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Abstract

The problem of removing impulsive and back-
ground (white or coloured) noise from audio record-
ings is considered. The algorithm used simultane-
ously solves the problems of wideband noise filtering,
signal parameter tracking and impulsive noise elim-
ination by using the FExtended Kalman Filter the-
ory (EKF), as proposed by M. Niedzwiecki and K.
Cisowski [5, 6]. Results, obtained with the proposed
method for significant cases, are presented. More-
over, features and performance of the method are
compared with other existing techniques.

1 Introduction

The introduction of high quality digital media,
combined with an increasing awareness of the his-
torical importance of “audio heritage”, has led to
a growing requirement for the preservation and
restoration of old recordings [7]. In this work we
present some results on the restoration of mag-
netic tapes and vinyl records, carried out within the
project ” Beni Culturali ” of the CNR [1], whose aim
is the preservation and fruition of all Italian cultural
assets.

The types of degradation common in audio
sources can be broadly classified into localized and
global degradations [3]. The former are finite dura-
tion defects which occour at random in the waveform
and include clicks, scratches, clipping, ... (in the se-
quel they will be simply referenced to as ”clicks”).
The latter affect all the audio recording and include
background noise (perceived as “hiss”), wow, flutter
and some types of linear and nonlinear distortion.

In this context, we consider the problem of the
reduction of impulsive and background noise from
audio signals. This task is usually carried out using
different methods for detection /restoration of impul-
sive noise and for broadband noise reduction [3, 8].

In this work we employ an algorithm whose objec-
tive is to simultaneously solve the problems of filter-
ing/parameter tracking/elimination of the outliers
(“clicks”) by using the Extended Kalman Filter the-
ory (EKF), as proposed by M. Niedzwiecki and K.
Cisowski [4, 5, 6]. In particular the algorithm in [6]
can be interpreted as the nonlinear combination of
two Kalman filters: the first is used to follow the

slow variations of the signal time—varying AR model
parameters, while the second takes part in the re-
duction of background and impulsive noise.

2 Problem statement
Let the audio signal s(t), t = 1,2, - -, be modelled
by a p order time varying autoregressive (AR) model

p

s(t+1)=> ait)s(t—i+1)+e(t) (1)

i=1

driven by the gaussian zero-mean white noise se-
quence e(t) with variance o2.

The time evolution of the time varying coefficients
a;(t) is modelled by the random walk model

ai(t + 1) = ai(t) + wi(t) (2)

with  w;(t) zero-mean  gaussian  white
processes of variance o2, mutually uncorrelated, i.e.,
Elw;(t)w;(t)] = 0for ¢ # j, and independent of e(t).
Moreover, let us assume that the original signal s(#)
is corrupted by a mixture of a broadband noise z(t)
and impulsive noise v(t) (independent of e(t) and
w;(t)), so that the available signal y(t) can be writ-
ten as

y(t) = s(t) + 2(t) + v(t). (3)

The noise z(t) is assumed gaussian zero—mean white
noise (see later for relaxing this hypothesis) of vari-
ance o2, while v(¢) is assumed gaussian zero-mean
noise with o2(t) = oo, if a click is present, or o2(t) =
0, otherwise. As a consequence, if a click is revealed
at time ¢, the corresponding sample y(t) must be dis-
carded since it not bears information on s(t) and s(#)
must be recovered from {--- y(t —1),y(t +1),---} .

In [5] it is shown that under the hypothesis made,
the problem of recovering the signal s(t) based on the
noisy measurements Y (¢) = {y(¢),y(t—1),---,y(1)}
can be optimally handled by the extended Kalman
filter (EKF). To this purpose it is convenient to rep-
resent signal s(¢) in eqn. (1) in the non—minimal
state space form

sq(t +1) = Agfap(t)]sq () +bye(?) (4)

where s,(t) = [s(t),...,s(t — p),---,s(t —q + 1)]7T,
q > p, is the signal vector, al (t) = [ay (), - - -, ap(t)]"



is the vector of the AR model coefficients, qu =
[1,0,---,0], and A,(t) is the companion matrix as-
sociated with the extended parameter vector al (t) =
[al(t),0L ,]. The provision of a nonminimal state-
space description: ¢ > p will allow one for two—sided
reconstruction of up to ¢ — p samples corrupted by
impulsive noise.

Notice that to remove noise an accurate signal
model is needed and to obtain a reliable signal model
the signal should be noiseless. The problems of fil-
tering and parameter tracking are strictly tied and
are to be jointly solved. The solution to their com-
bined treatment is obtained by combining the un-
known AR model coefficients and the signal vector
in a p+ ¢ “state vector” x”(t) = [s] (t),a] (t)] and
by rewriting (1-3) as

{ x(t+1) = flx(t)] + u(t) 5
y(t) = Tx(t) + C(2)

i = | A0 P | oxo, u = | el |

with wT'(t) = [wy(t),- -+, w,(t)] and
((t) = z(t) +v(t), <" =, 07]=[1,0,---,0].

The problem of estimating the model parameters
a,(t) and the noisefree signal s(t) is reduced to a
nonlinear filtering problem in the state space. A
(suboptimal) solution to the problem can be based
on the theory of extended Kalman filter (EKF)[5, 6]
and is obtained linearizing (5).

Let us denote with x(t|t) the estimate of the state
at time ¢ from the measurements y(7) : 7 < ¢ and
with %x(t|t — 1) the state prediction at time ¢ from
the measurements y(7) : 7 <t — 1. Let F(¢) denote
the state transition matrix of the linearized system

aT
_ 0fIx] | Ay 00
F(t) = =5 = b= = a-1xp
Oqu Ip

(6)
where X7 (t|t) = [8] (¢|t),a} (¢|t)] is the filtered state
trajectory given by the EKF algorithm, A,(t]t) =
A la,(tt)] and §,(t]t) is the vector made up with
the first p components of §,(¢|t). Moreover, let:

(7)

Q = cov[u(t)]/o? = [ P ]

0 <,

with & = 02 /o2.
The EKF equations become for the prediction step:

{ x(tt—1) = fx(t—1t—1)]
Stt—-1) =Ft-)S(t—-1t-D)FTt-1)+Q

(8)

and for the update step:

{ x(tt) =x(t|t — 1)+ L(t)e(t) (9)
S(tt) = (g — L(t)eT)S(tt — 1)

where S(t[t) = E[(x(t) — x(t[t))(x(t) — x(t[t))"] is
the state estimation error covariance and X(t|t—1) =
E[(x(t) — x(t|t — 1)) (x(t) — %(t|t — 1))T] is the state
prediction error covariance. Moreover in (9)

e(t) = (1) — "R (tlt — 1) = (1) - (el — 1)

is the prediction error (Kalman filter innovation) and
L(t) is the Kalman gain, whose value depends from

the click indicator function d(t) :
S(tt—1)e .
snerro

L(t) =
and k(t) = 02 /o2(t).
The EKF can be started with the values
. 0 o
%(0]0) =0, X(0]0) = { 0 o, }
with d a large positive constant (~ 100) to account
that nothing is known in advance about a(0).

The corresponding algorithm has a complexity

O((p + q)?). In [6] a reduced complexity split EKF
algorithm is presented and it was used in the actual
experiments referred to in the next section.
In addition, it can be noticed that it is not difficult
to drop the hypothesis of a white noise z(t). In case
of coloured noise z(t) it suffices to model it as an AR
process and to increase the state dimension accord-
ingly [2]. Such a provision was found quite effective
for the noise reduction of some old vinyl records.

2.1 Click detection
The detection of clicks is based on the value as-
sumed at each ¢ by the prediction error

s 0 if |e(t)] < mo(t)
a0={1 % FoSmew W
In (10)

o2(t) = n(t)62(t) with n(t) = T X(tt — 1)c + k(t)
is the estimated innovation variance, m is the param-
eter determining the threshold for impulsive noise
detection (in practice m = 3 + 5) and 62(¢) is the
local estimate of the model input noise e(t) variance

s2 = | AHE=D+ (- NEW if d(t) =0
‘ 62(t—1) if dt) =1
(11)

In (11) 0 < A < 1 determines the adaptation speed.
In actual experimentation we used A = 0.98, except
in the case of signals with fast dynamics as in the
guitar case, where a smaller value (0.7) was used.
Fig. 1 shows a segment taken from an old 78 rpm
gramophone disc and the corresponding innovation
(p = 12), which takes on greater values in corrispon-
dence with signal discontinuities.
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Figure 1: Click detection: noisy signal (top) and
corresponding innovation (bottom).

2.2 Smoothing and reconstruction

It can be noticed that §(t|t) = [§(¢|t), -, 8(t —
q + 1|t)]T represents the optimal (mean square)
smoothed estimate of s(t), - - -, s(t—g+1) given Y (¢),
i.e., all the measurements available up to time ¢. To
make full use of the available information, it is con-
venient to use, at time ¢, §(t — ¢+ 1|t) as an estimate
of s(t — g+ 1), i.e,, it is convenient to introduce a
delay of ¢ samples.
As a result, for signal smoothing it is enough to use
q = p. In presence of clicks it can be shown that,
for a p order AR process, a block consisting of at
least p “good” future successive samples is needed
for good reconstruction [4]: for a group of n succes-
sive samples corrupted by a click, a value ¢ > p+n
is required.
This consideration can be exploited to derive a vari-
able order EKF [6], which usually uses ¢ = p and,
in presence of clicks, increases ¢ until the filter in-
novation corresponding to the ”corrected ” signal
becomes “white” noise or ¢ does not reach a pre-
determined threshold. Thus the length of the re-
placed signal is incremented until this condition is
true. During the interpolation step the order of the
filter is temporarily increased, in order to allow for a
better estimation, and both past and ”future” mea-
surements are employed, so as to carry out a ” for-
ward — backward ” interpolation. Such a provision
offers a significant computational reduction over the
use of a fixed large ¢ value.

3 Experimental results

To evaluate the performance of the EKF algo-
rithm it is necessary to identify noise on the input
recording. As a preliminary step, we used computer
generated noise (white/coloured and impulsive) and
added it to some test CD quality recordings, sup-
posed to be “noise free”. This helped us to gain
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Figure 2: Example of segmental SNR improvement

some insight into the method and confidence on the
choice of parameters &, k(0), m and p, which deter-
mine the ultimate performance of the algorithm.

The parameter £ = 02 /0?2 (see (2) and (7)) should
be chosen in accordance with the degree of nonsta-
tionarity of the signal at hand. We found a con-
stant value & ~ 10~ adequate in most examples,
the most noticeable exception beeing an old Segovia
excerpt. The fast guitar attacks required a greater
value & ~ 1072, In the future it is planned to use a
time—varying value &(¢) for &.

The parameter k(0) allows one to obtain an initial
estimate of 02(0) = 02/k(0) and to start the recur-
sive estimation of 62 (t) via (11) (02 can be measured
during silences). Its value was found not critical and
in most cases we used k(0) ~ 2.

As for parameter m, a small m value, say 23, al-
lows one to detect small clicks but introduces many
false alarms. This gives rise to the substitution of
many samples that would be better dealt with by
the EKF smoother. As a rule of thumb, we found
preferable to use a high m value (i.e., m = 4+5) and,
in any case, to iterate the declicking process starting
from, e.g., m = 5 and forcing a high k(t) value dur-
ing the first iteration/s to reduce smoothing effects
accumulation.

To evaluate the white noise reduction perfor-
mance, controlled amounts of “white” noise were
added to “clean” recordings. The SN R, of the out-
put signal produced by the smoothing algorithm was
measured and related to the SIVR; input signal. It
was found that equation

SNR,~12+08SNR; (dB)

well represents the measured values for 0 < SNR; <
40 dB and p > 10, i.e., the algorithm provides an av-
erage SN R improvement of about 10 dB.

Fig. 2 reports the segmental SNR; and SNR, vs
time for a 20 dB overall SN R; (the segmental SN Rs
were computed every 10 ms on a 20 ms window).
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Figure 3: Power spectrum density estimate.

From the figure it is apparent that the SNR gain
is approximately uniform (actually it is greater in
lower SN R; regions).

Fig. 3 gives (limitedly to 0 <+ 11 kHz) the (Welch)
power spectrum estimate of a 5 s long Schubert pi-
ano piece taken from a CD, the one corresponding
to its noisy version (SNR; = 20 dB) and that cor-
responding to the restored version. From the figure
it can be appreciated that the restored version spec-
trum strictly follows that of the original up to about
3 kHz, i.e., up to frequencies at which the white noise
power density equals the one of the clean recording.
In addition, differently from what would be obtained
by a simple low-pass filter (with cutoff at 3 kHz) or
by spectral subtraction, beyond 3 kHz the restored
version “follows” the original spectrum. This prop-
erty results to be perceptively important and appre-
ciated by experienced listeners.

In order to evaluate the role of predictor order
p, the algorithm was tested on artificially degraded
recordings (SNR; = 20 dB) with p varying be-
tween 2 and 30. The general conclusion was that
the SN R gain (SNR, — SN R;) quickly increases up
to p = 8 + 10 and then it remains approximately
constant. (The value p = 12 was used in all the
prsented figures).

Finally, Fig. 4 shows a segment taken from a
noisy piano recording (kindly supplied by S. God-
sill) and its restored version. The proposed method
seems to have dealth properly with clicks and wide-
band noise.
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Figure 4: Segment of noisy audio (top) and its re-
stored version (bottom).
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