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Introduction

Timbre is that attribute of auditory
sensation which allows listeners to
rate as different sounds presented in
ways altogether similar with respect
to intensity, duration, and pitch.
The similarity between two sounds
can be characterized in physical and
mathematical tenus only with diffi
culty because it is a subjective at
tribute and it depends on a large
number of parameters.

1. M. Grey, in his classic work
[1], introduces the concept of "tim
bre space", a means with which
he conveyed the vague notion of
similarity between timbres into the
precise notion of a metric rule in
a three-dimensional space. This
space was the result of a multidi
mensional scaling applied onto a
large set of subjective similarity rat
ings obtained in experimental ses
sions. A physical interpretation of
the reasons for such a spatial distri
bution was also provided.

In this work we will try to fol
low the lines of Grey's experiment,
but using a neural network as the
means to rate timbre differences
and to transform them into metric

relations. Neural nets have been
used already in this field of re
search [4]; the aim of our work is
to simplify timbre multidimension
ality, following the lines of Grey's
experiment, and to obtain similarre
suIts in terms of clusterization and
of timbre space. The tools we use
are Kohonen self-organizing neural
networks (KNN): they show an abil
ity to correctly classify items out
side the training set, and they prove
highly insensitive to noise. An
other reason for their use comes
from neurophysiology: the princi
ples of self-organization Kohonen
proposes were derived from a model
of the cerebral cortex; it is therefore
interesting to compare our results
with those obtained by Grey start
ing from subjective judgments.

Grey timbre space

J. Grey's experiments at Stanford
University in 1975 were aimed at
a thorough investigation in the field
of musical timbre. He considered
the following synthetic test sounds,
obtained from a spectral analysis of
recorded true instruments: bassoon
(BN), normal cello (S2), E flat clar-
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inet (Cl), flute (FL), french hom
(FH), english hom (EH), muted
cello (S3), oboe (01, 02), cello suI
ponticello (S 1), soprano sax (X1,
X2, X3), trombone (TM), and trum
pet (TP); during the experimen
tal sessions, a group of musically
trained listeners provided subjective
ratings of the differences between
tones. These perceptual data were
averaged and arranged in a similar
ity matrix. This matrix was then
processed using a multidimensional
scaling (MDS) algorithm; the re
sult was the distribution of the tim
bres in an n-dimensional space; at
the same time, the matrix was an
alyzed using a hierarchical cluster
ing algorithm based on the diame
ter method, and the result was an
independent timbre grouping. The
most interesting result was that the
clusters thus obtained enclosed tim
bres located at low distance in the
three-dimensional timbre space pro
duced by the MDS algorithm. Grey
proposed a physical interpretation
for the three dimensions, showing
the first dimension to be related to
the spectral distribution of energy,
the second dimension to the pres
ence of synchronicity in the attack
stage through the harmonics, and
the third dimension to the presence
of high frequency inharmonic noise
with low amplitude, during the at
tack segment.

As timbre, in its definition, is
the feature which differentiates
sounds under the same conditions
of pitch, intensity and duration,
Grey first had to equalize the sam
ple sounds with regard to those pa
rameters. This equalization stage
featured many psycho-acoustic ses
sions aimed at the comprehension
of the phenomena underlying sub-

jective perception and finally pro
duced a set of sound samples where
the timbral issue was the only dis
criminant.

We used the same data Grey used;
they consist of a line-segment ap
proximation of the true evolutions
both in frequency and in amplitude
of the sound partials as they resulted
from a heterodyne analysis of the
equalized analog signal.

Self-organizing neural networks

Kohonen's neural networks are in
spired by the process that seems to
be responsible for the map-like or
ganization of the cerebral cortex; the
observable organization of the cor
tex neurons shows that some zones
of the cortex are sensitive to cer
tain stimulations and indifferent to
others. The basic mechanism, be
lieved to account for this process
of self-organization of the brain, is
called the Hebb principle; it asserts
that if a particular neuron has a con
siderable reaction to a stimulation,
its synapses adapt themselves to the
acting stimulus, and a lateral feed
back process takes place; an activity
bubble is formed in the close neigh
bourhood of the cell, while cells sur
rounding the bubble are inhibited.
In this way a clusterization process
is generated, and the activity bub
bles come to be located in different
zones of the neural map according
to the stimulations to which they are
most sensitive.

T. Kohonen formalized this pro
cess into a simple numerical al
gorithm [5]. The arising neu
ral model shows surprising prop
erties of self organization: its in
ner structure modifies to become
an n-dimensional projective model
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of the m-dimensional probability
space from which the input sam
ples come. As it is generally n <
m (while n = 1,2), the neural
map performs ajeature extraction:
along the n axes of the map those
input features are mapped which
have the largest numerical variance.
This also explains the good behavior
these models exhibit in the presence
of noise: KNN can maximize the
amount of information stored be
cause they organize complying to
two conflicting requirements: to in
crease the variance of the outputs
of all neurons, with the purpose of
recognizing the main features of the
inputs; and to introduce a certain
degree of redundancy, with the pur
pose of obtaining correct answers
even in presence of noise [6].

3D Kohonen Nets

The first experiments we carried
out referred directly to Grey's main
result: the three-dimensional tim
bre space. To obtain results to be
compared directly with Grey's, we
planned using a 3D neural model,
extending Kohonen's equations into
the third spatial dimension.

The basic algorithm ruling the
self-organization process is the fol
lowing: at each training step t a new
input vector x(t) is presented to the
net; the neuron i whose inner values
vector mj is closest to the input vec
tor x is selected as the bestmatching
neuron. Different metric rules can
underlie this matching criterion; for
instance, we adopted the euclidean
metric and the "city block distance".
Around the best matching neuron a
topological neighborhood N c( t) is
defined as the spatial region where
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the actual learning occours: for all
the indices i E Nc(t)

1ni(t + 1) = mj(t) + a(t)[x(t) - 1n;(t)],

while the other neurons are not up-
dated. Both N c and a, the learning
rate, decrease with time: the main
structural changes in the net hap
pen at the beginning of the process,
when the neighborhood is large,
while the remaining steps allow a
fine tuning of the neuronal inner
values. In our case the topological
neighborhood is three-dimensional;
its actual shape, cubic or spherical,
is not essential, nor is it its shrinking
rule which could be linear or expo
nential.

Literature, however, offers almost
no example of three-dimensional
forms of this equation. A math
ematical analysis of KNN dynam
ics is extremely difficult; their prop
erties were discovered through ex
perimental simulation and practical
applications. For this reason some
preliminary experiments were per
formed to verify this extension.

A first task was to run the clas
sical self-organization test [5, pag.
133] on our new structure: if the in
put vector x is a random variable
with a stationary probability den
sity function p(x ), then an ordered
image of p(x) will be formed onto
the input weights mi of the process
ing units. If an uniform distribution
over a cubic region is used for the in
put space, an ordered cubic lattice of
points should be obtained as the ul
timate structure of the map. Koho
nen suggested a minimal number of
training steps of 500 times the num
ber of neurons in the net [6, page
1496]; working with this too con
servative an estimate. Probably, the
more complex lateral interferences



in the solid case require allowing a
longer phase to structural modifica
tions.
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Figure 1: Three stages of evolution
in the process of self ordering for a
three-dimensional map. (a) startoff, (b)
1000000 iterations; (c) 2000000 itera
tions.

Figures La, 1.b, and 1.c illus
trate two significant steps of this
expected evolution and show the
validity of the three-dimensional
model. In these plots the neuron
values mj are represented as circles

in the same coordinate system of the
input values, with lines connecting
those units which are adjacent in the
neuronal array. Figure l.c shows
how adjacent units end up with as
suming adjacent values.

3D Clusterization

At this point we presented the net
with numerical data obtained di
rectly from those used by Grey in
his listening sessions. We used sam
ples of the frequency and ampli
tude evolutions of the sound sig
nal in their line-segment approxi
mation, so that all of the processing
was made by the neural network;
we also tried with data outcoming
of a pre-processing of sounds, so
that the network operated only at the
most critical stage, the classification
stage [8]. In all cases, the way we
used Kohonen networks was some
what fragile because only few learn
ing samples were available with re
spect to the number ofneurons in the
network. A lack of samples causes a
great sensitivity in the network final
state to the starting random values
of the weights. It happens that some
of the neurons remain untouched by
the learning process and the inner
structural organization cannot un
fold. It is possible to reduce this
sensitivity to the initial conditions
computing the mean of the different
results obtained in a series of experi
ences, so that the effect of the initial
random weights is canceled by the
average [7, page 7]; we studied the
convergence properties of the av
erage, and we noted the presence
of a final mean configuration with
low values of variance, and, accord
ingly, of the relative error (3% is a
typical value).
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We obtained the best results using
Grey's data directly: in the origi
nal line-segment representation all
the necessary information to recon
struct the complete heterodine anal
ysis of the timbre is contained and it
could thus be used as an input to the
neural network. We built an input
file containing, for the first 20 har
monics of 12 signals, 10 amplitude
envelope samples and 5 frequency
envelope samples, and we fed it to a
network sized 8 *8 * 8 = 512 neu
rons. After the learning phase, we
computed the matrix ofrelative tim
bre distances from the spatial lo
cation of the best-matching neu
rons in the map; to this matrix, the
same clusterization algorithm used
by Grey was applied and the result
was:

{(BN FH) [TP (FL 52)] [51 53]}
{[(CI EH TM) 02] X3}

where the brackets split successive
levels in the clusterization process.
The analogies with Grey's results,

{[(BN TP) FH] [(5253) (FL 51)]}
{Cl (EHX3)}

[02 TM],

are encouraging; the mismatches
are due more to the different times
at which grouping occours, than to
actual grouping differences.

Timbre Interpolation

The most critical point in the previ
ous experients was the small num
ber of learning samples, which were
just the 14 original timbres. Besides
averaging results, we tried to in
crease the number of samples: start
ing form Grey's original data, and
following a line exploited by Grey

himself, even though for other pur
poses [1, pages 75-95], [3], we con
sidered each one of the possible cou
ples of tones and obtained, by an
algorithm of linear interpolation of
the spectral envelopes, two artificial
tones at 1/3 and 2/3 of the dis
tance between the couple extremes.
In so doing, we implicitly discarded
all information about the frequency
evolution of partials, adopting a
coding of sounds which Grey calls
the fixed frequency model. In the
end we reached a data set of 200
units.

Clustering algorithms are gener
ally very sensitive to little pertur
bations in the data points; there
fore, even if the timbre space built
by the net were not so much dif
ferent from Grey's, the clustering
algorithm could produce a com
pletely mismatching result. Com
mitting the accuracy judgement to
a close match between clusterings
seems too strict a requirement; how
ever, since Grey does not provide
the similarity matrices he used, a
comparison between them and our
distance matrix, which would be the
best criterion, is impossib-le. In or
der to obtain a significant index of
similarity for the timbre spaces, we
exploited the information contained
in [1, page 60], that is, the order
in which clustering occours: 1.(5 I,
53),2.(01, 02), 3.(BN, TP), 4.(Xl,
X2), 5.(Cl, C2), 6.(X3, EH), 7.(FL,
51), 8.[(BN, TP), FH], 9.[(01, 02),
TM], 10....
We define the following indexofdis
order

N

D =:L l(dk+1 - dk) -ldk+1 - dkll
k=1

where dk is the euclidean distance
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Figure 3: Neural space coherence

Figure 2: Typical evolution of the index
of disorder
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by the net approximately half way
along the line between the two "par
ents" (fig. 3); this is not obvious
if we recall that KNN are nonlin
ear projectors: if linear relations in
the input space are preserved, this
means that the numerical form into
which input samples are coded is
well representative of their differ
ences. We refer to this finding as to
the inner "coherence" of the neural
space.

between net points which, in Grey's
space, belong to the k-th cluster.
Distances are computed according
to the diameteralgorithm, that is, the
maximum among all possible dis
tances in a group. Clearly D ~ 0,
and D = °only if do, ... ,dN are
in ascending order. This latter case
does not imply spatial equality, but
grants a good similarity. When
D > 0, distances are in a scram
bled order; each inverted group con
tributes to D with a term propor
tional to the degree of inversion.

Experiments using the extended
data set were run on both two- and
three-dimensional networks; con
vergence now required a huge num
ber of steps and rendered our work
a trial to patience. Evaluations of
the index of disorder proved con
sistent in all of the experiences:
after a first widely varying phase,
due to the large structural changes
occourring at the beginning of the
self-organization process, the in
dex settled around a value of fif
teen (fig. 2), which indicates that
few timbres are slightly misplaced.
In the analysis of the index behav
ior, no substantial differences were
found between plane and solid net
works, suggesting that two dimen
sional structures manage to locate
timbres well enough; since there is
a great saving in time, the bulk of the
experiments was then conducted on
plane nets sized 10 * 5 = 50 neu
rons.

Another topological issue came
to validate our results: Grey
showed how artificial timbres ob
tained through linear interpolation
are acoustically perceived as "half
way" between the two timbres from
which they originate. Similarly,
such an artificial timbre is mapped
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Conclusion

KNN are an interesting tool for the
classification of a data set belonging
to a space with large dimensional
ity, a task where classical tools for
the extraction of high-variance fea
tures fail. We obtained maps which,
even though different from Grey's
timbre space, were not so far away.
This suggests that the model under
lying the artificial networks princi
ples of self organization resembles,
in a way, the features of biological
neurons organization. We could ask
ourselves, however, which are the
legitimate expectations in such ex
periments. From the wide spatial
separation between tones and the in
ner coherence of the neural space we
can infer that the net is capable of
efficiently handling a multidimen
sional feature like timbre; it would
be unlikely, however, to have the
same results as those obtained from
a group of trained listeners. After
all, Grey's model was developed in a
peculiar environment, and need not
be assumed as an absolute target. It
would be interesting, among other
things, to repeat the tests that led to it
with a group of untrained people, or
with sound samples of a better qual
ity. In fact, it should be noticed that
Grey's synthetic tones are of a low
sound quality; future developments
will surely profit of a higher quality
sampling of the test timbres, and of
an adequate signal pre-processing.

With regard to the data reduction
techniques, deeper studies are under
completion at Padova University;
the best results have been obtained
using pre-processing based upon
Grey's observations, while Char
bonneau's methods gave worse fi
nal configurations. A development
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of this work is the substitution, at the
initial stage in the process of timbre
recognition, of the heterodine anal
ysis with a simulator of the human
ear; in this way the operations made
on input signals by biological or
gans and neurons is entirely repro
duced by an artificial system.
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