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Abstract In the framework of the orbital determination methods, we study some
properties related to the algorithms developed by Gauss, Laplace and Mossotti. In par-
ticular, we investigate the dependence of such methods upon the size of the intervals
between successive observations, encompassing also the case of two nearby observa-
tions performed within the same night. Moreover we study the convergence of Gauss
algorithm by computing the maximal eigenvalue of the jacobian matrix associated to
the Gauss map. Applications to asteroids and Kuiper belt objects are considered.

Keywords Orbital determination · Gauss method · Laplace method · Mossotti
method

1 Introduction

The determination of the orbital motion of a celestial body can be obtained through
the celebrated methods of Gauss or Laplace, once a certain number (at least 3) of
astronomical observations are available (see Poincaré 1906; Moulton 1914; Plummer
1918; Herrick 1937 for discussions on Laplace and Gauss methods). An alternative
technique was developed by Mossotti in the 19th century. The three methods (Gauss,
Laplace and Mossotti) have been extensively reviewed and compared in Celletti and
Pinzari (2005). In this work, we want to explore the dependence of the three techniques
upon the observational time intervals. It is relevant to quote the recent results obtained
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in Milani et al. (2004, 2005), Milani and Knezevic (2005); in these works the authors
investigate the problem of the orbit determination using two pairs of data, each of
them composed by observations at very close times. As a consequence very few obser-
vational data are available to compute the orbit and efficient mathematical methods
have been developed to sample the admissible region for the undetermined variables.

Let t1, t2, t3 be the times of the three observations; having fixed the intermedi-
ate time t2, we vary the time intervals t2 − t1 and t3 − t2, ranging from a few hours
(whenever two observations are performed on the same night) to several days. Two
sets of data are investigated: the first 10,000 numbered asteroids and 615 Kuiper
belt objects. While in the first case Gauss method provides the best results, the orbi-
tal determination of Kuiper belt objects seems to privilege Laplace method, being
Mossotti’s technique intermediate in all cases. For the selected samples of data, the
recovery of the orbits of the asteroidal belt improves as the time intervals decrease,
while it improves within the Kuiper belt objects whenever the time intervals increase.
A statistic of the successful results in terms of the elliptic elements (semi-major axis,
eccentricity and inclination) is also performed. In the second part of the paper, we
concentrate on Gauss algorithm to investigate the stability domain of such method,
by looking at the eigenvalues of the jacobian matrix associated to the Gauss map. We
provide a numerical investigation performed on asteroids and Kuiper belt objects.
We also develop an analytical estimate of the first-order computation of the largest
eigenvalue; we prove a proposition ensuring the convergence of Gauss method, which
is related to the contractive character of the Gauss map, at least for small values of
the observational times.

2 Implementation of Gauss, Laplace and Mossotti methods

2.1 Basics of the methods

With reference to a heliocentric frame let us denote the unknown elements of the
asteroid as follows: a is the semi-major axis, e is the eccentricity, i denotes the incli-
nation, ω is the argument of perihelion, � is the longitude of the ascending node and
M is the mean anomaly at a fixed epoch T. We assume that the ecliptic geocentric
longitudes and latitudes, say λi and βi, i = 1, . . . , N, are given through N observations
at times ti referred to the epoch T. Moreover, let t → →

a(t) denote the Sun–Earth
vector, t → →

r (t) is the Sun–asteroid vector, while t → ρ(t) is the geocentric distance
and t → →

b(t) with |→b(t)| = 1 denotes the Earth–object direction.
We assume to perform three observations at times t1, t2, t3. The time intervals

tij = tj − ti, i, j = 1, 2, 3, are regarded as small quantities of order ε; for some positive
constants γ12, γ23, with γ12 + γ23 = 1, we set

ε ≡ t13 t12 = γ12ε t23 = γ23ε. (1)

Let
→
k be the unit vector perpendicular to the plane of the orbit; the coplanarity

condition of the vectors
→
r i = →

ai + ρi
→
bi, i = 1, 2, 3, reads as

n23
→
r 1 − n13

→
r 2 + n12

→
r 3 = 0,

where nij = →
r i ∧ →

r j · →
k is twice the oriented area of the triangle spanned by

→
r i and

→
r j. If

→
b1,

→
b2,

→
b3 are linearly independent, one can express ρi as linear functions (with

coefficients of O(ε−2)) of the ratios nik/nlk with i �= l �= k. The first goal of Gauss
method is to find a good approximation of ρi, say up to terms of O(ε). To this end, let
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Sij be the areas of the elliptic sectors spanned between ti and tj, and let ηij = nij/Sij,
fij be half the angle between

→
r i,

→
r j. Denote by z = (P, Q) a new set of quantities,

called Gauss parameters, defined as

P = n12
n23

= γ12
γ23

f (η12, η23),

Q = 2r3
2

(
n12+n23

n13
− 1

)
= γ12γ23 ε2g

(
η12, η23, r1

r2
, r2

r3
, f12, f23

)
,

(2)

where f and g are suitable functions differing from one up to O(ε2), O(ε), respectively
(see Celletti and Pinzari 2005). The quantities ρi can be expressed in terms of P, Q as

ρ2 = G2(P, Q, ρ2), ρ1 = G1(P, Q, ρ2), ρ3 = G3(P, Q, ρ2)

for suitable functions Gi, i = 1, 2, 3 (see Appendix B for explicit expressions of the
Gi). In particular ρ2 = ρ2(P, Q) is a solution of an implicit equation, from which we
derive ρ1 = ρ1(P, Q), ρ3 = ρ3(P, Q). Finally, setting

P0 = γ12/γ23, Q0 = γ12γ23 ε2 (3)

one finds that Gi(P, Q, ρ2) = Gi(P0, Q0, ρ2) + O(ε), namely ρi = ρi,0 + O(ε), where
ρi,0 = ρi(P0, Q0).

Gauss algorithm is inductively based on the following steps:

(1) start from z0 = (P0, Q0);
(2) given zn = (Pn, Qn), compute ρ2,n = ρ2(Pn, Qn) trying to solve the implicit

equation ρ2,n = G2(Pn, Qn, ρ2,n) and let, for i = 1, 3, ρi,n = ρi(Pn, Qn). The three
vectors

→
r i,n = →

ai + ρi,n
→
bi, i = 1, 2, 3 are shown to be coplanar;

(3) if the endpoints of
→
r 1,n,

→
r 2,n,

→
r 3,n are not on a straight line, there exists a unique

conic Cn through
→
r 1,n,

→
r 2,n,

→
r 3,n; compute the quantities ηij,n, fij,n ri,n on Cn;

(4) determine the new parameters zn+1 = (Pn+1, Qn+1) through (2), where the r.h.s.
are computed with ηij,n, fij,n, ri,n replacing ηij, fij, ri. Such procedure defines the
Gauss map F(C, t2, γ12, γ23, ε) ≡ FG as zn+1 = FG(zn);

(5) look for a fixed point of the Gauss map, motivated by the fact that a conic section
C (on which a Keplerian motion takes place) is a solution of Gauss problem if
and only if it corresponds to a fixed point of FG.

We can finally summarize Gauss method (Gauss 1809; see also Gallavotti 1980)
with the following

Theorem 2.1 Let C, t2, γ12, γ23, ε be such that
→
b1,

→
b2,

→
b3 are linearly independent, and

∂ρG2(P, Q, ρ)|ρ2 �= 1, where z = (P, Q) is the fixed point of FG, defined in (2). Let D be
the domain of definition of FG, U ⊂ D a neighbourhood of z, V a neighbourhood of
ρ2, ρ : z′ = (P′, Q′) ∈ U → ρ(P′, Q′) ∈ V be the smooth solution of ρ = G2(P′, Q′, ρ)

such that ρ(P, Q) = ρ2. If z0 ∈ U, the associated conic section C0 verifies: C − C0 = O(ε).
Finally, if zn ∈ U, the associated conic section Cn verifies: C − Cn = O(εn+1).

A different approach is provided by Laplace method, whose aim is to find an
approximation of the position

→
r and the velocity

→
v , so to determine the unknown

orbit. Let r = r(ρ) = |→a + ρ
→
b| be the heliocentric distance; using the equations of

motion, one gets an implicit equation in the unknowns λ̇, β̇, λ̈, β̈:

ρ = d1

d

(
1
r3 − 1

a3

)
≡ L(d1/d, ρ). (4)
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Moreover, one finds that ρ̇ = d2
d

(
1
r3 − 1

a3

)
, with d = d(λ, β, λ̇, β̇, λ̈, β̇), d1 =

d1(λ, β, λ̇, β̇), d2 = d2(λ, β, λ̈, β̈) (see Celletti and Pinzari 2005, for the explicit expres-
sions of d, d1, d2). Given the N observations (λ1, β1), (λ2, β2), . . . , (λN , βN), Laplace
method (Laplace 1780) consists in replacing λ̇, λ̈ (equivalently β̇, β̈) by the derivatives
of some interpolating polynomials of degree N − 1 obtained through the observed
data (t1, λ1), (t2, λ2), . . . , (tN , λN) (equivalently (t1, β1), (t2, β2), . . . , (tN , βN)).

An alternative technique was developed by Mossotti (1942) and it is based on the
following procedure. Writing the coplanarity condition among

→
r (t),

→
r 2,

→
v2 as

→
r (t) = T(t)

→
r 2 + V(t)

→
v2 (5)

and developing the equation of motion
→
r̈ = −→

r /r3 in Taylor series with initial data
→
r (t2) = →

r 2,
→
ṙ (t2) = →

v2, one obtains

T(t) = 1 − (t − t2)2

2r3
2

h(t), V(t) = (t − t2)k(t),

where h(t) and k(t) are suitable functions; if hi and ki denote their values at times ti,
one can show that hi and ki differ from one up to O(ε). Using (2.5) computed at t1
and t3, one can express ρ2 and

→
v2 as

ρ2 = M(h1, h3, k1, k3, ρ2) = M(1, 1, 1, 1, ρ2) + O(ε),
→
v2 = →

N(h1, h3, k1, k3, ρ2) = →
N(1, 1, 1, 1, ρ2) + O(ε)

for suitable (vector) functions M,
→
N. In conclusion, it turns out that ρ2 is a solution of

an implicit equation, which can be solved in analogy to Gauss method.

2.2 Iteration of the methods

A major advantage of Gauss method with respect to the others is that it provides an
iterative procedure to find better approximations of the solution. On the contrary,
the methods of Laplace (implemented over three observations) and Mossotti were
originally limited to the first-order approximation. However, an iterative scheme can
be implemented along the following lines.

Let us consider first the method of Laplace. Let R(t) denote the remainder func-
tion of order 3 of the series expansion of λ(t) around t2, namely λ(t) = P(t) + R(t),
with P(t) = λ2 + λ̇(t2)(t − t2) + λ̈(t2)

2 (t − t2)2 (obviously R(t2) = 0). In other words,
λ̇2 ≡ λ̇(t2), λ̈2 ≡ λ̈(t2) are the derivatives of the interpolating polynomial t → P(t) of
degree 2 through λ1 −R1, λ2, λ3 −R3 (here, Ri = R(ti)), at times t1, t2, t3. Similarly for
β̇(t2), β̈(t2), where the remainder functions are denoted as S1, S3. When λ̇2, β̇2, λ̈2, β̈2
are expressed as functions of R1, R3, S1, S3, Eq. 4, with t = t2, takes the form (without
changing the symbol for L) ρ2 = L(R1, R3, S1, S3, ρ2); the first approximation (N = 3)
of Laplace corresponds to take Ri = Si = 0 (i = 1, 3). We are therefore led to define
a sequence of remainder functions Ri,n, Si,n as follows:

(1) Start with R1,0 = R3,0 = 0 (S1,0 = S3,0 = 0).
(2) Given R1,n, R3,n (S1,n, S3,n), let λ̇n, λ̈n (β̇n, β̈n) be defined as the derivatives of

the interpolating polynomial t → Pn(t) (t → Qn(t)) of degree 2 through λ̇1 −
R1,n, λ2, λ3 − R3,n (β1 − S1,n, β2, β3 − S3,n) at times t1, t2, t3, respectively. Let
dn = d(λ2, β2, λ̇n, β̇n, λ̈n, β̈n), d1,n = d1(λ2, β2, λ̇n, β̇n), d2,n = d2(λ2, β2, λ̈n, β̈n). If
dn �= 0, compute the position

→
r 2,n and the velocity

→
v2,n. Let Cn, be the conic
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describing a Keplerian motion with initial data
→
r 2,n,

→
v2,n (whenever the latter

vectors are not parallel), and let t → λn(t), t → βn(t) be the motion of the angles.
(3) Define Ri,n+1, Si,n+1 as the remainder functions of order 3 of the Taylor expan-

sion of t → λn(t), t → βn(t) around t = t2. Introduce the Laplace map
FL as

(R1,n+1, R3,n+1, S1,n+1, S3,n+1) = FL(R1,n, R3,n, S1,n, S3,n).

Like for Gauss, all fixed points of FL provide a solution of the problem, while the nth
iteration of FL gives an approximation of the unknown or bit up to terms of order
O(εn), provided that d �= 0, ∂ρL(R1, R3, S1, S3, ρ)|ρ2 �= 1 and (R1,n, R3,n, S1,n, S3,n)
belongs to a suitable neighbourhood of (R1, R3, S1, S3). Let us now present an iterative
scheme for the method developed by Mossotti. Define the sequence hi,n, ki,n(i = 1, 3)

as follows:

(1) Start with hi,0 = ki,0 = 1.
(2) Given hi,n, ki,n, let

→
r 2,n,

→
v2,n be the vectors obtained replacing hi, ki with hi,n,

ki,n. If
→
r 2,n,

→
v2,n are not parallel, let Cn be the corresponding conic. Finally, let

→
r 1,n,

→
r 3,n denote the positions of the same body at times t1, t3, respectively.

(3) Define hi,n+1, ki,n+1 by means of the relations

Ti,n+1 = 1 − (ti − t2)2

2r3
2,n

hi,n+1, Vi,n+1 = (ti − t2)ki,n+1, i = 1, 3,

where Ti,n+1, Vi,n+1 are the coefficients of the linear relations providing
→
r 1,n,

→
r 3,n as

a combination of
→
r 2,n,

→
v2,n in analogy to (5). Let the Mossotti map FM be defined as

(h1,n+1, h3,n+1, k1,n+1, k3,n+1) = FM(h1,n, h3,n, k1,n, k3,n).

As for the previous methods, all fixed points of FM define a solution of the problem,
and the nth iteration of FM provides an approximation of the unknown orbit up to
terms of order O(εn), whenever ∂ρM(h1, h3, k1, k3, ρ)|ρ2 �= 1,

→
b1 ∧ →

b2 · →
b3 �= 0 and for

(h1,n, h3,n, k1,n, k3,n) in a suitable neighbourhood of (h1, h3, k1, k3).

3 Dependence on the times of observations

In order to study the dependence on the intervals among the times of observations,
we consider two samples given by the first 10,000 numbered asteroids and by 615
Kuiper belt objects.1 We apply Gauss, Mossotti and Laplace methods for different
time intervals t12 and t23, where the central time t2 is the real observational time
as provided by the astronomical data (see footnote 1). Starting from the elements
(a, e, i, ω, �, M) at the epoch t2, and given the time intervals t12 and t23, we compute
the geocentric longitude and latitude at times t1, t2, t3 by means of the coordinates of
the object and that of the Earth (see Appendix A). Finally, we apply Gauss, Mossotti
and Laplace methods, iterating the procedure as described in the previous section
until convergence is reached. In order to be sure that a given method converges in a
significant range around the given time t2 (and not only for the specific time t2), we

1 The astronomical data of the asteroids can be found on the web site “Astdys” at http://hamilton.
dm.unipi.it/cgi–bin/astdys/astibo; the astronomical data of the Kuiper belt objects can be found at the
ephemerides page by D. Jewitt at http://www.ifa.hawaii.edu/faculty/jewitt/kb.html.
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proceed as follows. Define tnij ≡ tij +n/2, where n = 0, ±1, ±2; if the method converges
for the above time lapses tn12 and tn23 (n = 0, ±1, ±2), then we say that the method is
successful, otherwise we decide that the method fails.

We consider several choices of the time intervals tij from 3 to 90 days. Moreover, to
cover the case of two observations performed within the same night, we selected t12 of
the order of some hours and t23 ranging from 5 to 30 days. The results are summarized
in Table 1, where the first percentage refers to the asteroids, while the second number
of each method refers to Kuiper belt objects. Concerning the main belt, one con-
cludes that Gauss method provides the best result, while Mossotti is more successful
than Laplace; the opposite conclusion holds for the Kuiper belt objects. For equal time
intervals t12 = t23 (i.e. the first 8 lines of Table 1), the number of successful cases within
the asteroidal belt increases as the time interval decreases, while (again) the opposite
conclusion can be drawn for the Kuiper belt objects. As discussed in the following
section, one might expect that whenever the time interval ε among the observations
is sufficiently small (say ε < ε̄), Gauss method (as well as the other techniques) con-
verges. Of course ε̄ depends on C, γ12, γ23 (and t2), implying that smaller is ε, greater
is the number of converging orbits for fixed values of γ12, γ23. On the other hand, the
dependence of ε̄ on γ12, γ23 implies that t12, t23 cannot be chosen too small, otherwise
C (as well as its approximants Cn) is badly determined. The latter effect is particularly
relevant when the semi-major axis is large as it happens for the Kuiper belt (notice
that the mean anomalies between two observations differ by Mij = tija−3/2 and that
the difference vij between the true anomalies, and henceforth between the tij, goes to
zero with Mij).

In order to see the distribution of the previous results as functions of the semi-major
axis, eccentricity and inclination, we compute the percentages of successful results of
the first 10,000 numbered asteroids by considering four different regions in a, e, i, each
one being composed by 2,500 objects. The results are provided in Table 2 for the time
intervals t12 = 1h and t23 = 5d and in Table 3 for t12 = t23 = 10d. In particular, Table 3

Table 1 Percentage of successful results for Gauss, Mossotti and Laplace methods; the first number
refers to the asteroids (e.g. 99.86, first line of Gauss method), while the second to Kuiper’s objects
(e.g. 79.67, same line)

t12 t23 Gauss Mossotti Laplace

3d 3d 99.86/79.67 99.55/92.03 99.00/93.33
5d 5d 99.87/93.33 99.45/93.98 98.90/93.98
10d 10d 99.78/93.98 99.23/94.30 98.73/94.63
15d 15d 99.58/94.47 99.27/94.47 98.54/94.63
30d 30d 99.45/94.63 99.36/94.47 98.17/94.63
60d 60d 98.77/94.63 98.41/94.63 96.00/94.63
90d 90d 96.80/94.63 96.73/94.63 94.32/94.63
10d 30d 99.60/94.63 99.45/94.63 98.01/94.63
5d 10d 99.82/94.47 99.56/94.63 98.63/94.63
1h 5d 99.77/7.32 99.72/54.79 98.82/93.17
5h 5d 99.87/17.40 99.77/78.53 98.86/93.66
1h 10d 99.80/17.40 99.66/79.84 98.60/94.31
5h 10d 99.81/53.17 99.67/88.62 98.55/94.30
1h 30d 99.68/63.25 99.62/90.24 97.59/94.63
5h 30d 99.70/83.85 99.64/92.84 97.61/94.63
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Table 2 Percentage of successful results for Gauss, Mossotti and Laplace methods in terms of
semimajor axis a (in AU), eccentricity e, inclination i (in degrees)

Gauss Mossotti Laplace

0 ≤ a < 2.341 99.56 99.04 97.36
2.341 ≤ a < 2.6144 99.96 99.96 98.48
2.6144 ≤ a < 3.0053 99.80 99.96 99.52
3.0053 ≤ a < 100 99.76 99.92 99.92
0 ≤ e < 0.094 99.68 99.92 99.60
0.094 ≤ e < 0.140244 99.92 99.92 99.56
0.140244 ≤ e < 0.187321 99.84 99.64 98.52
0.187321 ≤ e < 1 99.64 99.40 97.60
0 ≤ i < 3.2185 99.72 99.76 98.68
3.2185 ≤ i < 6.0218 99.84 99.56 98.36
6.0218 ≤ i < 10.918 99.72 99.80 99.08
10.918 ≤ i < 360 99.80 99.76 99.16

Each parameter region is composed by 2,500 objects belonging to the first 10,000 numbered asteroids.
The time intervals are t12 = 1h and t23 = 5d

Table 3 Percentage of successful results for Gauss, Mossotti and Laplace methods in terms of
semimajor axis a (in AU), eccentricity e, inclination i (in degrees)

Gauss Mossotti Laplace

0 ≤ a < 2.341 99.56 97.28 96.88
2.341 ≤ a < 2.6144 99.80 99.68 98.40
2.6144 ≤ a < 3.0053 99.88 99.96 99.72
3.0053 ≤ a < 100 99.88 100 99.92
0 ≤ e < 0.094 99.92 99.80 99.56
0.094 ≤ e < 0.140244 99.84 99.84 99.48
0.140244 ≤ e < 0.187321 99.80 99.40 98.92
0.187321 ≤ e < 1 99.56 97.88 96.96
0 ≤ i < 3.2185 99.84 99.60 99.08
3.2185 ≤ i < 6.0218 99.76 98.68 97.92
6.0218 ≤ i < 10.918 99.76 99.56 98.84
10.918 ≤ i < 360 99.76 99.08 99.08

Each parameter region is composed by 2,500 objects belonging to the first 10,000 numbered asteroids.
The time intervals are t12 = 10d and t23 = 10d

shows that the success of all methods (slightly) grows if the semi-major axis increases,
though a more reliable test should be performed over sample data with equally spaced
values of the semi-major axes. On the other hand, all methods seem to be independent
on the value of the inclination, while only Laplace method is affected by the value of
the eccentricity, performing better for lower eccentricities.

4 Convergence of Gauss algorithm: computation of the eigenvalues
of the Jacobian matrix

In the framework of Theorem 2.1, we investigate whether FG : z′ = (ζ1, ζ2) →
FG(z′) ≡ (F1

G(z′), F2
G(z′)) can be indefinitely iterated from the initial point z0 and,

eventually, if the nth iterate zn = Fn
G(z0) tends to its fixed point z = z(C, t2, γ12, γ23, ε).

Let W ⊂ U be a closed convex neighbourhood of z; by Lagrange’s theorem,
if z1, z2 ∈ W, there exists z∗

1, z∗
2 belonging to the interval (z1, z2), such that
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FG(z1)−FG(z2) = ∂FG(z∗
1, z∗

2)(z1 − z2), where ∂FG(z∗
1, z∗

2) has entries ∂ζjF i
G(z∗

i ), for
z′ = (ζ1, ζ2). Let us assume that the complex eigenvalues λ1(x, y), λ2(x, y) of ∂FG(x, y)

verify, for x, y ∈ W

λ1(x, y) �= λ2(x, y), |λi(x, y)| ≤ θ < 1. (6)

For z1 �= z2 ∈ W, let
→
v∗

i ∈ C2 denote the eigenvector corresponding to λ∗
i ≡ λi(z∗

1, z∗
2) ;

we define d(z1, z2) ≡ |α1|+|α2|, where α1, α2 ∈ C are such that z1 −z2 = α1
→
v∗

1 +α2
→
v∗

2.
Otherwise, for z1 = z2 we set d(z1, z2) = 0. With this choice of the metric, FG becomes
a contraction on W, being FG(z1)−FG(z2) = λ∗

1α1
→
v∗

1+λ∗
2α2

→
v∗

2. On the other hand, one
can conclude by continuity that setting x = y = z(C, t2, γ12, γ23, ε), if λi(z, z) ≡ λi(z)

verify

λ1(z) �= λ2(z) (7)

and

µ(C, t2, γ12, γ23, ε) ≡ Maxi=1,2|λi(z)| < 1 (8)

then, there exists a suitable closed convex set W containing z where (6) holds, namely,
FG is a contraction. As a consequence, its unique fixed point z in W can be obtained
as the limit z = limn→∞ zn, starting from any z0 ∈ W. We will see (Proposition 4.1
below) that, under slightly stronger assumptions than in Theorem 2.1 (see (9) and (10)
below), condition (8) is always satisfied, provided ε is small enough. The assumptions
we make are the following:

(1) The vectors
→
b2 = →

b(t2),
→
ḃ2 =

→
ḃ(t2),

→
b̈2 =

→
b̈(t2) are linearly independent:

→
b2 ∧

→
ḃ2 ·

→
b̈2 �= 0; (9)

(2) setting
→
a2 = →

a(t2), one has

D ≡ 3
→
b2 ∧

→
ḃ2 · →

a2→
b2 ∧

→
ḃ2 ·

→
b̈2

ρ2 + →
a2 · →

b2

r5
2

�= 1. (10)

Remark 4.1 The independence of the
→
bi’s is required by Gauss algorithm. Indeed,

for ε < 1 let us expand in Taylor series as

→
b1 = →

b2 −
→
ḃ2 γ12 ε +

→
b̈2

γ 2
12

2
ε2 + o(ε3)

→
b3 = →

b2 +
→
ḃ2 γ23ε +

→
b̈2

γ 2
23

2
ε2 + o(ε3); (11)

then, by (9) for ε small one finds that |→b1 ∧→
b2 ·→

b3| = | 1
2

→
b2 ∧

→
ḃ2 ·

→
b̈2 γ12γ23 ε3 +o(ε4)| >

0. With a similar argument, one finds that condition (10) implies that for ε small
∂ρ2 G2(P, Q, ρ2) �= 1 allowing to solve Gauss equation.

Proposition 4.1 For any C, t2 such that conditions (9) and (10) are satisfied, one has
µ(C, t2, γ12, γ23, ε) → 0 as ε → 0.

The proof is given in Appendix B.
In order to prove the contractive character of FG for 0 < ε < ε̄ for a suitable ε̄

(and, consequently, the convergence of Gauss algorithm for 0 < ε < ε̄, at least if ε̄ is
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so small that the initial point z0 = (P0, Q0), defined in (3), belongs to W), we still need
the assumption (7). In this context, we provide in Appendix B a sufficient condition
(Corollary B.1), based on the computation of λ1(z), λ2(z) at the first order in ε.

4.1 Eigenvalues of ∂FG(z)

Motivated by the previous discussion and by the fact that the explicit computation of
µ is extremely long, we determine numerically the elements of the jacobian matrix
∂FG(z), which yield the eigenvalues |λ1(z)|, |λ2(z)|. We let t12, t23 vary, while t2 is fixed
equal to a given epoch (MJD 53450 for the asteroids, while it changes for Kuiper belt
objects according to the astronomical data of footnote 1). More precisely, for each C
(with related set of elements (a, e, i, ω, �, M) at time t2) and for each choice of t12, t23,
we compute the three vectors

→
r 1,

→
r 2,

→
r 3. Together with the three Sun–Earth vectors

→
a1,

→
a2,

→
a3, we obtain the Earth–object directions

→
b1,

→
b2,

→
b3, which provide the Gauss

map FG and its fixed point z.
The Jacobian ∂FG(z) is computed through a polynomial interpolation. Let us con-

sider, for example, the computation of the first element ∂PP′(P, Q) (for the other
derivatives, the computation is quite similar), where FG = (P′, Q′). Having fixed Q,
we choose an odd number (say, 2n + 1) of points Pi = P + ih, i = −n, . . . , n, equally
spaced and symmetrically distributed around P with constant step-size h, such that
2nh = 0.1. Denoting by Fi the value of P′ at zi = (Pi, Q), we approximate ∂PP′(P, Q)

with the quantity
∑

|i|≤n, i�=0
(−1)i+1

ih
(n!)2

(n−i)!(n+i)! Fi. The overall number of nodes is such
that the difference between the values of the derivatives is smaller than 0.001 as n
increases to n + 1. The computational details are provided in Appendix C.

4.2 Eigenvalues of asteroids and Kuiper belt objects

We compute the eigenvalues of the jacobian matrix of the Gauss map, following
the algorithm outlined in the previous sections. Over a sample of 100 asteroids of the
main belt we found 20 objects with at least one eigenvalue with modulus greater than
one. Typically the graph of the maximum modulus of the eigenvalues versus the time
intervals t12 or t23 is provided in Fig. 1 (left panel), where t12 and t23 are taken between
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Fig. 1 Maximum modulus of the eigenvalues of the jacobian matrix versus the time intervals t12 and
t23. Left: asteroid number 8; Right: Kuiper belt object number 12
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0 and 90 days with a time-step equal to 5 days. This example refers to the asteroid num-
ber 8, whose elements are a = 0.2012 AU, e = 0.1563, i = 5.8869◦, ω = 284.9649◦,
� = 111.0326◦, M = 81.1258◦ at epoch MJD 53450. A similar procedure was adopted
for the 615 objects of the Kuiper belt; however, contrary to the main belt objects we
have not found any sample showing an eigenvalue greater than one. A typical picture
of the first eigenvalue of a Kuiper belt object is provided in Fig. 1 (right panel), which
corresponds to the Kuiper belt object number 12, whose elements are a = 42.3035 AU,
e = 0.2174, i = 14.0299◦, ω = 236.5808◦, � = 56.2982◦, M = 336.4332◦ at epoch MJD
53400.5. We remark that in both cases the graph of |λ1| versus t12, t23 is roughly sym-
metric with respect to the line t12 = t23, where the eigenvalue approximately attains
its minimum; in this situation the contractive character of the Gauss map is stronger.
This remarks confirms indeed that Gauss method gives better results whenever equal
observational time intervals are considered. In this case Gauss (1809) noticed that
at the first iteration his method gives errors of O(ε2), instead than O(ε) as obtained
using different time intervals; furthermore, as remarked also by Poincaré (1906), the
errors after n iterations become of order O(ε2n) using equal time intervals, while they
are O(εn) at different time intervals.

Acknowledgements We are deeply grateful to Giovanni Federico Gronchi and to Andrea Milani
for useful discussions and suggestions.

Appendix

A Computation of the longitude and latitude from the elliptic elements

We derive the ecliptic geocentric longitude and latitude from the elliptic elements,
without taking into account topocentric corrections or aberrational effects. We restrict
to consider e < 1. Let a, e, i, ω, �, M be the elliptic elements at a fixed refer-
ence epoch T = 0; let t1, t2, t3 be the times of observations with t12 = t2 − t1,
t23 = t3 − t2. The mean anomaly at time t2 is given by M2 ≡ M(t2) = M + nt2,
where n = ka−3/2 is the mean motion with k = 0.985608◦/day. Similarly one has
M1 = M2 − nt12, M3 = M2 + nt23. The eccentric anomalies ξ1, ξ2, ξ3 at t1, t2, t3 are
obtained solving Kepler’s equation ξi − e sin ξi = Mi(i = 1, 2, 3). Let

→
s = (x, y, z) be

the coordinates of the asteroid in the orbital frame with the x-axis coinciding with the
perihelion line, i.e. x = a(cos ξ − e), y = a(1 − e2)1/2 sin ξ , z = 0. Replacing ξ with ξ1,
ξ2, ξ3, one obtains the position vectors

→
s 1,

→
s 2,

→
s 3, which must be transformed in the

ecliptic frame by means of the following three rotations:

(a) a rotation of angle ω around the z-axis;
(b) a rotation of angle i around the x-axis;
(c) a rotation of angle � around the z-axis.

Let the resulting vectors in the ecliptic frame be denoted as
→
s (e)

i (i = 1, 2, 3); with
a similar procedure one obtains the Earth’s coordinates

→
a (e)

i (i = 1, 2, 3). Defining the
generic geocentric vectors as

→
R ≡ →

s (e) − →
a (e) ≡ (X, Y, Z), the longitude of

→
R is given

by the expression λ = tan−1(Y/X) if X > 0 and λ = tan−1(Y/X) + π if X < 0, while
the latitude is given by β = sin−1(Z/(X2 + Y2 + Z2)1/2).
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B Proof of Proposition 4.1

In this appendix, we give a proof of Proposition 4.1 as a byproduct of Proposition
B.1 below. Moreover (see Corollary B.1), we provide a sufficient condition to ensure
that FG is a contraction for ε small. Let C̄ be a conic, and let z̄ = (P̄, Q̄) be its
Gauss parameters.2 We recall that we keep t2 fixed, while t1, t3 are varied; let ε

be the time interval between the first and the third observation and, as in (1), let
t1 = t2 − γ12ε, t3 = t2 + γ23ε. Denote by FG : z = (P, Q) → z′ = (P′, Q′) the Gauss
map, defined in a suitable neighbourhood of z̄. We want to compute the eigenvalues
of the jacobian matrix of FG, which we denote as J = J (C̄, t2, γ12, γ23, ε) ≡ {Jij}i,j=1,2.

Proposition B.1 Fix t2 and C̄ such that conditions (9) and (10) are satisfied. Then, there
exist Ĵ11, Ĵ12, Ĵ21, Ĵ22 depending on C̄, t2, γ12, γ23, such that

J11 = ∂P P′(P̄, Q̄) = Ĵ11ε + o(ε2) J12 = ∂Q P′(P̄, Q̄) = Ĵ12 + o(ε),

J21 = ∂P Q′(P̄, Q̄) = Ĵ21ε
2 + o(ε3) J22 = ∂Q Q′(P̄, Q̄) = Ĵ22ε + o(ε2).

Remark B.1 The eigenvalues λ1, λ2 ∈ C of J can be written as λj = ι̂jε + o(ε2)( j =
1, 2) with ι̂j = τ ± √

τ 2 − δ, where τ = (Ĵ11 + Ĵ22)/2 and δ = Ĵ11Ĵ2 − Ĵ21Ĵ12 are the
semi–trace and determinant of Ĵ = {Ĵij}i,j=1,2. Moreover, if C̄, t2, γ12, γ23 are such that
� ≡ τ 2 − δ �= 0, then, λ1(z̄) �= λ2(z̄) for ε > 0 sufficiently small.

Corollary B.1 Let C̄, t2 verify (9) and (10) and let γ12, γ23 be chosen such that � �= 0.
Then, there exists ε̄ > 0 such that, if 0 < ε < ε̄, the mapping FG : (W, d) → R2 is a
contraction.

Let us first recall the definition of the Gauss map, referring to Celletti and Pinzari
(2005), for details. Let ρ2(P, Q) be the solution of Gauss equation:

ρ2 = G2(P, Q, ρ2) ≡ −→
c 2 · →

a2 +
→
c 2 · →

a1 + →
c 2 · →

a3P
P + 1

(
1 + Q

2r3
2

)
,

where
→
c i =

→
bj ∧ →

bk
→
b1 ∧ →

b2 · →
b3

εjki, r2 = |→a2 + ρ2
→
b2| and εjki = 1 if {j, k, i} is an even

permutation of {1, 2, 3}, εjki = −1 otherwise. Let ρ1 ≡ ρ1(P, Q), ρ3 ≡ ρ3(P, Q) be
defined as

ρ1 = −→
c 1 · →

a1 + P + 1

1 + Q
2r2(ρ2(P,Q))3

→
c 1 · →

a2 − P
→
c 1 · →

a3 ≡ G1(P, Q, ρ2(P, Q)),

ρ3 = − 1
P

→
c 3 · →

a1 + P + 1

P
(

1 + Q
2r2(ρ2(P,Q))3

)→
c 3 · →

a2 − →
c 3 · →

a3 ≡ G3(P, Q, ρ2(P, Q)).

Let
→
r i(P, Q), i = 1, 2, 3, be written as

→
r i = →

r i(P, Q) = →
ai + ρi(P, Q)

→
bi. (12)

It can be shown (Celletti and Pinzari 2005) that
→
r 1,

→
r 2,

→
r 3 are coplanar and define a

unique conic C = C(P, Q) with a focus in their common origin. We also recall that the
eccentricity e = e(P, Q) of C and the argument of perihelion g = g(P, Q) are given by

2 Barred quantities will refer to C̄.
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e =
√

A2 + B2

|n12 + n23 − n13| ,

cos g = B√
A2 + B2

s, sin g = − A√
A2 + B2

s, (13)

where nij = nij(P, Q) is the oriented area of the triangle formed by
→
r i,

→
r j,

s ≡ sgn(n12 + n23 − n13) and, denoting by vij ≡ 2fij the angle formed by
→
r i,

→
r j,

one has

A ≡ r2(r3 − r1) + r1(r2 − r3) cos v12 + r3(r1 − r2) cos v23,

B ≡ −r1(r2 − r3) sin v12 + r3(r1 − r2) sin v23. (14)

Moreover, let P, Q be expressed by

P = n12

n23
, Q = 2r3

2

(
n12 + n23

n13
− 1

)
(15)

and let ηij = ηij(P, Q) denote the ratio of the area of the triangle formed by
→
r i

and
→
r j with the corresponding conic sector. The Gauss map FG is finally defined by

z′ = FG(z), where z′ = (P′, Q′) takes the form

P′ = γ12

γ23

η12

η23
, Q′ = ε2γ12γ23

r2
2

r1r3

η12η23

cos f12 cos f23 cos f13
. (16)

The proof of Proposition B.1 is obtained through some technical lemmas, which pro-
vide estimates of the derivatives of ηij, ri/rj, fij, appearing in (16) (assumptions (9) and
(10) are assumed throughout all this appendix).

Lemma B.1 There exist two constants RP, RQ depending on C̄, t2, γ12, γ23, such that
for i = 1, 2, 3 one has

∂Pερi(P̄, Q̄) = RP + o(ε), ∂Qε2ρi(P̄, Q̄) = RQ + o(ε). (17)

Proof Using (11), (9) and
→
a3 − →

a1 = →
ȧ2ε + o(ε2), denoting for short

→
B ≡

−2
→
b2 ∧

→
ḃ2

→
b2 ∧

→
ḃ2 ·

→
ḃ2γ12γ23ε2

and recalling that
→
c 2 =

→
b3 ∧

→
ḃ1→

b1 ∧ →
b2 · →

b3
, one has

→
c 2 = →

B + o(ε−1),
→
c 2 · (

→
a3 − →

a1) = →
B · →

ȧ2ε + o(1). (18)

The implicit function theorem shows that ρ2(P, Q) is a smooth function of (P, Q), such
that

∂Pρ2(P̄, Q̄) = ∂PG2(P̄, Q̄, ρ̄2)

1 − ∂G2(P̄, Q̄, ρ̄2)
=

→
c 2·(

→
a 3−

→
a 1)

(P+1)2

1 + 3
→
c 2 · →

a3
Q̄

2r̄5
2
(ρ̄2 + →

a2 · →
b2)

+ 3

[→c 2·(
→
a 3−

→
a 1)]2

(P+1)3
Q̄

2r̄5
2
(ρ̄2 + →

a2 · →
b2)

[
1 + 3

→
c 2 · →

a3
Q̄

2r̄5
2
(ρ̄2 + →

a2 · →
b2)

]2 + o(ε). (19)
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An explicit expression up to o(1) is obtained using (18), (19) and the estimates for
P̄, Q̄ given by P̄ = γ12

γ23
+ o(ε2), Q̄ = γ12γ23ε

2 + o(ε3):

∂Pρ2(P̄, Q̄) = − 2
1 − D

→
b2 ∧

→
ḃ2 · →

ȧ2
→
b2 ∧

→
ḃ2 ·

→
b̈2

γ23

γ12ε
+ o(1) ≡ RP

ε
+ o(1).

Similar computations allow to conclude that ∂Pρ1(P̄, Q̄) ≡ RP
ε

+ o(1) and that
∂Pρ3(P̄, Q̄)

RP
ε

+ o(1). Concerning the derivative with respect to Q, one finds that

∂Qρ2(P̄, Q̄) = ∂QG2(P̄, Q̄, ρ̄2)

1 − ∂ρ2 G2(P̄, Q̄, ρ̄2)

=
[→

c 2 · →
a3 −

→
c 2·(

→
a 3−

→
a 1)

P̄+1

]
1

2r̄3
2

1 + 3
[→

c 2 · →
a3 −

→
c 2·(

→
a 3−

→
a 1)

P̄+1

]
Q̄

2r̄5
2
(ρ̄2 + →

a2 · →
b2)

and one easily finds that RQ in (17) takes the expression RQ ≡ 1
2(1−D)

ε2
→
B·→a 2
r̄3
2

.

As a corollary of the previous lemma we have the following result.

Lemma B.2 For any i �= j, there exist constants R∗i,j
P , R∗i,j

Q depending on C̄, t2, γ12, γ23,

such that ∂P(ri − rj) = R∗i,j
P + o(ε), ∂Q ε(ri − rj) = R∗i,j

Q + o(ε) (a similar expression is
valid also for ri/rj).

Next we have the following

Lemma B.3 There exist two constants NP, NQ depending on C̄, t2, γ12, γ23, such that

∂P n13(P̄, Q̄) = NP + o(ε), ∂Q εn13(P̄, Q̄) = NQ + o(ε). (20)

Proof Let
→
k(P, Q) =

→
r 1(P, Q) ∧ →

r 3(P, Q)

|→r 1(P, Q) ∧ →
r 3(P, Q)| be a unit vector normal to the plane

formed by
→
r 1,

→
r 2,

→
r 3. Then, n13(P, Q) = →

r 1 ∧ →
r 3 · →

k and

∂Pn13(P̄, Q̄) = (∂P
→
r 1 ∧ →

r̄ 3 ·
→
k̄ + →

r̄1 ∧ ∂P
→
r̄ 3 ·

→
k̄ + →

r̄ 1 ∧ →
r̄ 3 · ∂P

→
k) |(P̄,Q̄).

Last term is zero, since ∂P
→
k(P̄, Q̄) is perpendicular to

→
k̄ and therefore, it is linearly

dependent with
→
r̄ 1,

→
r̄ 3. For the remaining terms, using (12) we have

(∂P
→
r 1 ∧ →

r̄ 3 ·
→
k̄) |(P̄,Q̄) = (

→
b1 ∧ →

a3 ·
→
k̄ + ρ̄3

→
b1 ∧ →

b3 ·
→
k̄) ∂Pρ1(P̄, Q̄),

(
→
r̄ 1 ∧ ∂P

→
r̄ 3 ·

→
k̄) |(P̄,Q̄) = (

→
a1 ∧ →

b3 ·
→
k̄ + ρ̄1

→
b1 ∧ →

b3 ·
→
k̄) ∂Pρ3(P̄, Q̄).

By (11), the two terms in parenthesis are both equalto ρ̄2
→
b2 ∧

→
ḃ2 ·

→
k̄ε up to o(ε2), while

for the first term we remark that
→
b1 ∧ →

a3 + →
a1 ∧ →

b3 = (
→
a2 ∧

→
ḃ2 − →

ȧ2 ∧ →
b2)ε + o(ε2).

Casting together the previous formulae and using Lemma B.1, we conclude that

∂Pn13(P̄, Q̄) = (
→
a2 ∧

→
ḃ2 ·

→
k̄ − →

ȧ2 ∧ →
b2 ·

→
k̄ + 2ρ̄2

→
b2 ∧

→
ḃ2 ·

→
k̄) RP + o(ε),

which can be written as ∂Pn13(P̄, Q̄) ≡ NP+o(ε) for a suitable constant NP. In a similar
way one obtains the second of (20).
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Remark B.2 Similar results hold for
→
∂ n12(

→
P, Q̄), ∂̄n23(P̄, Q̄). More precisely, for

(i, j) = (1, 2), (2, 3), one has ∂Pnij = NP γij + o(ε), ∂Qεnij = NQγij + o(ε). As a conse-
quence of Lemmas B.1, B.3 and of the previous remark, a similar estimate holds for
vij, being sin vij = nij/(rirj).

Lemma B.4 There exist two constants SP, SQ depending on C̄, t2, γ12, γ23, such that

∂P(sin v12 + sin v23 − sin v13)(P̄, Q̄) = SP ε2 + o(ε4),

∂Q(sin v12 + sin v23 − sin v13)(P̄, Q̄) = SQ ε + o(ε3).

Next step is to evaluate the derivatives of the eccentricity e(P, Q) of C(P, Q).

Lemma B.5 There exist two constants EP, EQ depending on C̄, t2, γ12, γ23, such that
∂P εe(P̄, Q̄) = EP + o(ε), ∂Q ε2e(P̄, Q̄) = EQ + o(ε).

Proof From (13), we obtain (
→
∂ ≡ (∂P, ∂Q)):

→
∂ e(P̄, Q̄) =

→
∂
√

A2 + B2(P̄, Q̄)

|n̄12 + n̄23 − n̄13| − ē
→
∂ (n12 + n23 − n13)(P̄, Q̄)

n̄12 + n̄23 − n̄13
;

therefore, we can take EP = E1
P − ēE2

P, EQ = E1
Q − ēE2

Q, where E i
P, E i

Q are such that

ε
∂P

√
A2 + B2(P̄, Q̄)

|n̄12 + n̄23 − n̄13| = E1
P + o(ε),

ε2 ∂Q
√

A2 + B2(P̄, Q̄)

|n̄12 + n̄23 − n̄13| = E1
Q + o(ε) (21)

and

ε
∂P(n12 + n23 − n13)(P̄, Q̄)

(n̄12 + n̄23 − n̄13)
= E2

P + o(ε),

ε2 ∂Q(n12 + n23 − n13)(P̄, Q̄)

(n̄12 + n̄23 − n̄13)
= E2

Q + o(ε). (22)

To prove (21) we proceed as follows. From the second of (15) with (P, Q) = (P̄, Q̄),
one has

|n̄12 + n̄23 − n̄13| = n̄13
Q̄

2r̄3
2

= √
p̄

γ12γ23

2r̄3
2

ε3 + o(ε4), (23)

where p̄ is the parameter of C̄ and n̄13 = √
p̄ ε + o(ε2). Using (13) one has

→
∂
√

A2 + B2(P̄, Q̄) = ˆ̄g · →
∂ R⊥, (24)

where R⊥ = (sB, −sA). Therefore, we need to evaluate
→
∂ A(P, Q), ∂B(P, Q). To this

end, rewrite (14) as

A = −r1(r2 − r3)(1 − cos v12) − r3(r1 − r2)(1 − cos v23)

B = r1r3(sin v12 + sin v23 − sin v13) − (n12 + n23 − n13), (25)

where we used nij = rirj sin vij. From (25) one has

→
∂ A(P̄, Q̄) =

3∑
i=1

→
Ai,

→
∂ B(P̄, Q̄) =

3∑
i=1

→
Bi,
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where

→
A1 = −→

∂ r1(P̄, Q̄)(r̄2 − r̄3)(1 − cos v̄12) − →
∂ r3(P̄, Q̄)(r̄1 − r̄2)(1 − cos v̄23),

→
A2 = −r̄1

→
∂ (r2 − r3)(P̄, Q̄)(1 − cos v̄12) − r̄3

→
∂ (r1 − r2)(P̄, Q̄)(1 − cos v̄23),

→
A3 = −r̄1(r̄2 − r̄3)

→
∂ (1 − cos v12)(P̄, Q̄) − r̄3(r̄1 − r̄2)

→
∂ (1 − cos v23)(P̄, Q̄),

→
B1 = →

∂ r1r̄3(sin v̄12 + sin v̄23 − sin v̄13) + r̄1
→
∂ r3(sin v̄12 + sin v̄23 − sin v̄13),

→
B2 = r̄1r̄3

→
∂ (sin v12 + sin v23 − sin v13),

→
B3 = −→

∂ (n12 + n23 − n13).

Using Taylor formula for r̄1, r̄3, v̄1, v̄3 and recalling Lemmas B.1, B.2, B.4, we find that
for suitable constants AP, AQ, BP, BQ, one has

∂P A(P̄, Q̄) = AP ε2 + o(ε3), ∂Q A(P̄, Q̄) = AQ ε + o(ε2),

∂P B(P̄, Q̄) = BP ε2 + o(ε3), ∂Q B(P̄, Q̄) = BQ ε + o(ε2).
(26)

The proof of (21) is obtained casting together (26), (24) and (23). The proof of (22) is
quite similar: using (15) we have

→
∂ [n12 + n23 − n13] (P̄, Q̄)

n̄12 + n̄23 − n̄13
=

→
∂ n13(P̄, Q̄)

n̄13
+

→
∂ Q(P̄, Q̄)

Q̄
− 3

→
∂ r2(P̄, Q̄)

r̄2
.

Therefore, by Lemmas B.1, B.3, we obtain (22).
We remark that (26) allows to evaluate the derivatives of the true anomaly v2 = −g;

indeed, taking the gradient of tan v2 = A/B (see (13)), one has:

→
∂ v2(P̄, Q̄) = cos2 v̄2

[ →
∂ A(P̄, Q̄)

B̄
− Ā

B̄2

→
∂ B(P̄, Q̄)

]

= s̄
cos ḡ√

Ā2 + B̄2

[→
∂ A(P̄, Q̄) + tan ḡ

→
∂ B(P̄, Q̄)

]
,

where
√

Ā2 + B̄2 = ē|n̄12 + n̄23 − n̄13| = ē
√

p̄γ12γ23
2r̄3

2
ε3 +o(ε4) (see (13), (23)). Therefore,

we obtain the following.

Lemma B.6 There exist two constants N 2
P, N 2

Q depending on C̄, t2, γ12, γ23 such that

ε ∂Pv2(P̄, Q̄) = N 2
P + o(ε), ε2∂Qv2(P̄, Q̄) = N 2

Q + o(ε).

Finally we are able to compute the lowest orders of the quantities ηij = ηij(P, Q) =
nij/Sij appearing in the definition of FG (see (16)). For simplicity we assume to deal
with an elliptic trajectory, i.e. ē < 1, though the results can be extended to any value
of the eccentricity. Let z = (P, Q) vary in a small neighbourhood of z̄ = (P̄, Q̄). If
ξi = ξi(P, Q) denotes the eccentric anomaly and if Mi = Mi(P, Q) = ξi − e sin ξi is the
mean anomaly, the quantity η23 can be expressed as

η23 = sin(ξ3 − ξ2) − e(sin ξ3 − sin ξ2)

M23
= 1 − ξ23 − sin ξ23

M23
,
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where ξij = ξj − ξi, Mij = Mj − Mi. Therefore, we have

→
∂ η23(P̄, Q̄) = −

→
∂ (ξ23 − sin ξ23)

M̄23
+ (ξ̄23 − sin ξ̄23)

→
∂ M23

M̄2
23

= −
(

ξ̄2
23

2M̄23
+ o

(
ξ̄4

23/M̄23

))
→
∂ ξ23(P̄, Q̄)

+
(

ξ̄3
23

6M̄2
23

+ o
(
ξ̄5

23/M̄2
23

))
→
∂ M23(P̄, Q̄)

= [εE1 + o(ε3)]→
∂ ξ23(P̄, Q̄) + [εE2 + o(ε3)]→

∂ M23(P̄, Q̄), (27)

where we used M̄ij = γijā−3/2ε, ξ̄ij = M̄ij/(1 − ē cos ξ̄i) + o(ε2), with E1, E2 being two
suitable constants. We proceed to compute

→
∂ ξ23(P̄, Q̄),

→
∂ M23(P̄, Q̄). Using the classical

relations

ξi = 2 tan−1
(

f (e) tan
vi

2

)
, f (e) ≡

√
1 − e
1 + e

and recalling Lemmas B.5 and B.6, one finds that

∂Pξ23(P̄, Q̄) = X 23
P + o(ε), ∂Qεξ23(P̄, Q̄) = X 23

Q + o(ε),

∂PM23(P̄, Q̄) = M23
P + o(ε), ∂QεM23(P̄, Q̄) = M23

Q + o(ε) (28)

for some quantities X 23
Q , X 23

Q , M23
P , M23

Q depending only on C̄, γ12, γ23. Inserting (28)
in (27), we obtain the following

Lemma B.7 Let i �= j ∈ {1, 2, 3}. There exist two constants ε
ij
P, εij

Q depending on

C̄, t2, γ12, γ23, such that

∂Pηij(P̄, Q̄) = E ij
Pε + o(ε2), ∂Qηij(P̄, Q̄) = E ij

Q + o(ε).

We are finally ready to complete the
Proof of proposition B.1 From the definition of the Gauss map (16), one has

→
∂ P′(P̄, Q̄) = η̄12

η̄23

[ →
∂ η12(P̄, Q̄)

η̄12
−

→
∂ η23(P̄, Q̄)

η̄23

]

→
∂ Q′(P̄, Q̄) = γ12γ23q̄

[
ε2

→
∂ r2/r1(P̄, Q̄)

r̄2/r̄1
+ ε2

→
∂ r2/r3(P̄, Q̄)

r̄2/r̄3

]

+ γ12γ23q̄

[
ε2

→
∂ η12(P̄, Q̄)

η̄12
+ ε2

→
∂ η23(P̄, Q̄)

η̄23

]
− γ12γ23q̄

×
[
ε2 tan f̄12

→
∂ f12(P̄, Q̄) + ε2 tan f̄23

→
∂ f23(P̄, Q̄) + ε2 tan f̄13

→
∂ f13(P̄, Q̄)

]
,

where q̄ ≡ Q̄
γ12γ23ε2 = r̄2

2
r̄1 r̄3

η̄12η̄23
1

cos f̄12 cos f̄23 cos f̄13
. For i �= j, let η̄ij = 1 + o(ε2), r̄i/r̄j =

1 + o(ε), cos f̄ij = 1 + o(ε2); therefore, q̄ = 1 + o(ε) and using Lemma B.7 to evaluate
→
∂ ηij(P̄, Q̄), Lemma B.2 to evaluate

→
∂ [ri/rj](P̄, Q̄) and the Remark B.2 to evaluate

→
∂ fij(P̄, Q̄) = →

∂ vij(P̄, Q̄)/2, we find the result of Proposition B.1.
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C Computation of the derivatives by polynomial interpolation

Suppose we want to compute the derivative at some point x̄ of the function x → f (x),
using a polynomial interpolation. Let xi = x̄ + ih, i = −n, . . . , n be the nodes around x̄
and let yi = f (xi); we define the interpolating Laplace polynomial Pn of degree 2n as

Pn(x) =
n∑

i=−n

∏
j �=i(x − xj)∏
j �=i(xi − xj)

yi.

After the change of variable s = (x − x̄)/h, one obtains

Pn(x̄ + sh) =
n∑

i=−n

�j �=i(s − j)

�j �=i(i − j)
yi ≡ Qn(s).

The derivative df (x̄)/dx is approximated by dPn(x̄)/dx = h−1dQn(0)/ds. Let us
consider first the term with i = 0:

�j �=0(s − j)

�j �=0(−j)
y0 = (s − n)(s − n + 1) · · · (s − 1)(s + 1) · · · (s + n − 1)(s + n)

(−1)n(j!)2 y0.

This term is an even function of s, so that its derivative at s = 0 is zero. On the other
hand, deriving (through Leibnitz rule) with respect to s the remaining terms of the
sum, for any i �= 0 one has:

(s − n) · · · [s − (i + 1)][s − (i − 1)] · · · (s) · · · (s + n)

(i − n) · · · (−1)(1) · · · (i + n)
yi

= (s − n) · · · [s − (i + 1)][s − (i − 1)] · · · (s) · · · (s + n)

(−1)n−i(n − i)!(n + i)! yi;

computing these terms at s = 0, the only one which survives is given by

(−1)i+1

i
(n!)2

(n − i)!(n + i)!yi (i �= 0).

Finally, one concludes that

dPn

dx
(x̄) = 1

h
dQn

ds
(0) =

∑
|i|≤n, i�=0

(−1)i+1

ih
(n!)2

(n − i)!(n + i)!yi.
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