤g(h,E)

∫
Tn

〈Φ(x,ξ), ψh〉L2 Φ?(x,ξ) dx+Rh

where Rh =
∑

1≤i≤N (E,h)Ri,h. To conclude:

‖Rh‖L2 ≤
∑

1≤i≤N (E,h)

‖Ri,h‖L2 ≤ N (E, h) max
1≤i≤N (E,h)

‖Ri,h‖L2

= N (E, h) · O(h∞) = O(h∞).

�

Proof of Theorem 1.3 We assume that ϕh ∈ C∞(Tn) is L2 - normalized and

ϕh =
∑

1≤j≤J(h)

cj ψh,j

where the L2-normalized eigenfunctions ψh,j of Oph(b) are given in Thm. 1.2
and we assume J(h) ≤ J0h

−Q for some J0, Q > 0 that are independent on
0 < h ≤ 1.
Define

`(h) := max
1≤j≤J(h)

fj(h)

where fi(h) are associated to the functions ψh,i and given by Thm 1.1.
We now observe that if Uh(t) := exp{(−iOph(b)t)/h} then

U(t)ϕh =
∑

1≤j≤J(h)

cj e
− i

hEj,hψh,j (3.8)

for any t ∈ R.
We can now apply the decomposition formula (1.4) with the condition on the
frequencies |ξ| ≤ `(h) and for the wave function U(t)ϕh and get the expected
result, namely

Uh(t)ϕh =
∑

ξ∈hZn, |ξ|≤`(h)

∫
Tn

〈Φ(x,ξ), Uh(t)ϕh〉L2 Φ?(x,ξ) dx+
∑

1≤j≤J

Rj,h

for any t ∈ R. The remainder Rh :=
∑

1≤j≤J Rj,h can be estimated as in the
previous Theorem, namely

‖Rh‖L2 ≤
∑

1≤i≤J

‖Rj,h‖L2 ≤ J0 h−Q max
1≤j≤J

‖Rj,h‖L2

= J0 h
−Q · O(h∞) = O(h∞).

�
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