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Abstract

In this paper, 21 musical sounds are coded as a series of Mel-Frequency Cepstral Coeffi-
cients. By regarding the coefficients as dimensions, a Principal Components Analysis of the
data extracts three factors which together account for about 80% of the total variance The
interpretation of these factors contributes to a better understanding of the main variables

which shape the quality of a sound.

1 Introduction

Timbre is a multidimensional feature which de-
scribes the guality of the sound when other factors
such as pitch and loudness are kept constant. A
classical method has been employed several times
in the past to build a timbre space: similarity rat-
ings provided by a group of listeners are organized
by means of & Multidimensional Scaling analysis;
the empirical interpretation of the dimensions of
the resulting timbre space leads to insightful hy-
potheses on the major features of musical timbres.
A correlation procedure usually follows, in which
these features are tentatively paired with physi-
cal quantities underlying the sound. These stud-
ies provided a first general understanding of the
major variables which define the musical timbre
as a sound feature; on the other hand, a clear
methodology has not yet been proposed to ex-
tract some “timbral coordinates” from a given,
arbitrary sound.

More recent researches attempted to analyze
musical timbre starting directly from the acous-
tic signal. More or Jess simplified ear models are
the tools employed to extract perceptual param-
eters from the waveform. These parameters are
subsequently mapped onto a timbre space, often
exploiting the self-organizing capabilities of artifi-
cial neural networks.

‘Ihe representational capabilities of percep-
tua! gualities offered by the Mel-Frequency Cep-
stral Coefficients (MFCC) are widely employed in
speech recognition systems. In [3] we have veri-
fied that these capabilities are extremely effective
even when applied to the analysis of sound qual-
ity. Sounds which appear timbrically close to the
listener lead to representations which are topolog-
ically close in the MFCC domain. Moreover, the
overall topological organization in the coefficients’
space of the MFCC representation of sounds ap-
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pears to be in general agreement with the usual
organization of timbre spaces defined by previous
psychoacoustical researches.

In this work we try to extend these results by
applying a multivariate analysis to several proto-
typical sets of MFCC-coded musical sounds. The
interpretation of the principal components in the
resulting space is the starting point for a better
understanding of the main variables which shape
the quality of a sound.

2 Parametrization

The Mel Frequency Cepstral Coefficients (MFCC)
were first introduced by Davis e Mermelstein in
a comparative study of different speech coding
techniques [1]. In the method, filterbank analy-
sis and cepstral analysis are combined: the short-
term log-energy output of a mel-spaced filterbank
is mapped by a DCT onto the set of the MFCC co-
efficients. The filterbank is constituted by 27 par-
tially overlapping triangular filters, equally spaced
on a mel-frequency scale. The mel scale itself is
defined as

f
mel(f) = { 2595 logyo (1~ 7i5)

As opposed to the speech analysis case, the im-
portance of higher frequency components in the
perception of musical sounds leads to a version of
the filterbank which extends up to 8 KBz, The co-
efficients are computed using a 23.2 ms Hamming
window with a 4 ms time-shift.

An inverse DCT over the coefficients ¢; leads
back to the spectral envelope, C{u), which is ex-
pressed in dB and warped along the frequency axis
according to the Hz-mel mapping above. As is
usual in cepstral techniques, dropping the higher
order coefficients (lifiering) prior to computing the

F<1kHz
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inverse transform leads to a smoothed version of

the spectral envelope, C(x), which is very often .
more useful in the subsequent analyses.” The first
coefficient; cg, is also dropped.. This coefficients: " =
is indeed proportional to the energy of the input,
so that, by its removal, an amplitude normalized -
representa.tlon of the signal is easﬂy accomplished. -
This is going to be extremely useful when com-
parisons between different signals are going to be

taken into account.

This cepstral analysis mvolves a cosine trans-
form, which is an orthogonal transforrn the “nat-
ural® chmce for a distance metric in the MFCC L
It can be____' N

space is thus the Euclidean distance. .
shown that the Fuclidean distance between MFCC
sets is equivalent to the distance between (possibly
smoothed) spectra in the mel-frequency domain;
this seems to be a reasonable measure of the sim-
11ar1t1es between sounds. .

Whﬂe not a. cepstral eﬁctra.ctxon in the usual :

sense the effectiveness of the MI'CC 15 mamly due
to the mel-based filter spacing and to the dyna.rmc
range compression in the log filter outputs. Both
these fea.tures mimic the physmlogrca.l processes of
the inner ear, .

3 Experimental'_results .

Several sets of different musical sounds have been

used, all of which led to similar final results. In.

this paper we will Teport the analysis of the same

set of musical sounds as used by Carol Krumhansl
in [2], where muelcaI timbre is studied by means .
of listeners’ responses. The actual sound samples

have been obtained by FM sound synthesis on a
Yamaha Tx802 synthesxzer (Tab. 3). Each of the

21 tones has the same pitch (Eb 4, freq 311. 1 Hz) :

and was sampled at 44.1 kHz

Horn . Trumpet
"Trombone Harp

‘Trumpar Obuoleste

Vibraphone Striano -

'Sampled Piano | Harpsichord
Tenor Oboe "~ * | Oboe™ "

Bassoon Clarinet
Vibrone: =+ Obochord:
-} Bowed Piano: - |: Guitar:: i | ¢
- String-+ o vio | Plane:o
__Guita.rnet_ R Bl

Ta.ble 1; Musrca.l Instruments (Yamaha Tx802
eynthesmer)

' In the present study the quasr steady~state.

portlou of the tone is taken into, account, .The
sound 51gna.1 is shced mt.o overlappmg frames

" each frame is converted to a MFCC represehta.- :

tion, namely a vector of MFCC coefficients which

“can be regarded as'a point in ‘a multidimensional = -

MFCC space: Experimental evidence shows that -
the points stemming from the analysis of a sin-
gle mstrument are tightly clustered together As
a consequence, the centroid of the cluster is cho-

" sen” as the prototypical MFCC coordinate of the
_ instrument. This does not lead to misrepresenta-

tions as the tight clusters originated by the differ-
ent instruments map into Well separated regions

. of the MFCC space.

The, advantages of this T representa.tron appear

'cIearly from the analysrs of the variance distribu-

tion of the data a]ong the drfferent steps of the
coding process. Fig. 1 displays the variance - (indi-
vidual and cumulative) of the instrumental data
as appears at the output of the filierbank; this
is almost uniformly distributed along the.entire -

spectrum, that is; along the axes of the associated -

space.. In other. words, in this frequency space
there are no predominating axes. In the MFCC
space, on the other hand, the variance is primar-
ily. distributed across the first coefficients, as ap- .
pears in fig. 2. By selecting these coefficients as
the dominant geometrical coordinates, a MFCC
subspace is obtained which adequately represents.
the data. The first seven coefficients prove to be
sufficient to this aim.
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I‘lgure 1: Percent of the total variance assomated
to the ﬁlterbank cha.rmels
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F:gure 2 Percent of the total vanance assoc1ated
to’ t.he MFCC coefﬁcxents ' '

“Given the previous resuIts:';:" the next goal is’
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Figure 3: Percent of the total variance associated
to the Principal Components

to find an optimal result in the definition of a
minirnal subspace in the MFCC space which pre-
serves the relevant information in the signals. The
Principal Component Analysis (PCA) is a mul-
tivariate statistical tool whose formulation relies
on the properties of the orthogonal Linear frans-
forms. Given a p-dimensional data set, by means
of scaling and rotations the principal information
is moved onto a reduced set of variables. By care-
fully chosing the transformation matrix, the new
get of variables proves to be uncorreiated: the in-
formation pertaining to each of the variables can
thus be analyzed in an independent fashion. The
two major objectives of a PCA analysis are then
the compression of the data, and the optimal in-
terpretation of the data. These goals are achieved
if in the original data set the variance in the infor-
mation is paturally associated to a few principal
components, so that the representational loss as-
sociated with the dropping of some of the compo-
nenis : relatively small. Geometrically, the PCA
defi+ . get rotated of coordinates in the space in
which the new axes coincide with the directions of
maximum variance.

A PC analysis performed on the MFCC-coded
instrumental set reveals that the 80% of the vari-
ance is copcentrated in the first three compo-
nents 3. A three-dimensional space is thus able
to provide a “correct” topological organization
within the limits of the retained information.

Several interpretations can be carried out on
the space thus obtained. The origin represents
the average spectral envelope of all the timbres in
the data set. Fig. 4 clearly shows the typical low-
pass shape which characterizes almost all musical
mmstruments. In fig. 5, 6 and 7 the three direction
cosines related to the PCA spatial transformation
are shown. Each one represents the spectral con-
tribution of the correspondent spatial dimension
of the timbre space.

To better evaluate the global features of the
timbre organization thus obtained, it is useful to
represent the smoothed spectral envelopes at the
extremes of the axes as the sum of the average
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Figure 4: QOverall average apectral shape

spectral envelope (the origin) with the eigenvalue-
weighted contributions {positive on the right side,
negative on the left one) of each of the direction
cosines. In this new representation, the distribu-
tion of the speciral energy along the axes of the
new PCA space appears more clearly (fig. 8, §
and 10).

4 Discussion and results

The analysis of the plots shown eo far leads to sev-
eral conclusions. Clearly, the first axis is related
to the spectral energy distribution, called bright-
ness. The spectral envelope associated to the first
principal component (fig. 5) shows a boosting of
the low frequencies for positive values of the co-
ordinate, whereas negative values are linked to
frequency values above 1.5 kHz. These interpre-
tations are confirmed by the spectral envelopes
shown in fig. 8. Along this dimension, bright-
sounding instruments such as the oboe, the bas-
soon, and the horn are at a maximum of the ge-
ometric distance and of the perceptual distance
from the darker-sounding instruments such as the
vibraphone, the guilar, and the piano.

The second dimension is correlated to the en-
ergy values in a broad frequency range which en-
compasses the whole band for musical sounds,
0.6+6 KHz. From the plots of fig. 6 it could be as-
sumed that the fundarmental characteristics be an
apparent spectral irregularity. Fig. 9 shows how
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Figure 5: Spectral envelope (1st direction cosine)
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Figure 7: Spectral envelope (3rd direction cosine)

at one end of the axis there is an a.mbliﬁcatiou in.
the region corresponding to the knee of the spec-..
tral envelope, whereas at the other extreme there.

is a smoothing in the slope discontinuity in the
spectral envelope, which. changes into an almost

monotonic curve: At one end we have.trombone, :
horn, vibrione; at the other we have the guslar. ::
The third dimension seems to be associated to.

subtler aspects of the spectral characteristic; it is

correlated to the energy content of a narrow region.

of t_lié. sp_ectrum centered around 700 Hz. This set

of frequencies has an extremely important role in..
acoustic percept.ion, and is a commonly used pa- .-

rameter in audio equalization. A possible hypoth-

esis would be that this frequency region under- ..
lies a differentiation criterion which is similar, al--
beit finer, to the general distinction between low-: -
-At; the positive end -
we have the clarinet and at. the negative end the

and high-pass instruments. -
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5 Conclusmns

Other experunents with different sound géts ‘con~
firmed the fact that the first-two. dimensions ei- "
tracted by the PCA control the overall spectral -
shape,. the “cutoff” frequency, and the spectral -
slope; the third dimension is always related to the’
energy content. of a spectral region bounded be--:
tween 700 and 900 Hz. We are led to conclude that
this feature is a differentiating factor in the qual-
ity of musical timbre which acts in an independent
fashion from the quality called brightness.: - '
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