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1 INTRODUCTION 

Classical models of piano hammer, based on a mass and a nonlinear spring which gives 
account of felt force vs. deformation characteristics, have been proposed, for example in 
[1-4], [6-8]. They are almost always based on the relation ( )f k y y= ∆ ∆

α 1( ) , where f is 
the compression force [N], ∆y is the felt compression [m], 1(.) is the Heaviside function 
which implements the so called "contact condition" and k [N/mα] and α [adim] are 
constants depending on felt characteristics. This class of models has been proved efficient 
and satisfactory by many authors; however, in real time synthesis applications, it has 
some problems. First problem is that in real pianos k and α vary unpredictably both along 
the keyboard and in different instruments. This comes from the fact that skillful tuners 
adjust the felt characteristics in order to get a better sound [4], and this results in a k and 
α modification. Thus, it would be of great importance to control these parameters in a 
musically interesting model; unfortunately, it is difficult to implement in a fixed-point 
DSP architecture. Another problem comes from the hysteretic nature of the hammer felt. 
Many experiments [6] have proved that the traditional instantaneous law for the 
compression/force characteristic is inadequate for a real hammer impact simulation. 

For these reasons, we first propose a model of piano hammer which offers simple and 
flexible control over the static characteristic of the felt. The model is stable, accurate and 
efficient and it gives the possibility of varying the characteristic of the felt through two 
quite intuitive parameters. As a second step, we extend the static model in order to give 
account of the hysteresis phenomenon. This is done according to the theory exposed in 
[6], preserving the properties of stability, accuracy and efficiency of the former model. 

2 THE ELASTIC HAMMER 

In a perfecly elastic hammer, the compression characteristic of the felt can be obtained 
applying a known force and measuring the relative compression. The experimental data 
can then be fitted by a polynomial approximation [7]. However, it has been show that a 
power law is adequate in characterizing felt properties [4]. For real time synthesis, we 
need an expression as general as possible, capable of simulating a continuous variation of 
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α between 2 and 4 (at least) but we also need a polynomial for ease in calculus and, if 
possible, only one control parameter. For these reasons we have studied a polynomial 

model based on linear interpolation of the II and IV order curves through an 
adimensional coefficient varying from 0 to 1.
 ( ) ( )f y k K y y K y y( , , ) / ( ) /∆ ∆ ∆η η η= + −0

4
0

2
1  (1) 

In this model K [N] is the force measured at the known y0  [m] compression and η is the 
"shape coefficient": when η=0 the felt exhibits a II order nonlinearity, when η=1 it 
exhibits a IV order nonlinearity; in the intermediate cases we get an intermediate 
behavior. Note that we are not interested to an exact approximation of the power law, 
but more to a qualitative behavior. 
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Figure 1. Static force-compression characteristic of the felt. y0=1 mm, K=40 N, η=a) 
0, 0.25, 0.5 0.75 and e) 1 [adim]. 

3 APPROXIMATED IMPLEMENTATION 

In a classical hammer-string interaction model, the equations of the hammer are: 

 
( )f t k y t y t

f t m
d y
dt

h

h
h

( ) ( ) ( )

( )

= −

= −


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2

2

 (2) 

together with initial hammer speed and position. These equation can be solved in a digital 
environment, together with a suitable model for the string. The discretized form, based 
on the backward difference approximation of derivatives and a digital waveguides [5] 
model of the string, is described in [2]: 
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The equations of the string have been obtainded by applying Kirchhoff's laws to the 
interaction point (see, for example, [8]). The system (3) is implicit in the variables f(n) 
and v(n). In the approximated solution method, used for example in [3], the system is not 
solved but the net velocity at the contact point is extimated by the following formula: 

 v n
Z

f n v n
Z

f n v ni i( ) ( ) ( ) ( ) ( )= + ≅ − +
1

2
1

2
1  (4) 

Of course, the higher the sampling frequency, the more accurate the approximation of 
the actual force with the past force. The approximated hammer-string model offers two 
main advantages: efficiency and flexibility. Efficiency comes from the direct 
implementation of the equations, with no additional overhead in solving the nonlinear 
system. Flexibility comes from the fact that almost "every" compression characteristic 
can be implemented in the model; for example, the linear interpolation method discussed 
above can be easily tested in this framework. However,the approximated model shows 
serious drawbacks: being based on an estimation of istantaneous force, it suffers of 
instability problems. Actually, if sampling frequency is not high enough, if string is short 
or the hammer is too near to a termination, if the impact velocity of hammer is high or if 
hammer mass is too small, model behavior exhibits a strong departure from correct 
values. It may worth note that many hammer models, despite of formal differences in 
their equations, suffer of these instability problems due to the unit delay inserted for 
computation purposes (see for example the model in [8]). 

4 THE SYSTEM SOLUTION 

In order to avoid instability problems, we now derive the digital solution of the hammer-
string interaction system in the case of a power law with α>1. The method is based on 
the separation of known terms, both past and istantaneous, from istantaneous and 
unknown terms; the latter are then rewritten as functions of force variable and the 
resulting implicit equation is solved. Equations for a hammer-string interaction system 
have already been presented above: here we slightly change the solution method, by 
approximating continuous time integrals with discrete sums using the trapezoids method. 
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Here y and yh are string and hammer position respectively [m] and vh and vi [m/s] are the 
hammer speed and the incoming string velocity at the contact point. By using again 
digital integration on vh  and v, and substituting the first of (5) into v expression, we find: 

 ( )y n y n
T

v n v nh h h h( ) ( ) ( ) ( )= − + + −1
2

1  (6) 
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Subtracting eq. (7) from (6), the felt compression becomes: 

 ( )∆y n y n y n T x n bf nh( ) ( ) ( ) ( ) ( )≡ − = −  (8) 
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Finally the force expression is: 

 ( )f n a x n bf n( ) ( ) ( )= −
α  (10) 

where a kT≡ α . We observe that in f expression, the x(n) definition collects all terms 
known at time n and the only term which is unknown is f(n) itself. To complete the 
digital system, we note that substituting eq. (8) in (9) a recursive form for x(n) can be 
obtained. The system can then be written as: 
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The second (implicit) equation must now be solved. Of course, it is possible to calculate 
the analitic solutions for it, and hence for the system, when α=2, 3 and 4. Neverthless, 
the DSP implementation requires the tabulation of the values of f=gα(x) and so a suitable 
numerical method can be used to solve the equation above. This is particularly attractive 
since it is possible to express the implicit equation in adimensional form, allowing the use 
of a single table for each value of α required, as will be shown in next section. 

4.1 Adimensional form of x and f 

Let us consider the implicit expression of f (x, f )=0. If we pose: 
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 ( )C ab≡ −1 1/( )α ,          X n Cx n( ) ( )≡ ,         F n Cbf n( ) ( )≡  (12) 

substituting, we find: 

 ( )F n X n F n( ) ( ) ( )= −
α  (13) 

One of the zeroes of the function gives the values of F(n) as function of X(n), and so 
allows the calculus of f(n) as a function of x(n). The relevant zero is in 0 when x(n)=0. 
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Figure 2. F=Cbf [adim] as a function of X=Cx [adim] for α= (a) 2.0, (b) 3.0 and (c) 
4.0. In these cases the implicit function is a polynomial. 

Note that, if the parameters of the model (Z, mh, k and α) vary only between interactions, 
as when a player change a parameter and then listen to the results, C and Cb can be 
recalculated offline and the calculus can be done possibly by the host processor of the 
DSP. 

4.2 Interpretation of x(n) as a pseudo-compression 

As figure 2 suggests, we can also give the hammer-string contact condition as a function 
of the sign of x(n) or X(n). Actually, as shown above, the expression of the compression 
of the felt during contact is given by eq. (8): hence, the release condition should be 
evaluated comparing x(n)-bf(n) with zero. However, since: 

 lim
( )
( )x

f n
x n→ +

=
0

0 (14) 

the release condition for ∆y near zero can be given only as a function of x(n) or X(n). 
Simmetrically, when there is no contact, f=0 for definition and ∆y(n)=Tx(n). The union 
of the two cases exposed allows us to define a contact condition based on the sign of 
x(n): hence, x(n) can be regarded both as the history of the system and as a "pseudo-
compression" variable. In summary, as for ∆y, the knowledge of x(n) is sufficient both to 
evaluate the contact contition and to calculate the value of f(n). 
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4.3 Force interpolation 

It is still possible to interpolate 2nd and 4th degree expressions in order to simulate a 
smooth variation of α between 2 and 4. This can be done with the following formula: 

 ( ) ( ) ( )f n g x n g x n( ) ( ) ( )= + −η η2 41  (15) 

where g2(.) and g4(.) are the second and fourth degree solutions curves. Hence, varying η 
from 0 to 1 we obtain a linear interpolation of the curves in the (X,F) plane, which 
corresponds to an interpolation of the curves in the (∆y,f) plane. 

5 ADDING FELT HYSTERESIS 

From Stulov [6], for an hysteretic elastic medium we have in general: 

 f f y h t f y= − ∗( ) ( ) ( )∆ ∆  (16) 

where the symbol * denotes linear convolution. This can be interpreted as the expression 
of a material with a time-variying elastic coefficient. In our case we have: 

 f y k y( )∆ ∆= α          ( )h t t t( ) / exp( / ) exp( / )= − ≡ −ε τ τ ε τ0 0 0 0  (17) 

where f(.) is the above discussed nonlinear function of the felt compression and h(.) is a 
low-pass kernel, with ε0 and τ0 [s] suitable costants which depend on felt characteristics 
and ε=ε0/τ0 an adimensional constant between 0 and 1. The above expression can be 
rewritten as: ( )( )f t t k y= − − ∗δ ε τ α( ) exp / ( )0 ∆  and we notice that this kernel is now 
the impulsive response of a first-order high-pass system. According to Stulov's equation, 
an hysteretic felt can hence be modeled as the cascade of a nonlinear distortion block and 
of a linear, high-pass filter. 
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In discrete time, we need to implement this system by means of a digital filter. We 
choose to apply the well-known bilinear trasformation method to the frequency response 
of the analog filter. We obtain: 

 H z a
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 (18) 

where: 
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The compression equation (8) still holds, if we substitute the force f n( ) at the output of 
the filter to every occurrence of the static force f(n) previously considered. Hence, using 
the recursive expression of the filter and defining: 

 ( )

x n y n

T v n b a f n ba a f n
v n v n

h
i i

( ) ( )

( ) ( ) ( )
( ) ( )

≡ − +

+ − − + − + − −
+ −








∆ 1

1 1 1 1
1

22 1 3
 (20) 

we can write the compression law in the usual form: 

 ( )f n a x n ba f n( ) ( ) ( )= − 1
α  (21) 

Again, applying the method exposed in the static case, it is possibile to give a recursive 
expression for x n( ). The complete system becomes: 
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Note that the new equation for the output is necessary since the output of the system is 
now f n( ) and not f(n). In the following figure we present two simulations of an hammer 
striking a hard wall; the parameters reported in [6] fig. 3b and 3c have been used, and so 
a comparison can be made with those results. Unfortunately a comparison between 
hammer-string interaction results is not possible, because of the simplified assumptions 
made in [6] on the behavior of the struck string. 
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Figure 4. hysteretic hammer; α=2.0, k=1197 N/mm2, vh=1.43 m/s, mh=0.013 Kg. (a): 
τ0=20 µs, ε=[0.4, 0.8, 0.936, 0.965, 0.99]; (b) τ0=[80, 40, 20, 8, 1] µs, ε=0.936. 

6 CONCLUSIONS 

A fast and numerically stable method for hammer-string interaction simulation in physical 
model synthesis has been proposed. This method was based on the solution of the 
nonlinear system of a linear ideal string and a nonlinear mass-spring system constituting 
the hammer. The technique employed allows to precalculate the solutions of hammer 
nonlinear equation and to put them in a lookup table. An arrangement of these solutions 
allows to use a single table of adimensional values for each exponent required. 
Furthermore, the contact condition can be given in a very inexpensive form, which 
prevents the calculation of the actual felt compression value. Linear interpolation 
between different nonlinearities allows to simulate in a rough but very efficient way the 
continuous variation of the nonlinearity exponent. The model has also been extended to 
take into account the hysteresis phenomenon in real felts. In this case, a filter is inserted 
in the static model and a simple redefinition of the historical variable is required. 

7 ACKNOWLEDGEMENTS 

This work has been developed at C.S.C. D.E.I. in University of Padova during 1995 
under a Research Contract with Generalmusic S.p.A. 

8 REFERENCES 

1. Borin, G., De Poli, G. 1995. A hammer-string interaction model for physical 
model syntehesis Proc. XI Colloquio di Informatica Musicale (XI CIM), 
Bologna 1995, pp. 89-92.  

2. Borin, G., De Poli, G., Sarti, A. 1992. Sound synthesis by dynamic 
interaction, in Readings in Computer-Generated Music, IEEE Computer 
Society Press, Los Alamitos (CA), pp. 139-160.  



 
HYSTERETIC HAMMER-STRING INTERACTION MODEL G.Borin, G.De Poli 

3. Chaigne, A., Askenfekt, A. 1994. Numerical simulations of piano strings I. A 
physical model for a struck string using finite difference method. Journal of 
the Acoustical Society of America, vol. 95, no. 2, Feb. 1994, pp. 1112-1118. 

4. Hall, D.E. 1992. Piano string excitation VI: nonlinear modelling. Journal of 
the Acoustical Society of America, vol. 92, no. 1, Jul. 1992, pp. 95-105.  

5. Smith, J.O. 1992. Physical modelling using digital waveguide. Computer 
Music Journal, vol. 16, no. 4, Winter, pp. 74-91.  

6. Stulov, A. 1995. Hysteretic model of the grand piano hammer felt. Journal 
of the Acoustical Society of America, vol. 97, no. 4, Apr. 1995, pp. 2577-
2585. 

7. Suzuki, H. 1987. Model analysis of a hammer-string interaction. Journal of 
the Acoustical Society of America, vol. 82, no. 4, Oct. 1987, pp. 1145-1151. 

8. Van Duyne, S.A., Pierce, J.R., Smith, J.O. 1994. Travelling wave 
implementation of a lossless mode-coupling filter and the wave digital 
hammer" Proc. 1992 Int. Computer Music Conference (ICMC '94), Arthus, 
pp. 411-418. 

 


