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Abstract

We study the behavior of the longitudinal flow along a periodic array of cylin-
ders upon perturbations of the shape of the cross section of the cylinders and
the periodicity structure, when a Newtonian fluid is flowing at low Reynolds
numbers around the cylinders. The periodicity cell is a rectangle of sides of
length l and 1/l, where l is a positive parameter, and the shape of the cross
section of the cylinders is determined by the image of a fixed domain through a
diffeomorphism φ. We also assume that the pressure gradient is parallel to the
cylinders. Under such assumptions, for each pair (l, φ), one defines the average
of the longitudinal component of the flow velocity Σ[l, φ]. Here, we prove that
the quantity Σ[l, φ] depends analytically on the pair (l, φ), which we consider as
a point in a suitable Banach space.
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1. Introduction

This paper is devoted to the study of the behavior of the longitudinal flow
along a periodic array of cylinders upon perturbations of the shape of the cross
section of the cylinders and the periodicity structure, when a Newtonian fluid is
flowing at low Reynolds numbers around the cylinders. The shape of the cross5

section of the cylinders is determined by the image of a fixed domain through a
diffeomorphism φ and the periodicity cell is a rectangle of sides of length l and
1/l, where l is a positive parameter. We also assume that the pressure gradient
is parallel to the cylinders. Under such assumptions, the velocity field has only
one non-zero component which, by the Stokes equations, satisfies the Poisson10

equation (see problem (4)). Then, by integrating the longitudinal component of
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the velocity field over the fundamental cell, for each pair (l, φ), one defines the
average of the longitudinal component of the flow velocity Σ[l, φ]. Here, we are
interested in studying the dependence of Σ[l, φ] upon the pair (l, φ).

The longitudinal flow along arrays of cylinders has been studied by several15

authors by exploiting different methods. For example, Hasimoto [13] has in-
vestigated the viscous flow past a cubic array of spheres and he has applied
his results to the two-dimensional flow past a square array of circular cylinders.
His techniques are based on the construction of a spatially periodic fundamental
solution for the Stokes’ system and apply to specific shapes (circular/spherical20

obstacles and square/cubic arrays). Schmid [39] has investigated the longitudi-
nal laminar flow in an infinite square array of circular cylinders. Sangani and
Yao [37, 38] have studied the permeability of random arrays of infinitely long
cylinders. Mityushev and Adler [27, 28] have considered the longitudinal perme-
ability of periodic rectangular arrays of circular cylinders. By means of complex25

variable techniques, they have transformed the boundary value problem defin-
ing the permeability into a functional equation and then they have derived a
formula for the longitudinal permeability as the sum of a logarithmic term and
a power series in the radius of the cylinder. Finally, in [31] the asymptotic be-
havior of the longitudinal permeability of thin cylinders of arbitrary shape has30

been considered.
Here, instead, we are interested in the dependence of the (average) longitu-

dinal velocity upon the sides of the rectangular array and the shape of the cross
section of the cylinders. In particular, in contrast with other approaches, we
do not need to restrict ourselves to particular shapes, as circles or ellipses. Our35

main result is Theorem 5.7, where we prove that the map

(l, φ) 7→ Σ[l, φ] (1)

is analytic. We note that throughout the paper ‘analytic’ means always ‘real
analytic’. For the definition and properties of analytic operators, we refer to
Deimling [11, §15]. Such a result implies, in particular, that if δ0 > 0 and we
have a family of pairs {(lδ, φδ)}δ∈]−δ0,δ0[, where lδ belongs to ]0,+∞[ and φδ40

belongs to a suitable class of diffeomorphisms for all δ ∈]− δ0, δ0[, and the map
δ 7→ (lδ, φδ) is real analytic from ]− δ0, δ0[ to a suitable Banach space, then we
can deduce the possibility to expand Σ[l, φ] as a power series, i.e.,

Σ[lδ, φδ] =

∞∑

j=0

cjδ
j (2)

for δ close to zero. Moreover, by the analyticity of the map in (1), the coefficients
(cj)j∈N in (2) can be constructively determined by computing the differentials45

of Σ[·, ·] (see [10] and [35] for the effective conductivity of a periodic composites
with small inclusions). Furthermore, another important consequence of Theo-
rem 5.7 is that such high regularity result allows applying differential calculus
in order to find critical rectangle-shape pairs (l, φ) as a first step to find optimal
configurations. Indeed, if for example one is interested in finding a pair (l, φ)50
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that maximize Σ[l, φ] under given constraints on (l, φ), then by Theorem 5.7 we
know that the map

(l, φ) 7→ Σ[l, φ]

is real analytic, and thus one can apply differential calculus and can find, for
example, critical configurations.

In the present paper, we use a method based on potential theory in or-55

der to investigate the regularity properties of the average longitudinal velocity
Σ[l, φ]. Such a method has shown to be extremely powerful to investigate the
dependence of the solution of elliptic boundary value problems upon regular
and singular domain perturbations (cf., e.g., Lanza de Cristoforis [18, 20] for
the Laplace and the Poisson equations, Dalla Riva and Lanza de Cristoforis [8]60

for the Lamé equations, Dalla Riva [7] for the Stokes system).
In order to introduce the mathematical problem, for l ∈]0,+∞[, we define

the periodicity cell Ql and the matrix ql by setting

Ql ≡ ]0, l[×]0, 1/l[ , ql ≡
(

l 0
0 1/l

)
.

We emphasize that we restrict ourself to the case of a periodic structure induced
by ql in order to have that the area |Ql|2 of the periodicity cell Ql is equal to65

one for all l ∈]0,+∞[. This choice helps making the computations simpler and
the exposition clearer. However, this restriction is not necessary and we could
consider a more general periodic structure and a more general perturbation of
the periodic structure. We denote by q−1

l the inverse matrix of ql. Clearly,
qlZ2 ≡ {qlz : z ∈ Z2} is the set of vertices of a periodic subdivision of R2 corre-70

sponding to the fundamental periodicity cell Ql. Moreover, we find convenient
to set

Q̃ ≡ Q1 =]0, 1[2 , q̃ ≡ q1 =

(
1 0
0 1

)
.

Then we take

α ∈]0, 1[ and a bounded open connected subset Ω of R2 of class C1,α

such that R2 \ Ω is connected.
(3)

The symbol ‘·’ denotes the closure. For the definition of sets and functions of the
Schauder class Ck,α (k ∈ N) we refer, e.g., to Gilbarg and Trudinger [12]. Then75

we consider a class of diffeomorphisms AQ̃∂Ω from ∂Ω into their images contained

in Q̃ (see (9)). If φ ∈ AQ̃∂Ω, the Jordan-Leray separation theorem ensures that
R2 \ φ(∂Ω) has exactly two open connected components (see, e.g, Deimling [11,
Thm. 5.2, p. 26]), and we denote by I[φ] and E[φ] the bounded and unbounded
open connected components of R2\φ(∂Ω), respectively (see Figure 1 and Figure80

2). Since φ(∂Ω) ⊆ Q̃, a simple topological argument shows that

Q̃ \ I[φ]

is also connected. Then we consider the following two periodic domains (see
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is also connected. Then we consider the following two periodic domains (see Figure 3):

Sql
[qlI[�]] ⌘

[

z2Z2

(qlz + qlI[�]) , Sql
[qlI[�]]� ⌘ R2 \ Sql

[qlI[�]] .

If l 2]0, +1[ and � 2 A eQ
@⌦, the set Sql

[qlI[�]] ⇥ R represents an infinite array of parallel cylinders.
Instead, the set Sql

[qlI[�]]�⇥R is the region where a Newtonian fluid is flowing at low Reynolds numbers.
Then we assume that the driving pressure gradient is constant and parallel to the cylinders. As a
consequence, by a standard argument based on the particular geometry of the problem (cf., e.g., Adler
[1, Ch. 4], Sangani and Yao [38], and Mityushev and Adler [27, 28]), one reduces the Stokes system to
a Poisson equation for the non-zero component of the velocity field. Since in the paper we work with
dimensionless quantities, we may assume that the viscosity of the fluid and the non-zero component of

the pressure gradient are both set equal to one. Accordingly, if l 2]0, +1[ and � 2 A eQ
@⌦, we consider the

following Dirichlet problem for the Poisson equation:

8
<
:

�u = 1 in Sql
[qlI[�]]� ,

u(x + qlz) = u(x) 8x 2 Sql
[qlI[�]]� , 8z 2 Z2 ,

u(x) = 0 8x 2 @Sql
[qlI[�]]� .

(4) bvp
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Figure 1: The diffeomorphism φ of ∂Ω.

Figure 3):

Sql [qlI[φ]] ≡
⋃

z∈Z2

(qlz + qlI[φ]) , Sql [qlI[φ]]− ≡ R2 \ Sql [qlI[φ]] .

If l ∈]0,+∞[ and φ ∈ AQ̃∂Ω, the set Sql [qlI[φ]] × R represents an infinite array
of parallel cylinders. Instead, the set Sql [qlI[φ]]− × R is the region where a
Newtonian fluid is flowing at low Reynolds numbers. Then we assume that
the driving pressure gradient is constant and parallel to the cylinders. As a85

consequence, by a standard argument based on the particular geometry of the
problem (cf., e.g., Adler [1, Ch. 4], Sangani and Yao [38], and Mityushev and
Adler [27, 28]), one reduces the Stokes system to a Poisson equation for the
non-zero component of the velocity field. Since in the paper we work with
dimensionless quantities, we may assume that the viscosity of the fluid and90

the non-zero component of the pressure gradient are both set equal to one.

Accordingly, if l ∈]0,+∞[ and φ ∈ AQ̃∂Ω, we consider the following Dirichlet
problem for the Poisson equation:





∆u = 1 in Sql [qlI[φ]]− ,
u(x+ qlz) = u(x) ∀x ∈ Sql [qlI[φ]]− ,∀z ∈ Z2 ,
u(x) = 0 ∀x ∈ ∂Sql [qlI[φ]]− .

(4)

If l ∈]0,+∞[ and φ ∈ C1,α(∂Ω,R2) ∩ AQ̃∂Ω, then the solution of problem

(4) in the space C1,α
ql

(Sql [qlI[φ]]−) of ql-periodic functions in Sql [qlI[φ]]− of class95

C1,α is unique and we denote it by u[l, φ]. From the physical point of view,
the function u[l, φ] represents the non-zero component of the velocity field (see
Mityushev and Adler [27, §2]). By means of the function u[l, φ], we can define
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is also connected. Then we consider the following two periodic domains (see Figure 3):
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Σ[l, φ] as the integral of the flow velocity over the cell of periodicity (see Adler
[1], Mityushev and Adler [27, §3]), i.e.,100

Σ[l, φ] ≡
∫

Ql\qlI[φ]

u[l, φ](x) dx ∀(l, φ) ∈]0,+∞[×
(
C1,α(∂Ω,R2) ∩ AQ̃∂Ω

)
,

and we pose the following question:

What can be said on the regularity of the map (l, φ) 7→ Σ[l, φ]? (5)

We also note that, taking into account that the area of Ql is equal to one, one
can easily see that Σ[l, φ] is the average of the longitudinal component of the
flow velocity over Ql.

Shape analysis of functionals related to partial differential equations or quan-105

tities of physical relevance has been carried out by several authors and it is
impossible to provide a complete list of contributions. Here we mention, for ex-
ample, the monographs by Henrot and Pierre [14], by Novotny and Soko lowski
[32], and by Soko lowski and Zolésio [40].

Most of the works deals with differentiability properties. Here, instead, we110

are interested in proving higher regularity and we answer the question in (5)
by showing that Σ[l, φ] depends analytically on (l, φ). Our analysis is based
on the study of a boundary value problem in a periodic domain by means of
(periodic) potential theory. Potential theoretic techniques to analyze singularly
perturbed boundary value problems in periodic domains have been exploited115

also by Ammari, Kang, and collaborators [2, 4]. We also note that boundary
value problems in periodic domains have been analyzed with the method of
functional equations (see, e.g., Castro and Pesetskaya [5], Castro, Pesetskaya,
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is the average of the longitudinal component of the flow velocity over Ql.
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(l, �). Our analysis is based on the study of a boundary value problem in a periodic domain by means
of (periodic) potential theory. Potential theoretic techniques to analyze singularly perturbed boundary
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We also note that boundary value problems in periodic domains have been analyzed with the method of
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Mishuris, and Pesetskaya [15, 16], Rogosin, Dubatovskaya, and Pesetskaya [36]). Concerning integral
equation methods for the analysis of problems in fluid mechanics we mention, for example, Kohr and Pop
[17].
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Figure 3: The (l, φ)-dependent sets Sql [qlI[φ]]− and qlφ(∂Ω).

and Rogosin [6], Kapanadze, Mishuris, and Pesetskaya [15, 16], Rogosin, Duba-
tovskaya, and Pesetskaya [36]). Concerning integral equation methods for the120

analysis of problems in fluid mechanics we mention, for example, Kohr and Pop
[17].

The paper is organized as follows. Section 2 is a section of preliminaries
and notation. In Section 3 we show the analyticity of an auxiliary function and
in Section 4 we show the analyticity of some integral operators related to the125

double layer potential. Finally, in Section 5 we prove our main result on the
analyticity of Σ[l, φ] upon the pair (l, φ). Moreover, in the Appendix we include
a few technical statements that we exploit throughout the paper.

2. Preliminaries and notation

If (q11, q22) ∈]0,+∞[2 we introduce a periodicity cell130

Q ≡]0, q11[×]0, q22[ , (6)

and we denote by q the diagonal matrix

q ≡
(
q11 0
0 q22

)
. (7)

We also denote by |Q|2 the 2–dimensional measure of the fundamental cell Q
and by νQ the outward unit normal to ∂Q, where it exists. Clearly, qZ2 ≡ {qz :
z ∈ Z2} is the set of vertices of a periodic subdivision of R2 corresponding to
the fundamental cell Q. If ΩQ is a subset of R2 such that ΩQ ⊆ Q, we define135
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the following two periodic domains

Sq[ΩQ] ≡
⋃

z∈Z2

(qz + ΩQ), Sq[ΩQ]− ≡ R2 \ Sq[ΩQ].

If u is a function defined on Sq[ΩQ] or Sq[ΩQ]− we say that u is q-periodic if
u(x+ qz) = u(x) for all z ∈ Z2 and for all x in the domain of definition of u.

If k ∈ N, β ∈]0, 1], we set

Ckb (Sq[ΩQ]−) ≡ {u ∈ Ck(Sq[ΩQ]−) : Dγu is bounded ∀γ ∈ N2 such that |γ| ≤ k} ,

and we endow Ckb (Sq[ΩQ]−) with its usual norm140

‖u‖
Ckb (Sq [ΩQ]−)

≡
∑

|γ|≤k
sup

x∈Sq [ΩQ]−
|Dγu(x)| ∀u ∈ Ckb (Sq[ΩQ]−) .

Then we set

Ck,βb (Sq[ΩQ]−) ≡ {u ∈ Ck,β(Sq[ΩQ]−) : Dγu is bounded ∀γ ∈ N2 such that |γ| ≤ k} ,

and we endow Ck,βb (Sq[ΩQ]−) with its usual norm

‖u‖
Ck,βb (Sq [ΩQ]−)

≡
∑

|γ|≤k
sup

x∈Sq [ΩQ]−
|Dγu(x)|+

∑

|γ|=k
|Dγu :Sq[ΩQ]−|β

∀u ∈ Ck,βb (Sq[ΩQ]−) ,

where |Dγu : Sq[ΩQ]−|β denotes the β-Hölder constant of Dγu and |γ| ≡ γ1 +γ2

for all γ ≡ (γ1, γ2) ∈ N2.
If k ∈ N, β ∈]0, 1], then we set145

Ckq (Sq[ΩQ]−) ≡
{
u ∈ Ckb (Sq[ΩQ]−) : u is q-periodic

}
,

which we regard as a Banach subspace of Ckb (Sq[ΩQ]−), and

Ck,βq (Sq[ΩQ]−) ≡
{
u ∈ Ck,βb (Sq[ΩQ]−) : u is q-periodic

}
,

which we regard as a Banach subspace of Ck,βb (Sq[ΩQ]−). The spaces Ckb (Sq[ΩQ]),

Ck,βb (Sq[ΩQ]), Ckq (Sq[ΩQ]), and Ck,βq (Sq[ΩQ]) can be defined similarly.
Next, we turn to introduce the Roumieu classes. For all bounded open

subsets Ω′ of R2 and ρ > 0, we set150

C0
ω,ρ(Ω

′) ≡
{
u ∈ C∞(Ω′) : sup

γ∈N2

ρ|γ|

|γ|! ‖D
γu‖C0(Ω′) < +∞

}
,

and

‖u‖C0
ω,ρ(Ω′) ≡ sup

γ∈N2

ρ|γ|

|γ|! ‖D
γu‖C0(Ω′) ∀u ∈ C0

ω,ρ(Ω
′) .
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As is well known, the Roumieu class
(
C0
ω,ρ(Ω

′), ‖ · ‖C0
ω,ρ(Ω′)

)
is a Banach space.

By definition, a function u belongs to C0
ω,ρ(Ω

′) if and only if it can be expanded

into a convergent Taylor series around each point of Ω′ and the radius of conver-
gence of the Taylor series can be estimated from below by means of ρ, uniformly155

at all points of Ω′. We resort to Roumieu spaces because Roumieu spaces are
natural classes of functions which generate analytic superposition operators in
Schauder spaces, as shown by Preciso [33, Prop. 1.1, p. 101](see also Theorem
A.1 of the Appendix). Moreover, we set

C0
q,ω,ρ(Sq[ΩQ]−) ≡

{
u ∈ C∞(Sq[ΩQ]−) : u is q-periodic and

sup
γ∈N2

ρ|γ|

|γ|! ‖D
γu‖

C0
q (Sq [ΩQ]−)

< +∞
}
,

and160

‖u‖
C0
q,ω,ρ(Sq [ΩQ]−)

≡ sup
γ∈N2

ρ|γ|

|γ|! ‖D
γu‖

C0
q (Sq [ΩQ]−)

∀u ∈ C0
q,ω,ρ(Sq[ΩQ]−) .

Our method is based on a periodic version of classical potential theory. In
order to construct periodic layer potentials, we replace the fundamental solution
of the Laplace operator by a q-periodic tempered distribution Sq,2 such that

∆Sq,2 =
∑

z∈Z2

δqz −
1

|Q|2
,

where δqz denotes the Dirac measure with mass in qz (see e.g., [21, p. 84]). The
distribution Sq,2 is determined up to an additive constant, and we can take

Sq,2(x) = −
∑

z∈Z2\{0}

1

|Q|24π2|q−1z|2 e
2πi(q−1z)·x

in the sense of distributions in R2 (see e.g., Ammari and Kang [3, p. 53], [21,
§3]). Moreover, Sq,2 is even, real analytic in R2 \ qZ2, and locally integrable in
R2 (see e.g., [21, §3]).

We now introduce periodic layer potentials. Let ΩQ be a bounded open
subset of R2 of class C1,α for some α ∈]0, 1[ such that ΩQ ⊆ Q. We set165

vq[∂ΩQ, µ](x) ≡
∫

∂ΩQ

Sq,2(x− y)µ(y) dσy ∀x ∈ R2 ,

wq[∂ΩQ, µ](x) ≡ −
∫

∂ΩQ

νΩQ(y) ·DSq,2(x− y)µ(y) dσy ∀x ∈ R2 ,

wq,∗[∂ΩQ, µ](x) ≡
∫

∂ΩQ

νΩQ(x) ·DSq,2(x− y)µ(y) dσy ∀x ∈ ∂ΩQ ,

for all µ ∈ L2(∂ΩQ). Here above, the symbol νΩQ denotes the outward unit
normal field to ∂ΩQ, dσ denotes the area element on ∂ΩQ, and DSq,2(ξ) denotes

8



the gradient of Sq,2 computed at the point ξ ∈ R2\qZ2. The functions vq[∂ΩQ, µ]
and wq[∂ΩQ, µ] are called the (q-periodic) single and double layer potentials,
respectively. As is well known, if µ ∈ C0(∂ΩQ), then vq[∂ΩQ, µ] is continuous170

in R2, and we set

v+
q [∂ΩQ, µ] ≡ vq[∂ΩQ, µ]|Sq [ΩQ]

v−q [∂ΩQ, µ] ≡ vq[∂ΩQ, µ]|Sq [ΩQ]− .

Also, if µ ∈ C0(∂ΩQ) then wq[∂ΩQ, µ]|Sq [ΩQ] admits a unique continuous exten-

sion to Sq[ΩQ], which we denote by w+
q [∂ΩQ, µ] and wq[∂ΩQ, µ]|Sq [ΩQ]− admits

a continuous extension to Sq[ΩQ]−, which we denote by w−q [∂ΩQ, µ] (cf. e.g.,
[21, §3]).175

Next we introduce the periodic exterior volume potential. Let A be an open
subset of R2 such that A ⊆ Q. Let ϕ ∈ L∞(Q \A). Then we define the exterior
periodic volume potential P−q [A,ϕ] by

P−q [A,ϕ](x) ≡
∫

Q\A
Sq,2(x− y)ϕ(y) dy ∀x ∈ R2.

We have the following result on the periodic exterior volume potential P−q [A,ϕ].

Proposition 2.1. Let Q and q be as in (6) and (7), respectively. Let A be an180

open subset of R2 such that A ⊆ Q. Then the following statements hold.

(i) If ϕ ∈ L∞(Q \A), then P−q [A,ϕ] is q-periodic and of class C1(R2).

(ii) If ϕ ∈ C0,α(Q \A), then P−q [A,ϕ]|Q\A ∈ C2(Q \A) and

∆P−q [A,ϕ](x) = ϕ(x)−
∫

Q\A
ϕ(y) dy ∀x ∈ Q \A, (8)

Proof. Statement (i) is a consequence of [9, Prop. 3.6 (v), Prop. 3.16 (iv)],
where the authors consider a volume potential with a general periodic kernel in185

some classes of weakly singular functions, and of [9, §4], where it is shown that
the kernel Sq,2 belongs to the right class of weakly singular functions.

Statement (ii) can be proved by following the argument of the proof of [23,
Prop. A.1], and is a consequence of known properties of the classical volume
potential (see, e.g., Gilbarg and Trudinger [12, Lem. 4.2, p. 55]).190

In order to consider the dependence of Σ[l, φ] under shape perturbations,
we need to introduce a class of diffeomorphisms. Let Ω be as in (3) and let Ω′

be a bounded open connected subset of R2 of class C1,α. We denote by A∂Ω

and by AΩ′ the sets of functions of class C1(∂Ω,R2) and of class C1(Ω′,R2)
which are injective and whose differential is injective at all points of ∂Ω and of195

Ω′, respectively. One can verify that A∂Ω and AΩ′ are open in C1(∂Ω,R2) and
C1(Ω′,R2), respectively (see, e.g., Lanza de Cristoforis and Rossi [26, Lem. 2.2,
p. 197] and [25, Lem. 2.5, p. 143]). Then we find convenient to set

AQ̃∂Ω ≡ {φ ∈ A∂Ω : φ(∂Ω) ⊆ Q̃},
AQ̃

Ω′
≡ {Φ ∈ AΩ′ : Φ(Ω′) ⊆ Q̃}.

(9)
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If φ ∈ A∂Ω, the Jordan-Leray separation theorem ensures that R2 \ φ(∂Ω) has
exactly two open connected components, and we denote by I[φ] and E[φ] the200

bounded and unbounded open connected components of R2\φ(∂Ω), respectively
(see, e.g, Deimling [11, Thm. 5.2, p. 26]).

Since the analyticity is a local property, in order to prove the analyticity of
the map in (5), we can work locally. Therefore, we find convenient to introduce
the following lemma, which is an immediate consequence of the fact that the205

norm in C1,α(∂Ω,R2) ∩ AQ̃∂Ω is stronger then the uniform norm.

Lemma 2.2. Let α, Ω be as in (3). Let φ0 ∈ C1,α(∂Ω,R2) ∩ AQ̃∂Ω. Let A0 be
an open subset of R2 such that A0 ⊆ I[φ0]. Then there exist an open connected
subset A1 of R2 such that R2 \A1 is connected, and an open neighborhood U0 of

φ0 in C1,α(∂Ω,R2) ∩ AQ̃∂Ω such that210

A0 ⊆ A1 ⊆ A1 ⊆ I[φ] ∀φ ∈ U0.

In order to transform the Dirichlet problem for the Poisson equation (4) in
a Dirichlet problem for the Laplace equation, we need a ql-periodic function B
such that

∆B = 1.

We introduce such a function in the following lemma, which is an immediate
consequence of [29, Thm. 2.1].215

Lemma 2.3. Let l ∈]0,+∞[, α ∈]0, 1[. Let φ0, A0 and U0 be as in Lemma 2.2.
Let p0 ∈ A0. Let Bp0,l be the function from R2 \ (qlp0 + qlZ2) to R defined by

Bp0,l(x) ≡ −Sql,2(x− qlp0) ∀x ∈ R2 \ (qlp0 + qlZ2).

Then

(i) Bp0,l|Sql [qlI[φ]]−
∈ C1,α

ql
(Sql [qlI[φ]]−) for all φ ∈ U0.

(ii) ∆Bp0,l = 1 in Sql [qlI[φ]]− for all φ ∈ U0.220

By means of Lemma 2.3, we can convert problem (4) for the Poisson equation
into a nonhomogeneous Dirichlet problem for the Laplace equation. Let l ∈
]0,+∞[. Let φ0, A0 and U0 be as in Lemma 2.2. Let p0 ∈ A0. Let φ ∈ U0. We
note that Lemma 2.3 (i) implies that

Bp0,l|∂Sql [qlI[φ]]− ∈ C1,α(∂Sql [qlI[φ]]−).

Accordingly, it is well know that there exists a unique solution in C1,α
ql

(Sql [qlI[φ]]−)225

of the following auxiliary boundary value problem.





∆u = 0 in Sql [qlI[φ]]−,

u(x+ qlz) = u(x) ∀x ∈ Sql [qlI[φ]]−,∀z ∈ Z2,

u(x) = −Bp0,l(x) ∀x ∈ ∂Sql [qlI[φ]]−
(10)
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(see, e.g., [30, Prop. 2.2, p. 276] and Proposition 5.2 below). We denote the
solution of (10) by

u#[l, φ].

As a consequence, one can immediately verify that

u[l, φ] = Bp0,l + u#[l, φ] in Sql [qlI[φ]]−,

where u[l, φ] is the unique solution in C1,α
ql

(Sql [qlI[φ]]−) of problem (4). Thus,230

we can rewrite Σ[l, φ] in the following form

Σ[l, φ] =

∫

Ql\qlI[φ]

Bp0,l(x) dx+

∫

Ql\qlI[φ]

u#[l, φ](x) dx. (11)

In the sequel of the paper, we will consider the two integrals presented in
the right-hand side of (11) and we will investigate their dependence upon the
pair (l, φ).

3. Analyticity of the integral of the auxiliary function Bp0,l235

In this section, we will investigate the analyticity of the first summand in
the right hand side of formula (11), namely of the map

(l, φ) 7→
∫

Ql\qlI[φ]

Bp0,l(x) dx,

when l is in ]0,+∞[ and φ is in a suitable class of diffeomorphisms. In order
to achieve this objective, we need the following technical results. The proof of
Lemma 3.1 follows by a standard approximation argument. For the proofs of
Lemmas 3.2 and 3.3, instead, we refer to Lanza de Cristoforis and Rossi [26,
§2].240

Lemma 3.1. Let α, Ω be as in (3). Then there exists β ∈ C1,α(∂Ω,R2) such
that |β(x)| = 1 and β(x) · νΩ(x) > 1/2 for all x ∈ ∂Ω.

Lemma 3.2. Let α, Ω be as in (3). Let β be as in Lemma 3.1. Then the
following statements hold.

(i) There exists δΩ ∈]0,+∞[ such that the sets

Ωβ,δ ≡ {x+ tβ(x) : x ∈ ∂Ω, t ∈]− δ, δ[},
Ω+
β,δ ≡ {x+ tβ(x) : x ∈ ∂Ω, t ∈]− δ, 0[},

Ω−β,δ ≡ {x+ tβ(x) : x ∈ ∂Ω, t ∈]0, δ[}

are connected and of class C1,α, and

∂Ωβ,δ ≡ {x+ tβ(x) : x ∈ ∂Ω, t ∈ {−δ, δ}},
∂Ω+

β,δ ≡ {x+ tβ(x) : x ∈ ∂Ω, t ∈ {−δ, 0}},
∂Ω−β,δ ≡ {x+ tβ(x) : x ∈ ∂Ω, t ∈ {0, δ}},

and Ω+
β,δ ⊆ Ω, Ω−β,δ ⊆ R2 \ Ω for all δ ∈]0, δΩ[.245
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(ii) Let δ ∈]0, δΩ[. If Φ ∈ AΩβ,δ
, then Φ|∂Ω ∈ A∂Ω.

(iii) If δ ∈]0, δΩ[, then the set

A′
Ωβ,δ
≡ {Φ ∈ AΩβ,δ

: Φ(Ω+
β,δ) ⊆ I[Φ|∂Ω]}

is open in AΩβ,δ
and Φ(Ω−β,δ) ⊆ E[Φ|∂Ω] for all Φ ∈ A′

Ωβ,δ
.

(iv) If δ ∈]0, δΩ[ and Φ ∈ C1,α(Ωβ,δ,R2)∩A′
Ωβ,δ

, then both Φ(Ω+
β,δ) and Φ(Ω−β,δ)

are open sets of class C1,α, and250

∂Φ(Ω+
β,δ) = Φ(∂Ω+

β,δ), ∂Φ(Ω−β,δ) = Φ(∂Ω−β,δ).

Lemma 3.3. Let α, Ω be as in (3). Let φ0 ∈ C1,α(∂Ω,R2) ∩ A∂Ω. Let β, δΩ
be as in Lemma 3.2. Then the following statements hold.

(i) There exist δ0 ∈]0, δΩ[ and Φ0 ∈ C1,α(Ωβ,δ0 ,R2) ∩ A′
Ωβ,δ0

such that φ0 =

Φ0|∂Ω.

(ii) Let δ0 and Φ0 be as in (i). Then there exist an open neighborhood W0255

of φ0 in C1,α(∂Ω,R2) ∩ A∂Ω, and a real analytic extension operator E0

from C1,α(∂Ω,R2) to C1,α(Ωβ,δ0 ,R2) which maps W0 to C1,α(Ωβ,δ0 ,R2)∩
A′

Ωβ,δ0
and such that E0[φ0] = Φ0 and E0[φ]|∂Ω = φ for all φ ∈ W0.

We have also the following consequence of [9, Thm. 3.40 (ii) and §4] on the
mapping properties of the periodic exterior volume potential.260

Corollary 3.4. Let α ∈]0, 1[. Let A be a bounded open Lipschitz subset of R2

such that A ⊆ Q̃. Let B be an open subset of R2 such that

A ⊆ B ⊆ B ⊆ Q̃.
Then there exists ρ0 ∈]0,+∞[ such that for all ρ ∈]0, ρ0[ and ϕ ∈ C0

q̃,ω,ρ(Sq̃[A]−),

the restriction of P−q̃ [A,ϕ|Q̃\A] to Sq̃[B]− belongs to the space C0
q̃,ω,ρ(Sq̃[B]−).

Moreover, the map from C0
q̃,ω,ρ(Sq̃[A]−) to C0

q̃,ω,ρ(Sq̃[B]−) which takes ϕ to265

P−q̃ [A,ϕ|Q̃\A]|Sq̃ [B]−
is linear and continuous.

We also need the following technical lemma about the real analyticity upon
the diffeomorphism φ of some maps related to the change of variables in the in-
tegrals and to the outer normal field (for a proof we refer to Lanza de Cristoforis
and Rossi [25, p. 166], and to Lanza de Cristoforis [19, Prop. 1]).270

Lemma 3.5. Let α, Ω be as in (3). Then the following statements hold.

(i) For each φ ∈ C1,α(∂Ω,R2) ∩ A∂Ω, there exists a unique σ̃[φ] ∈ C0,α(∂Ω)
such that σ̃[φ] > 0 and

∫

φ(∂Ω)

w(s) dσs =

∫

∂Ω

w ◦ φ(y)σ̃[φ](y) dσy, ∀ω ∈ L1(φ(∂Ω)).

Moreover, the map σ̃[·] from C1,α(∂Ω,R2) ∩ A∂Ω to C0,α(∂Ω) is real an-
alytic.275

12



(ii) The map from C1,α(∂Ω,R2)∩A∂Ω to C0,α(∂Ω,R2) which takes φ to νI[φ]◦φ
is real analytic.

We are now ready to prove the following theorem, where we show the ana-
lyticity of the map

(φ,G) 7→
∫

Q̃\I[φ]

Gdx,

when φ is in a suitable class of diffeomorphisms and G is in a Roumieu space of280

q̃-periodic functions.

Theorem 3.6. Let α, Ω be as in (3). Let ρ ∈]0,+∞[. Let φ0 ∈ C1,α(∂Ω,R2)∩
AQ̃∂Ω. Let A0 be an open connected Lipschitz subset of R2 such that R2 \ A0

is connected and such that A0 ⊆ I[φ0]. Then there exists an open neighborhood

U#,0 of φ0 in C1,α(∂Ω,R2)∩AQ̃∂Ω such that the map from U#,0×C0
q̃,ω,ρ(Sq̃[A0]−)285

to R which takes (φ,G) to
∫
Q̃\I[φ]

Gdx is real analytic.

Proof. Let U0 be as in Lemma 2.2. We first note that, if (φ,G) ∈ U0 ×
C0
q̃,ω,ρ(Sq̃[A0]−), equality (8) for the Laplace operator applied to the exterior

volume potential implies that

∫

Q̃\I[φ]

G(x) dx =

∫

Q̃\I[φ]

∆P−q̃ [A0, G|Q̃\A0
](x) dx+

∫

Q̃\I[φ]

∫

Q̃\A0

G(y) dy dx.

(12)
We now consider the two integrals in the right hand side of equality (12) sepa-
rately. We start with the second one. By the Divergence Theorem, we have

∫

Q̃\I[φ]

∫

Q̃\A0

G(y) dy dx =

∫

Q̃\I[φ]

dx

∫

Q̃\A0

G(y) dy

=

(
1−

∫

I[φ]

dx

)∫

Q̃\A0

G(y) dy

=

(
1− 1

2

∫

φ(∂Ω)

x · νI[φ](x) dσx

)∫

Q̃\A0

G(y) dy.

We note that the map from C0
q̃,ω,ρ(Sq̃[A0]−) to L1(Q̃ \ A0) which takes G to290

G|Q̃\A0
is linear and continuous, and that the map from L1(Q̃ \A0) to R which

takes f to
∫
Q̃\A0

f(y) dy is linear and continuous. Accordingly, the map from

C0
q̃,ω,ρ(Sq̃[A0]−) to R which takes G to

∫
Q̃\A0

G(y) dy is linear and continuous,

and thus real analytic. Moreover, by Lemma 3.5 (i), we have that

∫

φ(∂Ω)

x · νI[φ](x) dσx =

∫

∂Ω

φ(y) · (νI[φ] ◦ φ(y))σ̃[φ](y) dσy.

Then, taking into account that the map from (C0,α(∂Ω,R2))2 to C0,α(∂Ω) which295

takes (f, g) to f · g is bilinear and continuous, that the embedding of C0,α(∂Ω)
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in L1(∂Ω) is linear and continuous, and that the map from L1(∂Ω) to R which
takes h to

∫
∂Ω
h dσ is linear and continuous, Lemma 3.5 implies that the map

from U0 to R which takes φ to
∫
φ(∂Ω)

x · νI[φ](x) dσx is real analytic. Accord-

ingly, the map from U0 × C0
q̃,ω,ρ(Sq̃[A0]−) to R which takes the pair (φ,G) to300 ∫

Q̃\I[φ]

∫
Q̃\A0

G(y) dy dx is real analytic.

Next, we consider the first integral in the right hand side of (12). Proposition
2.1 implies that the periodic exterior volume potential P−q̃ [A0, G|Q̃\A0

] is of

class C1(R2) and P−q̃ [A0, G|Q̃\A0
]|Q̃\A0

is of class C2(Q̃ \A0). Accordingly, the

Divergence Theorem implies that
∫

Q̃\I[φ]

∆P−q̃ [A0, G|Q̃\A0
](x) dx

=

∫

∂Q̃

D(P−q̃ [A0, G|Q̃\A0
](x)) · νQ̃(x) dσx

−
∫

φ(∂Ω)

D(P−q̃ [A0, G|Q̃\A0
](x)) · νI[φ](x) dσx

=−
∫

φ(∂Ω)

D(P−q̃ [A0, G|Q̃\A0
](x)) · νI[φ](x) dσx.

Indeed the q̃-periodicity of P−q̃ [A0, G|Q̃\A0
] (see Proposition 2.1 (i)) implies that

∫

∂Q̃

D(P−q̃ [A0, G|Q̃\A0
](x)) · νQ̃(x) dσx = 0.

Let δ0, W0, E0, and β be as in Lemma 3.3. Let

U#,0 ≡ U0 ∩W0.

Let A1 be as in Lemma 2.2. Then, in particular, we have that

A0 ⊆ A1 ⊆ A1 ⊆ I[φ] ⊆ Q̃ ∀φ ∈ U#,0.

Possibly shrinking δ0 we can assume that305

E0[φ0](Ωβ,δ0) ⊆ Q̃ \A1.

Moreover, possibly shrinking U#,0 we can assume that

E0[φ](Ωβ,δ0) ⊆ Q̃ \A1 ∀φ ∈ U#,0.

By Corollary 3.4, there exists ρ′ ∈]0, ρ[ such that the map from C0
q̃,ω,ρ′(Sq̃[A0]−)

to C0
q̃,ω,ρ′(Sq̃[A1]−) which takes F to P−q̃ [A0, F|Q̃\A0

]|Sq̃ [A1]−
is linear and contin-

uous. By the linearity and continuity of the embedding of C0
q̃,ω,ρ(Sq̃[A0]−) into

C0
q̃,ω,ρ′(Sq̃[A0]−), the map from C0

q̃,ω,ρ(Sq̃[A0]−) to C0
q̃,ω,ρ′(Sq̃[A1]−) which takes310

G to P−q̃ [A0, G|Q̃\A0
]|Sq̃ [A1]−

is linear and continuous. Thus thanks to Lemma
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A.3 of the Appendix, possibly taking a smaller ρ′, we can verify that the map
from C0

q̃,ω,ρ(Sq̃[A0]−) to C0
q̃,ω,ρ′(Sq̃[A1]−) which takes G to

∂

∂xj
P−q̃ [A0, G|Q̃\A0

]|Sq̃ [A1]−

is linear and continuous and then real analytic, for all j ∈ {1, 2}. Moreover,

we note that the restriction operator from C0
q̃,ω,ρ′(Sq̃[A1]−) to C0

ω,ρ′(Q̃ \ A1) is315

linear and continuous and then real analytic. Thus, by Lemma 3.3 on the real
analyticity of the extension operator E0 and by Theorem A.1 of the Appendix
on the real analyticity of a superposition operator in Schauder spaces, the map
from U#,0 × C0

q̃,ω,ρ(Sq̃[A0]−) to C1,α(Ωβ,δ0) which takes the pair (φ,G) to

∂

∂xj
P−q̃ [A0, G|Q̃\A0

] ◦E0[φ]

is real analytic, for all j ∈ {1, 2}. Then we note that

∫

φ(∂Ω)

D(P−q̃ [A0, G|Q̃\A0
](x)) · νI[φ](x) dσx

=

∫

∂Ω

(
DP−q̃ [A0, G|Q̃\A0

] ◦E0[φ](y)
)
· (νI[φ] ◦ φ(y))σ̃[φ](y) dσy.

=

2∑

j=1

∫

∂Ω

∂

∂xj
P−q̃ [A0, G|Q̃\A0

] ◦E0[φ](y)(νI[φ] ◦ φ(y))j σ̃[φ](y) dσy.

By Lemmas 3.3, 3.5, and by the linearity and continuity of the trace operator320

from C0,α(Ωβ,δ0) to C0,α(∂Ω), and by the linearity and continuity of the em-
bedding of C0,α(∂Ω) in L1(∂Ω), and by the linearity and continuity of the map
from L1(∂Ω) to R which takes f to

∫
∂Ω
f dσ, we have that the map from U#,0×

C0
q̃,ω,ρ(Sq̃[A0]−) to R which takes the pair (φ,G) to

∫
φ(∂Ω)

D(P−q̃ [A0, G|Q̃\A0
](x))·

νI[φ](x) dσx is real analytic. Thus, the validity of the statement follows.325

We recall that Bp0,l is the function defined in Lemma 2.3. We are now ready
to analyze the regularity of the map

(l, φ) 7→
∫

Ql\qlI[φ]

Bp0,l(x) dx,

when l is in ]0,+∞[ and φ is a suitable class of diffeomorphisms.

Proposition 3.7. Let α, Ω be as in (3). Let φ0 ∈ C1,α(∂Ω,R2)∩AQ̃∂Ω. Let A0

be an open connected Lipschitz subset of R2 such that R2 \A0 is connected and330

such that A0 ⊆ I[φ0]. Let p0 ∈ A0. Let U#,0 be as in Theorem 3.6. Then the
map from ]0,+∞[×U#,0 to R which takes the pair (l, φ) to

∫
Ql\qlI[φ]

Bp0,l(x) dx

is real analytic.
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Proof. Since the analyticity is a local property, we can work locally. Accordingly,
we fix335

l0 ∈]0,+∞[.

Let L0 be a bounded open subset of ]0,+∞[ containing l0. We denote by D2(R)
the space of 2 × 2 diagonal matrices with real entries and by D+

2 (R) the set of
elements of D2(R) with diagonal entries in ]0,+∞[. Then we set

Q0 ≡ {ql ∈ D+
2 (R) : l ∈ L0}.

Clearly, Q0 is a bounded open subset of D+
2 (R), and Q0 ⊆ D+

2 (R). Now, we
note that
∫

Ql\qlI[φ]

Bp0,l(x) dx =

∫

Q̃\I[φ]

Bp0,l(qlx) dx = −
∫

Q̃\I[φ]

Sql,2(ql(x− p0)) dx

(13)

for all (l, φ) ∈ ]0,+∞[× U#,0. Then we take a bounded open connected subset
W of R2 of class C∞ such that

Q̃ ⊆W and W ∩ (z +A0) = ∅ ∀z ∈ Z2 \ {0}.

By [24, Thm. 8], there exists ρ ∈]0,+∞[ such that the map from Q0 to
C0
ω,ρ(W \A0 − p0), which takes q̂ to the function Sq̂,2(q̂ ·)|W\A0−p0

, is real ana-340

lytic. Since the translation operator from C0
ω,ρ(W \A0 − p0) to C0

ω,ρ(W \A0)
which takes f to f(· − p0) is linear and continuous, then the map from Q0

to C0
ω,ρ(W \A0), which takes q̂ to the function Sq̂,2(q̂(· − p0)), is real analytic.

Then, taking into account the real analyticity of the map from ]0,+∞[ to D+
2 (R)

which takes l to ql, we deduce that the map from L0 to C0
ω,ρ(W \A0), which345

takes l to Sql,2(ql(· − p0)), is real analytic. Then, due to the Lemma A.2 of the
Appendix, we can apply Theorem 3.6 to the last integral in equality (13), and
the validity of the statement follows.

4. Analyticity of the integral operator associated to the double layer
potential350

Since we plan to solve problem (10) with the use of a double layer potential,
we need to understand the regularity of such an operator upon the pair (l, φ).
Thus, in the following two lemmas we prove the analyticity in (l, φ) of some
integral operators related to the double layer potential. We start with the
following result.355

Lemma 4.1. Let α, Ω be as in (3). Let β and δΩ be as in Lemma 3.2. Let

A
′Q̃

Ωβ,δ
≡ A′

Ωβ,δ
∩ AQ̃

Ωβ,δ
∀δ ∈]0, δΩ[.
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Let η ∈]0, 1[. Then there exists δη ∈]0, δΩ[ such that for all δ ∈]0, δη[ the map
which takes

(l,Φ, θ) ∈ ]0,+∞[×
(
C1,α(Ωβ,δ,R2) ∩ A

′Q̃

Ωβ,δ

)
× C1,α(∂Ω)

to the function W+[l,Φ, θ], which is defined as the continuous extension to Ω+
β,δ

of the function

−
∫

qlΦ(∂Ω)

DSql,2(qlΦ(x)− s) · νqlI[Φ|∂Ω](s)(θ ◦ Φ(−1))(q−1
l s)dσs ∀x ∈ Ω+

β,δ,

is real analytic from O(η)× Uη,δ × C1,α(∂Ω) to C1,α(Ω+
β,δ), where

O(η) ≡
{
l ∈]0,+∞[: max{l−2, l2} < η−1

}
,

Uη,δ ≡
{

Φ ∈ A
′Q̃

Ωβ,δ
∩ C1,α(Ωβ,δ,R2) : sup

Ωβ,δ

|det(DΦ)| < η−1

}
.

Proof. First of all, let δ ∈]0, δΩ[. Our plan is to adapt the techniques of the
proof of Corollary 5.7 of [21]. To do so, we first need to rewrite the operators
W+, ∂

∂x1
W+ and ∂

∂x2
W+ in terms of single layer potentials. Let R ∈]0,+∞[

be such that360

R > sup
x∈Ω∪Ωβ,δ

|x| .

Let F be a linear and continuous extension operator from the space C1,α(∂Ω) to
C1,α(B2(0, R)), such that F [θ]|∂Ω = θ for all θ ∈ C1,α(∂Ω) (see, e.g., Troianiello
[41, Thm. 1.3 and Lem. 1.5]). Then, by using [21, (5.8) and (5.9), p. 109], with
Φ replaced by qlΦ, we obtain that if

(l,Φ, θ) ∈ ]0,+∞[×
(
C1,α(Ωβ,δ,R2) ∩ A

′Q̃

Ωβ,δ

)
× C1,α(∂Ω)

then

W+[l,Φ, θ] = −
2∑

i,j=1

∂

∂xi

(
V + [l,Φ,nj [qlΦ]θ]

) (
(D(qlΦ))−1

)
ij

(14)

and

∂

∂xk

(
W+[l,Φ, θ]

)
(15)

=

2∑

r=1

∂(qlΦ)r
∂xk

2∑

j,t=1

∂

∂xt

(
V + [l,Φ,Mrj [qlΦ, θ]]

) (
(D(qlΦ))−1

)
tj

+

2∑

r=1

∂(qlΦ)r
∂xk

∫

∂Ω

nr[qlΦ]θσ̃[qlΦ]dσ
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for all k ∈ {1, 2}, where

Mrj [qlΦ, θ] ≡ |(D(qlΦ))−T · νΩ|−1

×
[(

2∑

i=1

(
(D(qlΦ))−1

)
ir

(νΩ)i

)(
2∑

i=1

∂(F [θ])

∂xi

(
(D(qlΦ))−1

)
ij

)

−
(

2∑

i=1

(
(D(qlΦ))−1

)
ij

(νΩ)i

)(
2∑

i=1

∂(F [θ])

∂xi

(
(D(qlΦ))−1

)
ir

)]
,

and

nr[qlΦ] ≡
(

(D(qlΦ))−T · νΩ

|(D(qlΦ))−T · νΩ|

)

r

,

and

V + [l,Φ, µ] (x) =

∫

qlΦ(∂Ω)

Sql,2(qlΦ(x)− s)
(
µ ◦ Φ(−1)

)
(q−1
l s)dσs ∀x ∈ Ω+

β,δ ,

∀µ ∈ C1,α(∂Ω) .

Here (·)T denotes the transpose of a matrix (·). By the chain rule, we have

(D(qlΦ))ij = (ql)ii(DΦ)ij ∀i, j ∈ {1, 2}, (16)

((D(qlΦ))−1)ij =
1

(ql)ii
((DΦ)−1)ij ∀i, j ∈ {1, 2}.

Next, we consider V + and we note that if365

(l,Φ) ∈ ]0,+∞[×
(
C1,α(Ωβ,δ,R2) ∩ A

′Q̃

Ωβ,δ

)

then

V + [l,Φ, µ] (x) =

∫

qlΦ(∂Ω)

Sql,2(qlΦ(x)− s)
(
µ ◦ Φ(−1)

)
(q−1
l s)dσs

=

∫

Φ(∂Ω)

Sql,2(ql(Φ(x)− y))
(
µ ◦ Φ(−1)

)
(y)dσy

for all µ ∈ C0,α(∂Ω) and for all x ∈ Ω+
β,δ. Then we set

S̃q̃,l,2(x) ≡ Sql,2(qlx) ∀x ∈ R2 \ Z2 . (17)

We note that the q̃-periodic function S̃q̃,l,2 is a q̃-periodic {0}-analog of the
fundamental solution of the operator

1

l2
∂2

∂x2
1

+ l2
∂2

∂x2
2

,

18



i.e., a tempered distribution such that

( 1

l2
∂2

∂x2
1

+ l2
∂2

∂x2
2

)
S̃q̃,l,2 =

∑

z∈Z2

δq̃z − 1 ,

in the sense of distributions (see [21, §1]). Then we can write
∫

Φ(∂Ω)

Sql,2(ql(Φ(x)− s))
(
µ ◦ Φ(−1)

)
(s)dσs (18)

=

∫

Φ(∂Ω)

S̃q̃,l,2(Φ(x)− s)
(
µ ◦ Φ(−1)

)
(s)dσs ≡ Ṽ +

q̃ [l,Φ, µ] (x)

∀x ∈ Ω+
β,δ,

for all (l,Φ, µ) ∈]0,+∞[×Uη,δ × C0,α(∂Ω). Now, one can rewrite the operators

W+, ∂
∂x1

W+ and ∂
∂x2

W+ using the single layer potential Ṽ +
q̃ . More precisely,

equalities (14), (15) together with the two equalities in (16) and with equality
(18) imply that

W+[l,Φ, θ] = −
2∑

i,j=1

∂

∂xi

(
Ṽ +
q̃ [l,Φ, ñj [l,Φ]θ]

) 1

(ql)ii

(
(DΦ)−1

)
ij

(19)

and

∂

∂xk

(
W+[l,Φ, θ]

)
(20)

=

2∑

r=1

∂Φr
∂xk

(ql)rr

2∑

j,t=1

∂

∂xt

(
Ṽ +
q̃

[
l,Φ, M̃rj [l,Φ, θ]

]) 1

(ql)tt

(
(DΦ)−1

)
tj

+

2∑

r=1

∂Φr
∂xk

(ql)rr

∫

∂Ω

ñr[l,Φ]θσ̃[qlΦ]dσ

for all k ∈ {1, 2}, where

M̃rj [l,Φ, θ] = |q−1
l · (DΦ)−T · νΩ|−1

×
[(

2∑

i=1

(
DΦ)−1

)
ir

1

(ql)ii
(νΩ)i

)(
2∑

i=1

∂(F [θ])

∂xi

(
DΦ)−1

)
ij

1

(ql)ii

)

−
(

2∑

i=1

(
DΦ)−1

)
ij

1

(ql)ii
(νΩ)i

)(
2∑

i=1

∂(F [θ])

∂xi

(
DΦ)−1

)
ir

1

(ql)ii

)]
,

and

ñr[l,Φ] =

(
q−1
l · (DΦ)−T · νΩ

|q−1
l · (DΦ)−T · νΩ|

)

r

.

Now we note that370
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(i) the map from ]0,+∞[ to D+
2 (R) which takes l to

a(l) ≡
(
l−2 0
0 l2

)

is real analytic.

Moreover, by [24, Thm. 7] and [21, §3]

(ii) the map from ]0,+∞[×(R2 \ q̃Z2) to R which takes the pair (l, x) to
S̃q̃,l,2(x) = Sql,2(qlx) is real analytic. Moreover, for all l ∈]0,+∞[, the375

map S̃q̃,l,2(·) is a q̃-periodic function in L1
loc(R2) such that

(
1
l2

∂2

∂x2
1

+

l2 ∂2

∂x2
2

)
S̃q̃,l,2 =

∑
z∈Z2 δq̃z − 1 in the sense of distributions.

Accordingly, one can readily verify that the assumptions (1.8) of [21, pp. 78,
79] are satisfied and thus we can apply the results of [21]. Hence, [21, Prop.
5.6, pp. 105, 106] implies that there exists δη ∈]0, δΩ[ such that for all δ ∈]0, δη[380

the map Ṽ +
q̃ [·, ·, ·] is real analytic from O(η) × Uη,δ × C0,α(∂Ω) to C1,α(Ω+

β,δ).
Then, if δ ∈]0, δη[, by the real analyticity of the pointwise product in Schauder
spaces, and by the real analyticity of the map which takes an invertible matrix
with Schauder entries to its inverse, and by the real analyticity of the linear and
continuous extension operator F [·] and of the trace operator, and by identities385

(19) and (20), we conclude that the operators

W+[·, ·, ·], ∂

∂x1
W+[·, ·, ·], ∂

∂x2
W+[·, ·, ·]

are real analytic from O(η) × Uη,δ × C1,α(∂Ω) to C0,α(Ω+
β,δ). Accordingly, the

operator W+[·, ·, ·] is real analytic from O(η)× Uη,δ × C1,α(∂Ω) to C1,α(Ω+
β,δ),

and thus the statement follows.

Then we have the following lemma where we prove the analyticity of the390

trace of the periodic double layer potential upon the periodicity parameter, the
shape, and the density.

Lemma 4.2. Let α, Ω be as in (3). Then the map from

]0,+∞[×(C1,α(∂Ω,R2) ∩ AQ̃∂Ω)× C1,α(∂Ω)

to C1,α(∂Ω) which takes a triple (l, φ, θ) to the function

W [l, φ, θ](x) ≡ −
∫

qlφ(∂Ω)

DSql,2(qlφ(x)− s) · νqlI[φ](s)(θ ◦ φ(−1))(q−1
l s)dσs

∀x ∈ ∂Ω

is real analytic.
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Proof. Since the analyticity is a local property, it suffices to show that if395

(l0, φ0, θ0) ∈ ]0,+∞[×(C1,α(∂Ω,R2) ∩ AQ̃∂Ω)× C1,α(∂Ω),

then W [·, ·, ·] is real analytic in a neighborhood of (l0, φ0, θ0).
Let β, δ0, E0,W0 be as in Lemma 3.3. Possibly shrinkingW0, we can assume

that there exists η ∈]0, 1[ such that

sup
φ∈W0

sup
x∈Ω+

β,δ0

|det(DE0[φ](x))| < η−1 and l0 ∈ O[η],

where O[η] is as in Lemma 4.1. Possibly shrinking δ0 and W0, we can also
assume that400

E0[φ](Ωβ,δ0) ⊆ Q̃ ∀φ ∈ W0.

Then using the jump formula for the double layer potential, we have

W [l, φ, θ] = −1

2
θ +W+ [l,E0[φ], θ] on ∂Ω, (21)

for all (l, φ, θ) ∈ O[η] × W0 × C1,α(∂Ω), where W+ is as in Lemma 4.1 for a
sufficiently small δ. Then, by equality (21), and by Lemma 3.3 on the real
analyticity of the extension operator E0, and by Proposition 4.1 on the real
analyticity of the operator W+[·, ·, ·], and by the linearity and continuity of the405

trace operator from C1,α(Ω+
β,δ) to C1,α(∂Ω), we have that the operator W [·, ·, ·]

is real analytic from O[η]×W0 × C1,α(∂Ω) to C1,α(∂Ω), and, accordingly, the
statement follows.

5. Analyticity of the longitudinal flow

In this section we prove our main result about the real analyticity of the410

longitudinal flow. By the results of the previous sections, this aim is reduced to
the study of the behavior of the second integral in (11), that is the map

(l, φ) 7→
∫

Ql\qlI[φ]

u#[l, φ](x) dx, (22)

when l is in ]0,+∞[ and φ is in a suitable class of diffeomorphisms.
In order to achieve this objective, we exploit some of the results of [29],

where the behavior of a (singularly) perturbed Dirichlet problem for the Laplace415

equation has been studied by means of periodic potentials. As we shall see, we
will reduce the analysis of the solution u#[l, φ] of the Dirichlet problem (10) to
that of a related integral equation. To do so, we start with the following result
on a boundary integral operator, which is proved in [29, Prop. A.3].

Lemma 5.1. Let l ∈]0,+∞[. Let α, Ω be as in (3). Let φ ∈ C1,α(∂Ω,R2)∩AQ̃∂Ω.420

Let N be the map from C1,α(ql∂I[φ]) to itself, defined by

N [µ] ≡ −1

2
µ+ wql [ql∂I[φ], µ] ∀µ ∈ C1,α(ql∂I[φ]).

Then N is a linear homeomorphism from C1,α(ql∂I[φ]) to C1,α(ql∂I[φ]).
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Then we have the following result where we establish a correspondence be-
tween the solution of a Dirichlet problem for the Laplace equation and the
solution of an integral equation.425

Proposition 5.2. Let l ∈]0,+∞[. Let α, Ω be as in (3). Let φ ∈ C1,α(∂Ω,R2)∩
AQ̃∂Ω. Let Γ ∈ C1,α(ql∂I[φ]). Then the boundary value problem





∆u = 0 in Sql [qlI[φ]]−,

u(x+ qlz) = u(x) ∀x ∈ Sql [qlI[φ]]−,∀z ∈ Z2,

u(x) = Γ(x) ∀x ∈ ql∂I[φ]

(23)

has a unique solution u in C1,α
ql

(Sql [qlI[φ]]−). Moreover,

u(x) = w−ql [ql∂I[φ], µ](x) ∀x ∈ Sql [qlI[φ]]−, (24)

where µ is the unique solution in C1,α(ql∂I[φ]) of the following integral equation
430

−1

2
µ(x) + wql [ql∂I[φ], µ](x) = Γ(x) ∀x ∈ ql∂I[φ] . (25)

Proof. By the maximum principle for periodic functions in Sql [qlI[φ]]−, problem
(23) has at most one solution (see [29, Prop. A.1]). As a consequence, we only
need to prove that the function defined by (24) solves problem (23). By Lemma
5.1 there exists a unique solution µ ∈ C1,α(ql∂I[φ]) of the integral equation (25).
Then by the properties of the double layer potential the function defined by (24)435

solves problem (23) (see [29, Thm. 2.3]).

By Proposition 5.2, problem (10) can be converted into the following integral
equation

−1

2
µ(x) + wql [ql∂I[φ], µ](x) = Sql,2(x− qlp0) ∀x ∈ ql∂I[φ] . (26)

Therefore, in order to study the dependence of the solution of problem (10)
upon (l, φ) we can analyze the dependence of the solution of equation (26) upon440

the same pair. Since equation (26) is defined on the (l, φ)-dependent domain
ql∂I[φ], the first step is to provide a reformulation on a fixed domain. More
precisely, we have the following lemma (cf. [29, Lem. 3.4]).

Lemma 5.3. Let l ∈]0,+∞[. Let α, Ω be as in (3). Let A0, φ0 and U0 be as
in Lemma 2.2. Let p0 ∈ A0 and φ ∈ U0. Then the function θ ∈ C1,α(∂Ω) solves445

the equation

−1

2
θ(t)−

∫

φ(∂Ω)

DSql,2(ql(φ(t)− s)) · νqlI[φ](qls)(θ ◦ φ(−1))(s)dσs

− Sql,2(ql(φ(t)− p0)) = 0 ∀t ∈ ∂Ω ,

(27)
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if and only if the function µ ∈ C1,α(ql∂I[φ]), with µ delivered by

µ(x) = (θ ◦ φ(−1))(q−1
l x) ∀x ∈ ql∂I[φ], (28)

solves the equation

−1

2
µ(x) + wql [ql∂I[φ], µ](x) = Sql,2(x− qlp0) ∀x ∈ ql∂I[φ] . (29)

Moreover, equation (27) has a unique solution in C1,α(∂Ω).

Proof. The equivalence of equation (27) in the unknown θ and equation (29) in450

the unknown µ, with µ delivered by (28), is a straightforward consequence of the
Theorem of change of variables in integrals. Then, the existence and uniqueness
of a solution of equation (27) in C1,α(∂Ω) follows from Lemma 2.3 and from
Lemma 5.1 applied to equation (29), and from the equivalence of equations (27),
(29).455

Now, our aim is to prove the analyticity of the function θ which solves
equation (27) upon (l, φ). We do so by exploiting the Implicit Function Theorem
for real analytic maps. Therefore, inspired by Lemma 5.3, we introduce the map
Λ from ]0,+∞[×U0 × C1,α(∂Ω) to C1,α(∂Ω) by setting

Λ[l, φ, θ](t) ≡− 1

2
θ(t)−

∫

φ(∂Ω)

DSql,2(ql(φ(t)− s)) · νqlI[φ](qls)(θ ◦ φ−1)(s)dσs

(30)

− Sql,2(ql(φ(t)− p0)) ∀t ∈ ∂Ω,

for all (l, φ, θ) ∈]0,+∞[×U0 × C1,α(∂Ω), where U0 is defined in Lemma 2.2.
In order to apply the Implicit Function Theorem for real analytic maps to the
equation

Λ[l, φ, θ] = 0 ,

we need to understand the regularity of Λ. The analyticity upon (l, φ, θ) of the
second term in the right hand side of (30) is shown in Lemma 4.2. Accordingly,460

in order to show the analyticity of the map Λ, it remains to show that the map
which takes (l, φ) to the function Sql,2(ql(φ(·)− p0)) is real analytic.

Lemma 5.4. Let α, Ω be as in (3). Let φ0, A0 be as in Lemma 2.2. Let p0 ∈ A0.

Then there exists an open neighborhood U∗,0 of φ0 in C1,α(∂Ω,R2) ∩ AQ̃∂Ω such
that the map from ]0,+∞[×U∗,0 to C1,α(∂Ω) which takes a pair (l, φ) to the465

function Sql,2(ql(φ(·)− p0)) is real analytic.

Proof. Let U0 be as in Lemma 2.2. Since the analyticity is a local property, we
can work locally. Let L0 and Q0 be defined as in the proof of Proposition 3.7.
We take a bounded open connected subset W of R2 of class C∞ such that

Q̃ ⊆W and W ∩ (z +A0) = ∅ ∀z ∈ Z2 \ {0}.
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By arguing as in the proof of Proposition 3.7, one can easily prove that the map
from Q0 to C0

ω,ρ(W \A0), which takes q̂ to the function Sq̂,2(q̂(· − p0)), is real
analytic. Let δ0, W0, E0, and β be as in Lemma 3.3. Let

U∗,0 ≡ U0 ∩W0.

Possibly shrinking δ0 we can assume that470

E0[φ0](Ωβ,δ0) ⊆ Q̃ \A0.

Moreover, possibly shrinking U∗,0 we can assume that

E0[φ](Ωβ,δ0) ⊆ Q̃ \A0 ∀φ ∈ U∗,0.
Thus, by the real analyticity of the map from L0 to Q0 which takes l to ql,
and by Lemma 3.3 on the real analyticity of the extension operator E0, and by
Lemma A.1 of the Appendix on the real analyticity of a superposition operator
in Schauder spaces, we have that the map from L0 ×U∗,0 to C1,α(Ωβ,δ0) which475

takes (l, φ) to Sql,2(ql(· − p0)) ◦ E0[φ] is real analytic. Accordingly, the map
from ]0,+∞[×U∗,0 to C1,α(Ωβ,δ0) which takes (l, φ) to Sql,2(ql(· − p0)) ◦ E0[φ]
is real analytic. Finally, the linearity and continuity of the trace operator from
C1,α(Ωβ,δ0) to C1,α(∂Ω) implies the validity of the statement.

We are now ready to show that the solution of the integral equation (27)480

depends analytically on (l, φ). The proof is based on the Implicit Function
Theorem for real analytic maps in Banach spaces.

Proposition 5.5. Let α, Ω be as in (3). Let φ0, A0 be as in Lemma 2.2. Let
p0 ∈ A0. Let U∗,0 be as in Lemma 5.4. Then the following statements hold.

(i) For each (l, φ) ∈]0,+∞[×U∗,0, there exists a unique θ in C1,α(∂Ω) such485

that
Λ[l, φ, θ] = 0 on ∂Ω,

and we denote such a function by θ[l, φ].

(ii) The map θ[·, ·] from ]0,+∞[×U∗,0 to C1,α(∂Ω) which takes (l, φ) to θ[l, φ]
is real analytic.

Proof. Statement (i) is a straightforward consequence of Lemma 5.3.490

Next we turn to consider statement (ii). We first observe that by Lem-
mas 4.2 and 5.4, Λ[·, ·, ·] is a real analytic map from ]0,+∞[×U∗,0×C1,α(∂Ω) to
C1,α(∂Ω). Since the analyticity is a local property, we fix (l1, φ1) in ]0,+∞[×U∗,0
and we will show that θ[·, ·] is real analytic in some neighborhood of (l1, φ1) in
]0,+∞[×U∗,0. By standard calculus in normed spaces, the partial differential
∂θΛ[l1, φ1, θ[l1, φ1]] of Λ at (l1, φ1, θ[l1, φ1]) with respect to the variable θ is
delivered by

∂θΛ[l1,φ1, θ[l1, φ1]](ψ)(t)

=− 1

2
ψ(t)−

∫

φ(∂Ω)

DSql1 ,2(ql1(φ(t)− s)) · νql1 I[φ](ql1s)(ψ ◦ φ(−1))(s) dσs

∀t ∈ ∂Ω,
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for all ψ ∈ C1,α(∂Ω). By Lemma 5.1 and by the proof of Lemma 5.3, we
deduce that ∂θΛ[l1, φ1, θ[l1, φ1]] is a linear homeomorphism from C1,α(∂Ω) onto
C1,α(∂Ω). Accordingly, we can apply the Implicit Function Theorem for real
analytic maps in Banach spaces (see, e.g., Prodi and Ambrosetti [34, Thm. 11.6]
and Deimling [11, Thm. 15.3]), and we deduce that θ[·, ·] is real analytic in a495

neighborhood of (l1, φ1) in ]0,+∞[×U∗,0. Thus, the statement follows.

Now we are ready to consider the second integral in the right hand side of
(11), that is the map in (22).

Theorem 5.6. Let α, Ω be as in (3). Let φ0, A0 be as in Lemma 2.2. Let
p0 ∈ A0. Let U∗,0 be as in Lemma 5.4. Then the map from ]0,+∞[×U∗,0 to R500

which takes the pair (l, φ) to
∫
Ql\qlI[φ]

u#[l, φ] dx is real analytic.

Proof. First of all, by Proposition 5.2, by Lemma 5.3 and by Proposition 5.5 we
have that

u#[l, φ](x) = w−ql [ql∂I[φ], θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·)](x) ∀x ∈ Sql [qlI[φ]]−,

for all (l, φ) ∈]0,+∞[×U∗,0, where θ[l, φ] is defined in Proposition 5.5 (i). Ac-
cordingly,

∫

Ql\qlI[φ]

u#[l, φ] dx =

∫

Ql\qlI[φ]

w−ql [ql∂I[φ], θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·)] dx (31)

for all (l, φ) ∈]0,+∞[×U∗,0. We note that by classical differentiation theorems
for integrals depending on a parameter we have that

w−ql [ql∂I[φ], θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·)](x)

=−
∫

qlφ(∂Ω)

DSql,2(x− y) · νqlI[φ](y)(θ[l, φ] ◦ φ(−1))(q−1
l y)) dσy

=−
2∑

j=1

∂

∂xj

∫

qlφ(∂Ω)

Sql,2(x− y)(νqlI[φ](y))j(θ[l, φ] ◦ φ(−1))(q−1
l y)) dσy

=−
2∑

j=1

∂

∂xj
v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1

l ·))](x), ∀x ∈ Sql [qlI[φ]]−,

for all (l, φ) ∈]0,+∞[×U∗,0. Then

∫

Ql\qlI[φ]

w−ql [ql∂I[φ], θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·)](x) dx (32)

= −
2∑

j=1

∫

Ql\qlI[φ]

∂

∂xj
v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1

l ·))](x) dx

for all (l, φ) ∈]0,+∞[×U∗,0. We now fix j ∈ {1, 2}. Lemma 3.5 (i), the Diver-
gence Theorem, and the continuity in R2 of the single layer potential (see, e.g.,
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[21, Thm. 3.7 (i)]) imply that

∫

Ql\qlI[φ]

∂

∂xj
v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1

l ·))](x) dx (33)

=

∫

∂Ql

v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·))](x)(νQl(x))j dσx

−
∫

qlφ(∂Ω)

v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·))](x)(νqlI[φ](x))j dσx

= −
∫

qlφ(∂Ω)

v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·))](x)(νqlI[φ](x))j dσx

= −
∫

∂Ω

vql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·))](qlφ(t))

× ((νqlI[φ])j ◦ qlφ)(t)σ̃[φ](t) dσt

for all (l, φ) ∈]0,+∞[×U∗,0. Indeed, the periodicity of the periodic single layer
potential (see, e.g., [21, Thm. 3.7 (i)]) implies that505

∫

∂Ql

v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·))](x)(νQl(x))j dσx = 0.

Now we note that if Sq̃,l,2 is the q̃-periodic {0}-analog of the fundamental solu-
tion of the operator

1

l2
∂2

∂x2
1

+ l2
∂2

∂x2
2

,

defined as in (17) (cf. [21, §1]), we have

vql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·))](qlφ(t))

=

∫

qlφ(∂Ω)

Sql,2(qlφ(t)− y)(νqlI[φ](y))j(θ[l, φ] ◦ φ(−1))(q−1
l y)) dσy

=

∫

φ(∂Ω)

Sql,2(ql(φ(t)− s))(νqlI[φ](qls))j(θ[l, φ] ◦ φ(−1))(s) dσs

=

∫

φ(∂Ω)

S̃q̃,l,2(φ(t)− s)(νqlI[φ](qls))j(θ[l, φ] ◦ φ(−1))(s) dσs

≡ ṽl,q̃[∂I[φ], (((νqlI[φ])j ◦ qlφ)θ[l, φ]) ◦ φ(−1))](φ(t)) ∀t ∈ ∂Ω,

for all (l, φ) ∈]0,+∞[×U∗,0. Here

ṽl,q̃[∂I[φ], ·]

is the q̃-periodic single layer potential associated to the analog S̃q̃,l,2 (see [21,
Thm. 3.7, pp. 87–89]). By (i) and (ii) in the proof of Lemma 4.1, one can510

readily verify that assumptions (1.8) of [21, pp. 78, 79] are satisfied and thus we
can apply the results of [21]. Moreover, we note that map from ]0,+∞[×U∗,0 to
C1,α(∂Ω,R2)∩A∂Ω which takes (l, φ) to qlφ is real analytic and then Lemma 3.5
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(ii) implies that the map from ]0,+∞[×U∗,0 to C0,α(∂Ω) which takes (l, φ) to
(νqlI[φ])j ◦qlφ is real analytic. Taking Proposition 5.5 (ii) into account, Theorem515

5.10 (i) of [21] implies that the map from ]0,+∞[×U∗,0 to C1,α(∂Ω) which takes
(l, φ) to

Ṽq̃[l, φ, ((νqlI[φ])j ◦ qlφ)θ[l, φ])] ≡ ṽl,q̃[∂I[φ], (((νqlI[φ])j ◦ qlφ)θ[l, φ]) ◦ φ(−1))] ◦ φ
is real analytic. Then Lemma 3.5 (i), the linearity and continuity of the map
from L1(∂Ω) to R which takes f to

∫
∂Ω
f dσ, and equality (33) imply that the

map from ]0,+∞[×U∗,0 to R which takes (l, φ) to520

∫

Ql\qlI[φ]

∂

∂xj
v−ql [ql∂I[φ], (νqlI[φ])j(θ[l, φ] ◦ φ(−1) ◦ (q−1

l ·))](x) dσx,

is real analytic. Accordingly, equality (32) implies that the map from the space
]0,+∞[×U∗,0 to R which takes (l, φ) to

∫

Ql\qlI[φ]

w−ql [ql∂I[φ], θ[l, φ] ◦ φ(−1) ◦ (q−1
l ·)](x) dx,

is real analytic and then, by equality (31), we can conclude that the map from
]0,+∞[×U∗,0 to R which takes the pair (l, φ) to

∫
Ql\qlI[φ]

u#[l, φ] dx is real an-

alytic.525

Combining Proposition 3.7 and Theorem 5.6 together with the representa-
tion formula (11) for Σ[l, φ], we can finally deduce our main result regarding the
real analyticity of the map (l, φ) 7→ Σ[l, φ].

Theorem 5.7. Let α, Ω be as in (3). Then the map from

]0,+∞[×
(
C1,α(∂Ω,R2) ∩ AQ̃∂Ω

)

to R which takes a pair (l, φ) to Σ[l, φ] is real analytic.530

As already mentioned, one of the consequences of Theorem 5.7 is that if we
have a family of pairs (lδ, φδ)δ∈]−δ0,δ0[ which depends analytically on δ as in the
Introduction, then we can deduce the possibility to expand the longitudinal flow
as a power series in the parameter δ, i.e.,

Σ[lδ, φδ] =

+∞∑

j=0

cjδ
j (34)

for δ close to zero. Once the possibility of an expansion of this type is shown,535

for practical applications it is of interest to compute the coefficients {cj}j∈N. A
constructive method to compute the coefficients for the effective conductivity of
periodic two-phase dilute composites is developed in [10]. The computation is
based on the solutions of systems of integral equations. This type of approach
can be exploited also in this case, in order to obtain an explicit expression540

for all the coefficients {cj}j∈N in the series (34). This is the object of future
investigations and the present paper provides the theoretical background for
this aim.
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Appendix A.

In this Appendix we collect some technical results that we have used in the545

paper. We first introduce the following slight variant of Preciso [33, Prop. 1.1,
p. 101] on the real analyticity of a composition operator. See also [22, Prop.
5.2] and the slight variant of the argument of Preciso of the proof of [19, Prop.
9, p. 214]

Theorem A.1. Let α ∈]0, 1], ρ ∈]0,+∞[. Let Ω1, Ω′ be bounded open subsets550

of R2. Let Ω′ be of class C1 . Then the composition operator T from C0
ω,ρ(Ω1)×

C1,α(Ω′,Ω1) to C1,α(Ω′) defined by

T [u, v] ≡ u ◦ v, ∀(u, v) ∈ C0
ω,ρ(Ω1)× C1,α(Ω′,Ω1),

is real analytic.

Then we have the following elementary lemma which shows that, when deal-
ing with q-periodic functions in Roumieu spaces on Sq[A]−, it is sufficient to555

work on a suitable neighborhood of the periodicity cell.

Lemma A.2. Let ρ ∈]0,+∞[. Let Q and q be as in (6) and (7), respectively.
Let A be an open connected subset of R2 such that R2 \A is connected and such
that

A ⊆ Q.
Let W be a bounded open connected subset of R2 such that

Q ⊆W and W ∩ (qz +A) = ∅ ∀z ∈ Z2 \ {0}.
Then the restriction operator from C0

q,ω,ρ(Sq[A]−) onto the subspace

C0
q,ω,ρ(W \A) ≡

{
v ∈ C0

ω,ρ(W \A) :

∃u ∈ RSq [A]− such that u is q-periodic, v = u|W\A

}
,

of C0
ω,ρ(W \A) induces a linear homeomorphism560

Finally, we have the following elementary consequence of the definition of
Roumieu classes, which shows that, possibly taking a smaller ρ in the target
space, the differential operators are linear and continuous in periodic Roumieu
spaces on Sq[Ω]−. Corresponding results hold also for classical Roumieu spaces

and for periodic Roumieu spaces in Sq[Ω]. However, we only state the result565

that we exploit in this paper.

Lemma A.3. Let ρ ∈]0,+∞[ and ρ1 ∈]0, ρ[. Let Q and q be as in (6) and (7),
respectively. Let Ω be an open subset of R2 such that Ω ⊆ Q. Let j ∈ {1, 2}. If
u ∈ C0

q,ω,ρ(Sq[Ω]−), then the partial derivative ∂u
∂xj
∈ C0

q,ω,ρ1
(Sq[Ω]−). Moreover,

the operator which takes u to ∂u
∂xj

is linear and continuous from C0
q,ω,ρ(Sq[Ω]−)570

to C0
q,ω,ρ1

(Sq[Ω]−).

We note that in Lemma A.3 one cannot take ρ1 = ρ. In other words, one
can find a function u ∈ C0

q,ω,ρ(Sq[Ω]−), such that ∂u
∂xj
6∈ C0

q,ω,ρ1
(Sq[Ω]−) for some

j ∈ {1, 2}.
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