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Introduction

Timbre is that attribute of auditory
sensation which allows listeners to
rate as different sounds presented in
ways altogether similar with respect
to intensity, duration, and pitch.
The similarity between two sounds
can be characterized in physical and
mathematical terms only with diffi-
culty because it is a subjective at-
tribute and it depends on a large
number of parameters.

J. M. Grey, in his classic work
[1], introduces the concept of “tim-
bre space”, a means with which
he conveyed the vague notion of
similarity between timbres into the
precise notion of a metric rule in
a three-dimensional space. This
space was the result of a multidi-
mensional scaling applied onto a
large set of subjective similarity rat-
ings obtained in experimental ses-
sions. A physical interpretation of
the reasons for such a spatial distri-
bution was also provided.

In this work we will try to fol-
low the lines of Grey’s experiment,
but using a neural network as the
means to rate timbre differences
and to transform them into metric

relations. Neural nets have been
used already in this field of re-
search [4]; the aim of our work is
to simplify timbre multidimension-
ality, following the lines of Grey’s
experiment, and to obtain similar re-
sults in terms of clusterization and
of timbre space. The tools we use
are Kohonen self-organizing neural
networks (KNN): they show an abil-
ity to correctly classify items out-
side the training set, and they prove
highly insensitive to noise. An-
other reason for their use comes
from neurophysiology: the princi-
ples of self-organization Kohonen
proposes were derived from a model
of the cerebral cortex; it is therefore
interesting to compare our results
with those obtained by Grey start-
ing from subjective judgments.

Grey timbre space

J. Grey’s experiments at Stanford
University in 1975 were aimed at
a thorough investigation in the field
of musical timbre. He considered
the following synthetic test sounds,
obtained from a spectral analysis of
recorded true instruments: bassoon
(BN), normal cello (S2), E flat clar-
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inet (C1), flute (FL), french horn
(FH), english horn (EH), muted
cello (S3), oboe (01, 02), cello sul
ponticello (S1), soprano sax (X1,
X2, X3), trombone (TM), and trum-
pet (TP); during the experimen-
tal sessions, a group of musically
trained listeners provided subjective
ratings of the differences between
tones. These perceptual data were
averaged and arranged in a similar-
ity matrix. This matrix was then
processed using a multidimensional
scaling (MDS) algorithm; the re-
sult was the distribution of the tim-
bres in an n—dimensional space; at
the same time, the matrix was an-
alyzed using a hierarchical cluster-
ing algorithm based on the diame-
ter method, and the result was an
independent timbre grouping. The
most interesting result was that the
clusters thus obtained enclosed tim-
bres located at low distance in the
three-dimensional timbre space pro-
duced by the MDS algorithm. Grey
proposed a physical interpretation
for the three dimensions, showing
the first dimension to be related to
the spectral distribution of energy,
the second dimension to the pres-
ence of synchronicity in the attack
stage through the harmonics, and
the third dimension to the presence
of high frequency inharmonic noise
with low amplitude, during the at-
tack segment.

As timbre, in its definition, is
the feature which differentiates
sounds under the same conditions
of pitch, intensity and duration,
Grey first had to equalize the sam-
ple sounds with regard to those pa-
rameters. This equalization stage
featured many psycho-acoustic ses-
sions aimed at the comprehension
of the phenomena underlying sub-

jective perception and finally pro-
duced a set of sound samples where
the timbral issue was the only dis-
criminant.

We used the same data Grey used;
they consist of a line-segment ap-
proximation of the true evolutions
both in frequency and in amplitude
of the sound partials as they resulted
from a heterodyne analysis of the
equalized analog signal.

Self-organizing neural networks

Kohonen’s neural networks are in-
spired by the process that seems to
be responsible for the map-like or-
ganization of the cerebral cortex; the
observable organization of the cor-
tex neurons shows that some zones
of the cortex are sensitive to cer-
tain stimulations and indifferent to
others. The basic mechanism, be-
lieved to account for this process
of self-organization of the brain, is
called the Hebb principle; it asserts
that if a particular neuron has a con-
siderable reaction to a stimulation,
its synapses adapt themselves to the
acting stimulus, and a lateral feed-
back process takes place; an activity
bubble is formed in the close neigh-
bourhood of the cell, while cells sur-
rounding the bubble are inhibited.
In this way a clusterization process
is generated, and the activity bub-
bles come to be located in different
zones of the neural map according
to the stimulations to which they are
most sensitive.

T. Kohonen formalized this pro-
cess into a simple numerical al-
gorithm [S].  The arising neu-
ral model shows surprising prop-
erties of self organization: its in-
ner structure modifies to become
an n~dimensional projective model
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of the m—dimensional probability
space from which the input sam-
ples come. As it is generally n <
m (while n = 1,2), the neural
map performs a feature extraction:
along the n axes of the map those
input features are mapped which
have the largest numerical variance.
This also explains the good behavior
these models exhibit in the presence
of noise : KNN can maximize the
amount of information stored be-
cause they organize complying to
two conflicting requirements: to in-
crease the variance of the outputs
of all neurons, with the purpose of
recognizing the main features of the
inputs; and to introduce a certain
degree of redundancy, with the pur-
pose of obtaining correct answers
even in presence of noise [6].

3D Kchonen Nets

The first experiments we carried
out referred directly to Grey’s main
result: the three—dimensional tim-
bre space. To obtain results to be
compared directly with Grey’s, we
planned using a 3D neural model,
extending Kohonen’s equations into
the third spatial dimension.

The basic algorithm ruling the
self-organization process is the fol-
lowing: at each training step ¢ a new
input vector z(t) is presented to the
net; the neuron ¢ whose inner values
vector m; is closest to the input vec-
tor x is selected as the best matching
neuron. Different metric rules can
underlie this matching criterion; for
instance, we adopted the euclidean
metric and the “city block distance”.
Around the best matching neuron a
topological neighborhood V.(t) is
defined as the spatial region where
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the actual learning occours: for all
the indices 7 € N,(t)

my(t + 1) = mi(t) + at)[z(t) — mi(t)],

while the other neurons are not up-

dated. Both V. and «, the learning
rate, decrease with time: the main
structural changes in the net hap-
pen at the beginning of the process,
when the neighborhood is large,
while the remaining steps allow a
fine tuning of the neuronal inner
values. In our case the topological
neighborhood is three—dimensional;
its actual shape, cubic or spherical,
is not essential, noris it its shrinking
rule which could be linear or expo-
nential.

Literature, however, offers almost
no example of three—dimensional
forms of this equation. A math-
ematical analysis of KNN dynam-
ics is extremely difficult; their prop-
erties were discovered through ex-
perimental simulation and practical
applications. For this reason some
preliminary experiments were per-
formed to verify this extension.

A first task was to run the clas-
sical self-organization test [5, pag.
133] on our new structure: if the in-
put vector z is a random variable
with a stationary probability den-
sity function p(z), then an ordered
image of p(z) will be formed onto
the input weights m; of the process-
ing units. If an uniform distribution
over a cubic region is used for the in-
put space, an ordered cubic lattice of
points should be obtained as the ul-
timate structure of the map. Koho-
nen suggested a minimal number of
training steps of 500 times the num-
ber of neurons in the net [6, page
1496]; working with this too con-
servative an estimate. Probably, the
more complex lateral interferences



in the solid case require allowing a
Ionger phase to structural modifica-
tions.

Figure 1: Three stages of evolution
in the process of self ordering for a
three—dimensional map. (a) startoff, (b)
1000000 iterations; (c) 2000000 itera-
tions.

Figures 1.a, 1.b, and 1l.c illus-
trate two significant steps of this
expected evolution and show the
validity of the three—dimensional
model. In these plots the neuron
values m; are represented as circles

in the same coordinate system of the
input values, with lines connecting
those units which are adjacent in the
neuronal array. Figure 1.c shows
how adjacent units end up with as-
suming adjacent values.

3D Clusterization

At this point we presented the net
with numerical data obtained di-
rectly from those used by Grey in
his listening sessions. We used sam-
ples of the frequency and ampli-
tude evolutions of the sound sig-
nal in their line—segment approxi-
mation, so that all of the processing
was made by the neural network;
we also tried with data outcoming
of a pre—processing of sounds, so
that the network operated only at the
most critical stage, the classification
stage [8]. In all cases, the way we
used Kohonen networks was some-
what fragile because only few learn-
ing samples were available with re-
spect to the number of neurons in the
network. A lack of samples causes a
great sensitivity in the network final
state to the starting random values
of the weights. It happens that some
of the neurons remain untouched by
the learning process and the inner
structural organization cannot un-
fold. It is possible to reduce this
sensitivity to the initial conditions
computing the mean of the different
results obtained in a series of experi-
ences, so that the effect of the initial
random weights is canceled by the
average [7, page 7]; we studied the
convergence properties of the av-
erage, and we noted the presence
of a final mean configuration with
low values of variance, and, accord-
ingly, of the relative error (3% is a
typical value).
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We obtained the best results using
Grey’s data directly: in the origi-
nal line-segment representation all
the necessary information to recon-
struct the complete heterodine anal-
ysis of the timbre is contained and it
could thus be used as an input to the
neural network. We built an input
file containing, for the first 20 har-
monics of 12 signals, 10 amplitude
envelope samples and 5 frequency
envelope samples, and we fed itto a
network sized 8 * 8 * 8 = 512 neu-
rons. After the learning phase, we
computed the matrix of relative tim-
bre distances from the spatial lo-
cation of the best-matching neu-
rons in the map; to this matrix, the
same clusterization algorithm used
by Grey was applied and the result
was:

{(BN FH) [TP (FL $2)] [S1 S3]}
{I(C1 EH TM) 02] X3}

where the brackets split successive
levels in the clusterization process.
The analogies with Grey’s results,

{{(BN TP) FH] [(S2 S3) (FL S1)]}
{C1 (EH X3)}
[02 T™],

are encouraging; the mismatches
are due more to the different times
at which grouping occours, than to
actual grouping differences.

Timbre Interpolation

The most critical point in the previ-
ous experients was the small num-
ber of learning samples, which were
just the 14 original timbres. Besides
averaging results, we tried to in-
crease the number of samples: start-
ing form Grey’s original data, and
following a line exploited by Grey
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himself, even though for other pur-
poses [ 1, pages 75-95], [3], we con-
sidered each one of the possible cou-
ples of tones and obtained, by an
algorithm of linear interpolation of
the spectral envelopes, two artificial
tones at 1/3 and 2/3 of the dis-
tance between the couple extremes.
In so doing, we implicitly discarded
all information about the frequency
evolution of partials, adopting a
coding of sounds which Grey calls
the fixed frequency model. In the
end we reached a data set of 200
units.

Clustering algorithms are gener-
ally very sensitive to little pertur-
bations in the data points; there-
fore, even if the timbre space built
by the net were not so much dif-
ferent from Grey’s, the clustering
algorithm could produce a com-
pletely mismatching result. Com-
mitting the accuracy judgement to
a close match between clusterings
seems too strict a requirement; how-
ever, since Grey does not provide
the similarity matrices he used, a
comparison between them and our
distance matrix, which would be the
best criterion, is impossible. In or-
der to obtain a significant index of
similarity for the timbre spaces, we
exploited the information contained
in [1, page 60], that is, the order
in which clustering occours: 1.(S1,
S$3), 2.(01, 02), 3.(BN, TP), 4.(X1,
X2), 5.(Cl1, C2), 6.(X3, EH), 7.(FL,
S1), 8.[(BN, TP), FH], 9.[(O1, 02),
T™], 10. ...

We define the following index of dis-
order

N
D=3 Wdes1 —di) = |deys — di|
k=1

where d;. is the euclidean distance



between ner points which, in Grey’s
space, belong to the k-th cluster.
Distances are computed according
to the diameter algorithm, that is, the
maximum among all possible dis-
tances in a group. Clearly D > 0,
and D = O only if dp,...,dy are
in ascending order. This latter case
does not imply spatial equality, but
grants a good similarity. When
D > 0, distances are in a scram-
bled order; each inverted group con-
tributes to D with a term propor-
tional to the degree of inversion.

Experiments using the extended
data set were run on both two- and
three-dimensional networks; con-
vergence now required a huge num-
ber of steps and rendered our work
a trial to patience. Evaluations of
the index of disorder proved con-
sistent in all of the experiences:
after a first widely varying phase,
due to the large structural changes
occourring at the beginning of the
self-organization process, the in-
dex settled around a value of fif-
teen (fig. 2), which indicates that
few timbres are slightly misplaced.
In the analysis of the index behav-
ior, no substantial differences were
found between plane and solid net-
works, suggesting that two dimen-
sional structures manage to locate
timbres well enough; since there is
a great saving in time, the bulk of the
experiments was then conducted on
plane nets sized 10 * 5 = 50 neu-
rons.

Another topological issue came
to validate our results: Grey
showed how artificial timbres ob-
tained through linear interpolation
are acoustically perceived as “half
way”’ between the two timbres from
which they originate. Similarly,
such an artificial timbre is mapped

by the net approximately half way
along the line between the two “par-
ents” (fig. 3); this is not obvious
if we recall that KNN are nonlin-
ear projectors: if linear relations in
the input space are preserved, this
means that the numerical form into
which input samples are coded is
well representative of their differ-
ences. We refer to this finding as to
the inner “coherence” of the neural
space.
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Figure 2: Typical evolution of the index
of disorder
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Figure 3: Neural space coherence
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Conclusion

KNN are an interesting tool for the
classification of a data set belonging
to a space with large dimensional-
ity, a task where classical tools for
the extraction of high-variance fea-
tures fail. We obtained maps which,
even though different from Grey’s
timbre space, were not so far away.
This suggests that the model under-
lying the artificial networks princi-
ples of self organization resembles,
in a way, the features of biological
neurons organization. We could ask
ourselves, however, which are the
legitimate expectations in such ex-
periments. From the wide spatial
separation between tones and the in-
ner coherence of the neural space we
can infer that the net is capable of
efficiently handling a multidimen-
sional feature like timbre; it would
be unlikely, however, to have the
same results as those obtained from
a group of trained listeners. After
all, Grey’s model wasdevelopedina
peculiar environment, and need not
be assumed as an absolute target. It
would be interesting, among other
things, to repeat the tests that led to it
with a group of untrained people, or
with sound samples of a better qual-
ity. In fact, it should be noticed that
Grey’s synthetic tones are of a low
sound quality; future developments
will surely profit of a higher quality
sampling of the test timbres, and of
an adequate signal pre-processing.

With regard to the data reduction
techniques, deeper studies are under
completion at Padova University;
the best results have been obtained
using pre—processing based upon
Grey’s observations, while Char-
bonneau’s methods gave worse fi-
nal configurations. A development
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of this work is the substitution, at the
initial stage in the process of timbre
recognition, of the heterodine anal-
ysis with a simulator of the human
ear; in this way the operations made
on input signals by biological or-
gans and neurons is entirely repro-
duced by an artificial system.

References

[1] Grey JM., An exploration of
musical timbre, Rep. STAN-M-
2, Stanford University, 1975.

[2] Grey IM., Multidimensional
perceptual scaling of musical
timbres, J. Acoust. Soc. Am.,
61(5): 1270-1277, 1977.

[3] Gordonl.W., Grey J., Percep-
tion of spectral Modifications
on Orchestral Instrument Tones,
Comp. Music J., 2(1): 24-31,
1978.

[4] Feiten B., Frank R., Ungvary
T., Organizations of sounds with
neural nets, Proc. ICMC 91, p.
441-444, 1991.

[5] Kohonen T., Self-organiza-
tion and associative memory,
Springer V., Berlin, 1984.

[6] Kohonen T., The Self-Organi-
zing Map, Proc. of the IEEE,
78(9): 1464-1480, 1990.

[7]1 The Self~Organizing Map Pro-
gram Package, Helsinky Uni-
versity of Technology, 1992.

[8] De Poli G., Tonella P, Self-
Organizing Neural Networks
and Grey’s Timbre Space, Proc.
ICMC 93, 1993.



