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A fast and accurate method for hammer-string interaction simulation in physical model synthesis 
is proposed. This method is based on the solution of the nonlinear system of a linear ideal string 
and a polynomial nodinear mass-spring system constituting the hammer. The method allows to 
tabulate values for nonlinear characteristic of the felt without forcing to recalculate the table for 
system parameters variations. 

1. Introduction 

Physical model synthesis of piano tones requires a 
good identification of the parameters when realistic 
sound for musical purposes is required. As far as 
piano is concerned, classical models of hammer. 
based on a mass and a nonlinear spring which gives 
account of felt force/defomtion characteristics, 
have been proposed, for example in [I], [2). 131, 
[7], [8] and they are often based on the relation: 

where f is compression force [N], Ay is the felt 
compression [m], I(.) is the Heaviside function 
which implements the so called "contact condition" 
and k [Nlm"] and a [adim] are suitable constants. 
This class of models has been proved efficent and 
satisfactory in a first order approximation by many 
authors; however, in real time synthesis 
applications, it suffers of some problems. 

Main problem is that in a real piano k and a varies 
in a rather unpredictable manner along the 
keyboard. Hence, k and a extimation is possible 
only if enough experimental data are available; if 
not, a parametring trimming by trials must be done. 
Furthermore, experimental evidence [3] shows that 
a varies continuously between 1.5 and 5 from bass 
to treble: this makes difficult to implement the felt 
characteristic in a real time, fixed-point DSP 
architecture. 

We propose a model of piano hammer which offers 
flexible parametrical control over the static 
characteristic of the felt. The model is accurate and 
efficient and it gives the possibility of varying the 
cmcteristic of the felt through two parameters, 
which control, almost independently, the hardness 
and the overall shape of the characteristic. 

Tests on real time DSP implementing a classical 
hammer-string interaction model have shown a 
remarkable influence over spectral properties of 
sound produced in mid and high octaves, letting the 
player control pp and ff colors in a rather 
independent manner. These tests, however, have 
highlighted the instable behavior of the approxi- 
mate model described in [4]. Hence, a closed form 
solution has been derived for felt in II and 111 order 
nonlinearity and a general solution for p-th order 
nonlinearity has been found. These solutions sbow 
an important property: the parameters of the model 
multiply dependent and independent variables of 
the resulting solution curves; this allows to tabulate 
one single curve of interaction in an adimensional 
form for every possible choice of model 
parameters. 

2. Narrow and elastic hammer 

In a perfecly elastic hammer, compression 
characteristic of the felt can be obtained in a "quasi 
stationary" way applying a lmown force and 
measuring the compression caused by the former. 
In this way, the experimental data obtained can be 
fitted by a polinomial approximation [I]. However, 
it has been sbow that a simpler power law is often 
adequate in characterizing felt property [2], [3]. 
Since we need a general form, capable of 
simulating a continuous variation of a between 2 
and 4 (at least) but we need a polinomial for ease in 
calculus and, if possible, only one control 
parameter, we propose a polinomial model based on 
linear interpolation of the II and IV order curves 
through an adimensional coefficient varying from 0 
to 1. 
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In this model k is a force measured at the Y 1 
compression. q is the "shape coefficient"; when 44 =zf (n ) fV , (n )  

q=0 the felt exhibits a II order nonlinearity. when 1 
q=1 it exhibits a IV order nonlinearity. In the =- f ( n - l ) + v , ( n )  

intermediate cases we get an intermediate behavior. 
- 22 

characteristic can be directly implemented in the 

problems: if sampling frequency is not enough 
high, if string is short, if impact velocity of 

correct values. 
In a classical hammer-string interaction model, the 

than 2. The method is based on the separation of 
h o w n  terms. both istantaneous and "historical", 
from istantaneous and &own terms. The latter 
are then rewritten as functions of force variable; in 

with suitable boundary conditions. The discretized this way we get a p-th degree poliiomial in f(n) and 
one of its zeroes represents the solution of the 

approximation of derivatives, is: 



and for the expression of v(n) as a function of f(n): 

If we define: 

the felt compression becomes: 

A Y ( ~ )  =y , (n) -y (n)  = T(x(n)-bf (n)) 

and so the force expression becomes: 

where a E kTP 
We observe that in f expression, x(n) definition 
collects all terms known at time nand the only term 
which is unknown is f(n) itself. We can now 
rewrite the system: 

It is possible to obtain closed form solutions for 
nonlinearity of 11, III and N order analitically 
solving the equations above. The complexity of the 
resulting expressions and the need of tabulating the 
values o f f  as functions of x, however, make more 
interesting the use of iterative methods in 
calculating the zeroes of the resulting polynomials. 
The tabular method, however, would be very 
inefficient if re-calculations of the solutions of the 
system were required for each variation of the 
parameters. Fortunately, this can be avoided: in the 
next paragraph we will derive a general 
multiplicative parametric form, which, for sake of 
brevity, will be called quasi-nonparametric form. 

4.1 Quasi-nonparametric form 

Let us consider the implicit expression of f as a 
function of x. If we pose: 

F(n) I Cbf (n) 

substituting, we find: 

One of the zeroes af the polinomial gives the values 
of F(n) as functions of X(n), and so allows the 
calculus of f(n) as a function of x(n). The relevant 
zero is in 0 when x(n)=O. 

Fig 2. F=Cbf [adim] as a function of X=Cx 
[adim] for nonlinearities of 2nd. 3rd and 4th 

degree. 

If we ipotize a model in which T, mh, Z or k varies 
in a continuous way at roughly the same time scale 
of the audio signal, the multiplicative dependency 
of the (X,F) curves partially looses its utility, since 
we are forced to calculate C as p-l-th root of pab. 
However, if p is left fixed, we can calculate C by 
means of a lookup table and so the value of f(n) 
with a double lookup. The algorithm is: 

1 

1. find C = ( ~ a b ) Z  in the first lookup table, 

2. calculate X=Cx 

3. find F=Cbf in the second lookup table using 
index X. 

4. calculate f = FICb. 

Instead, if we ipotize a very slow variation of the 
parameters or a "stepwise" variation amongst 
interactions, since tuners usually change a 
parameter and then listen to the results, we can 
recalculate C and Cb offline and the calculus can be 
done by the host processor of the DSP. 

4.2 Contad condition 

We can also give the hammer-string contact 
condition as a function of the sign of x(n) or X(n). 

As told in II order nonlinearity case, expression of 
compression of the felt during contact is: 



An arrangement of these solutions allows to use one 
single table of adimensional and nonparametric 
value for each degree of nonlinearity required. 
Furthermore, contact condition can be given in a 
very unexpensive form, which prevents the 
calculation of the actual value of felt compression. 

Linear interpolation between different degree of 
nonlinearity allows to simulate in a 
efficient way the continuous v 
nonlinearity exponent required b 
model of the felt. 

other words, if x(n) is greater than zero, we are in 
contact; when x(n) becomes zero, contact ceases. 

Wen there is no contact, f=O for definition. Ay This work has 

expression becomes: University of Padova during 1995 under a Research 
Contract with Generalmusic S.p.A. 
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