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Abstract

There are limited therapeutic options for final treatment of end-stage heart
failure. Among them, implantation of a total artificial heart (TAH) is an ac-
ceptable strategy when suitable donors are not available. TAH development
began in the 1930s, followed by a dramatic evolution of the actuation mech-
anisms operating the mechanical pumps. Nevertheless, the performance of
TAHs has not yet been optimized, mainly because of the low biocompatibil-
ity of the blood-contacting surfaces. Low hemocompatibility, calcification,
and sensitivity to infections seriously affect the success of TAHs. These un-
solved issues have led to the withdrawal of many prototypes during pre-
clinical phases of testing. This review offers a comprehensive analysis of
the pathophysiological events that may occur in the materials that compose
TAHs developed to date. In addition, this review illustrates bioengineering
strategies to prevent these events and describes the most significant steps
toward the achievement of a fully biocompatible TAH.
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1. INTRODUCTION

Heart failure (HF) is a complex clinical condition that impairs the heart’s function as a pump.
It is associated with a wide spectrum of symptoms, sometimes nonspecific, and may result from
any cardiovascular disease. The incidence of HF in the developed world is around 900,000 new
cases per year and has recently increased significantly, even in developing countries. A recent
estimation of HF prevalence (1) predicted a dramatic increase of 46% between 2012 and 2030,
due to population aging and survival of patients with both cardiac and noncardiac pathologies.

Unfortunately, HF prognosis remains poor, despite advances in medical therapy, and a diffuse
culture of prevention and donation has slightly improved the rate of overall survival. HF is a
high-mortality disease: The rate of survival 1 year after diagnosis is around 50% and decreases
dramatically at 5 years (2, 3). Moreover, HF has a large economic impact due to direct medical
costs, such as long-lasting hospitalizations and subsequent readmissions. For these reasons, new
targeted strategies, whose costs can be amortized by savings from conventional medical therapies,
are urgently required (4).

At present, cardiac transplantation is the only definitive solution for refractory end-stage HF.
However, the use of this well-established surgical procedure is limited by organ shortage, mor-
tality associated with increasing waitlist time, and adverse effects of lifelong immunosuppressive
therapies.

The urgent need for alternative treatments for the failing heart has led physicians to collaborate
with engineers in an ambitious scientific project. Ventricular support and whole replacement of
the biological heart with mechanical pumps, namely ventricular-assisted devices (VADs) and total
artificial hearts (TAHs), have the potential to increase patient survival and quality of life (5). In
recent years, these devices have proved their feasibility. At present, 80 years after the first reported
TAH implantation in an animal model (6) and almost 50 years after the first human implantation
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(7), the number of implanted pumps is increasing as both a bridge to transplantation (BTT) and
a destination therapy (DT) (8).

The use of circulatory mechanical supports inevitably has some disadvantages. AlthoughTAHs
have evolved to include several prototypes and countless attempts at advancement, there has
been no significant technological breakthrough since the 1980s. Advances in this field practically
ceased for more than 20 years, resulting in only one TAH currently approved for clinical use. The
main drawbacks are related to pump geometry (i.e., dimensions, fitting, weight), power supply
(i.e., drivelines and noise, battery duration), and physiological (i.e., cardiac output, stroke volume,
adaptation of venous return) and biological factors.

Despite impressive recent progress in medical and material sciences, the nature and progres-
sion of blood–material interactions are still not completely predictable. Blood pumps can give
rise to several concerns regarding blood compatibility (e.g., hemorrhages, hemolysis, thrombosis,
thromboembolism), calcification, and infections that, depending on their site, extent, and severity,
can cause the device to fail. The goal of this review is to discuss these issues and the strategies
applied to date in order to design more effective and affordable TAH prototypes.

2. BLOOD COMPATIBILITY: CATASTROPHE OR ILL-POSED
PROBLEM?

2.1. The Problem of Hemocompatibility

For all materials intended for use in blood-contacting applications, such as TAHs, VADs, vascu-
lar substitutes, heart valves, oxygenators, catheters, and many others, blood compatibility is the
most important requirement. Blood compatibility does not simply mean the absence of hemoly-
sis, platelet activation, consumption of blood cellular components and plasma coagulation factors,
and activation of coagulation pathways. It is also involved in complement activation and immune
response (9–12). Furthermore, complete knowledge of the phenomenon requires integration with
principles of structural (13) and chemical (14, 15) properties, biological behavior of the interfac-
ing surfaces, and flow dynamics (16), as well as the design of the whole device. Indeed, adop-
tion of hemocompatible materials does not automatically entail blood compatibility of the entire
device.

Blood–biomaterial interactions are very complex and can be regulated by different mechanisms
that lead to a precise sequence of events.The first consequence is protein adsorption controlled by
the Vroman effect (17), a competitive process in which molecular dimensions, concentration, and
surface affinity play a key role (18). Subsequently, the adsorbed protein layer activates the intrinsic
pathway of coagulation (platelet activation, coagulation, fibrinolysis) and complement that will
influence both short- and long-term outcomes.

The only surface known to be fully blood compatible is the natural healthy endothelium lining
the lumen of the blood and lymphatic vessels. This continuous monolayer, made up of endothelial
cells (ECs), constitutes a smooth barrier between the bloodstream and the luminal surfaces, with
few exceptions. The natural endothelium plays an active role as both anti- and prothrombogenic
layer (19). ECs directly regulate the expression of binding sites and the release of anticoagulant
or procoagulant factors on their surface (20). Furthermore, vascular endothelium is negatively
charged, just like the blood elements that are electrostatically repulsed.

Studies on blood compatibility date to the 1960s. By 1981, the inherent drawbacks of im-
plantable devices had already become clear, but the difficulties of overcoming them made the
experimental studies not fully satisfactory (21). In 1993, Ratner (22) described the interaction
between biomaterials and blood as a “catastrophe,” an observation based on the lack of general
agreement regarding definition, proving tests, and certified blood-compatible materials. More
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Blood compatibility
• Hemolysis

• Platelet activation
º Coagulation
º Thrombosis
º Complement activation

• Immune response

CAUSES

• Chemical, physical, and biological 
properties of the surfaces

• Flow dynamics

• Device design

SOLUTIONS

• In vitro endothelialization (23–28)

• Surface functionalization
º Biological molecules (31)
º Titanium nitride (32)
º Diamond-like carbon (33, 34)
º 2-Methacryloyloxyethyl 

phosphorylcholine (35)

• Modification of surface 
morphology

º Smooth polyurethanes 
(47–49)

º Textured polyesters (52–54)
º Textured polyurethanes (25, 

55, 56)
º Textured titanium (50, 55–57)
º Biolized plasma proteins (24, 

58–60, 63, 65)
º Biolized natural tissues (24, 

58–62, 64, 66, 67)

Figure 1

Factors contributing to blood compatibility in total artificial hearts and strategies to improve it.

than 20 years later, despite recent progress in biomedical science and the number of devices needed
each year for blood-interfacing implants, the quest for blood compatibility remains an open issue.

2.2. Strategies to Improve Blood Compatibility

Figure 1 illustrates the factors contributing to blood compatibility inTAHs and possible strategies
to improve it.

2.2.1. Endothelialization. The goal of research on novel biomaterials intended for blood-
contacting use has always been to reproduce the innate properties of living endothelium or to
induce formation of the so-called natural pseudoendocardium or pseudoneointima (PNI) (23, 24).
The formation of PNI on the luminal surface of TAHs is influenced by surface properties, flow
conditions, and relative position between the natural tissue and the device itself (24); this is the
first possible solution to the challenge of enhancing the blood compatibility of both short- and
long-term implants, although the potential detachment of a not-well-stabilized layer might cause
embolic events. The possibility of seeding cells onto the internal surfaces of blood pumps prior
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to their implantation has also been investigated. However, doubts have been raised regarding im-
munological compatibility between the donor and recipient cells, the possibility of obtaining stable
coverage on flexible components or in the case of critical flow conditions, and blood compatibility
itself (24).

Szycher et al. (25) seeded allogeneic fetal bovine cells obtained from the nuchal ligament onto
textured pumps prior to implantation in a calf model for at least 30 days. The seeded intima was
collagen based, stable, firmly adherent, and thin. Conversely, the PNI grown during implantation
onto nonseeded controls appeared fibrin based and thick. Fasol et al. (26) seeded human ECs from
the saphenous vein onto polyurethane and silicone rubber and evaluated the effects of surface
tension in cell adhesion and growth. Even though cell resistance to shear flow conditions was not
yet proven, the experiment confirmed the feasibility of creating a living endothelial monolayer
on polyurethane. Unfortunately, the length of time required for in vitro creation of the biological
layer was prohibitive for clinical implementation. More recently, a fast method to coat sintered
titanium blood pumps with autologous blood-derived cells was developed. The procedure took
only 45 min and could be performed in the operating room, just before implantation of the pump.
When explored in an animal model (27) and in an in vitro study using human cord blood–derived
ECs (28), this approach led to reduction of platelet adhesion comparedwith the noncoated control.

2.2.2. Surface functionalization. Blood compatibility is related to materials’ chemical prop-
erties (functional group distribution) and physical properties (surface charge, surface tension,
hydrophilicity/hydrophobicity, wettability) (29, 30), hemodynamic conditions, and contact du-
ration. In light of these parameters, several strategies have been employed to improve the blood
compatibility of implantable devices. In general, surface modifications are widely used for pros-
thetic vascular grafts and, in cases of mechanical assistance, for VADs, resulting in various so-
lutions such as coating with heparin (31), titanium nitride (32), carbon material [diamond-like
carbon (DLC)] (33, 34), and polymer [2-methacryloyloxyethyl phosphorylcholine (MCP)] (35).
Heparin coating has been successfully used in the Berlin Heart (36), Excor (37), and Incor pumps
(38) (Berlin Heart, Berlin, Germany) by immobilizing its unfractionated form on polyurethane.
This treatment is named Carmeda BioActive Surface (Carmeda, Upplands Väsby, Sweden). DLC
coating has been applied to a titanium alloy substrate used on the Sun Medical pump (Sun Medi-
cal, Nagano, Japan) (39), VentrAssist (VentraCor Inc., Foster City, California) (40), and Eva Heart
(Sun Medical) (41), the last of which was originally coated with MCP (42).

2.2.3. Surface morphology modification. Strategies to achieve blood compatibility in TAH
design have focused mainly on surface morphology. There are three main categories of blood-
contacting surfaces: smooth, textured or rough, and biolized.

2.2.3.1. Smooth surfaces. In initial studies on blood compatibility, a surface was defined as
smooth if it was able to prevent molecule adsorption or if its discontinuities and defects could
be assumed to be smaller than the adsorbed molecules (24). The postulated association between
smooth surfaces and blood compatibility derived from observations of vascular intima smoothness.

Practically, it is very difficult to obtain a smooth surface; its production requires advanced
manufacturing technologies, since the smallest imperfection can trigger blood reactivity (43). The
fabrication of thematerials themselves, and certain process parameters such as dipping rate, drying
time, and temperature, can affect the extent of defects and, as a consequence, the thrombogenicity
of the surface (44).

Among all the biomaterials selected for manufacturing blood pumps, polyurethanes have been
the most favorable. Their suitability arises from their unique combination of optimal long-term
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mechanical properties (durability, elasticity, compliance, and fatigue resistance in both static and
dynamic conditions) and good biological characteristics (biostability, biodurability, biocompati-
bility, and hemocompatibility). These features can be modulated by using different processing
methods and by functionalizing their bulk and/or surface (45).

Polyurethane synthesis was first achieved in the 1930s, but the original material was prone to
calcification and degradation when exposed to the biological environment; therefore, it had to be
further modified for biomedical applications. The properties of thermoplasticity and segmenta-
tion were introduced in order to modulate the material’s mechanical and biological performance
(46).Drawbacks of the use of polyurethanes can be related to protein adsorption, poor mechanical
durability in flexible applications, possible release of degradative factors or additives (plasticizers
and antioxidants), biodegradation (hydrolysis, cracking, and oxidation), and calcification (29).Zart-
nack et al. (47) investigated the chemical stability and durability of different types of polyethers
(Biomer, Pellethane, and Avcothane) and polyesters (Plathuran and two types of Platilon). Their
analysis showed that hydrolysis and degradation were due to the sterilization technique employed
rather than to the interactions with the biological milieu. Furthermore, the inherent chemical
stability of these materials did not automatically result in mechanical durability and fatigue re-
sistance. Polyurethanes, unlike rougher surfaces, are not an optimal support for cell growth and
proliferation, as demonstrated by the poor adhesion of ECs and fibroblasts to both coated and
noncoated polycarbonate and polyether urethanes (48, 49).

2.2.3.2. Textured surfaces. Textured blood-contacting surfaces were introduced to promote the
formation of a stable PNI lining the internal chambers of mechanical pumps. In order to avoid
embolic complications, the adsorbed material, consisting mainly of fibrin and blood elements, was
entrapped onto the synthetic surfaces, promoting the growth of a nonthromboembolic autolo-
gous endothelial layer (24, 50). In addition to introducing a physical barrier composed of fibers
and cavities, these surfaces can promote the growth of PNI by enabling exposure of a larger sur-
face area to the bloodstream. The goal of this approach is to achieve hemocompatibility of all
blood-contacting surfaces through dynamic and progressive replacement of this initial support
with fibroblasts and ECs from the patient (51). These surfaces were produced through various
strategies, such as the use of polyester (52–54) or polyurethane fibrils or casting on a negative
flocked mold (25, 55, 56), titanium microspheres (50, 55–57), and deposition of dissolvable salts
on a polyurethane surface. Regardless of the method employed, the outcome was the progressive
smoothening of the surfaces due to the deposition of biological molecules. The textured surfaces
were uniformly covered by PNIs of varying thickness depending on the location on the surface in
the pump. In the presence of flocked fibrils, their lengths and movements during pump activity
can lead to PNI disruption or instability (52). The rupture of the biological layer and detachment
of thrombi from incorporating fibrils might cause embolic events (43, 53). Metman et al. (54)
compared textured and smooth surfaces of artificial ventricles and reported similar hematological
outcomes and hemolysis due to surface contact. In all of the devices investigated, thrombosis af-
fected the inflow tract, sparing the outflow one, which was likely correlated to the high turbulence
occurring in that region.

2.2.3.3. Biolized surfaces. In the 1970s, the Department of Artificial Organs of the Cleveland
Clinic Foundation developed a new approach based on the observations that protein adsorption
on blood-contacting surfaces was unavoidable and that hemocompatible properties of biologi-
cal tissues were related to their components (proteins and other molecules) (58). Imai et al. (59)
observed increased blood compatibility in devices that passed through several consecutive im-
plantations, following fixation of the adsorbed protein layer with formaldehyde. This insight led
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to the concept of biolization. Biolized surfaces consist of biological tissues (such as homologous or
heterologous pericardium, dura mater, and aorta) and synthetic materials (polyether-based elas-
tomers) coated with albumin, heparin, and skin gelatin. These biological surfaces are treated with
alcohols and aldehydes to prevent the in vivo immune response and create durable layers by means
of insolubilization and cross-linking (58, 60). In the first in vivo proof of concept in a sheep model,
biolized valves were used in both inflow and outflow tracts of polyester fabric ventricles of the
pump, and woven Dacron tubes were inserted as vascular connections. No evidence of paravalvu-
lar thrombi was reported (61).

Biolized surfaces lining the whole pump were first developed in 1971 (62) as a result of in
vitro testing of several combinations of treatments, materials, and biological molecules (59). Nosé
et al. (60) created the first totally biolized artificial heart out of formaldehyde-treated bovine peri-
cardium. Each ventricular chamber was sutured to two aortic valves and dipped into a solution of
natural rubber. This study was the first to employ a hybrid material, overcoming the limitations
of individual synthetic and biological materials. Successive studies employed an aldehyde-treated,
gelatin-coated, Dacron velour fabric backed with rubber. This surface supported the growth of
PNI, but the diaphragm was prone to thickening and frequent ruptures. These drawbacks led to
the replacement of the material with textured polyolefin rubber directly coated with aldehyde-
treated gelatin, which allowed survival for more than 100 days (63).

The development of PNI on biolized surfaces lining TAHs was analyzed in detail in 1976;
adhesion of endothelial-like cells on each of the aldehyde-treated surfaces was confirmed (64).
Cell attachment appeared to be related to the presence of a stable fibrin meshwork, since PNIs
are fibrin rich, especially the PNI grown on the treated pericardial surface. The smooth, gelatin-
coated, biolized and textured polyester–flocked surfaces were compared; in all cases, rapid PNI
development was impaired by extensive calcification (65). Five-year-long experiments resulted
in effective and stable endothelialization of biolized surfaces in blood pumps, starting from the
second week of implantation, even though the origin of these cells was unknown (24).

In 1996, Chatel (66) proposed a new biventricular model of TAH. Each ventricular internal
surface was made of an intact porcine pericardial sac treated with glutaraldehyde.This biomaterial
was inserted into a polymeric sac (Pebax; Elf Atochem Inc., Paris, France) joined at the inflow
and outflow orifices of an animal heart used as a mold. A thin layer of lubricant filled the empty
space. A computational model revealed the hemodynamic suitability of the artificial ventricle thus
realized (67).

3. CALCIFICATION IS AN UNDERRATED ISSUE

Until long-term experiments were performed, blood pump calcification had been neither observed
nor expected. Calcification became a significant problem when gradual improvements in surgical
techniques and selection of materials, design, and fabricationmethodologies increased the survival
of animals with implantations.

The mineralization of textured blood pumps was first reported in 1975 (68). Four years later
came the first report of calcification of a diaphragm with a polymeric smooth surface (69). Blood
pump calcification is a problem common to several cardiovascular devices and affects a broad spec-
trum of materials (segmented polyurethane, polyester fibrils, glutaraldehyde-treated skin gelatin,
bovine pericardium) as well as textured, smooth, and/or biolized surfaces.

3.1. Mineralization in Total Artificial Hearts: Typologies and Causes

Nucleation and growth of calcium phosphate crystals can be defined as a self-sustaining process;
once initiated, it continuously increases by taking up salts from the bloodstream (70).Notably, the
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relevance and seriousness of this phenomenon depend strictly on the location of the calcific lesions.
Calcification of nonmoving parts (i.e., pump housing) may not be a concern, whereas formation
of calcium phosphate deposits on moving elements (i.e., valves, diaphragm) gradually causes stiff-
ening and loss of compliance of flexible components, compromising the device performance and
eventually leading to complete pump failure (71). Other effects related to calcification include
systemic embolization, deformation, abrasion, thinning, and perforation of pumping surfaces and
linings (70, 72, 73).

Calcification is commonly acknowledged to be one of the main factors that cause the degen-
eration of glutaraldehyde-treated heart valve bioprostheses and seriously limit their long-term
durability in vivo. However, the mechanisms regulating this phenomenon have not yet been com-
pletely elucidated, leading to the formulation of different hypotheses.

A morphologic analysis performed on xenograft porcine valve ultrastructure has highlighted
the relationship between prosthesis mineralization and calcific cellular organelles, collagen break-
down, and loss of proteoglycans. The presence of carboxyglutamic acid with high affinity for cal-
cium has also been documented (74). The similarity between mineralization of porcine aortic
valves and bovine pericardium has been demonstrated despite the different architectures of these
tissues. The pathological process normally begins with dead cells (mainly their nuclear cellular
debris and residues of membrane phospholipids) and then involves collagen (75). The age of the
recipient (for both animals and humans), chemical modification of the tissues, and mechanical
stress play an important role in promoting calcification of bioprostheses, independently of the
biomaterial considered (76).

Mineralization might affect both treated biological tissues and synthetic materials, in the latter
case through neither cellular nor connective tissue involvement.The starting point of themineral-
ization process has been identified as the adsorption of calcium and the formation of its complexes
on the material surface (77, 78).

3.1.1. Biological and mechanical causes of calcification. Whereas the selective deposition of
insoluble crystalline calcium phosphate salts is a physiological feature of growth and remodeling
in bone, teeth, and cartilage, soft tissue ectopic calcification and biomaterial-associated mineral-
ization are considered pathological events (79). Biomaterial mineralization can be divided into two
main classes (51, 80): metastatic and dystrophic. Metastatic calcification is a primary type of min-
eralization that occurs when the serum calcium-to-phosphorus ratio is altered (hypercalcemia).
Dystrophic calcification is a secondary process that arises when the serum calcium-to-phosphorus
ratio is normal (normocalcemia), and it affects necrotic tissue, degenerated or injured cells, and
thrombi. Vaškù &Urbánek (70) described another type of primary calcification, calciphylaxis, that
occurs when the local environment supports the deposition of calcium salts on soft tissues.

The calcification of TAHs and VADs is usually dystrophic because it is triggered by damage
to the cells adhered to the device surface (51, 81) and/or can be introduced by dead bacteria de-
bris left behind after sterilization (82). As for biological tissue mineralization, the mechanisms
underlying nucleation and growth of calcium phosphate crystals on the blood-contacting surfaces
of mechanical circulatory supports are poorly understood. At present, there is no agreement on
the etiopathogenesis, and several often-conflicting explanations have been proposed, correlating
calcification with both cell-mediated mechanisms (e.g., degradation of blood elements onto the
surface, disruption and degeneration of spontaneously grown biological linings) and cell-free fac-
tors (e.g., surface morphology and related imperfections, precipitation of calcium phosphate on
adsorbed lipids and proteins, direct binding with polymer molecules). It is not yet clear whether
mineralization of these devices can be defined only as a secondary event, following thrombi or
necrotic tissue formation, or whether it can also be primary, with direct calcification of the sur-
faces due to adsorbed proteins and phospholipids.
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Most calcific lesions in blood pumps were found onmoving parts and regions subjected to high
cyclic strain. By contrast, lesions were totally absent or minimal on nonflexing components (72).
These findings confirmed that mechanical stress, such as flexure movements and flow, is one of
the most significant factors underlying calcification in TAHs and VADs (57, 71, 82, 83).

3.1.2. Calcification of textured surfaces. As described above, PNI formation is favored with
the use of textured surfaces, but its growth can be very slow and unpredictable, and its thickness
can be nonuniform among different parts of the pump. A diffuse thickening of PNI has been
reported on high-flexing and stagnation areas as well as in cases of infection (51, 71). PNI can also
be affected by mineralization.

One type of calcification that affects PNI is directly caused by mechanical stress. Research has
demonstrated that cyclic stimuli can detach and/or disrupt the PNI grown on regions of stress
concentration, causing calcification of wounded cells (57, 84).

Another type of calcification is related to pseudointimal thickening and was considered to be
an early event, limited to the deepest portions of layers exceeding 500 μm (51, 57, 71, 72). At this
depth, efficient diffusion, oxygenation, and nutrient supply into PNI are precluded. Cell death is
the outcome, with subsequent release of phosphatase and other molecules commonly involved in
calcium precipitation and crystallization. However, calcification can also occur in thinner PNI, as
reported for long-term implants (51).

3.1.3. Calcification of smooth surfaces. Fabrication methodologies, prolonged mechanical
stimuli, and wear of smooth surfaces may induce a broad spectrum of microscopic defects, ranging
frommicrobubbles and fiber contaminants to surface folds and cracks.These imperfections on the
blood-contacting surfaces of pumps might serve as foci for dystrophic calcification due to calcified
thrombi or injured blood elements (71–73, 85).Nevertheless, the pathogenesis of calcified smooth
surfaces cannot be exclusively dystrophic; it is also related to the accumulation of calcium-binding
proteins or lipids into these discontinuities, without previous formation of thrombi (72, 73, 84, 86).

Calcification of polymers can also be facilitated by their molecular structure. In particular, the
soft segment of polyurethanes may provide binding sites for salt and phosphate deposition (87).
These regions are highly flexible and subjected to deformation and loosening.They can be covered
by adsorbed proteins and phospholipids with high affinity for calcium and phosphorus (88).

3.1.4. Calcification of biolized surfaces. Similar to what has been observed in prosthetic
valves, biolized surfaces undergo calcification as well. Harasaki et al. (71) reported calcification
of the deepest layers of glutaraldehyde-treated bovine pericardium lining the internal surface of
blood pumps, without any cellular reactions. These findings confirmed the influence of material
structure and chemical modifications on the promotion of calcification. The same study also re-
ported calcium deposition on several diaphragms, due to the presence of degraded and necrotic
blood cells adhering to the glutaraldehyde-treated calf-skin gelatin after its detachment from poly-
olefin rubber.

3.2. Possible Strategies to Prevent Calcification

Several ways to avoid calcification of bioprosthetic heart valves have been proposed. These in-
clude the use of inhibitors of hydroxyapatite formation and calcium diffusion, methods for elim-
inating calcific materials, and/or improvements in fixation techniques (76). So far, none of these
approaches have been applied to TAHs (Figure 2).
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Calcification
• Systemic embolization

• Surface deformation, abrasion, and 
thinning

• Perforation

• Failure of the device

CAUSES

• Primary calcification
º Adsorption of blood proteins 

and lipids
º Deposition of phosphates

• Secondary calcification
º Damaged cells and bacteria
º Mechanical stresses

SOLUTIONS

• Engineered surfaces (92, 93)

• Systemic administration of 
anticoagulants (70, 72, 73, 82, 83, 
89, 90)

• Endothelialization (72)

• Systemic administration of ferric 
compounds (70)

Figure 2

Causes and effects of calcification in total artificial hearts and strategies to prevent its occurrence.

Warfarin sodium (Coumadin), an antagonist of vitamin K, inhibits blood pump calcification
(82, 83), following two possible blocking mechanisms. The first involves osteocalcin, a vitamin
K–dependent protein that contains γ-carboxyglutamic acid, which has a strong calcium-binding
affinity (89) and is distributed in considerable amounts in calcific deposits (73). In the second, war-
farin sodium, as an anticoagulant, acts by preventing thrombus formation and hence dystrophic
calcification (51).Nevertheless, these effects have not been confirmed on textured and smooth sur-
faces. In long-term experiments, use of the anticoagulant reduced the number of calcific deposits
and the severity of lesions, but all devices eventually developed mineralization (70, 72, 73, 89, 90).

Polyurethane calcification may be prevented by covalent immobilization of bisphospho-
nates, a class of drugs currently employed in the settings of vascular calcification and osteo-
porosis (91). These molecules can be stably and permanently associated with the soft seg-
ment of polyurethanes without altering their mechanical properties (92). In other studies, bis-
phosphonates were chemically bound to the hard segment of polycarbonate urethanes and
polyurea polyurethanes. Upon evaluation in a sheep model for 60 days following implanta-
tion, the modified materials composing the leaflets of a pulmonary valve showed no evidence
of calcification (93). Also, the formation of a stable PNI with healthy ECs lining the internal
surfaces of the pumps prevented calcification (72). For the case of calciphylactic calcification,
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systemic administration of iron compounds in form of ferric saccharate has been suggested as
a solution (70).

4. THE SPECTER OF BIOMATERIAL-ASSOCIATED INFECTIONS

4.1. The Clinical Relevance of Total Artificial Heart Infections

Infections are among themost common causes of severe septic complications and death in patients
with mechanical pumps. In general, bacterial and (less frequently) fungal colonizations may affect
all types of biomaterials or biomedical devices.

Low concentrations of these pathogens, which are commonly present in the environment, are
normally eliminated by the immune system. Still, host response, and even the use of antibiotics
and antimycotics, is insufficient when analogous infections are associated with a biomaterial (94,
95). Bacteria have glycocalyxes that allow their survival in extremely adverse microenvironments
(96), and they can aggregate in persistent structures known as biofilms (97). The consequences of
these observations first became evident in the biomedical field when antibiotic-resistant biofilms of
Staphylococcus aureuswere discovered on the pacemaker leads of a patient with recurrent bacteremia
(98).

Biofilms are formed on both biotic and abiotic surfaces by several types of bacteria, such as
group A streptococci, Escherichia coli, and Pseudomonas aeruginosa. Infections caused by biofilm-
forming bacteria are particularly difficult to eradicate. Due to the adherent extracellular matrix
they secrete, bacteria can live in an insulating milieu, able to protect themselves from antibiotic
treatment (99, 100).

Bacterial infections have always been considered a significant challenge for the successful out-
come of any TAH tested on animals. One of the first studies on TAH and VAD implantation
in calves, published in 1983 (101), reported an incidence of infection equal to 52.9%, indepen-
dent of the applied sterilization process. The contaminants were bacteria of intestinal origin,
prone to colonizing smooth rather than rough surfaces. Furthermore, debilitation and weakness
during the first preoperative days might increase the early onset of these infections. Infections
within TAHs are frequently observed, especially with vegetative bacteria. Depending on their
evolution, the bacteria can have occlusive capacities or lead to embolic complications due to the
possible detachment of agglomerated materials.

Two other regions can be affected by infections: percutaneous drivelines and discontinuities in
the external surface of the TAH (102). Although mediastinal colonization is less probable, other
factors need to be considered, such as medical routes of access to the body (i.e., vascular cannulae,
tracheal tubes, drainages, and urinary catheters), prolonged HF-induced debilitation, or certain
properties of the materials (e.g., selective adhesion and sequestration of contaminants) (103). Poor
survival as a result of contamination was initially confirmed in humans, and the severity appeared
to be strictly correlated to implant duration (104). By contrast, a more recent and optimistic retro-
spective study by Sivaratnam&Duggan (105) reported that in recent years survival was improved,
except in cases of Pseudomonas aeruginosa infection.

TAH contamination may also be fungal in nature because of reduced host resistance. Fungi
possess a strong natural affinity for synthetic surfaces, often forming biofilms (106). Although
uncommon, fungal infection is a severe chronic complication and may cause death (107, 108).

4.2. Possible Solutions

In both bacterial and fungal contamination, prevention and use of effective sterilization procedures
are crucial (Figure 3). Infections acquired through contaminated percutaneous drivelines can be
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Infections
• Contamination of external surfaces
• Contamination of ventricular 

chambers
• Contamination of percutaneous 

drivelines

CAUSES

• Bacterial infections

• Fungal infections

SOLUTIONS

• Improvement of sterilization 
techniques

• Support of tissue ingrowth at the 
interface between skin and 
drivelines (109)

• Pump removal (103)

• Pharmacological therapies 
(102, 105)

• Endothelialization (110)

Figure 3

Causes and effects of infections in total artificial hearts and strategies to prevent their occurrence.

inhibited by use of specific connectors (buttons) through the skin, allowing tissue ingrowth and,
thus, wound healing (109). Unfortunately, in the case of internal chamber contamination, the
blood pumpmust be removed (103) and pharmacological therapies administered (102, 105), given
the necessity for long-term treatment and prevention of the infection in a transplanted organ. In
2007, a study by Asai et al. (110) on polyurethane patches implanted in murine abdominal aorta
showed that in vivo adhesion of ECs can reduce Staphylococcus aureus colonization of the graft.
Nevertheless, this strategy has not yet found clinical translation.

5. FROM AN UNCERTAIN PAST TOWARD A PROMISING FUTURE:
ADVANCES IN MATERIAL SCIENCES FOR TOTAL ARTIFICIAL
HEART DEVELOPMENT

The fate of each implantable device is strictly dependent on its constituting materials. In addition
to the presence of comorbidities, biomaterial selection plays a crucial role in the above-mentioned
events.

A different perspective on the evolution of mechanical circulatory supports comes from
materials science (5, 111, 112). Early in the development of TAHs, knowledge about biomaterials
was extremely limited; the terms biomaterial and biocompatibility were not clearly defined; and
prosthetic implants failed because of the lack of adequate sterilization techniques (113). Most
materials were borrowed from the mechanical industry and, therefore, were not suitable for med-
ical purposes, which required contact with one of the most hostile and aggressive environments
(i.e., the human body). Furthermore, few aspects of TAHs’ mechanical behavior and biological
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stability were known or tested, even though the fundamental requirements had already been
identified (114, 115).

Little attention was paid to the selection of appropriate materials for the first TAH implan-
tations in animals. At that time—that is, the very beginning of in vivo experiments—blood com-
patibility was not a major concern. The most pressing concerns were to demonstrate mechanical
pump performances and to achieve animal survival.

With increased long-term survival and scaling up of animal models, several TAH prototypes
were developed. The prevalent material adopted for fabricating atria and ventricles in both sac-
and diaphragm-type devices was Silastic (i.e., Silastic Medical Grade Sheeting 372; Dow Corning,
Midland, Michigan), a natural silicone rubber with enhanced blood compatibility in comparison
to other available polymers, but with inadequate mechanical features. The Silastic was reinforced
with a Dacron mesh to increase diaphragm durability. Unfortunately, the ruggedness and stiff-
ness of the Dacron led to damage and increased tearing of the silicone component; therefore,
other techniques (e.g., injection molding instead of layering) were preferred. Moreover, the pros-
thetic valves positioned at the inlet and outlet of the devices varied among TAH models. At first,
only mechanical prostheses were used, independently of their configuration (i.e., caged-ball and
monoleaflet valves made of Silastic, and polyethylene-, polypropylene-, or graphite-coated poly-
carbonate and polymethylmethacrylate).These valves were usually the primary cause of stagnation
and turbulence, frequently resulting in thrombus formation (115).

Table 1 lists several TAH prototypes that represent the most innovative devices in terms of
materials used. Five of these are discussed in the following subsections.

5.1. Liotta

The first biventricular pump, the Liotta TAH, was first implanted in a human in 1969. The
Liotta was a diaphragm-type blood pump made of Dacron-impregnated Silastic. The blood-
contacting surfaces (i.e., ventricular chambers, atrial cuffs, and outflow tracts) were lined with
reticular Dacron fabric in order to promote PNI formation. Hingeless tilting-disc valves (i.e.,
Wada–Cutter prostheses) were used at the inlet and the outlet. These Wada–Cutter prosthetic
valves were composed of a titanium inner ring with a single polyethylene disc. These valves were
chosen mainly because of their large orifice area and the low clinical incidence of thromboembolic
events. The drivelines were made of Silastic tubes wrapped in Dacron fabric.

The first Liotta TAH was implanted as a BTT for 64 h. Once explanted, it showed smooth
internal surfaces covered by a fibrin mesh with entrapped blood cells and a complete absence of
thrombotic formations. Early hemolysis was reported, probably because of both the unsatisfactory
performance of the valves and the roughness of theDacron lining the ventricular blood-contacting
surfaces (7, 116).

5.2. Akutsu III

In 1964, Akutsu et al. (117) reported the implantation of a one-piece (but not seamless) sac-type
TAH, made of Dacron mesh embedded in Silastic, in a dog model. The use of this device was
hampered by unsolved problems with thrombogenic stitching lines. In 1977, Akutsu and col-
leagues (118) proposed a new TAH prototype: a one-piece, entirely seamless, diaphragm-type
pump made of Avcothane 51 (Avco-Everett Corporation, Waltham, Massachusetts). This multi-
segmented elastomer was a polyether urethane/poly(dialkylsiloxane) block copolymer. The suc-
cess of Avcothane 51 was due to its blood compatibility, which precluded the use of anticoagulants
(118, 119). In 1981, this TAH was implanted in a human as a BTT.
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The Akutsu III comprised two seamless, smooth ventricular chambers made of Avcothane 51
(120). Four Björk–Shiley convexo-concave monostrut prosthetic valves with a tilting disc in py-
rolytic carbon were positioned at the inflow and outflow tracts.The criteria for the selection of the
valves were similar to those used for the Liotta TAH. Silastic and velour were used for the atrial
connectors and cuffs, respectively, and the vascular grafts were made of porous Dacron preclot-
ted with autoclaved autologous plasma. The blood pump successfully bridged the patient toward
transplantation for 55 h. After explantation, the absence of thrombi and material failure was con-
firmed, and the internal surfaces appeared smooth and shimmering.

5.3. SynCardia

In the 1970s, the University of Utah began development of a device that went on to become the
only TAH fully approved for clinical use. The evolution of the CardioWest TAH (SynCardia,
Tucson, Arizona) proceeded through a hemispherical heart and several versions of the Jarvik
model. Between 1967 and 1971, Kwan-Gett et al. (121) designed a simple, pneumatically driven,
diaphragm-type TAH, laying the foundation for the development of the Jarvik heart. The Kwan-
Gett heart comprised two hemispherical ventricles with an aluminum base. Dacron-reinforced
Silastic velour was used to line the ventricles and the atrial cuffs and to create the housing
and diaphragm. The inflow and outflow tracts used Hammersmith and Wada–Cutter valves,
respectively (121).

Improvements in both the pumps and the outcomes of animal trials led to the development
of the Jarvik-3 model. Its materials and fabrication techniques were very similar to those used for
the Kwan-Gett heart. The Jarvik-3 housing was composed of two layers of Silastic reinforced
with a Dacron mesh, and the diaphragm was made from the same materials but in a thinner
version. During layering of the ventricles, aluminum rings were integrated to allow valve attach-
ment and atrial connections. Atrial chambers were composed of molded Silastic with the inclusion
of a Biomer (segmented polyether urethane; Ethicon Inc., Somerville, New Jersey) dip-molded
membrane separating the blood compartment and the compliant chamber. Atrioventricular con-
nections were established through four Björk–Shiley prosthetic valves (122). The materials used
to coat the ventricular chambers of the Jarvik-3 heart were modified in order to increase blood
compatibility. However, when anticoagulated and nonanticoagulated calves were implanted with
this device, with either textured (Dacron-fibrilized silicone rubber) or smooth (polyurethane) sur-
faces, the limits of the device design became apparent. Although the hemocompatibility of smooth
polyurethane appeared slightly higher than that of fibril coating, most of the animals died as a re-
sult of thromboembolic events generated in areas of turbulence and stagnation (68).

The Jarvik-5 device was developed to improve the diaphragm–housing connection (D–H
junction) and, therefore, to overcome thrombosis in these critical sites. Innovations in smooth-
surface fabrication allowed the production of inner linings free from discontinuities: Each ventri-
cle was realized as a single element. The blood-contacting surface of the ventricles was made of
polyurethane (Biomer or Avcothane 51), and the diaphragm was composed of a Dacron mesh in-
terposed between two layers of polyurethane. Another modification involved pouring the chosen
polymer inside the device in order to simultaneously coat the internal surfaces of the housing and
the diaphragm, as well as to eliminate the discontinuity at their junction (123). A rigid polycar-
bonate connection system was used to join mechanical tilting-disc Björk–Shiley valves to both the
atrial cuffs and the woven Dacron vascular grafts (when autologous pulmonary and aortic valves
were not retained in situ). Artificial atria, originally fabricated with smooth polyurethanes, were
improved with Dacron felt cuffs (124). The new design of the D–H junction led to a reduced rate
of thrombosis in this area, although thrombosis still occurred around the connection between the
polycarbonate support of the valves and the ventricles (123).
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Between 1976 and 1980, the Jarvik-7 TAH was implanted in calves, demonstrating the feasi-
bility of long-term implantation. In comparison to Jarvik-3 and -5, Jarvik-7 offered improvements
in the atrial cuffs (in polyester felt, dura mater, or polyester felt–lined Biomer), outflow tracts (in
Avcothane 51 or Biomer, both lined with polyester velour), and heart valves (Hall–Kaster pivotal
disc valves; Medtronic Inc., Minneapolis, Minnesota). The Dacron mesh was removed from the
layers of the diaphragm, and the number of polyurethane layers was increased from two to four,
with graphite as an internal lubricant. Despite success in terms of implant duration, all of these
combinations of materials led to calcification of diaphragms and, in some cases, to vegetative en-
docarditis (109).

The final version of Jarvik-7 underwent its first in-human implantation in 1982. This de-
vice was composed of smooth segmented polyurethane ventricles, Dacron felt cuffs, Björk–Shiley
valves, a polycarbonate quick connector, and Dacron vascular grafts. Polyurethane drivelines
emerged at a flank through a velour skin button (125). After 112 days, the pump was explanted,
and investigation confirmed the absence of thrombi and infections (126).

By changing hands, Jarvik-7 underwent commercial renaming and is now known as the Syn-
Cardia TAH. This device began a validation study as a BTT in 1993 (127) and received approval
from the US Food and Drug Administration (FDA) in 2004 and CE marking from the European
Union in 2006. In 2012, it was approved as a DT for humanitarian use by the FDA (128). The ver-
sion of this device known as the CardioWest TAH was composed of a semirigid lower part made
of engineered thermoplastic polyurethane (Isoplast; Lubrizol, Orlando, Florida) and a dome fab-
ricated using a segmented polyurethane solution, reinforced with Dacron mesh, as done for the
velour-lined inflow cuffs and vascular grafts. The blood-contacting surface of the ventricles com-
prised a single layer of poured segmented polyurethane solution,whereas the diaphragmwasmade
of four different sheets, lubricated with graphite microparticles. Medtronic-Hall pyrolytic carbon
monodisc valves were fitted between Isoplast quick connects at both inflow and outflow tracts.

More than 1,100 SynCardia TAHs were implanted worldwide until 2013, but studies of the
device’s blood compatibility are limited to in vitro evaluation of platelet activation and compu-
tational modeling of fluid dynamics (129). Hemocompatibility remains a concern in long-term
implants: A study considering a follow-up period longer than 1 year reported thromboembolic
events in 19% of patients, despite the adoption of anticoagulation strategies (128).

5.4. AbioCor

The AbioCor TAH (Abiomed,Danvers,Massachusetts) was the first mechanical pump specifically
designed to eliminate the risk of infection associated with percutaneous drivelines. This device
could be completely implanted into the body thanks to the adoption of transcutaneous energy
transfer (TET).

The development of the AbioCor TAH began in 1988. Its material formulation remained
substantially the same in the different versions released over the years. The blood-contacting sur-
faces of the smooth ventricles and trileaflet valves were fabricated using Angioflex, a proprietary
polyether urethane. As observed in Jarvik-3 (68), junctions and discontinuities might promote
thrombus formation due to stagnation and turbulence. To prevent such problems, valves and
outflow grafts were inserted into the body pump through the application of solution-casting
techniques. The result of this design was a continuous smooth surface from the inflow to
outflow regions. Domes were reinforced using an industrial epoxy resin (STYCAST; Emerson &
Cumming,Woburn,Massachusetts). The trileaflet valve design was preferred over the mechanical
tilting-disc design because of its lower hemolytic rate. Connections between the inflow tracts and
cuffs were specifically designed to discourage occlusive tissue ingrowth. The artificial atria and
vascular grafts were made of Dacron.
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The second model of the AbioCor TAHwas tested both in vitro (130) and in vivo (131, 132) by
demonstrating the feasibility of long-term experiments. Implantation in a calf model for 47 days
revealed the absence of blood cell damage and thromboembolic events. PNI formation on the
textured surfaces of the inflow tract and cuffs was present. The pump was entirely encapsulated
by a fibrotic tissue.

The dimension of the pump was reduced in the third model, while materials and design were
maintained unaltered (132). Even with these changes, no evidence of blood damage was demon-
strated in calves surviving for 30 days (133). Between 1998 and 1999, only 4 of 12 calves implanted
with the AbioCor TAH survived for more than 1 month. Death occurred due to bleeding, respi-
ratory alterations, malposition of the primary TET coil, and other complications. In animals that
survived for a longer period, no sign of pannus ingrowth was observed. No information about
thrombus formation, embolic events, or blood damage was reported (134).

The first implantation of the AbioCor TAH in a human occurred in 2001, when the FDA ap-
proved a multicenter trial (135). Early results from these studies reported device failure due to
thrombus formation on the plastic cage struts atop the artificial atrial orifice, even when anti-
coagulation and antiplatelet therapies were administered. This problem had not been observed
in the preclinical testing phase. Conversely, the pump’s blood-contacting surfaces appeared com-
pletely clean; no infection or tissue damage was disclosed (136). The AbioCor TAH received FDA
approval for humanitarian use as a DT in 2006 (137).

5.5. CARMAT

Among the most recently developed pumps, one was created specifically to overcome the crucial
issue of low hemocompatibility and to reduce the need for anticoagulation therapies. Develop-
ment of this device, the CARMAT TAH (CARMAT, Velizy, France), began in 1993 (138). It rep-
resents the first successful attempt to incorporate a hybrid (biological/synthetic) membrane into
TAHs.

Along with his colleagues, Carpentier is considered a pioneer in the use of natural tissues to
realize bioprosthetic valves (139, 140). These researchers employed the same technology used
for the manufacture of valve substitutes to develop a diaphragm blood-contacting surface in
glutaraldehyde-treated bovine pericardium backed by polycarbonate urethane using a proprietary
process. The remaining nonmoving parts of the artificial ventricles were fabricated with expanded
polytetrafluoroethylene (ePTFE) (141). The atrial cuffs were made of bioprosthetic flanges, and
Dacron tubes were used as arterial grafts (138). Commercially available Carpentier–Edwards bio-
prosthetic heart valves (Edwards Lifesciences, Irvine, California) were placed between the ventri-
cles and the artificial atria or outflow conduits (142). The composite membrane and ePTFE were
tested in vitro for blood compatibility, demonstrating close similarity with the negative control
(i.e., heparin-coated polyvinyl chloride tubes). The authors found no change in plasma fibrino-
gen, low platelet and blood cell adhesion, and inferior thromboxane B2 release with respect to the
positive control in silicone rubber (141).

Animal studies in calves have been performed since 2013. Implants were short term (10 days),
and in order to verify the in vivo hemocompatibility of the device, no anticoagulant was used.
Only one animal reached the maximum duration of 10 days; the others suffered from respiratory
problems, gas embolisms, paralysis, sepsis, and hemorrhages. In all of the explanted TAHs, there
were no thrombi and no evidence of hemolysis. Fibrin deposits were found covering the blood-
contacting surfaces of the diaphragm, dome, and leaflets. In longer-term implants (7 and 10 days),
PNI formation was observed (143). These favorable results in terms of blood compatibility were
recently confirmed in an analogous short-term study (144).
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In December 2013, the first human implantations of the CARMAT TAH were reported. The
electronics of the device failed, causing the death of the first two patients. They survived for 74
and 270 days, respectively, without developing thromboembolic events, even in the absence of
anticoagulant therapy (one case).The diaphragm surfaces showed no thrombi,while the formation
of a thin layer of proteins was detected (142).

These two cases were part of a feasibility study that included a total of four subjects suffering
from end-stage HF in acute life-threatening conditions. The third patient survived for 254 days
and the fourth for only 20 days, for reasons not related to the implanted device (145).

In 2016, CARMAT began the process of obtaining CE marking. In the same year, a pivotal
study was approved in France. A patient in that study passed away for reasons related to the han-
dling of the power-supply system. For this reason, the study was temporarily suspended. In May
2017, the French Agency for the Safety of Health Products authorized CARMAT to restart the
clinical trial. The company plans to perform 20 new implants in France and in other countries
(i.e., Kazakhstan, Czech Republic, Denmark) in order to obtain CE marking by 2019 (146).

6. CONCLUSION

The shortage of biological organs underlies one of the most complicated (but intriguing) chal-
lenges in modern medicine: the search for affordable and effective mechanical substitutes for fail-
ing hearts. These efforts have culminated with the creation of TAHs.

Clinical application of TAHs has been limited for several reasons. The most notable is blood
compatibility, one of the crucial and well-investigated issues in biomaterial science. Possible solu-
tions for hemocompatibility had already been tested at the outset of TAH development; neverthe-
less, a fully hemocompatible material has not yet been identified, and some potential options are
moderately tolerated by the body only in association with aggressive anticoagulant and antiplatelet
therapies.

Calcification of mechanical blood pumps is another critical issue, which has been investigated
extensively. Given that mineralization is not an acute reaction but rather a chronic process, time
is crucial. Therefore, mineralization should not be underestimated in efforts to create a long-
term functional mechanical substitute, especially when glutaraldehyde-treated mammalian tissues
are used for blood-contacting surfaces. Indeed, fatigue-induced exposure of xenoantigens from
animal-derived biomaterials can elicit an immune response thatmay evolve into calcification (147–
149).

In addition, advanced sterilization techniques are currently being used to avoid microorganism
contamination, but considerable improvements are needed to reduce driveline-derived infections.
New devices aim to bypass this limitation by means of a transcutaneous energy supply. This issue
therefore remains partially unresolved.

Over the last few decades, several TAH prototypes have been released, but only the newest
one (CARMAT) demonstrates improved hemocompatibility. Despite the multitude of studies
performed in this area, the search for the perfect, or most appropriate, biomaterial for blood-
contacting surfaces remains a challenging task.

Clinical translation ofTAHprototypes can only occur once the requirements established by the
International Organization for Standardization (ISO) have been fulfilled. In particular, ISO 10993
regulates the evaluation of biocompatibility of medical devices; together with ISO/TS 10993 and
ISO/TR15499, this requirement offers guidance for the realization of systematic biological assess-
ments with regard to cytotoxicity, hemocompatibility, degradation, and risk management (150).

Blood compatibility is necessary but not sufficient for a truly biocompatible and affordable
TAH. Several other basic specifications must be satisfied: a simple geometrical configuration of

102 Dal Sasso et al.

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

01
9.

21
:8

5-
11

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i P

ad
ov

a 
on

 0
9/

09
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



BE21CH04_Iop ARjats.cls May 11, 2019 9:41

the inner chambers, in order to prevent flow turbulences and blood stagnation; easy automation,
to avoid software failure; and the presence of minimal moving components, such as valves, to
reduce the risk of malfunction. Therefore, a novel TAH characterized by small dimensions, an
advanced actuator system, and innovative materials should be manufactured in order to overcome
the drawbacks of the systems conceived so far. With an effort to guarantee the survival, as well
as a respectable quality of life, of treated patients, our group at the Padua Heart Project is fac-
ing this challenge (5). Although the goal is still arduous to achieve, we firmly believe that recent
steps toward the creation of novel medical devices will soon result in the development of a more
biocompatible TAH.

To date, TAHs represent the most concrete, effective, and immediate answer to the lack of
suitable donor organs. However, no artificial pump has been able yet to fully reproduce the com-
plex physiology and everlasting performance of a native functional heart. Therefore, these devices
must be considered short-term therapeutic responses [our group has reported one of the longest
experiences (i.e., 1,374 days) with a CardioWest TAH (151) for BTT indication].

In the middle term (10–15 years of treatment), heart transplantation remains the gold stan-
dard. Currently, several groups are focusing on the development of new technologies aiming at
improving graft preservation before transplantation and/or enlarging the pool of possible donors
(152).

For a lifelong treatment, the greatest hope is now placed on cardiovascular regenerative
medicine and tissue engineering in order to create less artificial solutions for HF. Several cell-
based methods and/or the use of specific biomaterials able to support in situ cardiac regeneration
has been investigated to ameliorate impaired heart function, not always with satisfactory outcomes
(153). Through a combination of decellularized natural cardiac extracellular matrix and patient-
derived cardiovascular cells, the whole bioengineered heart is anticipated to become the ultimate
biocompatible, personalized solution for the long-lasting replacement of the failing heart (154).
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