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Abstract 

In this work the problem of timbre recognition-classification is addressed by com­
bining the properties of a powerful speech-coding technique, the Mel-frequency 
Cepstral Coefficients, with the feature extraction capabilities of a self-organizing 
neural network. Acoustic relationships between tones are reflected into spatial 
relationships onto a neural lattice. Final results are in good agreement with the 
usual classifications of timbre quality, and offer promising grounds for the con­
struction of a general, analysis-based timbre space. 

1 Introduction 

Unlike other features of musical sounds, such 
as pitch or loudness, timbre cannot be linked 
directly to one physical dimension; its per­
ception is the outcome of the presence and 
of the absence of many different properties of 
the sound, the perceptual weight of which is 
still in many ways unclear. The study of the 
role of all these concurring factors is no new 
issue in the psychoacoustical research; the 
difficulties are however countless inasmuch as 
listeners are asked to produce unambiguous 
responses on matters for which language pro­
vides an extraordinarily rich set of blurred 
definitions. For this reason, classic studies 
by Grey [Grey, 1975] and others employed the 
verbally simpler notion of 'similarity rating' 
to build a timbre space. The spaces thus ob­
tained, albeit different, have shed some light 
on the relationships between sensation and 
cause; they have not led, however, to a clear 
method and a consequent set of coordinates 
into which an arbitrary waveform can easily 
be mapped. 

In speech analysis, on the other hand, the 
problem of unique classification of sounds has 
been variously addressed; to this end, di­
verse signal processing techniques were de­
vised to perform an efficient data reduction 
while preserving the appropriate informa­
tion. The aim of this work is to test the 
effectiveness of a speech analysis technique 
applied to sound signals by building a sim­
ple 'artificial listener'. A parametric repre­
sentation of timbre information defines an 
underlying multidimensional timbre space; a 
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self-organizing feature map (SOM) is used to 
discover and portrait the inner relationships 
of the space. Comparisons to the two- and 
three-dimensional analogues obtained from 
psychoacoustical data are the key to inter­
pret the results. 

2 Sound analysis 

The Me/ Frequency Cepstral Coefficients, 
or MFCC, are a parametric representa­
tion of acoustic signals widely used in 
the field of speech recognition. They 
were first introduced by Davis and Mer­
melstein (Davis and Mermelstein,l980] in a 
study comparing different techniques for 
the coding of monosyllabic words. Out of 
their 'natural' vocal context, the MFCC are 
here tentatively used to characterize musical 
sounds. The coefficients c; are defined as: 

i = 1, 2, ... , M, where X1 .. . XN are the log­
arithmic energy outputs of a mel-spaced fil­
terbank. Due to the importance of the higher 
frequencies in music perception as opposed to 
speech comprehension, in our case the filter­
bank spreads up to 8 KHz as shown in fig. 1. 
The coefficients are computed using a 32 ms 
Hamming window with a 4 ms time-shift; 
only the first six coefficients are used, pro­
viding an overall 95% data reduction ratio. 
The actual sound database is drawn from 
the McGill University Master Samples CD 
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Figure 1: The filterbank. 

library considering the first 800 ms of each 
signal. 

While not a cepstral extraction in the 
usual sense, the actual effectiveness in speech 
coding is mainly due to the mel-based filter 
spacing and to the dynamic range compres­
sion in the log filter outputs, both of which 
take into account the actual processes in the 
early stages of human earing. Clearly the 
spectral envelope is the major factor in the 
computation of the MFCC, which is advis­
able in speech analysis where a formantic 
structure is to be captured. However, almost 
no musical instrument exhibits a formantic 
pattern, nor is it sure whether the spectral 
envelope alone can account for most of the 
timbre information. The outcome of such a 
tentative approach is the object of the fol­
lowing sections. 

3 The neural model 

The parametrization algorithm transforms 
sound signals in sequences of points in a 
six-dimensional data space. The topological 
properties of this space are a direct conse­
quence of the ability of the processing tech­
nique to extract timbre information from the 
sound samples. To explore these properties 
a self-organizing neural network is used. Ko­
honen [Kohonen,1990] formalized the learn­
ing algorithm for such networks into a simple 
numerical process whose outcome is the mod­
ification of the inner structure of the neural 
model into a n-dimensional projective model 
of the m-dimensional probability space from 
which the input samples come. With n < m 
(while usually n = 1, 2) the neural map per­
forms a feature extraction: along the n axes 
of the map those input features are mapped 
which have the largest numerical variance. 

In our case the mel-cepstral parameter vec­
tors defined above are used as input to a rect­
angular net of 15 * 30 = 450 neurons, so that 
n = 2 and m = 6. The training database was 
built up by processing the sound samples of 
40 different orchestral instruments (see ta-
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ble 1), all of them playing a C4, approx. 261 
Hz, and collecting the single six-element vec­
tors arising from the processing of one frame. 
As opposed to a lumped representation of the 
whole course of the sounds, this approach of­
fers two advantages: it provides a large nu­
merical database for the training phase and 
it takes into detailed account the inner 'vari­
ability' of the musical tones. The training 
is performed over a random shuffling of the 
database vectors, so that there is no direct 
information upon their correct order in each 
tone. After the training, when a sequence of 
vectors is presented as an input, a sequence of 
neurons (neural path) is excited correspond­
ingly. To summarize, the processes charac­
terizing the artificial listener can be viewed 
as such: the analysis algorithm converts a 
sound into a sequence of parameter vectors; 
the neural net converts the sequence of pa­
rameter vectors into a sequence of excited 
neurons. Acoustic properties of tones are 
thus translates into spatial relationships be­
tween neural paths. 

11 Label f Instrument Label Instrument 

alft alto flute lute lute 
bbcl m clarinet mar marimba 
basn bassoon oboe oboe 
bscl bass clarinet ob am oboe d'amore 
btrp Ba.ch trumpet ob cl oboe classico 
cell cello or bp organ Baroque 
cepz cello pizzicato orco organ cornet 
clav harpsichord orft organ flute 
clst celesta ortu organo tutt. 
corn cornet pn piano 
cram crumhorn rec recorder 
ctrp C trumpet sx tenor sax 
dbbs double bass ttb tenor trombone 
dbpz dbbs pazzicato tuba tuba 
ebcl Eo clarinet va viola 
eh english horn vapz viola pizzicato 
fh french horn vibr vibraphone 
ft flute vi violin 
gt guitar vlens violin ensemble 
harp harp vlpz violin pzzzicato 

Table 1: Labels of instruments. 

4 Results 

If 

The experiments started with smaller subsets 
of instruments. The net was capable of re­
constructing the proper sequences of frames 
and to well distinguish between different in­
struments. These abilities proved to be irre­
spective of the net size, which affects only the 
number of neurons committed to one tone 
and thence the level of detail reflected in the 
path. Similarly, the increases ·in size of the 
database did not impair the effectiveness of 
the neural system. In fig. 2 the ultimate re­
sults are shown: all the neural paths relative 
to the 40 instruments of table 1 are repre-
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Figure 2: Final neural paths. 

sented; while all the time-course of the sig­
nals was used in the training phase, in fig. 2 
only the steady-state portions are depicted. 
It can be seen that the paths are generally 
well separated, with only occasional overlap­
pings for very similar tones (e.g. the per­
cussive sounds of mar, clst, and vibr). The 
space spanned by the paths themselves is re­
lated to the inner variability of the sounds; 
pizzicato strings, for instance, which exhibit 
clear transitions in timbre during the decay 
phase, are sources to wider neural excite­
ments. Most notable, however, is the relative 
positioning of the paths: in fig. 3 those local 
groupings are highlighted which correspond 
to normally defined instrumental families: 
strings, trumpets, oboes, clarinets, percus­
sions, and plucked strings. Some anomalies 
are present, e.g. the violin and the harpsi­
chord, which can however be fully explained 
once the structure of the map is taken into 
account. 

A further analysis of the global ordering 
reveals that the main axis is strictly related 
to the spectral energy distribution of the 
steady-state portion of the tone. The back­
ground of fig. 3 shows the spectral envelopes 
associated to the local information of the 
net; these envelopes are obtained inverse­
transforming the six MFCC each neural zone 
is most sensitive to. A clear horizontal shift 
is present, from the low-pass prototypes of 
the left side to the band-pass of the right. 
This particular spectral information is em­
bedded in the first cepstral cofficient which, 
possessing the largest numerical variance, is 
assigned the main axis by the self-organizing 
algorithm. Since the spectral energy distri-
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11 Net Grey Wessel 

basn fh fh 
fh bscl fl 
fl basn basn 
bscl cell cell 
sx ctrp bscl 
ebcl fl sx 
ctrp sx ctrp 
cell ebcl ebcl 
oboe eh oboe 
eh oboe eh 

Table 2: Brightness orderings for instru­
ments. 

bution is related to the perceptual quality 
called brightness, and since in all the percep­
tual timbre spaces one of the axis accounts 
for timbre brilliancy, a comparison between 
these spaces and the neural model becomes 
possible, at least with regard to the bright­
ness orderings. Table 2 compares the neural 
net to Grey's and Wessel's [Wessel,l979] tim­
bre spaces; the analogies are clear, especially 
considering the larger number of instruments 
with which the net deals. 

No global ordering is related to the second 
axis, which seems to rule the local group­
ings by which instrumental families are spa­
tially clustered. The grouping anomalies 
mentioned before can now be explained as 
an overruling of the second dimension by the 
first. Even though the violin, for example, 
is generally regarded as akin to the cello, 
its spectral content is narrower; the converse 
holds for the harpsichord with regard to the 
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Figure 3: Family clusters and spectral content. 

other plucked strings such as the lute or the 
guitar. In fact, when judging sound similari­
ties, listeners usually take into account artic­
ulatory and structural features of the instru­
mental sources (whether actually present or 
recognized) which do not pertain to the mere 
acoustic field, but involve higher-level cogni­
tive processes. 

Further studies presently in progress at the 
University of Padova are confirming the abil­
ity of the MFCC to well capture the timbre 
quality of instrumental tones; this gives the 
MFCC a broader scope of action in signal 
coding, and stresses their good match with 
the properties of human earing. On the side 
of music perception, the results shown here 
seem to provide good cues for the debate 
over the role of temporal details in timbre 
perception. While Grey regarded the attack 
phase as a preeminent factor determining 
timbre quality, other researchers like Sund­
berg [Sundberg,l991, page 75) maintain the 
predominance of the features of the steady­
state portion when evaluating timbre quality, 
and move the importance of the attack to the 
act of recognizing sounds. The organization 
provided by the net seems to endorse this 
second point of view. 

Further extensions of this research include 
the realization of a synthesis control based on 
the neural timbre space; since the spectral 
properties of the analyzed instruments are 
embedded in the neural lattice in an orderly 
fashion, a way of converting neural paths into 
timbre variations is provided. User-defined 
'navigations' over the net will be translated 
into acoustical transitions across timbre pro­
totypes. 
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5 Summary 

Two techniques were combined in the design 
of an analysis-based timbre space; the MFCC 
coding proved effective in extracting the rele­
vant timbre information from sampled sound 
signals, while a Kohonen's neural network 
proved effective in organizing the processed 
data. Analogies with peceptually-based tim­
bre spaces provide encouraging confirmation 
of the consistency of this combined approach. 

References 

[Davis and Mermelstein,1980) Davis, S.B., 
and Mermelstein, P. Comparison of 
Parametric Representations for M ono­
syllabic Word recognition in Continu­
ously Spoken Sentences, IEEE Trans­
actions on Acoustics, Speech, and Sig­
nal Processing, vol. 28(4), 1980, pp. 
357-366. 

[Grey,l975] Grey, J. M., An Exploration of 
Musical Timbre, Report STAN-M-2, 
Stanford University, 1975. 

[Kohonen,1990) Kohonen, T., The Self­
Organizing Map, Proceedings of the 
IEEE, Vol. 78, no, 9, 1990, pp. 1464-
1480. 

[Sundberg,l991] Sundberg, J ., The Science 
of Musical Sounds, Academic Press, 
San Diego, 1991. 

(Wessel,1979) Wessel, D., Timbre Space as a 
Musical Control Structure, Computer 
Music Journal, Vol. 3 no. 2, 1979, pp. 
45-52. 

Psychoacoustics, Perception 


