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Abstract. — We consider a local minimizer, in the sense of the W 1; 1 norm, of the classical prob-

lem of the calculus of variations

Minimize IðxÞ :¼
Z b

a

Lðt; xðtÞ; x 0ðtÞÞ dtþCðxðaÞ; xðbÞÞ

subject to: x a W 1; 1ð½a; b�;RnÞ; x 0ðtÞ a C a:e:; xðtÞ a S Et a ½a; b�:

8><
>:ðPÞ

where L : ½a; b� � Rn � Rn ! RA fþlg is just Borel measurable, C is a cone, S is a nonempty sub-

set of Rn and C is an arbitrary extended valued function: this allows to cover any kind of endpoint
constraints. We do not assume further assumptions than Borel measurability and a local Lipschitz

condition on L with respect to t, allowing Lðt; x; xÞ to be possibly discontinuous, nonconvex in x

or x. This article reconsiders the results obtained in two recent papers by the authors: we refer to

[5, 4] for further details and proofs. Consider a local minimizer x�, in the sense of the norm of the
absolutely continuous functions. We illustrate a new necessary condition: there exists an absolutely

continuous function p such that, for almost every t in ½a; b�,

L
�
t; x�ðtÞ;

x 0
�ðtÞ
v

�
v�Lðt; x�ðtÞ; x 0

�ðtÞÞb pðtÞðv� 1Þ Ev > 0;ðWÞ

and moreover, p 0 belongs to a suitable generalized subdi¤erential of s 7! Lðs; x�ðtÞ; x 0
�ðtÞÞ at s ¼ t.

The proof of (W) takes full advantage of a classical reparametrization technique, and of recent ver-
sions of the maximum principle. The variational inequality turns out to be equivalent to a gener-

alized Erdmann–Du Bois-Reymond (EDBR) type necessary condition, that we are able to express
in terms of the classical tools of convex analysis (e.g. convex subdi¤erentials): in the autonomous,

real valued case it holds true for every Borel Lagrangian. More regularity is required to reformulate
the (EDBR) condition in terms of the limiting subdi¤erential.

From (W) we deduce the Lipschitz regularity of the local minimizers for (P) if the Lagrangian
satisfies a growth condition, less restrictive than superlinearity, inspired by those introduced in

[8, 17]. In the autonomous case the result implies the most general Lipschitz regularity theorem pres-
ent in the literature, for Lagrangians that are just Borel, and is new in the case of an extended valued

Lagrangian.

Key words: Lipschitz regularity, nonautonomous Lagrangian, Weierstrass, Du Bois-Reymond,

maximum principle
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1. Introduction

This paper reconsiders the findings of two recent papers [5, 4] by the authors: we
describe the most relevant results, the ideas that are involved in the main proofs
and fully describe some particular cases of interest.

We consider the classical problem (P) of minimizing a functional

IðxÞ :¼
Z b

a

Lðt; xðtÞ; x 0ðtÞÞ dtþCðxðaÞ; xðbÞÞ

among the absolutely continuous functions x : ½a; b� ! Rn satisfying a given state
constraint S. L : ½a; b� � Rn � Rn ! R is referred to as the Lagrangian, and ge-
neric notation for its three variables is ðt; x; xÞ. The function C takes its values
in RA fþlg and this allows to cover any kind of endpoint constraints.

The Lagrangian Lðt; x; xÞ is just Borel and satisfies one additional Hypothesis
which is unrestrictive with respect to x, x. The interest for abstract generality is
not the only motivation for investigating such a wide class of Lagrangians: in
spite of Tonelli’s existence result, some variational problems with a Lagrangian
Lðt; x; xÞ that is not convex in the variable x may have a minimizer; moreover,
discontinuous Lagrangians arise often in real life Engineering problems (e.g.,
combustion problems in nonhomogeneous media).

We introduce a suitable nonsmooth extension of Cesari’s Assumption (S)
[9, §2.7 A], described in §3. Once a minimizer x� for ðPÞ is given, Hypothesis
ðSx�Þ requires a local Lipschitz condition involving only the real valued map s 7!
Lðs; x�ðtÞ; xÞ. It is worth noticing that every Borelian, autonomous Lagrangian
Lðx; xÞ satisfies Hypothesis ðSx�Þ.

It turns out that the minimizers for (P), even local in the sense of the W 1;1

norm, satisfy a new Weierstrass type inequality [5]: there exists an absolutely con-
tinuous function p such that, for a.e. t a ½a; b�,

L
�
t; x�ðtÞ;

x 0
�ðtÞ
v

�
v�Lðt; x�ðtÞ; x 0

�ðtÞÞb pðtÞðv� 1Þ Ev > 0;ðWÞ

where p 0ðtÞ is the derivative of s 7! Lðs; x�ðtÞ; x 0
�ðtÞÞ at t, in a suitable generalized

sense. The above inequality is formally similar to the Weierstrass inequality,
which asserts that, for a.e. t a ½a; b�,

Lðt; x�ðtÞ; xÞ �Lðt; x�ðtÞ; x 0
�ðtÞÞb nðtÞ � ðx� x 0

�ðtÞÞ Ex a Rn;ðWeierstrassÞ

for some absolutely continuous costate arc nðtÞ satisfying the Euler equation

n ¼ DxLðt; x�; x 0
�Þ; n 0 ¼ DxLðt; x�; x 0

�Þ

in a suitable generalized sense (here and below, for sake of brevity, we write
Lðt; x�; x 0

�Þ instead of Lðt; x�ðtÞ; x 0
�ðtÞÞ). However, the assumptions that ensure

the validity of (W) and (Weierstrass) are quite di¤erent: the most recent ver-
sions of the latter require some extra regularity/growth conditions of ðx; xÞ 7!
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Lðt; x; xÞ, even in the finite valued case (see [10, 16]). Also, whereas Weierstrass
condition is supported with the Euler equation, our Condition (W) is equivalent
to the validity of a nonsmooth extension of the Erdmann–Du Bois-Reymond
(EDBR) equation. More precisely, denoting by qrgðrÞr¼r0

the convex subgradient
of a function g at r0, it turns out that, for a.e. t a ½a; b�,

Lðt; x�; x 0
�Þ � pðtÞ a qrð0 < r 7! Lðt; x�; rx 0

�ÞÞr¼1:ðEDBRÞ

The proof of (W) is based on Clarke’s version of the maximum principle applied
to an auxiliary optimal control problem. Clearly, when L is smooth, (EDBR)
gives the classical DuBois-Reymond equation:

Lðt; x�; x 0
�Þ � x 0

�ðtÞ �DxLðt; x�; x 0
�Þ ¼ cþ

Z t

a

DtLðs; x�; x 0
�Þ ds

for a suitable constant c. The (EDBR) is new in such generality, even in the case
of an autonomous Lagrangian, in which case its validity holds true if Lðx; xÞ is
just Borel.

In the last sections of the paper we introduce a growth condition ðGx� Þ, which
represents the violation of (EDBR) for those minimizers x� whose derivative is
unbounded. In the smooth case Condition ðGx� Þ is fulfilled if

lim
jxj!þl

jLðt; x�ðtÞ; xÞ � x �Lðt; x�ðtÞ; xÞj ¼ þl;ð1:1Þ

uniformly for t a ½a; b�. The first nonsmooth analogous of (1.1) was considered by
Cellina in [8]. Condition ðGx� Þ is satisfied by any minimizer whenever Lðt; x; xÞ
is superlinear in x, and bounded on bounded sets. As a consequence, once
Hypothesis ðSx� Þ is satisfied, the growth condition ðGx�Þ ensures the Lipschitz
continuity of x�. We recall that an important consequence of such regularity is
that it prevents the occurrence of the Lavrentiev phenomenon (see [6, 7, 2, 19]).
The study of the Lipschitz continuity of the minimizers in the nonautonomous
case was suggested to us by R. Vinter. To the authors, the result seems to be the
only one present in the literature that gives back the most general one for Borel,
autonomous, superlinear Lagrangians obtained by Dal Maso and Frankowska
in [14]. It also extends to the nonautonomous case the regularity results obtained
under slower growth assumptions in [8, 17].

In the last section we consider some extensions of the previous results to the
case when the Lagrangian L is extended valued.

2. Notation

We recall that if X is a subset of Rn, given a function f : X ! RA fþlg and a
point x with f ðxÞ < þl, the proximal subdi¤erential qPf ðxÞ of f at x is the set
of elements an element z a Rn such that there exists sb 0 satisfying

f ðx 0Þ � f ðxÞ þ sjx 0 � xj2 b z � ðx 0 � xÞ
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for x 0 in a neighborhood of x. If f is of class C2 near x then qPf ðxÞ ¼ f‘f ðxÞg
(see [11, Proposition 11.1]).

The convex subdi¤erential of f at x is

qf ðxÞ ¼ fz a Rn : f ðx 0Þ � f ðxÞb p � ðx 0 � xÞ Ex 0 a Rng:

The limiting subdi¤erential of f at x a X is the set

qLf ðxÞ :¼ flim zi : zi a qPf ðxiÞ; xi ! x; f ðxiÞ ! f ðxÞg:

If, moreover, f is real valued and is locally Lipschitz at x, the Clarke’s gen-
eralized gradient qCf ðxÞ of f at x is the convex hull co qLf ðxÞ of qLf ðxÞ.

If f is of class C1 near x then qLf ðxÞ ¼ qCf ðxÞ ¼ f‘f ðxÞg (see [11, Proposi-
tion 11.12]).

• If x :¼ ðx1; . . . ; xmÞ 7! f ðxÞ is a function then Dxi f denotes the classical partial
derivative of f with respect to xi. The symbols

qxi f ; q
P
xi
f ; qL

xi
f ; qC

xi
f

denote, respectively, the convex/proximal/limiting/Clarke subdi¤erential of
xi 7! f ðx1; . . . ; xi; . . . ; xmÞ.

• The Ll-norm (resp. L1-norm) on ½a; b� is denoted by k � kl (resp. k � k1).

We refer to [18, 11] for a detailed description of the notions of limiting
and generalized gradients: We just recall that the limiting subdi¤erential of
a convex function coincides with the subdi¤erential in the sense of convex
analysis.

The convex hull of a subset Y of Rn is denoted by coY .

3. Main assumptions

We will consider the following variational problem (P) with state and derivative
constraints.

Problem (P). We consider a prescribed nonempty subset S of Rn, a cone C in
Rn, and function C : Rn � Rn ! RA fþlg, C2þl.

The Lagrangian L : ½a; b� � Rn � Rn ! RA fþlg is Borel.
The problem (P) is described as follows:

Minimize IðxÞ :¼
Z b

a

Lðt; xðtÞ; x 0ðtÞÞ dtþCðxðaÞ; xðbÞÞ

subject to: x a W 1;1ð½a; b�;RnÞ; x 0ðtÞ a C a:e:; xðtÞ a S Et a ½a; b�:

8><
>:ðPÞ

We underline the fact that we do not impose any further assumption on the
set S and the function C.
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Definition 3.1. An absolutely continuous arc x is called admissible if xðtÞ a S
for all t and if x 0ðtÞ a C for a.e. t a ½a; b�. A function x� a W 1;1ð½a; b�;RnÞ is a
(global) minimum of (P) if Iðx�Þ is finite and Iðx�Þa IðxÞ for all admissible x.
The function x� is said to be a W 1;1 local minimum if the above inequality holds
just as

kx� x�kW 1; 1 :¼ kx� x�kl þ kx 0 � x 0
�k1 a e;

for some e > 0.

Remark 3.2. Clearly a strong local minimum i.e., a minimum among the local
competitors with respect to the Ll norm, is a W 1;1 local minimum.

4. A new necessary condition

Given a minimizer x� for (P), we will suppose the validity of either the follow-
ing Hypothesis ðSx� Þ for real valued Lagrangians, or Hypothesis ðSl

x�
Þ below that

allows the Lagrangian to take the value þl. We refer to [5] for further details
and the proofs of the main results of this section.

Consider an arc x� in W 1;1ð½a; b�;RnÞ, Hypothesis ðSx� Þ is a local Lipschitz
condition of y 7! Lðy; x�ðtÞ; xÞ for ðt; xÞ fixed.

Hypothesis ðSx� Þ. L takes values in R. There are e� > 0 and a LB-measurable
map S : ½a; b� � Rn ! ½0;þl� such that

Sðt; x 0
�ðtÞÞ a L1½a; b�

and, for a.e. t a ½a; b�, for all x a Rn

jLðt2; x�ðtÞ; xÞ �Lðt1; x�ðtÞ; xÞjaSðt; xÞjt2 � t1jð4:1Þ

whenever t1; t2 a ½t� e�; tþ e��B ½a; b�.

Remark 4.1. Hypothesis ðSx� Þ is fulfilled for every x� a W 1;1ð½a; b�;RnÞ with
Lðt; x�ðtÞ; x 0

�ðtÞÞ in L1½a; b� if the following property holds: for every bounded
subset K of Rn, there exist positive eK , aK , AK and a summable function gK a
L1½a; b� satisfying, for all x a K , x a Rn and for almost every t a ½a; b�,

jLðt2; x; xÞ �Lðt1; x; xÞja aKðLðt; x; xÞ þ AK jxj þ gKðtÞÞjt2 � t1j;ð4:2Þ

for every t1; t2 a ½t� eK ; tþ eK �B ½a; b�.

Condition (4.1) in Hypothesis ðSx�Þ and Condition (4.2) can be fully charac-
terized in terms of the proximal subgradient qP

t Lðt; x; xÞ.

Proposition 4.2 (A proximal characterization of ðSx�Þ). Assume that the map
s 7! Lðs; x�ðtÞ; xÞ is lower semicontinuous for all x a Rn and a.e. t a ½a; b�. Then
L satisfies (4.1) of Hypothesis ðSx� Þ if and only if, for all x a Rn,

jqP
t Lðt 0; x�ðtÞ; xÞjaSðt; xÞ Ejt 0 � tj < e�:
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Analogously, whenever t 7! Lðt; x; xÞ is lower semicontinuous for all x; x a Rn,
Condition (4.2) holds if and only if, for a.e. t a ½a; b�,

jqP
t Lðt 0; x; xÞja aKðLðt; x; xÞ þ AK jxj þ gKðtÞÞ Ejt 0 � tj < e�:

It is satisfied if, for instance, for some A, ab 0,

jqP
t Lðt; x; xÞja aðLðt; x; xÞ þ Ajxj þ 1Þ for a:e: t and every x; x a Rn:

The Weierstrass-type inequality, formulated in [5], may be summarized as
follows.

Theorem 4.3 (The directional Weierstrass type condition (W)). Let x� be a
W 1;1 local minimum of (P). Assume that L is Borel measurable and satisfies either
Hypothesis ðSx�Þ. There exists p a W 1;1½a; b� such that, for almost every t a ½a; b�:

L
�
t; x�ðtÞ;

x 0
�ðtÞ
v

�
v�Lðt; x�ðtÞ; x 0

�ðtÞÞb pðtÞðv� 1Þ Ev > 0:ðWÞ

Moreover,

p 0ðtÞ a qC
t Lðt; x�ðtÞ; x 0

�ðtÞÞ almost everywhere in ½a; b�:ðDÞ

Remark 4.3. If, for a.e. t a ½a; b�, Lð�; x�ðtÞ; x 0
�ðtÞÞ is of class C1, Condition (D)

means that p 0ðtÞ ¼ DtLðt; x�ðtÞ; x 0
�ðtÞÞ a.e. on ½a; b�.

Notice that in the case where L takes real values, (W) holds with no condi-
tions on L with respect to ðx; xÞ, other than Borel measurability.

Sketch of the proof of Theorem 4.3

We assume here that x� is a global minimizer of (P), and that L satisfies Hypoth-
esis ðSx� Þ. The proof of Theorem 4.3 is obtained along the following path:

1. L can be extended to R� Rn � Rn in such a manner that (4.1) holds true for
almost every t a R.

2. For t a ½a; b�, y a R and v a R we set

lðt; y; vÞ :¼ L
�
y; x�ðtÞ;

x 0
�ðtÞ
v

�
v if vb 1=j and x 0

�ðtÞ is defined;
0 otherwise.

8<
:

We consider the following auxiliary optimal control problem.

Definition 4.5 (An auxiliary control problem).

Minimize Jðy; vÞ :¼
Z b

a

lðt; yðtÞ; vðtÞÞ dt

subject to: y a W 1;1ð½a; b�;RÞ; y 0 ¼ vb 1=j a:e:; yðaÞ ¼ a; yðbÞ ¼ b:

8><
>:ðOCÞ
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3. A standard reparametrization argument shows that the pair

ðy�ðtÞ :¼ t; v�ðtÞ :¼ 1Þ

is optimal for (OC).
4. Hypothesis ðSx� Þ ensures that problem (OC) satisfies the hypotheses [11, Hy-

pothesis 22.25] of Clarke’s maximum principle. The key point here is that the
local Lipschitz continuity assumption on the state variable y for lðt; y; vÞ be-
comes a requirement on the time variable for L.

5. Applying the maximum principle [11, Theorem 22.26] provides the existence
of an absolutely continuous arc pj satisfying the conditions of Theorem 4.3
(with p replaced by pj), with the exception that (W) is satisfied just for
vb 1=j (instead of v > 0).

6. A compactness argument allows to extract a limit function p from the se-
quence ðpjÞ, that satisfies the required conditions.

5. Erdmann–Du Bois-Reymond necessary conditions

We provide here a convex Erdmann–Du Bois-Reymond (EDBR) necessary con-
dition without convexity assumptions. We first show, for the convenience of the
reader, how our Condition (W) yields directly the Du Bois-Reymond equation in
the classical setting.

Theorem 5.1 ((EDBR) in the smooth case). Let x� be a W 1;1 local minimizer
for (P) and suppose the validity of Hypothesis ðSx� Þ. Assume, moreover, that,
for a.e. t a ½a; b�, ðy; xÞ 7! Lðy; x�ðtÞ; xÞ is of class C1 in a neighbourhood of
ðt; x 0

�ðtÞÞ. Then

pðtÞ :¼ Lðt; x�; x 0
�Þ � x 0

� �DxLðt; x�; x 0
�Þ

is absolutely continuous and

p 0ðtÞ ¼ DtLðt; x�ðtÞ; x 0
�ðtÞÞ a:e: t a ½a; b�:

Proof. Theorem 4.3 implies the validity of (W). For t and pð�Þ such that (W)
holds, v ¼ 1 minimizes

jðvÞ :¼ L
�
t; x�ðtÞ;

x 0
�ðtÞ
v

�
v� pðtÞv Ev > 0:

so that

0 ¼ j 0ð1Þ ¼ Lðt; x�; x 0
�Þ � x 0

� �DxLðt; x�; x 0
�Þ � pðtÞ:

Now, p is absolutely continuous and (D) implies that p 0ðtÞ ¼ DtLðt; x�; x 0
�Þ a.e.

on ½a; b�. r
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We are not aware of formulations of the Erdmann–Du Bois-Reymond
for nonautonomous Lagrangians, without assuming that the minimum x� is
Lipschitz or that L is somewhat regular in the state or velocity variable. Condi-
tions (W) and (D) can be expressed in terms of the convex directional subdi¤er-
ential qrLðt; x; xÞ and yield a natural extension of the (EDBR) equation.

If ðt; x; xÞ a ½a; b� � Rn � Rn is such that Lðt; x; xÞ < þl, we will denote by
qrLðt; x; rxÞr¼1 the convex subdi¤erential of the function 0 < r 7! Lðt; x; rxÞ at
r ¼ 1. Notice that, if x 7! Lðt; x; xÞ is di¤erentiable, then

qrLðt; x�ðtÞ; rxÞr¼1 ¼
j; or

fx �DxLðt; x�ðtÞ; xÞg:

�

Theorem 5.2 (Erdmann–Du Bois-Reymond inclusion). Let x� be a W 1;1 local
minimum of (P). Assume that L satisfies Hypothesis ðSx� Þ. Then, there exist an
absolutely continuous function p a W 1;1½a; b� satisfying (D) and a measurable
function qðtÞ such that

Lðt; x�; x 0
�Þ � pðtÞ ¼ qðtÞ;

qðtÞ a qrLðt; x�; rx 0
�Þr¼1

�
a:e: t a ½a; b�:ð5:1Þ

In particular, if Lðx; xÞ is autonomous just Borel, (5.1) holds and p is constant.

Proof. Let pðtÞ be an absolutely continuous function satisfying the conditions
of Theorem (4.3). Let t be such that the directional Weierstrass condition (W)

holds. The change of variable r ¼ 1

v
gives

Lðt; x�; rx 0
�Þ
1

r
�Lðt; x�; x 0

�Þb pðtÞ
�1
r
� 1

�
; Er > 0:ð5:2Þ

By multiplying both terms of (5.2) by r we obtain

Lðt; x�; rx 0
�Þ � rLðt; x�; x 0

�Þb pðtÞð1� rÞ Er > 0:ð5:3Þ

By adding ðr� 1ÞLðt; x�; x 0
�Þ to both terms of (5.3) we get

Lðt; x�; rx 0
�Þ �Lðt; x�; x 0

�Þb ðLðt; x�; x 0
�Þ � pðtÞÞðr� 1Þ Er > 0:

It follows that qðtÞ :¼ Lðt; x�; x 0
�Þ � pðtÞ a qrLðt; x�ðtÞ; rx 0

�ðtÞÞr¼1. r

Remark 5.3. We stress the fact that Theorem 5.2 implies in particular that
0 < r 7! Lðt; rÞ :¼ Lðt; x�ðtÞ; rx 0

�ðtÞÞ is convex at r ¼ 1 for a.e. t a ½a; b�, i.e. r 7!
Lðt; rÞ has a non empty convex subdi¤erential at r ¼ 1. This fact is a well estab-
lished relaxation result when ðt; xÞ 7! Lðt; x; xÞ is continuous (see [15]); notice
that continuity of x 7! Lðt; x; xÞ is not required here.
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Imposing additional regularity assumptions on Lðt; x; �Þ we obtain versions of
the (EDBR) condition in terms of the limiting and of the global convex subdi¤er-
ential of x 7! Lðt; x; xÞ.

Theorem 5.4 (Limiting (EDBR) equation). Let x� be a W 1;1 local minimum
for (P). Assume that L satisfies Hypothesis ðSx� Þ. Suppose, moreover, that for
every t in ½a; b�, the map x 7! Lðt; x�ðtÞ; xÞ is locally Lipschitz continuous. There
exists a measurable selection n of the multivalued map t ˆ qL

x Lðt; x�ðtÞ; x 0
�ðtÞÞ

such that

pðtÞ :¼ Lðt; x�ðtÞ; x 0
�ðtÞÞ � x 0

�ðtÞ � nðtÞ a W 1;1½a; b�

and, moreover, p 0 satisfies (D).

Corollary 5.5 ((EDBR) Condition, the case where Lðt; x; �Þ is convex.). Let
x� be a W 1;1 local minimum of (P). Assume that L satisfies Hypothesis ðSx�Þ. Sup-
pose, moreover, that for a.e. t in ½a; b�, the map x 7! Lðt; x�ðtÞ; xÞ is convex. There
exists a measurable selection n of t ˆ qxLðt; x�ðtÞ; x 0

�ðtÞÞ such that

pðtÞ :¼ Lðt; x�ðtÞ; x 0
�ðtÞÞ � x 0

�ðtÞ � nðtÞ a W 1;1½a; b�

and, moreover, p 0 satisfies (D).

Remark 5.6. In the autonomous case, the absolutely function p in Theorem 5.2,
Theorem 5.4 and Corollary 5.5 is a constant. In this framework, Theorem 5.2
implies [13, Theorems 4.1] and Theorem 5.4 covers [14, Theorem 3.10].

6. Growth conditions

In this section we make use of subdi¤erentials, in the sense of convex analysis.
These may be possibly empty.

Growth assumption ðGx� Þ. Let x� be a given absolutely continuous arc on ½a; b�.
We say that L satisfies ðGx� Þ if, for every selection Qðt; xÞ of qrLðt; x�; rx 0

�Þr¼1,

lim
jxj!þl

qrLðt;x�; rxÞr¼1Aj

jLðt; x�ðtÞ; xÞ �Qðt; xÞj ¼ þl unif : for a:e: t a ½a; b�:

Equivalently:

EM > 0; bR > 0 Qðt; xÞ a qrLðt; x�; rxÞr¼1; jxj > R

) jLðt; x�ðtÞ; xÞ �Qðt; xÞj > M; a:e: t

Remark 6.1. We point out that Condition ðGx� Þ is fulfilled if there exists R > 0
such that qrLðt; x�ðtÞ; rxÞr¼1 ¼ j for any jxj > R and a.e. t a ½a; b�.

657on a new necessary condition



Remark 6.2 (Interpretation of ðGx� Þ). Assume that Lðt; x�ðtÞ; xÞ < þl. Let
Qðt; xÞ a qrLðt; x�ðtÞ; rxÞr¼1. Then

Lðt; x�ðtÞ; rxÞb fðrÞ :¼ Lðt; x�ðtÞ; xÞ þQðt; xÞðr� 1Þ Er > 0

and fð0Þ ¼ Pðt; xÞ :¼ Lðt; x�ðtÞ; xÞ �Qðt; xÞ is the intersection of the ‘‘tangent’’
line z ¼ fðrÞ to 0 < r 7! Lðt; x�ðtÞ; rxÞ at r ¼ 1 with the z axis. Condition ðGx� Þ
thus means that the ordinate Pðt; xÞ of the above intersection point goes to l as
jxj goes to l, for those points x where 0 < r 7! Lðt; x�ðtÞ; rxÞ has a nonempty
convex subdi¤erential at r ¼ 1.

Remark 6.3 (The case when Lðt; x�ðtÞ; �Þ is smooth). If Lðt; x�ðtÞ; �Þ is of class
C1 for a.e. t a ½a; b�, Assumption ðGx� Þ is fulfilled if and only if

lim
jxj!þl

qrLðt;x�ðtÞ; rxÞr¼1Aj

jLðt; x�ðtÞ; xÞ � x �DxLðt; x�ðtÞ; xÞj ¼ þl;ð6:1Þ

uniformly for a.e. t a ½a; b�. Indeed, whenever the set qrLðt; x�ðtÞ; rxÞr¼1 is non-
empty, it coincides with the singleton fx �DxLðt; x�ðtÞ; xÞg. Notice that Condition
(6.1) is satisfied if

lim
jxj!þl

jLðt; x�ðtÞ; xÞ � x �DxLðt; x�ðtÞ; xÞj ¼ þl;

uniformly for a.e. t a ½a; b�.

Remark 6.4 (The case when Lðt; x�ðtÞ; �Þ is convex). Assume that Lðt; x�ðtÞ; �Þ
is convex and let Lðt; x�ðtÞ; xÞ < þl. It turns out easily that Condition ðGx�Þ is
satisfied if, for every selection nðt; xÞ of qxLðt; x�ðtÞ; xÞ,

lim
jxj!þl

jLðt; x�ðtÞ; xÞ � x � nðt; xÞj ¼ þl;

uniformly for a.e. t a ½a; b�.

Figure 1. Condition ðGx� Þ
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Superlinearity plays a key role in Tonelli’s existence theorem. It has been
widely used as a su‰cient condition for Lipschitz regularity of minimizers.

Superlinearity. There exist Y : ½0;þl½ ! R such that, for almost every t a ½a; b�,

Lðt; x�ðtÞ; xÞbYðjxjÞ Ex a Rn; lim
r!þl

YðrÞ
r

¼ þl:ðGYÞ

Boundedness on bounded sets. There exist 0 < r and Mb 0 such that, for almost
every t a ½a; b�,

Lðt; x�ðtÞ; xÞaM Ex a Rn; jxj ¼ r:ðBx�Þ

Superlinearity together with the boundedness condition ðBx� Þ imply the validity
of the Growth assumption ðGx� Þ.

Proposition 6.5 (Superlinearity and ðBx� Þ ) ðGx�Þ). Let L be superlinear and
assume that ðBx� Þ is satisfied. Then L satisfies Assumption ðGx� Þ.

Remark 6.6 (The autonomous case). If Lðx; �Þ is convex for all x, the Growth
assumption ðGx�Þ is satisfied if, for every selection nðt; xÞ of the subgradient
qxLðt; x�ðtÞ; xÞ,

lim
jxj!þl

jLðx�ðtÞ; xÞ � x � nðt; xÞj ¼ þl;ð6:2Þ

uniformly for a.e. t a ½a; b�. The growth condition (6.2) was considered by Cellina
in [8] where it was pointed that it may be fulfilled by functions that have a linear
growth, as in the case of the convex function LðxÞ ¼ jxj �

ffiffiffiffiffi
jxj

p
.

7. Lipschitz regularity of the minimizers

In the autonomous case the most general Lipschitz regularity result states that if
x� is a minimizer for (P), Lðx; xÞ is Borel and satisfies a growth condition which
is a variation of ðGx�Þ, then x� is Lipschitz (see [17, Theorem 3.2]). This result
can be considered as an achievement of many authors: some unnecessary extra
assumptions were gradually left aside, starting from [12], where the result was for-
mulated under the assumption that Lðx; xÞ is locally Lipschitz, superlinear and
convex in x: we mention the fundamental subsequent papers [1], [14], [8]. It seems
to the authors, that out of [4], no Lipschitz regularity results have appeared con-
cerning nonautonomous Lagrangians, that give back [17, Theorem 3.2], or even
[14, Theorem 2.1] in the autonomous case. All require some extra hypotheses
on the regularity of Lðt; x; xÞ with respect to ðx; xÞ: see for instance [12, Corollary
3.2], [1, Theorem 3.2], [10, Theorem 4.5.2], [10, Theorem 4.5.4]. We believe that
this depends on the di¤erent approaches that have been used for the two cases:
autonomous and nonautonomous. In the autonomous case, the papers that
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followed the trailbazer paper [12], starting from [1], based the proof on the well
known reparametrization technique that we used here at Point 2 of the proof
of our necessary condition (Theorem 4.3). In the nonautonomous case, the main
argument is often centered in an application of Weierstrass inequality.

The use of Weierstrass inequality

We show here, how the Weierstrass inequality (7.1) is used in order to derive reg-
ularity of the minimizers. Assume that the Weierstrass inequality holds along a
minimizer x� for (P): for a.e. t in ½a; b�,

Lðt; x�; xÞ �Lðt; x�; x 0
�Þb nðtÞ � ðx� x 0

�Þ Ex a Rn;ð7:1Þ

where n is a suitable absolutely continuous arc. Assume also that there exists
z0 a Ll½a; b� such that Lðt; x�; z0Þ a Ll½a; b�. Then, by choosing x ¼ z0ðtÞ in
(7.1) we get

Lðt; x�; z0ðtÞÞbLðt; x�; x 0
�Þ þ nðtÞ � ðz0ðtÞ � x 0

�Þ:

By dividing both terms of the latter inequality by 1þ jx 0
�ðtÞj one gets

Mb
Lðt; x�; z0ðtÞÞ
1þ jx 0

�ðtÞj
b

Lðt; x�; x 0
�Þ

1þ jx 0
�ðtÞj

;

for a suitable constant M (we used here the fact that n is bounded). Now, if L is
superlinear in x, the limit

lim
jxj!þl

Lðt; x�ðtÞ; xÞ
1þ jxj ¼ þl;

uniformly for t a ½a; b�: this forces x 0
� to be bounded. In such a way one gets, for

instance, the regularity results established in [11, Corollary 18.15] and [1, Theo-
rem 3.2].

A new result

It is well known that if L is of class C1 and satisfies Hypothesis ðSx� Þ, when x� is
an absolutely continuous minimizer of (P), then the condition

lim
jxj!þl

jLðt; x�ðtÞ; xÞ � x �Lðt; x�ðtÞ; xÞj ¼ þl;

uniformly for t a ½a; b� implies the Lipschitz continuity of x�. The proof is based
on the fact that ðSx� Þ implies the validity of the Erdmann–Du Bois-Reymond
equation:

Lðt; x�; x 0
�Þ � x 0

�ðtÞ �DxLðt; x�ðtÞ; x 0
�ðtÞÞ ¼ cþ

Z t

a

Lðs; x�ðsÞ; x 0
�ðsÞÞ ds:
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In particular Lðt; x�; xÞ � x �DxLðt; x�ðtÞ; xÞ remains bounded as long as x takes
the values x 0

�ðtÞ, t a ½a; b�, from which the claim follows. The next result is a non
smooth extension of the above; it follows directly from the (EDBR) inclusion
(Theorem 5.2).

Theorem 7.1 (Lipschitz regularity under ðGx�Þ). Let x� be a W 1;1 local mini-
mizer for (P), where L satisfies Hypothesis ðSx� Þ. Suppose in addition that L fulfills
the Growth assumption ðGx�Þ. Then x� is Lipschitz.

Remark 7.2. If L is autonomous, Theorem 7.1 gives back [17, Theorem 3.2]
and [8, Theorem 4] whenever, in addition, x 7! Lðx; xÞ is convex.

As an immediate consequence of Theorem 7.1 and of Proposition 6.5 we ob-
tain the following regularity result under the superlinearity assumption.

Corollary 7.3 (The superlinear case). Let x� be a W 1;1 local minimum of (P),
where L is Borel and satisfies Hypothesis ðSx� Þ. Suppose in addition that L is super-
linear and satisfies Condition ðBx� Þ. Then x� is Lipschitz.

Remark 7.4. Hypothesis ðSx� Þ is not just technical: the famous counterexample
that exhibits a minimizer that does not satisfy the Euler equation introduced in [3]
shows that the lack of Hypothesis ðSx�Þ may even lead to the occurrence of the
Lavrentiev phenomenon. The same example violates the validity of the Du Bois-
Reymond equation, as shown in [4]. Also, the lack of Condition ðBx�Þ may lead
to non Lipschitz minimizers (see [1]).

Remark 7.5. If L is autonomous, Hypothesis ðSx�Þ is fulfilled. The conclusion
of Corollary 7.3 then holds if just L is Borel, superlinear and satisfies Condition
ðBx�Þ. This formulation appeared in such generality in [14, Theorem 2.1] as a
refinement of some results of [12, 1].

8. Extended valued Lagrangians

There are few results in the literature that concern the validity of the Du Bois-
Reymond equation when the Lagrangian is allowed to take the value þl. Actu-
ally, a suitable version the results reported above is still valid if one replaces
Hypothesis ðSx�Þ with the following, more restrictive, one.

Hypothesis ðSl
x�
Þ. Given an absolutely continuous arc x�, the following condi-

tions hold:

(i) The map ðs; xÞ 7! Lðs; x�ðtÞ; xÞ is lower semicontinuous for each t a ½a; b�.
(ii) There exists a non negligible subset E of ½a; b� such that for all t a E there are

0 < s1 < 1 < s2 such that

Lðt; x�ðtÞ; s1x 0
�ðtÞÞ < þl; Lðt; x�ðtÞ; s2x 0

�ðtÞÞ < þl:
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(iii) There exist b;Ab 0 and a positive function g a L1½a; b� such that, for a.e.
t a ½a; b�:

Lðt; x�ðtÞ; sx 0
�ðtÞÞ þ Asjx 0

�ðtÞj þ gðtÞb 0;

jqP
t Lðt; x�ðtÞ; sx 0

�ðtÞÞja bðLðt; x�ðtÞ; sx 0
�ðtÞÞ þ Asjx 0

�ðtÞj þ gðtÞÞ

for all t a ½a; b� and s > 0 with Lðt; x�ðtÞ; sx 0
�ðtÞÞ < þl.

More precisely, when L has extended values, Theorem 4.3, Theorem 5.2, The-
orem 5.4, Corollary 5.5 and Theorem 7.1 do still hold replacing Hypothesis ðSx�Þ
with Hypothesis ðSl

x�
Þ and Condition (D) with

p 0ðtÞ a co o : ðo; pðtÞÞ a qL
ðs; vÞ

�
L
�
s; x�ðtÞ;

x 0
�ðtÞ
v

�
v
�
s¼t
v¼1

� �
:ðDlÞ

When Lðx; xÞ is autonomous and convex in x, Corollary 5.5 coincides with
[1, Theorem 4.1].

Remark 8.1. We refer to [5] for a thorough discussion about the validity of
Hypotheses ðSx�Þ and ðSl

x�
Þ. We just point out the following facts.

1. Point (ii) of Hypothesis ðSl
x�
Þ is satisfied if, for a.e. t a ½a; b�, x 0

�ðtÞ belongs to
the interior of the e¤ective domain of x 7! Lðt; x�ðtÞ; xÞ.

2. When L is real valued, the validity of Hypothesis ðSl
x�
Þ implies that of ðSx� Þ.
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