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Brain controllability: Not a slam dunk yet
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A B S T R A C T

In our recent article [1] published in this journal we provide quantitative evidence to show that there are warnings and caveats in the way Gu and collaborators [2]
define controllability of brain networks and measure the contribution of each of its nodes.

The comment by Pasqualetti et al. [3] confirms the need to go beyond the methodology and approach presented in Gu et al.’s original work. In fact, they recognize
that “the source of confusion is due to the fact that assessing controllability via numerical analysis typically leads to ill-conditioned problems, and thus often generates results that
are difficult to interpret”. This is indeed the first warning we discussed in [1]: our work was not meant to prove that brain networks are not controllable from one node,
rather we wished to highlight that the one node controllability framework and all consequent results were not properly justified based on the methodology presented
in Gu et al. [2]. We used in our work the same method of Gu et al. not because we believe it is the best methodology, but because we extensively investigated it with
the aim of replicating, testing, and extending their results. The warning and caveats we have proposed are the results of this investigation.

Indeed, on the basis of our controllability analyses of multiple human brain networks datasets, we concluded: “The λmin(WK) are statistically compatible with zero and
thus the associated controllability Gramian cannot be inverted1. These results show that it is not possible to infer one node controllability of the brain numerically”. Hence both
groups agree that one node controllability cannot be inferred numerically.
1. Controllability of brain networks from a single region

We appreciate that Pasqualetti et al., stimulated by our article (that
we shared with them before publication), developed a new approach
(Menara et al., 2017) to measure structural (and not Kalman as in (Gu
et al., 2015)1) controllability of symmetric networks and we acknowl-
edge that the new method (Menara et al., 2017) is a potential suitable
approach to determine if the network is structurally controllable from a
single node.

Nevertheless, we note that: i) (Menara et al., 2017) does not provide
any systematic test of the new method on all nodes and/or the different
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1 Finding negative eigenvalues for the Gramian is the consequence of the non-inve
linear system is at the edge of instability, then W may have negative eigenvalues. Th
eigenvalues of the Gramian) … remained small (mean 2.5*10�23, standard deviation 4.8*
found negative eigenvalues of W within one standard deviation (i.e. 2.5*10�23 -4.8*
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brain network datasets presented in (Gu et al., 2015); ii) (Menara et al.,
2017) does not provide any tools to quantify the strength (in terms of
controllability) of a node in the network (as supposed for average or
modal single node controllability).

Therefore, any conclusion related to the controllability profiles of
different brain regions (e.g. densely vs. weakly connected area) or net-
works (e.g. default vs. visual) is at present unwarranted. Moreover, the
computational feasibility and efficiency of the method proposed in
(Menara et al., 2017) to infer the structural controllability from each
node of large brain networks remains unclear (finding the Hamiltonian
path is a NP complete problem).
va, Italy.

rtibility of the matrix, i.e. when solving the Lyapunov equation to find W, if the
is is what also Gu et al. find, as stated in (Gu et al., 2015): “These values (smallest
10�23)”. This result highlights that also (Gu et al. (2015)) Gu et al. (2015) have
10�23 <0).
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2. Controllability of human brain networks versus the C. elegans
neuronal network

Beyond the challenging proof that brain networks may be control-
lable from every single node with finite energy, an important theoretical
open question is the relationship between network complexity and
controllability. In (Tu et al., 2018) we showed, using a method to detect
driver nodes in directed networks (Liu et al., 2011), that the control of
the C.elegans connectome, which is precisely known, requires about 7%
of the nodes. In particular, in (Tu et al., 2018) we wanted to highlight
that the directionality of the network (neglected in (Gu et al., 2015;
Pasqualetti et al., 2019; Menara et al., 2017)) plays a crucial role in its
controllability profiles.

In (Pasqualetti et al., 2019) Pasqualetti et al. argue that C. elegans
network control requires more nodes than human networks because they
are simpler, and that more complex networks are more easily control-
lable. The explanation of Pasqualetti et al. on the relative controllability
of human vs. C.Elegans connectome based on the complexity of con-
nections is interesting, but unproven, and frankly the example is not
convincing. If we define the average density of links in the network with
C (i.e., C¼ [0,1]), then the example made in (Pasqualetti et al., 2019)
compares the controllability of a network characterized by C¼ 0 (i.e.,
only nodes without links in the graph), with the fully connected case
(C¼ 1). However, this is far from the case we have analyzed in (Tu et al.,
2018). In fact, the average density of links in the C. Elegans brains and in
the different human brain networks used in (Tu et al., 2018) is compa-
rable (C¼ 0.0715 vs. C¼ 0.077, respectively). Therefore, with respect to
this feature (density of links), the two types of networks have the same
“complexity”. Indeed, network complexity is not easy to define, and it is
not simply related to the number of links in the network. For example,
one may consider networks with the same C, but different topological
structures. For instance, Erd}os–R�enyi graphs have a “simple” homoge-
nous random structure, while Barabasi-Albert scale free graphs have a
heterogenous architecture. Which of the two types of networks is more
complex? One can argue that the latter (scale free) are more complex
than Bernoulli random graphs. Yet, it can be proved analytically (Liu
et al., 2011) that directed random Erd}os–R�enyi graphs can be controlled
with fewer driver nodes than directed scale free networks. Thus, the
relationship between network complexity and controllability is far from
being understood.

3. Difference in the network models

In (Tu et al., 2018) we used a linearization of a Wilson-Cowan model
around the quiescent state. In this specific case (linearization around x*
¼ 0) we confirm that our model and the linear model presented in (Gu
et al., 2015) are practically equivalent. In other words, it is important to
highlight that all results presented in (Tu et al., 2018) hold if the linear
model proposed in (Gu et al., 2015) is used instead. As an important
sidebar, even though the two models can be practically equivalent, it is
quite relevant if the derivation of the model is correct or not. Our model
is rigorously derived from linearization procedure of non-linear model
describing whole brain activity. How was the linear model of Gu and
collaborators derived2? There is another important consequence: the
linear model only works around the linearization point (x* ¼ 0), while in
Gu et al. the linear model is considered valid for any x*. These implica-
tions are not discussed in (Gu et al., 2015), nor in (Pasqualetti et al.,
2 In their work, Gu et al. correctly state that “Decades of research demonstrate
that neural dynamics are nonlinear … Indeed, ref (Gal�an, 2008). proposes a
linearized model for the nonlinear neural dynamics described by Wilson Cowan
model … linear models of a system accurately approximate nonlinear models in
a neighborhood of the operating point”. This is exactly the procedure that we
employed in (Tu et al., 2018), while in (Gu et al., 2015) the statement is not
followed by implementation.
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2019) and (Menara et al., 2017).

4. Controllability as a distinct feature of brain networks

Pasqualetti et al. (2019) claim that in our work we state that “con-
nectivity properties of structural networks estimated from diffusion im-
aging (DSI/DTI) do not play an important role in brain controllability”.
We disagree, in fact what we showed, using the methodology proposed in
(Gu et al., 2015), is that random networks and empirical networks show
similar controllability profiles, although the topological properties of the
networks are clearly different. This is one of the reasons for concluding
that average and modal controllability are unreliable measures to
quantify the controllability strength of a node. The importance of using
null random models was the second central warning in our work.

However, Pasqualetti et al. (2019), in their response to (Tu et al.,
2018), maintain that the controllability profiles of random null models
and empirical brain networks are fundamentally different, as shown in
their Fig. 1. Intriguingly, their Fig. 1 is very different from Figs. 1–2 in our
work (Tu et al., 2018), in which we found no significant segregation
between random and brain networks and a different range in average and
modal controllability values, even though– as explained above –the same
definition of average and modal controllability was used in the two
studies (boundary controllability was not considered, but the results do
not change).

Thus, where does such a big difference in results come from?
The difference does not lie in the different linear models used in (Tu

et al., 2018) and in (Gu et al., 2015) as discussed above.
The crucial difference is instead in how null models are generated.

Pasqualetti et al. (2019) assign the weights of different random networks
drawing them “from an empirically-estimated fractional anisotropy dis-
tribution”. In (Tu et al., 2018), using standard procedures to build null
models in network science (Newman, 2003; Maslov and Sneppen, 2002),
we use the same weights of the empirical networks. Although we wish
more details were available on the randomization procedure (Pasqualetti
et al., 2019), and we encouraged Pasqualetti et al. to share their data for
replicability, we can safely show that the edge weights have a remarkable
impact on the relation between modal and average controllability for
different networks. In Fig. 1 (top panels) we show the results by using a
Pareto distribution for the edge weights: in this case we can discriminate
among different network structures. However, if we change the param-
eters of the distribution, we found no difference in controllability be-
tween brain and random networks (bottom panels). This clearly shows
that edge weights are a crucial factor for discriminating between
controllability profiles of different networks, and thus they need to be
cautiously and properly discussed.

In summary, the procedure for assignment of weights to the random
network models proposed by Pasqualetti and collaborators is different
from the one proposed by Tu et al., and this explains the different results.
The reweighting scheme proposed by Pasqualetti et al. is very unusual in
network science, where null models are obtained by keeping the same
size and density of links, and just rewiring the links (null model 1 in (Tu
et al., 2018)), or keeping also the same degree distribution of the data
(null model 2 in (Tu et al., 2018)).

5. Theoretical versus practical controllability

It is crucial to understand, especially for potential users in clinical
applications, that only practical controllability matters. In fact, for a
structurally controllable network, one node controllability is achievable
only if an unrealistically enormous amount of energy is available, when
the network dimension is large. This fact has two important conse-
quences. One regards the relevance of one node controllability of the
brain network for potential users in clinical applications. Indeed, the
huge amount of energy needed to control the system should have
engendered some caution in the interpretation of the results. Single-node
controllability is a core concept in the theoretical framework of Gu et al.



Fig. 1. Controllability profiles for 100 realizations of random networks (Barabasi-Albert (BA), Small-World network (SW) and Erd}os–R�enyi network (ER)) of size 100,
C¼ 0.1 and edge weights drawn from Pareto distribution with: Panels A,B) minimum value parameter 2 and shape parameter 3 without normalizing edge weights;
Panels C,D) Pareto distribution with minimum value parameter 0.005 and shape parameter 2 after normalization of edge weights). Left panels represent average
values computed over all possible control nodes, while in the right panels we report the average values computed over all network instances.
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(2015) and given the potential for clinical applications also widely dis-
cussed in the paper, and in following ones (e.g., predicting how trans-
cranial magnetic stimulation would affect brain dynamics (Muldoon
et al., 2016)), it would seem that a more cautionary interpretation of the
findings is warranted. Nevertheless, the one-node controllability frame-
work is alreadymaking its way into the empirical neuroscience literature.
For example, a recent study concluded that controllability (measured
using the methods of (Gu et al., 2015)) modulates the effect of neuro-
stimulation on cognitive performance (Medaglia et al., 2018). It remains
unclear how a theoretical construct (one-node controllability) that has
little practical significance (because control requires a huge amount of
energy) would provide an adequate account of experimental results.

The second reason of concern is that the linear model in Gu et al. is, at
best, the linearization of a more realistic nonlinear model (see above).
Hence, in case of large signals (such as the signal needed for high energy
one node control), the two models would behave in completely different
manners. In other words, in the presence of large signals, the linear and
the nonlinear models give, in general, different answers to the same
question, such as of being one node controllable or not. Also, it is worth
highlighting that controllability measures (assuming they are reliable)
are meaningful and useful in practice only if they can be disentangled
from simpler measures of network structure (i.e., we need to be sure that
the empirical effect can only be attributed to controllability; ideally one
should assess its effect using other network measures as covariates). In
this regard, it is useful to remind the reader that modal and average
controllability show near-perfect correlations with node degree (see (Tu
et al., 2018; Gu et al., 2015; Medaglia et al., 2018)).

In conclusion, this exchange further highlights the need of carefully
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assessing ‘warnings and caveats’ of the controllability framework in
network neuroscience. We strongly disagree with Pasqualetti et al. con-
clusions that the argument is settled with regard to single node (Kalman)
controllability, especially in regard of using average and modal
controllability to asses brain regions and networks controllability profiles
(Gu et al., 2015). We also show that the relationship between topology
and controllability depends on how edges weights are assigned, and null
models properly built give the same controllability profiles of real brain
networks (Tu et al., 2018), highlighting how the methodology proposed
in (Gu et al., 2015) on which many other subsequent papers are based is
unreliable. Our work is not intended to diminish the potential impor-
tance of theoretical tools based on control theory that hopefully will be
useful to clinical neuroscientists, and indeed Gu et al. have greatly
contributed in putting this framework at center stage. However, difficult
work lays ahead in bridging theoretical brain controllability and possible
applications in translational neuroscience.
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