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Abstract The impregnation process of Scots pine and beech samples with tannin

solutions was investigated. The two materials involved in the process (impregnation

solution and wood samples) are studied in depth. Viscosity of mimosa tannin

solutions and the anatomical aspect of beech and Scots pine were analysed and

correlated. The viscosity of tannin solutions presents a non-newtonian behaviour

when its pH level increases, and in the case of addition of hexamine as a hardener,

the crosslinking of the flavonoids turns out to be of great importance. During the

impregnation of Scots pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.), the

liquid and solid uptakes were monitored while taking into consideration the dif-

ferent conditions of the impregnation process. This method allowed to identify the

best conditions needed in order to get a successful preservative uptake for each

wooden substrate. The penetration mechanism within the wood of both species was

revealed with the aid of a microscopic analysis. Scots pine is impregnated through

the tracheids in the longitudinal direction and through parenchyma rays in the radial

direction, whereas in beech, the penetration occurs almost completely through

longitudinal vessels.

Introduction

Polyflavonoid or condensed tannins are natural compounds present in many plants.

Within the plant kingdom, such compounds are used as preservatives offering

protection against light (UV rays and free radicals) and against biological attacks
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(insects, fungi and bacteria) (Choi et al. 2002; Hagerman et al. 1998; De Bruyne

et al. 1999).

The idea of protecting wood with wood derived natural preservatives has been

known since decades (Lotz and Hollaway 1988). The main drawback of this idea

has always been the high leachability of the tannin. Their extremely high solubility

in water (often more than 50 % by weight) rendered these molecules unsuitable as

wood preservative.

Condensed tannin is made up of oligomers constituted by the repetition of

flavonoid units which are mainly linked to each other in a 4–6 or 4–8 pattern (Pizzi

1994).

This hydroxy-aromatic chemical composition has shown similar reactions to the

ones found in phenols: hardeners such as formaldehyde, hexamine and glyoxal can

crosslink the oligomers to produce macromolecules.

This chemical property has been the key for the development of tannins in resin

formulations (Pichelin et al. 1997; Tondi et al. 2009).

The most common commercial condensed tannin is the one found in the mimosa

(Acacia mearnsii, or mollissima) bark extract. This water soluble powder was

already used for other applications such as wood adhesives, metal adsorbers and

the production of foams (Pizzi et al. 1995; Özacar et al. 2006; Tondi and Pizzi

2009).

Based on the afore-mentioned, in situ-curing tannin–hexamine formulations were

recently tested as wood preservatives for outdoor applications. The results showed

that the high biological activity of these formulations, enriched with a very low

amount of boron, is effective in the treatment against high-virulence tropical fungus

such as Pycnoporus sanguineus (Thevenon et al. 2009) and termites (Tondi et al.

2012).

These very positive results have encouraged more intensive research work on the

applicability of these formulations for softwood. Therefore, viscosity studies of

tannin solutions, investigations concerning the impregnation process and anatomical

considerations of impregnated Scots pine and beech through microscope analyses

are presented in this paper.

Materials and methods

Materials

Wood pieces of Scots pine (Pinus sylvestris L.) and European beech (Fagus
sylvatica L.) were provided from different Austrian sawmills and selected in

accordance with EN113 (1997). Samples of sapwood with dimensions of

50 9 25 9 15 mm3 and oriented with the longer side along the direction of grain

were after conditioning in a standard climate of 20 �C and 65 % RH to

approximately 12 % equilibrium moisture content.

Commercially available Mimosa tannin extract was provided by Silva-chimica

(Italy), while hexamethylenetetramine (hexamine) was provided by Lactan.
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Viscosity measurements

Tannin formulations with different concentrations up to 45 % s.c., as well as

additives and pH levels were subjected to viscosity measurements. Viscosity was

evaluated at room temperature (20 �C) using different spindles and observing its

behaviour under different rotational speed conditions. For the test of tannin

polymerisation, the solutions were immersed in boiling water (100 �C) for different

amounts of time. The viscometer used was a multi-speed digital viscotester from

ThermoHaake.

Impregnation

Scots pine and European beech specimens were dried for at least 1 week at 104 �C

to ensure that the samples were completely dry.

These samples were placed into a desiccator, and a vacuum of 8 mbar was

applied to remove the majority of the air trapped within the wood cells. Afterwards,

the desiccator was filled up with the impregnation solution and the pressure was

slowly increased back to environmental pressure.

According to the different kinds of treated wood and to the viscosity of the

impregnation solution, different vacuum and times of submersion were applied.

Vacuum time is the elapsed time in which the samples undergo a vacuum

treatment (8 mbar), while the time of submersion is the time in which the sample is

penetrated by the liquid at environmental pressure.

For some impregnations, more than one test was performed. The technique of

multiple cycle impregnations is carried out by applying successive vacuum

treatment to increase the penetration of the impregnating solution. The cycles used

in this work were of 10 min vacuum (8 mbar) and 10 min at atmospheric pressure.

The tannin solutions used for impregnation were always corrected with NaOH

50 % to pH 9.0 and addition 6 % by weight of hexamine.

The weights of the wood specimens were gathered before and after the treatment

to evaluate the amount of liquid which penetrates the sample.

The impregnated samples were kept for 12 h at 104 �C to let the tannin–

hexamine resin harden in situ. The weights of the samples were determined at the

end of the process to calculate the amount of trapped solids.

Impregnation rate (or retention) is the percentage of the weight ratio between the

liquid uptake and the dry sample.

I.R.ð%Þ ¼ ððWet weight � Dry weightÞ=Dry weightÞ � 100 ð1Þ
Impregnation solutions were prepared with 10, 15, 20 and 30 % w/w of mimosa

tannin extract.

Microscope analysis

Twenty per cent tannin–hexamine treated samples of Scots pine and European

beech were cut into 20 9 10 9 10 mm3 pieces. The impregnated samples were
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softened by boiling them before the microtomy. Wood specimens were immersed in

a flask of water with a few drops of glycerine (defoamer) and were boiled under

reflux for different amounts of time according to the hardness of the wood species.

Scots pine was ready after 3.5 h while beech samples needed longer softening time

(21.5 h). The slices were finally cut under wet conditions in the three anatomical

directions (transversal, radial and tangential) with a Leica SM 2000 R microtome to

a thickness of 10 lm. The three sections were observed with a Nikon eclipse E200

optical microscope.

Results and discussions

The impregnation by tannin solutions was studied for Scots pine and beech samples.

A complete overview of the penetration mechanism can be obtained by focusing on

both elements: the impregnation solution and the wooden substrate.

Study of the tannin solution

The most interesting feature for the impregnation solution is viscosity. Mimosa

extract water solutions, indeed, have a viscosity that depends on solid content, pH

and temperature.

When maintaining a constant temperature of 20 �C, the viscosity tendency was

evaluated by changing the solid content and the pH of the tannin solutions.

In Fig. 1a, the trend of viscosity for two different pH is reported: 4.3 that is the

natural pH of a mimosa tannin solution and 9.0 that is the value applied in the

impregnation process in order to have a good compromise between low viscosity

and high reactivity. The graphic shows that viscosity is exponentially proportional

to the amount of dissolved solid, and when pH is buffered at 9, the slope of

increasing viscosity occurs for less concentrated solutions.

Considering highly concentrated solutions (45 % tannin), the viscosity tendency

was monitored with stepwise increasing pH (Fig. 1b). It can be observed that the

viscosity increases exponentially with the pH, and when the pH reaches values

Fig. 1 a Viscosity as a function of tannin solid content for pH 4.3 and 9.0 b viscosity as a function of pH
for highly concentrated tannin solutions (45 % s.c.) (colour figure online)
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around 9, the measurement of the viscosity becomes dependent on the stirring rate

of the viscometer spindles. The minimum as well as the average and the maximum

value of viscosity evaluated with different stirring rates are reported in the graphic.

This lack of uniformity in viscosity measurements is typical of non-newtonian

fluids, and in particular, such kind of materials can be classified as pseudoplastic.

From the chemical point of view, new intermolecular bonding takes place in

alkaline environment and the oligomeric solution increases its molecular weight. In

fact, solutions with high molecular weight often have non-newtonian behaviour.

The strongly alkaline environment, indeed, activates the hydroxyl groups of the

flavonoids to autocondensation (Pizzi 1981).

The polymerisation of flavonoids was then evaluated for different exposures to

boiling water (100 �C) with and without hardener. Considering the solutions with

high viscosities (45 % s.c. and pH = 11), some thermal-curing tests were done to

monitor the crosslinking behaviour of the formulations. The viscosity was measured

for different exposure of the sample at 100 �C (Fig. 2). It can be generally observed

that the viscosity decreases when the stirring speed increases (pseudoplastic non-

newtonian behaviour).

The first parameter to be considered is the effect of the hardener. The viscosity

curve of the tannin solution without hardener is, indeed, very similar to the one

where no heat is supplied. This means that activation time does not affect the system

if no hardener is added.

Conversely, the viscosity behaviour changes when hexamine is added to the

formulation. Hexamine, indeed, crosslinks with flavonoids and promotes the

polymerisation with consequent increasing of molecular weight. This polymerisa-

tion is catalysed by heat, hence, the viscosity of tannin–hexamine solutions

increases proportionally with the time of exposure.

The non-newtonian behaviour is evident for highly viscous solutions but it cannot

be easily observed when the tannin solutions are diluted.

Fig. 2 Viscosity as a function of stirring rate for a 45 % tannin solution with 6 % hexamine at pH 11 for
different exposure times at 100 �C boiling water (colour figure online)
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For this reason, it is still possible to consider the viscosity of tannin solutions as

constant during the impregnation of the wood samples and the viscosity of a 20 %

tannin solution is 8–10 mPa s at room temperature.

However, when the time of submersion becomes significant (24 h or more), some

crosslinking effects have to be considered and the penetration in the wooden

samples should be affected.

Study of the impregnation in wood

Once the aspect of the liquid had been clarified, the procedure to impregnate wood

was investigated. Ten and 20 % solutions of tannins were used to impregnate Scots

pine and beech samples modifying vacuum and time of submersion to find out the

optimal conditions for the impregnation.

In Fig. 3, the impregnation rate of Scots pine and beech with fixed condition of

vacuum time and time of submersion can be seen.

Vacuum time was evaluated by keeping the time of submersion fixed at 24 h.

When comparing Fig. 3a, b, it can be observed that after application of 20 min of

vacuum, the penetration can be considered complete. Only in the case of the

solution with 20 % tannin for pine, the penetration is incomplete, but increase in

vacuum time does not improve the impregnation rate.

Fig. 3 Impregnation rates of wood samples: as a function of a vacuum applied for 10 and 20 % solutions
for Scots pine b vacuum applied for 10 and 20 % solutions for beech c time of submersion for 10 and
20 % solutions for Scots pine d time of submersion for 10 and 20 % solutions for beech (colour figure
online)
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In Fig. 3c, d, the effect of the time of submersion is reported when 3 h of vacuum

time are applied. It can be observed that the impregnation goes slowly for the Scots

pine samples. Within 24 h, complete penetration can be obtained only for diluted

tannin solutions (10 %). In the case of solutions with 20 %, the maximum uptake

can be reached after more than 2 days of impregnation. For beech, a few hours are

already enough to obtain significant impregnation rates, but the process can only be

considered complete when the time of submersion reaches 24 h.

The conditions for successful impregnation of Scots pine can be further

developed by means of a complementary study where less pressure and submersion

are applied.

Scots pine specimens were impregnated with 10 % tannin solutions, and the

parameters for impregnation (vacuum time, time of submersion and amount of

cycles) were investigated by applying milder conditions in order to optimise the

process.

In Table 1, various impregnations and their relative retention are shown.

The effect of vacuum evaluated by applying 1 h of submersion shows a clear

increase, even if the data are affected by a high standard deviation.

The effect of the time of submersion is even more evident when only 10 min of

vacuum are applied. This series of impregnations clarifies the kinetics of the

impregnation process, reported in Fig. 4.

This diagram shows the importance of the first phase of the impregnation. The

gradient of the initial stage of the curve is very steep and indicates that the greater

uptake takes place in the first 2 hours of submersion. However, the impregnation

requires a longer period of time until it can be considered complete.

In the last three rows of Table 1, the effect of multiple cycles is shown. Even if

the impregnation rate increases slightly, the effect of the cycles remains limited. If

Table 1 Impregnation rates for Scots pine samples when impregnated with 10 % tannin solution at mild

conditions

Vacuum treatment Impregnation

rate (%)

Standard

deviation
Vacuum time

(min)

Time of submersion

(min)

No. of

cycles

10 60 1 117.5 18.6

20 60 1 116.3 11.1

30 60 1 129.0 12.5

10 10 1 61.6 5.1

10 30 1 100.3 21.3

10 60 1 117.5 18.6

10 120 1 129.9 5.1

10 240 1 140.7 7.3

10 1440 1 166.9 7.9

10 10 1 61.6 5.1

10 10 2 64.8 4.1

10 10 3 65.4 12.9
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considering that the samples that undergo three cycles were dipped in the solution

for 30 min, the impregnation rate is much lower than the one that undergoes 30 min

of submersion after a single vacuum cycle. In the first phase of the penetration

process, the cycles are not required.

In Fig. 5, solution uptake and related solid released for 0, 10, 15, 20 and 30 %

tannin solutions are reported. These values were registered when the most effective

impregnation conditions had been applied (high vacuum time and time of

submersion).

The effect of viscosity of the solution significantly affects the penetration in

Scots pine, while for beech, the amount of tannin does not influence the

impregnation rate (at least up to 30 % s.c.).

In terms of released solid, it can be seen that the solution of 20 % s.c. represents a

threshold for pine samples of 50 9 25 9 15 mm3.

The solid released is an important issue. Of course, highly concentrated solutions

release high amount of solid in the wooden structure, but their higher viscosities

deny the possibility of deep penetration.

Fig. 4 Kinetic of Scots pine impregnation with a 10 % tannin formulation (colour figure online)

Fig. 5 Impregnation rate of liquid penetration and solid released for different concentrations of tannin in
the impregnation solution in Scots pine and beech (colour figure online)
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Therefore, different formulations have to be chosen according to the final

application of the specimens. Highly viscous concentrated solutions have to be

preferred for surface treatment, while low concentrated solutions are more useful for

massive-long term treatment as well as for outdoor uses.

The penetration of tannin solutions with the same concentration and at the same

impregnation conditions in Scots pine and beech is different. This means that the wood

anatomy of these species plays a key role in the explanation of the impregnation process.

Microscope pictures of transversal and radial sections of a fully impregnated

Scots pine sample are reported in Fig. 6a, (transversal) b (radial).

Some considerations can be observed:

• Tracheids are penetrated. Full impregnation can be observed for the most part of

the latewood, while partial impregnation affects the earlywood.

• Tracheids are impregnated mostly when they are in an adjacent position to

parenchyma rays.

• The impregnation affects certainly the parenchyma rays. Almost all of them are

entirely filled by the impregnation solution.

• Resin canals are never penetrated by tannin solutions.

The longitudinal penetration through tracheids is easier for latewood because its

bordered pits are rarely closed (Bamber and Burley 1983; Liese and Bauch 1967)

while the bordered pits of earlywood are often closed and only wet conditioning of

the samples or strong vacuum-pressure cycles would allow passing of the liquid

through these pits. When more viscous tannin solutions are applied, there is a

decrease in the capillary effect (especially for latewood tracheids) which explains

the lower impregnation rate.

The penetration of the parenchyma rays is not dependent on the viscosity because

their average thickness of around 150–200 lm allows the passage of tannin

solution. Anyway, the majority of the penetration is longitudinal and if this

penetration is weak the impregnation rate is low.

Fig. 6 910 Microscope images of impregnated Scots pine: a transversal section b radial section (colour
figure online)
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Some studies of lateral penetration of Scots pine and beech have recently been

done by Scholz et al. (2010) where the main role of parenchyma rays in radial

penetration is well described.

The microscopic investigation of beech is depicted in Fig. 7a, b.

In the case of beech, the impregnation takes place almost exclusively across the

longitudinal direction through the large and easily accessible vessels. In the radial

cut, it is possible to underline that not all the vessels are entirely filled due to the

dimensions of the cells. In the middle of the specimen, only the larger vessels are

impregnated because the smaller ones can be obstructed by the bigger tannin

oligomers. However, the high viscosity of the tannin solution (up to 30 % s.c.) does

not modify significantly the penetration in beech. The porous structure of European

beech ensures an easy and deep impregnation by tannin solutions.

Finally, the pictures of impregnated Scots pine and beech show that the process

does not nick the cell walls (Figs. 6, 7).

The tannin solution penetrates into the cell and is stored in the lumen. Indeed, the

molecules of these oligomers are too large to establish chemical bonding with the

hemicelluloses of the cell walls. Possible interactions can be assumed with

the interface lignin molecules because several studies of polymerisation between

tannin and lignin have been performed (Lei et al. 2008; Mansouri et al. 2010) but no

significant scientific evidence has been published to date.

Conclusion

The viscosity of tannin was studied in detail, and its importance in wood

impregnation is demonstrated. It was seen that in the case of waterborne tannin

solutions, the penetration is quite easy for beech while the treatment of Scots pine

needs more attention.

Fig. 7 910 Microscope images of impregnated beech a transversal section b radial section (colour figure
online)
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Scots pine preservation with tannin-based formulations occurs successfully when

10 % low viscosity solutions are applied, but when formulations with higher

concentration are applied, the complete impregnation rate will not be achieved.

Kinetic studies of the penetration of Scots pine have shown that the maximum

uptake occurs in the first 2 h of the process.

Microscopic analysis showed that penetration in Scots pine occurs longitudinally

through tracheids with open bordered pits and across radial direction through

parenchyma rays. Beech is almost exclusively penetrated in the longitudinal

direction through large and easy accessible vessels.

High-potential tannin-based formulations are suitable for a new generation of

environment-friendly wood preservatives.

Acknowledgments The author gratefully acknowledges the Austrian Science Fund FWF. ‘‘Lise

Meitner’’ project nr. M1232-B16.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

the source are credited.

References

Bamber RK, Burley J (1983) The wood properties of radiata pine. Commonwealth Agricultural Bureaux

Sloough, England

Choi CW, Kim SK, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park S, Kim SK (2002) Antioxidant activity

and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-

guided comparison. Plant Sci 163(6):1161–1168

De Bruyne T, Pieters L, Deelstra H, Vlietinck A (1999) Condensed vegetable tannins: biodiversity in

structure and biological activities. Biochem Syst Ecol 27:445–459

EN113 (1997) European standard. Wood preservatives. Test method for determining the protective

effectiveness against wood destroying basidiomycetes. Determination of the toxic values. 06/1997

Hagerman AE, Riedl KM, Jones AG, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High

molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem

46:1887–1892

Lei H, Pizzi A, Du G (2008) Environmentally friendly mixed tannin/lignin wood resins. J Appl Polym Sci

107(1):203–209

Liese W, Bauch J (1967) On the closure of bordered pits in conifers. Wood Sci Technol 1:1–13

Lotz WL, Hollaway DF (1988) Wood preservation. US Patent n. 4732817

Mansouri HR, Navarrete P, Pizzi A, Tapin-lingua S, Benjelloun-Mlayah B, Pasch H, Rigolet S (2010)

Synthetic-free wood panel adhesives from mixed low molecular mass lignin and tannin. Eur J Wood

Prod 69(2):221–229
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