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Abstract 
In this paper, 21 musical sounds are coded as a series of Mel-Frequency Cepstral Coeffi- 
cients. By regarding the coefficients as dimensions, a Principal Components Analysis of the 
data  extracts three factors which together account for about 80% of the total variance The 
interpretation of these factors contributes t o  a better understanding of the main variables 
which shape the quality of a sound. 

1 Introduction pears to be in general agreement with the usual 

Timbre is a multidimensional feature which de- 
scribes the quality of the sound when other factors 
such as pitch and loudness are kept constant. A 
classical method ha.s been employed several times 
in the past to build a timbre space: similarity rat- 
ings provided by a group of listeners are organized 
by means of a Multidimensional Scaling analysis; 
the empirical interpretation of the dimensions of 
the resulting timbre space leads t o  insightful hy- 
potheses on the major features of musical timbres. 
A correlation procedure usually follows, in which 
these features are tentatively paired with physi- 
cal quantities underlying the sound. These stud- 
ies provided a first general understanding of the 
major variables which define the musical timbre 
as a sound feature; on the other hand, a clear 
methodology has not yet been proposed to ex- 
tract some "timbral coordinates" from a given, 
arbitrary sound. 

More recent researches attempted to analyze 
musical timbre starting directly from the acous 
tic signal. More or less simplified ear models are 
the tools employed to extract perceptual param- 
eters from the waveform. These parameters are 
subsequently mapped onto a timbre space, often 
exploiting the self-organizing capabilities of artifi- 
cial neural networks. - 

:ie representational capabilities of percep- 
tual qualities offered by the Mel-Frequency C e p  
stral Coefficients (MFCC) are widely employed in 
speech recognition systems. In [3] we have veri- 
fied that these capabilities are extremely effective 
even when applied to the analysis of sound qual- 
ity. Sounds which appear timbrically close to the 
listener lead t o  representations which are topolog- 
ically close in the MFCC domain. Moreover, the 
overall topological organization in the coefficients' 
space of the MFCC representation of sounds a p  

organization of timbre spaces defined by previous 
psychoacoustical researches. 

In this work we try to extend these results by 
applying a multivariate analysis to several proto- 
typical sets of MFCGcoded musical sounds. The 
interpretation of the principal components in the 
resulting space is the starting point for a better 
understanding of the main variables which shape 
the quality of a sound. 

2 Parametrization 

The Me1 Frequency Cepstral Coefficients (MFCC) 
were first introduced by Davis e Mermelstein in 
a comparative study of different speech coding 
techniques [I]. In the method, filterbank analy- 
sis and cepstral analysis are combined: the short- 
term log-energy output of a mel-spaced iilterbank 
is mapped by a DCT onto the set of the MFCC co- 
efficients. The filterhank is constituted by 27 par- 
tially overlapping triangular filters, equally spaced 
on a mel-frequency scale. The me1 scale itself is 
defined as 

f l l k H z  
mel(f) = 

259510g1, (1 - A) f > 1 kHz 

As opposed to the speech analysis case, the im- 
portance of higher frequency components in the 
perception of musical sounds leads to a version of 
the filterbank which extends up to 8 KHz. The co- 
efficients are computed using a 23.2 ms Hamming 
window with a 4 ms timeshift. 

An inverse DCT over the coefficients ci leads 
back to the spectral envelope, C(p),  which is ex- 
pressed in dB and warped along the frequency axis 
according to the Hz-me1 mapping above. As is 
usual in cepstral techniques, dropping the higher 
order coefficients (liflering) prior to computing the 
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inverse transform leads _to a smoothed version of each frame is converted to a MFCC representa- 
the spectral envelope, C(p) ,  which is very often tion, namely a vector of MFCC coefficients which 
more useful in the subsequent analyses. The first can he regarded as a point in a multidimensional 
coefficient, co, is also dropped. This coefficients MFCC space. Experimental evidence shows that 
is indeed proportional to  the energy of the input, the points stemming from the analysis of a sin- 
so that, by its removal, an amplitude normalized gle instrument are tightly clustered together. As 
representation of the signal is easily accomplished. a consequence, the centroid of the cluster is chc- 
This is going to be extremely useful when com- sen as the prototypical MFCC coordinate of the 
parisons between different signals are going to 
taken into account. as the tight clusters originated by the differ- 

form, which is an or 
ural" choice for a dista 
space is thus the Euclidean distance. I t  can be clearly from the analysis of the variance distribn- 
shown that the Euclidean distance between MFCC tion of the data along the different steps of the 
sets is equivalent to the distance between (possibly coding process. Fig. 1 displays the variance (indi- 
smoothed) spectra in the mel-frequency domain; vidual and cumulative) of the instrumental data 
this seems to he a reasonable measure of the sim- as appears a t  the output of the iilterhank; this 

is almost uniformly distributed along the entire 
spectrum, that is, along the axes of the associated 
space. In other words, in this frequency space 
there are no predominating axes. In the MFCC 

range compression in the log filter outputs. Both space, on the other hand, the variance is primar- 
ily distributed across the first coefficients, a s  ap- 
pears in fig. 2. By selecting these coefficients as 
the dominant geometrical coordinates, a MFCC 
subspace is obtained which adequately represents 

Several sets of different musical sounds have been 
used, all of which led to  similar final results. In 
this paper we will report the analysis of the same 
set of musical sounds as used by Carol Krumhansl 
in [2], where musical timbre is studied by means 



Figure 3: Percent of the total variance associated 
t o  the Principal Components 

t o  find an optimal result in the definition of a 
minimal subspace in the MFCC space which p r e  
serves the relevant information in the signals. The 
Principal Component Analysis (PCA) is a mul- 
tivariate statistical tool whose formulation relies 
on the properties of the orthogonal linear tmns- 
forms. Given a p-dimensional data set, by means 
of scaling and rotations the principal information 
is moved onto a reduced set of variables. By care- 
fully chosing the transformation matrix, the new 
set of variables proves t o  be uncorrelated: the in- 
formation pertaining t o  each of the variables can 
thus be analyzed in an independent fashion. The 
two major objectives of a PCA analysis are then 
the compression of ihe data, and the optimal in- 
derpretaiion of the daia. These goals are achieved 
if in the original data set the variance in the infor- 
mation is naturally associated t o  a few principal 
components, so that the representational loss as 
soc ia t~d  with the dropping of some of the compo- 
nen:: -elatively small. Geometrically, the PCA 
def::. set rotated of coordinates in the space in 
whicb ihe new axes coincide with the directions of 
maximum variance. 

A P C  analysis performed on the MFCGcoded 
instrumental set reveals that the 80% of the vari- 
ance is concentrated in the first three compo- 
nents 3. A three-dimensional space is thus able 
to provide a "correct" topological organization 
within the limits of the retained information. 

Several interpretations can be carried out on 
the space thus obtained. The origin represents 
the average spectral envelope of all the timbres in 
the data set. Fig. 4 clearly shows the typical low- 
pass shape which characterizes almost all musical 
instruments. In fig. 5, 6 and 7 the three direction 
cosines related t o  the PCA spatial transformation 
are shown. Each one represents the spectral con- 
tribution of the correspondent spatial dimension 
of the timbre space. 

To better evaluate the global features of the 
timbre organization thus obtained, i t  is useful to 
represent the smoothed spectral envelopes at  the 
extremes of the axes as the sum of the average 

Figure 4: Overall average spectral shape 

spectral envelope (the origin) with the eigenvalue- 
weighted contributions (positive on the right side, 
negative on the left one) of each of the direction 
cosines. In this new representation, the distrihu- 
tion of the spectral energy along the axes of the 
new PCA space appears more clearly (fig. 8, 9 
and 10). 

4 Discussion and results 
The analysis of the plots shown so far leads t o  sev- 
eral conclusions. Clearly, the first axis is related 
to the spectral energy distribution, called brighi- 
ness. The spectral envelope associated to the first 
principal component (fig. 5) shows a boosting of 
the low frequencies for positive values of the co- 
ordinate, whereas negative values are linked t o  
frequency values above 1.5 kHz. These interpre- 
tations are confirmed by the spectral envelopes 
shown in fig. 8. Along this dimension, bright- 
sounding instruments such as the oboe, the bos- 
soon, and the horn are a t  a maximum of the ge- 
ometric distance and of the perceptual distance 
from the darker-sounding instruments such as the 
uibraphone, the guiiar, and the piano. 

The second dimension is correlated to the en- 
ergy values in a broad frequency range which en- 
compasses the whole band for musical sounds, 
0 . 6 4  KHz. From the plots of fig. 6 i t  could be as 
sumed that the fundamental characteristics he an 
apparent spectral irregularity. Fig. 9 shows how 

Figure 5: Spectral envelope (1st direction cosine) 
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Figure 6: Spectral envelope (2nd direction cosine) Figure 9: Spectral 

the region corresponding to the knee of the spec- 
tral envelope, whereas at the other extreme there 
is a smoothing in the slope discontinuity in the 
spectral envelope, which changes into an almost 
monotonic curve. At one end we have trombone, 
horn, vibrione; at the other we have the gurlar. 

The third dimension seems to he associated to 
subtler aspects of the spectral characteristic; it is 
correlated to the energy content of a narrow region 
of the spectrum centered around 700 Hz. This set 
of frequencies has an extremely important role in 
acoustic perception, and is a commonly used pa- 
rameter in audio equalization. A possible hypoth- 
esis would be that this frequency region under- 
lies a differentiation criterion which is similar, al- 
beit finer, to the general distinction between low- 
and high-pass instruments. At the positive end 
we have the clannet and a t  the negative end the 

Figure 8: Spectral envelope (1st coordinate 

Figure 10: Spectral envelope (3rd coordinate) 

hnrpsichord. 

5 Conclusions 
Other experiments with different sound sets con- 
firmed the fact that the first two dimensions ex- 
tracted by the PCA control the overall spectral 
shape, the "cutoff frequency, and the spectral 
slope; the third dimension is always related to the 
energy content of a spectral region bounded b s  
tween 700 and 900 Hz. We are led to conclude that 
this feature is a differentiating factor in the qual- 
ity of musical timbre which acts in an independent 
fashion from the quality called brightness. 
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