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Abstract

We study a two-dimensional fermionic cloud of repulsive alkali-metal atoms characterized by two
hyperfine states which are Rabi coupled. Within a variational Hartree—Fock scheme, we calculate
analytically the ground-state energy of the system. Then we determine the conditions under which
there is a quantum phase transition with spontaneous symmetry breaking from a spin-balanced
configuration to a spin-polarized one, an effect known as itinerant ferromagnetism. Interestingly, we
find that the transition appears when the interaction energy per particle exceedes both the kinetic
energy per particle and the Rabi coupling energy. The itinerant ferromagnetism of the polarized phase
is analyzed, obtaining the population imbalance as a function of interaction strength, Rabi coupling,
and number density. Finally, the inclusion of a external harmonic confinement is investigated by
adopting the local density approximation. We predict that a single atomic cloud can display
population imbalance near the center of the trap and a fully balanced configuration at the periphery.

1. Introduction

Recently, artificial spin-orbit and Rabi couplings have been implemented by means of counterpropagating laser
beams in bosonic [1, 2] and fermionic [3, 4] atomic gases. These laser beams couple two internal hyperfine states
of the atom by a stimulated two-photon Raman transition [1-4]. Triggered by these remarkable experiments, in
the last few years a large number of theoretical papers have analyzed the spin-orbit effects with Rashba [5] and
Dresselhaus [6] terms in Bose—Einstein condensates [7—13] and also in the BCS-BEC crossover of superfluid
fermions [14—22]. Very recently, the Rashba spin—orbit coupling in a two-dimensional (2D) repulsive Fermi gas
has been investigated in [23, 24], where the density of states is quite simple and analytical results can be obtained.
We stress that 2D quantum systems show peculiar physical properties and are crucial for technological
applications: high-temperature superconductivity is attributed to materials characterized by a 2D-like transport
[25], and, more generally, superconductor and oxide interfaces containing 2D electron gas are of paramount
importance for contemporary electronics [26].

The Rabi coupling of hyperfine states of atoms is now a common tool for experimental and theoretical
investigations involving multi-component gases. Some examples are: the control of the population of the
hyperfinelevels [27, 28], the formation of localized structures [29], and the mixing—demixing dynamics of Bose—
Einstein condensates [30]. It is particularly interesting to study how the Rabi coupling affects the equilibrium
properties of an atomic 2D repulsive Fermi gas, and, more specifically, if the Rabi coupling can help a gas of spin-
up and spin-down fermions to become ferromagnetic, thus determining the itinerant ferromagnetism proposed
in [31]. The repulsive interaction induces the well-known Stoner instability [32] above a critical strength.
Nevertheless, in the absence of the Rabi coupling this instability is expected to produce phase separation rather
than spin flip [33]. Generally speaking, itinerant ferromagnetism is signaled by the spontaneous appearance of
local spin imbalance, but this itself does not require spin flip mechanisms. A thorough investigation of this
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instability critical strength has been developed in [34—37]. The observation of itinerant ferromagnetism in
ultracold atoms in 3D is complicated by the presence of three-body losses [38], which are however expected to be
less important in reduced dimensions [39]. As noted in [40], the itinerant ferromagnetism is a key effect to geta
deeper insight in the physics of systems such as metals, quark liquids in neutron stars. Moreover, it is still debated
whether homogeneous electron systems can reach a fully ferromagnetic state. We stress that very recently the
observation of the ferromagnetic instability has been reported in a binary spin-mixture of ultracold °Li

atoms [41].

In this paper we study a Rabi-coupled fermionic gas of repulsive alkali-metal atoms trapped in a quasi 2D
configuration, where the effects of the third direction are fully frozen due to a strong external confinement in
that direction [42]. Itinerant ferromagnetism in a trapped repulsive 2D Fermi system, but without Rabi
coupling, has been investigated both analytically [43, 44] and numerically [45]. The fermionic atoms are
characterized by two hyperfine internal states which can be modeled as two spin components. Here we
investigate the ground-state properties of the quantum gas by using the Hartree—Fock method in the form of a
mean-field approximation for operator products, where the population imbalance is a variational parameter. In
this way we calculate analytically the conditions under which there is a quantum phase transition from a spin-
balanced to a spin-polarized configuration. This phase transition features a spontaneous symmetry breaking of
the fermion polarization (population imbalance) between two degenerate values. The behavior of the
population imbalance is determined as a function of the system parameters. We also consider the inclusion of an
external harmonic potential investigating non-trivial effects caused by the space-dependent confinement on the
polarization of the atomic cloud.

2. Model Hamiltonian

The many-body Hamiltonian of the 2D fermionic atomic gas including contact interactions of strength gand
Rabi coupling of frequency {2 reads

N N 72 A AdAda A
A= fdzr[ E%lw:(—%vz) Uy + g ¢¢+¢f¢ﬂln
W+ wfwo], M

where 1), (r) is the field operator which destroys a fermion of spin o at position r. Itis important to stress that,
due to the presence of the Rabi coupling, the total number

N = [@@) o + 3 @), @

is a constant of motion, while the relative numbers NT and Z\All arenot.
Applying the mean-field approximation for operator products (see, e.g., [46, 47]) to

Adbadn A R A A
Uy Py = om y pp my Yy y — oy, ©)
with n, = (f,) = (12}: 1%) (0 =1, ]), enables us to write the mean-field many-body Hamiltonian as
2 LN s @T gn’ 272
A= [e|@fahm| |- Ea-or @
Y 4
where L* is the area of the 2D system and 7 is the single-particle matrix Hamiltonian
" LV 80+ L ()
= 5
7 % 2 gn
£l TV P30S0

with the average total number density and the population imbalance given by

n —n
n=m-+n, C:%, (6)

respectively. Clearly, at fixed total density , one finds that ¢ € [—1, 1]. Itis important to stress that, within our
Hartree—Fock scheme, (is a variational parameter which must be determined by minimizing the energy of the
system. By using the Pauli matrices o, and o, such that [0,, 03] = i€, 0, withindexes a, b, ¢ = x, y, z, the
single-particle Hamiltonian (5) takes the form

2
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2
H( Lk o )I+ (o +@0x
2m 2 2

The latter can be diagonalized exactly [48], and one finds

HIk, s) = Exk, s), (7)
where the eigenvalue
A%k
Eys = + )]
2m
depends on the 2D wavevector k, theindex s = —1, +11is the eigenvalue of 0, and
a = %n + % Jen? @ 1 22 ©)

is the contribution to the single-particle energy due to the repulsive interaction of strength ¢ (¢ > 0) and the
Rabi coupling of frequency 2. The corresponding eigenstates are given by

1kr
k, s) = Sls)»

where a,|s) = s |s), p |k, s) = 7k |k, s)and S = exp (1¢a},/2), with tgp = /€)/gn, is the transformation
taking H into the diagonal form. It follows that the mean-field many-body Hamiltonian can be written as

2 gn’ 272 Pt
H= *T(l — AL+ > > Eis b bis (10)

k s=—1,1

A At . L . .
where by s and by ; are ladder operators which destroy and create a fermion in the single-particle state |k, s).

3. Ground-state properties

By implementing the continuum limit >°, — L? f d%k / (27)?, the average total number density n = N /L? of the
fermionic system is found to be
dzk ; + P
-y J bis), (1)

s=—1,1 (27)2

while the average internal-energy density & = E/I?reads

2
Ta-or w [Sop,

s=—1,1 (2 )2

by, bies). (12)

Moreover, at zero temperature one can write

<l;k+,s ék,s> = @(M - Ek,s)) (13)

where © (x) is the Heaviside step function and y is the zero-temperature chemical potential, namely, the Fermi
energy of the interacting system. Notice that 1 is fixed by the conservation of the total number of fermions.
Then, by using equation (13), from equations (11) and (12) we find

— (2 - ap O = )+ (= 0 €01 - vl (14)
4\ 7

and

gn? 1 (2m
e--La-o+ g(ﬁ)mﬂ W) OG- a)

+ (1 = a%) O — am)l. (15)
Clearly, if ;1 < «a_ thereare no solutions. Let us now consider the remaining cases ;1 < a and ay < p.
Regime ;1 < a4
From equations (9), (14) and (15), under the condition p < «;, we obtain

2
_ 4n/ - %gn _ % [P + 7202 (16)

2m
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and also

2

Am/y )n _ ¢g2n2C2+ 72002 ]’ (17)

2m

__g_”z _ya
&= 4(1 C)+2[(g+

where equation (16) has been used to express £ in terms of n instead of 1. This average energy density £ isa
function of the population imbalance ¢, which is our variational parameter. For the sake of simplicity we
introduce the characteristic energies

Eq=7Q, Eine = gn, Eyin =

2m

The minimum of € with respect to (is easily found from the condition 9£/9¢ = 0 which, written in terms of
Eicand Eq, gives

Eint
VER G + ES
Consequently, one has two cases: ¢ = 0for Ejy < Eg,and ( = £4/1 — Egzz/Ei%n for Eq < Ejn. Inthesecond

case, the solution ¢ = 0 describes a maximum separating the two minima. This scenario is completed by taking
into account the condition p < v characterizing the present regime, with  given by equation (16), finding

Exin < {Eg C + E§. (19)

Then, the two cases described above can be detailed as follows.

n
EEimC 1 - =0. (18)

Condition A. For E;;,; < Eqand Ey;, < Eq the population imbalance is
=0 (20)

and the corresponding chemical potential and energy density are given by
1 1 n n
g = EEint + Eiin — EEQ) &= ZEim + E(Ekin — Eq). 21

Condition B. For Eq < Ej, and E, < Ej,, the population imbalance is

2
_ 1_(59), 22)

int

which shows the double degeneracy of the ground state and entails a spontaneous symmetry breaking, while

2
g = Ein, &= g (Ekin - ZI?Ezt ) (23)
represent the chemical potential and energy density, respectively. The results under the condition B) show
explicitly that there is population imbalance if the interaction energy per particle E;,, is larger than both the
kinetic term Ey;;, (proportional to the kinetic energy per particle 7/42n/(2m)) and the Rabi energy Eg. Thisisa
clear example of Stoner instability [32], where a sufficiently large repulsion between fermions makes the uniform
and balanced system unstable. In this case, due to the presence of Rabi coupling, the system becomes polarized
beingeither n; > 1y ((z < 0)orny < 1 ({5 > 0).

Regime oy <
From equations (9), (14) and (15), under the condition a;; < p, we obtain
1
p= E(Ekin + Ein) (24)
and the ground-state energy
n E; E}
&= _|:Eint<2(1 - ﬂ) + 2Eint + Ekin - L :| (25)
4 Eq kin

by using equation (24) to express £ in terms of n instead of . Also in this case the average energy density £ isa
function of the population imbalance ¢, which is our variational parameter. However, the functional dependence
of (25) on (is quite different with respect to (17).

Finding the minimum of £, given by equation (25), with respect to ( gives two cases: ( = 0 for Eje < Ejin,
and ( = +1for Ei, < Ein. Again, one must include the condition o, < i, with p given by equation (24),
obtaining
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VCEp + E4 < Egin. (26)

One easily discovers that the second case described above (( = +1 for Ey, < Eine) is incompatible with (26) and
it must be excluded. By taking into account (26), the remaining case characterized by Ei,; < Ejg,) can be detailed
as follows.

Condition C. For E;,; < Ey, and Eq < Ejy, the population imbalance
CC = O) (27)

entails

1 n E}
tte = —(Eint + Eiin)> Ec = —| Eint + Exin — (28)
2 4 kin

representing the chemical potential and energy density, respectively, of this case.

The analysis so far developed clearly shows that only under the condition (B) there is itinerant
ferromagnetism in the 2D repulsive Fermi gas. The condition (B) means that the interaction energy per particle
E;, must be larger than both the kinetic energy per particle Ey;, and the Rabi energy Eq,. To summarize, this
result is convenient to introduce the Fermi energy ep of our 2D fermionic system in the absence of interaction
and Rabi coupling, that is given by

ﬁz
€p = — TN. (29)
m
Taking into account the conditions A, B, C described in the previous section, the chemical potential of the system
in the presence of interaction and Rabi coupling can be then written as

1
o= €r + EEint for Eint < 26F (30)

2¢ex for Eint > 2¢g

under the condition Eq, < 2¢p, and

1
) 2er — E(EQ — Eint) for Eiye < Eq

(€20)

26 for E;n > Eq

under the condition Eq > 2¢g. In the upper panel of figure 1 we report the adimensional chemical potential
1t/ €r as a function of the adimensional interaction strength Ejy,, / (2¢x) for two values of adimensional Rabi
energy Eq / (2¢x). The figure clearly shows that at the critical strength there is the derivative of the chemical
potential changes slope.

The region where (1 = 2¢p corresponds to the condition B: the system becomes spin-polarized. In the lower
panel of figure 1 we plot the population imbalance |(] as a function of the adimensional interaction strength
gn/ (2eg) for two values of adimensional Rabi energy Eq, /(2¢g). As shown in the figure, the population
imbalance ¢, given by equation (22), decreases by increasing the Rabi frequency 2. This result is consistent with
previous 2D calculations [34—37] which suggest, in the absence of Rabi coupling, a jump from ( = 0to { = +1
at the critical strength g = 4n/%/(2m) = Ey;y /n. Notice that this jump can be softened also by beyond-mean-
field quantum effects [34] or spin—orbit couplings [36]. Our results on the order parameter ¢, and specifically the
lower panel of figure 1, signal a first-order phase transition if E / (2¢5) < 1and asecond-order phase transition
ifEQ/(ZEF) > 1.

4, Discussion and inclusion of harmonic confinement

Up to now we have considered a 2D homogeneous fermionic system. Here we discuss the effect of an external
hamonic confinement

Ur) = %mwz(xz +y?) (32)

on the properties of the 2D system. We adopt the local density approximation [49]:
fi=pln®] + U®), (33)

where [i is the chemical potential of the non uniform 2D system, 1 (r) = n;(r) + n(r) is thelocal number
density with
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Figure 1. Upper panel: adimensional chemical potential 1/ €p as a function of the adimensional interaction strength Ej, / (2¢5) for
two values of adimensional Rabi energy Eg, / (2€5): 1/2 (solid line) and 2 (dashed line). Lower panel: absolute value || of the
population imbalance as a function of the adimensional interaction strength Ej, /(2€g) for the same two values of adimensional Rabi
energy Eq/(2€y).

N= f &r n(r) (34)

the total number of fermions, and y [n] is the local chemical potential given by equations (30) and (31). By using
r = Jx? + y? equation (33) can be written as

= =2 = ulD (35)

which gives the radial coordinate r as a function of the number density n. This formula can be easily implemented
numerically to determine the density profile n(r), the local population imbalance

0 for n(r) < £a
¢ = . (36)
\/1 — E3/(g*n*(r)) forn(r) > ?Q
and the local densities of fermions with spin up and spin down:
1 1
n (r) = En(r)(l + ¢(), m(r) = En(r)(l — G (). (37)

As an example, in figure 2 we report the total number density profile #n(r) (upper panel) and the population
imbalance profile ¢ (r) (lower panel) with a simple choice of the parameters which ensures that # (0) > Eq /g.
This condition is crucial to produce an atomic cloud with population imbalance. Note that the appearance of a
non-zero population imbalance implies a spontaneous symmetry breaking of the ground-state with respect to
the choice or —(.

In figure 3 we plot the corresponding local densities # (r) and #; (r). The figures clearly show that the atomic
cloud is characterized by population imbalance near the center of the trap (r = 0) where the total number
density is larger than Eq, /g. Instead, at the periphery (near the surface) of the atomic cloud the gas is fully
balanced. We emphasize that setting 7 = m = w = 1 (asdone in figures 2 and 3) amounts to using harmonic-
trap units: energies in units of / and lengths in units of ay = /%2 / (mw) , that is the characteristic length of
harmonic confinement.

In the experiments with ultracold atomic clouds having a quasi-2D disk-shaped configuration on the (x, )
plane, one finds typically ay ~ 100 zzm, while the 2D interaction strength greads g = 4(/aw)a,af /a, with a, the
3D s-wave scattering length and a, the characteristic length of the confinement along the z axis. Remarkably, in
current experiments the 3D s-wave scattering length a; can be modified by using an external magnetic field
(Fano—Feshbach resonance technique) and consequently one can easily move the system from a weakly-
interacting to a strongly-interacting regime.
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= 0.4

25

W

Figure 2. Total density profile n(r) and population imbalance profile ¢ (r) of the 2D Fermi gas under harmonic confinement of
frequency w. Weset 7 = m = w = landchoose {2 = 1,g = 3,and i = 4. Thelower panel shows spin-flip (population imbalance)
near the center of the trap while the periphery remains balanced.

0 \ \ \ \ \
0 0.5 1 1.5 2 2.5 3

T

Figure 3. Local densities 7 (r) and #; (r) of the 2D Fermi gas under harmonic confinement of frequency w. Weset z=m = w = 1
and choose 2 = 1,¢ = 3,and i = 4. The panels clearly show the enhancement of the number of atoms with spin down near the
center of the trap, while near the surface the system remains balanced.

5. Conclusions

In this paper we have shown how the non-trivial interplay among Pauli exclusion principle, repulsive
interaction, and Rabi coupling can induce itinerant ferromagnetism in 2D repulsive Fermi gases. In particular,
we have analytically found that for ahomogeneous 2D fermionic system there is polarization (i.e., itinerant
ferromagnetism) when the interaction energy per particle is larger than both the kinetic energy per particle and
the Rabi energy. It is important to stress that the itinerant ferromagnetism is certainly driven by the Stoner
instability [32]: a sufficiently large repulsion between fermions make the uniform and balanced system unstable.
However, as we have shown in this paper, it is the presence of Rabi coupling that allows the phenomenon of spin
flip. In fact, in the absence of Rabi coupling or other spin-dependent mechanisms, the Stoner instability implies
phase separation and not spin flip. Similar effects are expected in bosonic mixtures [30, 50]. Here we have
adopted a Hartree—Fock mean-field approach. On the basis of previous results obtained in the absence of Rabi

7
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couplingin 2D and 3D [43, 45, 51], we expect that beyond-meand-field quantum fluctuations can slightly
reduce the critical strength of Stoner instability.

In the last part of the paper we have considered the inclusion of an external harmonic potential, which is the
simplest trapping configuration for experiments with ultracold alkali-metal atoms. In this case, we have
predicted a remarkable effect we expect to be accessible in the near-future experiments: for a sufficiently large
number of fermions, such that the number density at the center of the trap exceeds a critical value, the 2D
fermionic gas is characterized by population imbalance near the center of the trap and by a fully balanced
configuration near the surface.
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