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A fast and accurate method for hammer-string interaction simulation in physical model synthesis
is proposed. This method is based on the solution of the nonliiear system of a linear ideal string
and a polynomial nonlinear mass-spring system constituting the hammer. The method allows to
tabulate values for nonlinear characteristic of the felt without forcing to recalculate the table for

system parameters variations.

1. Introduction

Physical model synthesis of piano tones requires a
good identification of the parameters when realistic
sound for musical purposes is required. As far as
piano is concerned, classical models of hammer,
based on a mass and a nonlinear spring which gives
account of felt force/deformation characteristics,
have been proposed, for example in [1], [2], [3],
{71, [8] and they are often based on the relation:

S =k(ay)* 1(Ay)

where f is compression force [N], Ay is the felt
compression [m], 1(.) is the Heaviside function
which implements the so called "contact condition”
and k [N/m®] and o« [adim] are suitable constants,

This class of models has been proved efficent and
satisfactory in a first order approximation by many
authors; however, in real time synthesis
applications, it suffers of some problems.

Main problem is that in a real piano k and « varies
in a rather unpredictable manner along the
keyboard. Hence, k and o extimation is possible
only if enough experimental data are available; if
not, a parametring trimming by trials must be done.
Furthermore, experimental evidence [3] shows that
o varies continuously between 1.5 and 5 from bass
to treble: this makes difficult to implement the felt
characteristic in a real time, fixed-point DSP
architecture.

We propose a model of piano hammer which offers
flexible parametrical control over the static
characteristic of the felt. The model is accurate and
efficient and it gives the possibility of varying the
caracteristic of the felt through two parameters,
which control, almost independently, the hardness
and the overall shape of the characteristic.
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Tests on real time DSP implementing a classical
hammer-string interaction model have shown a
remarkable influence over spectral properties of
sound produced in mid and high octaves, letting the
player comtrol pp and ff colors im a rather
independent manner, These tests, however, have
highlighted the instable bebavior of the approxi-
mate model described in [4]. Hence, a closed form
solution has been derived for felt in I and III order
nonlinearity and a general solution for p-th order
nonlinearity has been found. These solutions show
an important property: the parameters of the model
multiply dependent and independent variables of
the resulting solution curves; this allows to tabulate
one single curve of interaction in an adimensional
form for every possible choice of model
PATATNELErS.

2. Narrow and elastic hammer

In a perfecly elastic hammer, compression
characteristic of the felt can be obtained in a "quasi
stationary” way applying a known force and
measuring the compression caused by the former.
In this way, the experimental data obtained can be
fitted by a polinomial approximation [1]. However,
it has been show that a sirapler power law is often
adequate in characterizing felt property [2], [3].
Since we need a pgeperal form, capable of
simulating a continuous variation of o between 2
and 4 (at least) but we need a polinomial for ease in
calculus and, if possible, only ome control
parameter, we propose a polinomial model based on
linear interpolation of the II and IV order curves
through an adimensional coefficient varying from 0
to L.
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3. Approximated hammer-string model
In a classical hammer-string interaction model, the
equations are:
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3 f(t) Ky (1)~ y(t))

with suitable boundary conditions. The discretized
form, based on the backward and central difference :

approx:matxon of derivatives, is:
S . .

f(n) ZZ(v(n) v(n)) o
‘f(n) k[y,,(n) TZvo)}

2

7 .
_Ly;,(n) Zy,z,(n 1) J’;,(n 2)—-.—f(n 1)

(see for exampie [5}, {6] for resonator equatlons)
This system is an implicit form in'the variables f(n)
and v(n): In the apprommated solution ‘method,
described in [5], ‘met velocity at the contact pomt 1s

extimated by the followmg formula

when-

N 3 v(n)..——f(n)+v (n)

f (ﬂ 1) + V; (")

more accurate the approxxmauon of actuai force -

- - with past force..

_-Approxnnated hammer—strmg model offers two

main - advantages: efficiency and. flexibility.
Efficiency comes from direct implementation of the:
equations, with no additional overhead in solving

- the nonlinear system Flexlblllty comes: from the

~fact: that~ almost: -

"every”: form of : compress:on
characteristic can be- directly implemented- in the

.- modef; for example, hysteretic models described in

: dlscrete sums usmg the trapezmds method we get. A

_ framework,

[8] can be du'ectly tested m:-- approximated
However, apptox:mated model shows serious
drawbacks: being based on an estimation of’
istantaneous  force, it suffers of instability
problems if’ samphng frequency is " not enough
high, if string is short, if 1mpaet velocity of
hammer is high or if hammer mass is too small,
model behawor exhibits a strong departure from
con'ect va]ues

4, Solutmn for nonlmeanty of p—th degree

In order to avoid instability problems we now
derive the dxgltal solution ~ of ' harmer-string
interaction system in case of arbitrary p-th order
nonlmeanty, where p is an integer equal or greater
than 2. The method is based on the separation of
known ‘terms, both istantaneous and "historical”,
from istantaneous and unknown terms. The latter
are then rewritten as functions of force variable; in
this way we get a p-th degree polinomial in f(n) and -
one of its zeroes represents the soluuon of the
system. : :

Equation for a p-th order nonlinear hammer—strmg._
mteractlon system are; : . Lo

| v(n)——f(n)+v (n)
f(n) k(y,,(n) y(n))"

where y() is: smug posmon at the ‘contact pomt
¥y(.) is hammer position and vi(.) is the meommg
strmg velomty at the contact point. - o E

Approxlmatmg continuous . time: mtegral w1th'

v,.(n)” _vh(n 1)-'—-(f(n)+f(n 1))

y,,(n> y;,(n 1)4—(v,,cn)+v,,(n 1)) |

9(.]%. .



and for the expression of v(n) as a function of f(n):
-5+ 35.7)

«§(+vi(n—l)+2—1£f(ﬂ—1))

If we define:
il T 1
b 25[2% ¥ 22)
Ay(n—1
()= ¥+V‘h(n— -
OSSR

the felt compression becomes:
Ay(n) =y, (m)— y(n) = T{x(m) —bf (m))

and so the force expression becomes:
f () = ax(n)~bf ()"

where a = kT*

We observe that in f expression, x(n) definition
collects all terms known at time n and the only term
which is unkmown is f(n) itself. We can now
rewrite the system:

[vr=35 s v
Lr o =alxm)-ar(m))’

It is possible to obtain closed form solutions for
nonlinearity of II, Il and IV order anmalitically
solving the equations above. The complexity of the
resulting expressions and the need of tabulating the
values of f as functions of x, however, make more
interesting the wuse of iterative methods in
calcuiating the zeroes of the resulting polynomials.

The tabular method, however, would be very
inefficient if re-calculations of the solutions of the
system were required for each variation of the
parameters. Fortunately, this can be avoided: in the
next paragraph we will derive a general
multiplicative parametric form, which, for sake of
brevity, will be called guasi-nonparametric form.

4.1 Quasi-nonparametric form
Let us consider the implicit expression of f as a
function of x. If we pose:

1

C'E(pab);——l
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X{(n) = Cx(n)

F(n)= Cbf (n)
substituting, we find:

PP (n)=(X(n)- F(n))”

One of the zeroes of the polinomial gives the values
of F(n) as functions of X{n), and so allows the
calculus of f(n) as a function of x(n). The reievant
zero is in O when x(n)=0.
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Fig 2, F=Cbf [adim] as a function of X=Cx
fadim] for nonlinearities of 2nd, 3rd and 4th
degree.

If we ipotize a model in which T, my, Z or k varies
in a continuous way at roughly the same time scale
of the audio signal, the multiplicative dependency
of the (X, F) curves partially looses its utility, since
we are forced to calculate C as p-1-th root of pab,
However, if p is left fixed, we can calculate C by
means of a lookup table and so the value of f(n)
with a double Jookup. The algorithm is:

1
1. find C =(pab) 7 in the first lookup table.
2. calculate X=Cx
3. find F=Cbf in the second lookup table using

index X.

4. calculate f = F/Cb.
Instead, if we ipotize a very slow variation of the
parameters or a "stepwise” variation amongst
interactions, since tumers usually change a
parameter and then listen to the results, we can
recalculate C and Cb offline and the calculus can be
done by the host processor of the DSP.

4.2 Contact condition
We can also give the hammer-string contact
condition as a function of the sign of x(n) or X(n).

As told in 1T order nonlinearity case, expression of
compression of the felt during contact is:




5‘?—*’3— () bf(n)

' Release cundmon can be then evaluated companng._
x(m)-bf(n) (or X(m)-F(n)) with ZET0. However we'-

note that for x near zero we have S

f()

3_- x--+0 x(n)

' Heuce, dne release COl:ld.lthl] for Ay near zero can
be given only as a function of x(n) or X(n). In-

other words, if x(n) is greater than zero, we are in
contact; when x{n) becomes Zero, contact ceases.

Wen there is no contact, f=0 for definition. Ay
expression becomes: '

A o ' :

M@y ynz0.
Hence when there is no contact x(n) is proportional
to Ay(n). It follows that also in this case the contact
condition can be given as a function of x(n) (or
X(n)). In other words, if x(n) is less than zero there
is no contact; when x(n) is zero, contact starts.

The union of the two cases studied allows us to
define a contact condition based on the sign of x(n).
Hence, x(m) can be regarded as a "pseudo-
compression variable. In summary, the recursive
expression which updates x(n) is sufficient both to

calculate the value of f(n) and to evaiuate the_;

coutact contmou

4.3 Interpolatmg solutlons o

It is still possible to mterpolate 2nd and 4d1 degree'

expressions in order to simulate a smooth variation

of o between 2 and 4. This can be done with the

followmg forrnula

f=ng (x(n>) (1 n)g4(X(n))

where. g,(.): and g4() are the ‘second” and fourth :

' degree solutions curves. Hence, varying 7 from 0

- An an‘angement of these solutlous alluws to use one:

single table of adimensional and’ nonparametric

‘value' for each degree of: nouhueanty required.

Furthermore contact condition can be given in a

. VEry' unexpemsive - form, - which preveuts the -

to | we obtain a linear interpolation’of the curves in -

the (x,f). plane, which corresponds
mterpoiauon of the curves in the (Ay,t) plane

s. Conclusrons L

A fast and’ accurate metlmd for hammer—smng

interaction simulation in “physical miodel synthesis
has been proposed. This method was based on the

1o . an..

solution of the nonlinear system of 4 linear jdeal”
string and - a - polynomial - nonlinear: mass-spring -+ -
system. consututmg the  hammer.  The technique: .. =

. ; _m a lookup table

s employed allows to’ precalculate tbe solutions of :
L hammer-stnug mteractum system and to put tbemf__ o

calculattou of the actual value of felt compressron

Linear mterpolatron between different degree of : -

nonlinearity allows to simulate in a rough but very:
efficient way the continuous variation of the
nonlinearity exponent reqmred by an accurate
model of the felt. S
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