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Abstract
We study a two-dimensional fermionic cloud of repulsive alkali-metal atoms characterized by two
hyperfine states which are Rabi coupled.Within a variationalHartree–Fock scheme, we calculate
analytically the ground-state energy of the system. Thenwe determine the conditions underwhich
there is a quantumphase transitionwith spontaneous symmetry breaking from a spin-balanced
configuration to a spin-polarized one, an effect known as itinerant ferromagnetism. Interestingly, we
find that the transition appears when the interaction energy per particle exceedes both the kinetic
energy per particle and the Rabi coupling energy. The itinerant ferromagnetism of the polarized phase
is analyzed, obtaining the population imbalance as a function of interaction strength, Rabi coupling,
and number density. Finally, the inclusion of a external harmonic confinement is investigated by
adopting the local density approximation.Wepredict that a single atomic cloud can display
population imbalance near the center of the trap and a fully balanced configuration at the periphery.

1. Introduction

Recently, artificial spin-orbit andRabi couplings have been implemented bymeans of counterpropagating laser
beams in bosonic [1, 2] and fermionic [3, 4] atomic gases. These laser beams couple two internal hyperfine states
of the atomby a stimulated two-photonRaman transition [1–4]. Triggered by these remarkable experiments, in
the last few years a large number of theoretical papers have analyzed the spin-orbit effects with Rashba [5] and
Dresselhaus [6] terms in Bose–Einstein condensates [7–13] and also in the BCS-BEC crossover of superfluid
fermions [14–22]. Very recently, the Rashba spin–orbit coupling in a two-dimensional (2D) repulsive Fermi gas
has been investigated in [23, 24], where the density of states is quite simple and analytical results can be obtained.
We stress that 2Dquantum systems showpeculiar physical properties and are crucial for technological
applications: high-temperature superconductivity is attributed tomaterials characterized by a 2D-like transport
[25], and,more generally, superconductor and oxide interfaces containing 2D electron gas are of paramount
importance for contemporary electronics [26].

The Rabi coupling of hyperfine states of atoms is now a common tool for experimental and theoretical
investigations involvingmulti-component gases. Some examples are: the control of the population of the
hyperfine levels [27, 28], the formation of localized structures [29], and themixing–demixing dynamics of Bose–
Einstein condensates [30]. It is particularly interesting to study how the Rabi coupling affects the equilibrium
properties of an atomic 2D repulsive Fermi gas, and,more specifically, if the Rabi coupling can help a gas of spin-
up and spin-down fermions to become ferromagnetic, thus determining the itinerant ferromagnetism proposed
in [31]. The repulsive interaction induces thewell-known Stoner instability [32] above a critical strength.
Nevertheless, in the absence of the Rabi coupling this instability is expected to produce phase separation rather
than spinflip [33]. Generally speaking, itinerant ferromagnetism is signaled by the spontaneous appearance of
local spin imbalance, but this itself does not require spin flipmechanisms. A thorough investigation of this
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instability critical strength has been developed in [34–37]. The observation of itinerant ferromagnetism in
ultracold atoms in 3D is complicated by the presence of three-body losses [38], which are however expected to be
less important in reduced dimensions [39]. As noted in [40], the itinerant ferromagnetism is a key effect to get a
deeper insight in the physics of systems such asmetals, quark liquids in neutron stars.Moreover, it is still debated
whether homogeneous electron systems can reach a fully ferromagnetic state.We stress that very recently the
observation of the ferromagnetic instability has been reported in a binary spin-mixture of ultracold 6Li
atoms [41].

In this paperwe study a Rabi-coupled fermionic gas of repulsive alkali-metal atoms trapped in a quasi 2D
configuration, where the effects of the third direction are fully frozen due to a strong external confinement in
that direction [42]. Itinerant ferromagnetism in a trapped repulsive 2DFermi system, butwithout Rabi
coupling, has been investigated both analytically [43, 44] and numerically [45]. The fermionic atoms are
characterized by two hyperfine internal states which can bemodeled as two spin components. Here we
investigate the ground-state properties of the quantum gas by using theHartree–Fockmethod in the formof a
mean-field approximation for operator products, where the population imbalance is a variational parameter. In
this waywe calculate analytically the conditions under which there is a quantumphase transition from a spin-
balanced to a spin-polarized configuration. This phase transition features a spontaneous symmetry breaking of
the fermion polarization (population imbalance) between two degenerate values. The behavior of the
population imbalance is determined as a function of the systemparameters.We also consider the inclusion of an
external harmonic potential investigating non-trivial effects caused by the space-dependent confinement on the
polarization of the atomic cloud.

2.ModelHamiltonian

Themany-bodyHamiltonian of the 2D fermionic atomic gas including contact interactions of strength g and
Rabi coupling of frequencyΩ reads
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where ysˆ ( )r is the field operatorwhich destroys a fermion of spinσ at position r. It is important to stress that,
due to the presence of the Rabi coupling, the total number
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where L2 is the area of the 2D system and is the single-particlematrixHamiltonian
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with the average total number density and the population imbalance given by

z= + =
-
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, , 6

respectively. Clearly, atfixed total density n, one finds that z Î -[ ]1, 1 . It is important to stress that, within our
Hartree–Fock scheme, ζ is a variational parameter whichmust be determined byminimizing the energy of the
system. By using the Paulimatrices sz and sx such that s s s=[ ], ia b abc c , with indexes =a b c x y z, , , , , the
single-particleHamiltonian (5) takes the form
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The latter can be diagonalized exactly [48], and onefinds
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is the contribution to the single-particle energy due to the repulsive interaction of strength g ( >g 0) and the
Rabi coupling of frequencyΩ. The corresponding eigenstates are given by
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where b̂ sk, and
+

b̂ sk, are ladder operators which destroy and create a fermion in the single-particle state ñ∣ sk, .

3.Ground-state properties

By implementing the continuum limit ò på  ( )L kd 2k
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Moreover, at zero temperature one canwrite
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whereQ( )x is theHeaviside step function andμ is the zero-temperature chemical potential, namely, the Fermi
energy of the interacting system.Notice thatμ isfixed by the conservation of the total number of fermions.
Then, by using equation (13), from equations (11) and (12)we find
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Clearly, if m a- there are no solutions. Let us now consider the remaining cases m a< + and a m+ .
Regime m a< +

From equations (9), (14) and (15), under the condition m a< +1, we obtain
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where equation (16) has been used to express  in terms of n instead ofμ. This average energy density  is a
function of the population imbalance ζ, which is our variational parameter. For the sake of simplicity we
introduce the characteristic energies
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Consequently, one has two cases: z = 0 for  WE Eint , and z =  - WE E1 2
int
2 for <WE Eint. In the second

case, the solution z = 0 describes amaximum separating the twominima. This scenario is completed by taking
into account the condition m a< + characterizing the present regime, withμ given by equation (16), finding
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Then, the two cases described above can be detailed as follows.

ConditionA. For  WE Eint and < WE Ekin the population imbalance is
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represent the chemical potential and energy density, respectively. The results under the condition B) show
explicitly that there is population imbalance if the interaction energy per particle Eint is larger than both the
kinetic termEkin (proportional to the kinetic energy per particle p ( )n m22 ) and theRabi energy WE . This is a
clear example of Stoner instability [32], where a sufficiently large repulsion between fermionsmakes the uniform
and balanced systemunstable. In this case, due to the presence of Rabi coupling, the systembecomes polarized
being either > n n (z < 0B ) or < n n (z > 0B ).

Regime a m+

From equations (9), (14) and (15), under the condition a m+1 , we obtain
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by using equation (24) to express  in terms of n instead ofμ. Also in this case the average energy density  is a
function of the population imbalance ζ, which is our variational parameter.However, the functional dependence
of (25) on ζ is quite different with respect to (17).

Finding theminimumof  , given by equation (25), with respect to ζ gives two cases: z = 0 for <E Eint kin,
and z = 1 for <E Ekin int. Again, onemust include the condition a m+ , withμ given by equation (24),
obtaining
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One easily discovers that the second case described above (z = 1 for <E Ekin int) is incompatible with (26) and
itmust be excluded. By taking into account (26), the remaining case characterized by <E Eint kin) can be detailed
as follows.

ConditionC. For E Eint kin and WE Ekin the population imbalance
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representing the chemical potential and energy density, respectively, of this case.

The analysis so far developed clearly shows that only under the condition (B) there is itinerant
ferromagnetism in the 2D repulsive Fermi gas. The condition (B)means that the interaction energy per particle
Eint must be larger than both the kinetic energy per particle Ekin and the Rabi energy WE . To summarize, this
result is convenient to introduce the Fermi energy F of our 2D fermionic system in the absence of interaction
andRabi coupling, that is given by

 
p= ( )

m
n. 29F

2

Taking into account the conditionsA,B,Cdescribed in the previous section, the chemical potential of the system
in the presence of interaction andRabi coupling can be thenwritten as
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under the condition >WE 2 F. In the upper panel offigure 1we report the adimensional chemical potential
m F as a function of the adimensional interaction strength ( )E 2int F for two values of adimensional Rabi

energy W ( )E 2 F . Thefigure clearly shows that at the critical strength there is the derivative of the chemical
potential changes slope.

The regionwhere m = 2 F corresponds to the conditionB: the systembecomes spin-polarized. In the lower
panel offigure 1we plot the population imbalance z∣ ∣as a function of the adimensional interaction strength

( )gn 2 F for two values of adimensional Rabi energy W ( )E 2 F . As shown in thefigure, the population
imbalance ζ, given by equation (22), decreases by increasing theRabi frequencyΩ. This result is consistent with
previous 2D calculations [34–37]which suggest, in the absence of Rabi coupling, a jump from z = 0 to z = 1
at the critical strength p= =( )g m E n4 2c

2
kin . Notice that this jump can be softened also by beyond-mean-

field quantum effects [34] or spin–orbit couplings [36]. Our results on the order parameter ζ, and specifically the
lower panel offigure 1, signal afirst-order phase transition if  <W ( )E 2 1F and a second-order phase transition
if  >W ( )E 2 1F .

4.Discussion and inclusion of harmonic confinement

Up to nowwe have considered a 2Dhomogeneous fermionic system.Here we discuss the effect of an external
hamonic confinement

w= +( ) ( ) ( )U m x yr
1

2
322 2 2

on the properties of the 2D system.We adopt the local density approximation [49]:

m m= +¯ [ ( )] ( ) ( )n Ur r , 33

where m̄ is the chemical potential of the non uniform 2D system, = + ( ) ( ) ( )n n nr r r is the local number
density with

5

New J. Phys. 19 (2017) 043018 VPenna and L Salasnich



ò= ( ) ( )N nr rd 342

the total number of fermions, and m [ ]n is the local chemical potential given by equations (30) and (31). By using
= +r x y2 2 equation (33) can bewritten as

w
m m= -( ¯ [ ]) ( )r n

1
2 35

which gives the radial coordinate r as a function of the number density n. This formula can be easily implemented
numerically to determine the density profile n(r), the local population imbalance
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As an example, infigure 2we report the total number density profile n(r) (upper panel) and the population
imbalance profile z ( )r (lower panel)with a simple choice of the parameters which ensures that > W( )n E g0 .
This condition is crucial to produce an atomic cloudwith population imbalance. Note that the appearance of a
non-zero population imbalance implies a spontaneous symmetry breaking of the ground-state with respect to
the choice ζ or z- .

Infigure 3we plot the corresponding local densities  ( )n r and  ( )n r . Thefigures clearly show that the atomic
cloud is characterized by population imbalance near the center of the trap (r = 0)where the total number
density is larger than WE g . Instead, at the periphery (near the surface) of the atomic cloud the gas is fully
balanced.We emphasize that setting  w= = =m 1 (as done infigures 2 and 3) amounts to using harmonic-
trap units: energies in units of w and lengths in units of  w= ( )a mH , that is the characteristic length of
harmonic confinement.

In the experiments with ultracold atomic clouds having a quasi-2Ddisk-shaped configuration on the (x, y)
plane, onefinds typically a 100H μm,while the 2D interaction strength g reads w= ( )g a a a4 s zH

2 with as the
3D s-wave scattering length and az the characteristic length of the confinement along the z axis. Remarkably, in
current experiments the 3D s-wave scattering length as can bemodified by using an externalmagnetic field
(Fano–Feshbach resonance technique) and consequently one can easilymove the system from aweakly-
interacting to a strongly-interacting regime.

Figure 1.Upper panel: adimensional chemical potential m F as a function of the adimensional interaction strength ( )E 2int F for
two values of adimensional Rabi energy W ( )E 2 F : 1/2 (solid line) and 2 (dashed line). Lower panel: absolute value z∣ ∣of the
population imbalance as a function of the adimensional interaction strength ( )E 2int F for the same two values of adimensional Rabi
energy W ( )E 2 F .
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5. Conclusions

In this paper we have shown how the non-trivial interplay among Pauli exclusion principle, repulsive
interaction, andRabi coupling can induce itinerant ferromagnetism in 2D repulsive Fermi gases. In particular,
we have analytically found that for a homogeneous 2D fermionic system there is polarization (i.e., itinerant
ferromagnetism)when the interaction energy per particle is larger than both the kinetic energy per particle and
the Rabi energy. It is important to stress that the itinerant ferromagnetism is certainly driven by the Stoner
instability [32]: a sufficiently large repulsion between fermionsmake the uniform and balanced systemunstable.
However, as we have shown in this paper, it is the presence of Rabi coupling that allows the phenomenon of spin
flip. In fact, in the absence of Rabi coupling or other spin-dependentmechanisms, the Stoner instability implies
phase separation and not spin flip. Similar effects are expected in bosonicmixtures [30, 50]. Herewe have
adopted aHartree–Fockmean-field approach.On the basis of previous results obtained in the absence of Rabi

Figure 2.Total density profile n(r) and population imbalance profile z ( )r of the 2DFermi gas under harmonic confinement of
frequencyω.We set  w= = =m 1 and choose W = 1, g= 3, and m =¯ 4. The lower panel shows spin-flip (population imbalance)
near the center of the trapwhile the periphery remains balanced.

Figure 3. Local densities  ( )n r and  ( )n r of the 2DFermi gas under harmonic confinement of frequencyω.We set  w= = =m 1
and choose W = 1, g= 3, and m =¯ 4. The panels clearly show the enhancement of the number of atomswith spin downnear the
center of the trap, while near the surface the system remains balanced.

7

New J. Phys. 19 (2017) 043018 VPenna and L Salasnich



coupling in 2D and 3D [43, 45, 51], we expect that beyond-meand-field quantum fluctuations can slightly
reduce the critical strength of Stoner instability.

In the last part of the paper we have considered the inclusion of an external harmonic potential, which is the
simplest trapping configuration for experiments with ultracold alkali-metal atoms. In this case, we have
predicted a remarkable effect we expect to be accessible in the near-future experiments: for a sufficiently large
number of fermions, such that the number density at the center of the trap exceeds a critical value, the 2D
fermionic gas is characterized by population imbalance near the center of the trap and by a fully balanced
configuration near the surface.
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