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Abstract: Identifiability analysis aims at answering the theoretical question whether the inverse
problem is solved, uniquely, by a particular value of the free parameters, or if there is a finite
or infinite number of parameter vectors that generate identical output trajectories. Multiple
solutions of locally identifiable parameters imply different time courses of unmeasured variables,
and arbitrarily chosen solutions can lead to misinterpretations and to erroneous conclusions. We
present theoretical background and applications to locally identifiable ODE models described
by rational functions, showing that structural identifiability analysis reinforces the practical
identifiability approach. In a first example using a three compartment model, we discuss the
algorithm that allows to find all the equivalent parameter solutions. In the second example on
HIV dynamics, we show how two solutions can provide two major different scenarios regarding
the prediction of unobservable variables, which may lead to different treatment strategies. In
conclusion, for locally identifiable models we propose an algorithmic approach which, for the
first time, allows the calculation of all numerical model solutions, the possible rejection of non
admissible parameters, and the simulation of the trajectories of unobservable variables.
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1. INTRODUCTION

Nonlinear ordinary differential equations are widely em-
ployed for the interpretation of biological systems dynam-
ics observed during controlled input/output (I/O) pertur-
bation experiments. In this paper we address the problem
of determining whether the model has a unique, or a
finite number, or infinite many parameter solutions that
generate identical output trajectories.

The most desirable situation is that of unique structural
identifiability, which ensures that the inverse problem is
theoretically well-posed. On the opposite side, structural
unidentifiabiliy is usually unacceptable because it does
not provide useful information on the system under study.
Finally, the “intermediate” case of multiple solutions is not
easily recognizable in practice because the inverse problem
is well-defined locally, in the neighborhood of isolated
parameters taken from a finite pool of candidate solutions.

Multiple solutions of non-uniquely identifiable param-
eters are equivalent from an I/O point of view but are
associated with a different dynamic evolution of the not
directly measurable variables. Such a situation is undesir-
able and frustrates one of the most useful aspects of math-
ematical models, i.e., that of providing a means to infer on
unobservable quantities and time-varying phenomena.

Given the relevance of this issue in biological modeling
and the feasibility through analytic tools, this study deals
with the generally understated situation of local identifia-
bility. As will be shown, local identifiability with multiple
solutions can arise even with simple model structures, not

being caused by symmetries due to permutations of the
state variables. Here, we propose a unified viewpoint of
different identifiability analysis techniques and motivate
their joint use for studying local identifiability.

The two methodologies, namely structural identifiability
and practical identifiability (Chis et al., 2011; Ljung and
Glad, 1994; Saccomani et al., 2004; Stigter and Molenaar,
2015; Raue et al., 2014; Rodriguez-Fernandez et al., 2013;
Thomaseth et al., 2013; Saccomani and Thomaseth, 2016;
Janzén et al., 2016), are traditionally regarded as disjoint,
as being applicable either a priori or a posteriori and based
on analytic calculations (we will consider the differential
algebraic based approach) and on numerical simulation
of systems equations, respectively. Essentially both ap-
proaches do not require experimental data, but only the
former can be tested without assuming prior knowledge on
parameter values, while the method based on sensitivity
analysis requires nominal parameter values for numerical
simulation. Unfortunately, structural identifiability analy-
sis is applicable only to particular model classes and may
fail to provide answers with overly complex structures.

In the biomedical literature the problem of multiple local
solutions (equivalently describing the I/O behavior of the
system), has been generally understated. Almost all the
traditional identification methods, based on minimization
of a cost function, allow to study only one solution by
neglecting the others that remain hidden. Methods such as
the multi-start optimization as well as profile likelihood al-
low for identification of more than one parameter solution.
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They partially solve the local identifiability problem but
they still do not guarantee to calculate all the equivalent
model solutions.

In this paper we show, for the first time, how results
based on structural identifiability analysis can provide
practically useful information for dissecting the issue of
multiple local solutions. We also show that only one
solution, estimated with an optimization algorithm, is
necessary to numerically calculate all the others. Thus in
the following we suggest how to:

(1) numerically calculate all the solutions of a locally
identifiable model;

(2) simulate all the possible different behaviours of the
unobservable variables corresponding to each of the
previous solutions;

(3) possibly reject some of them based on existing con-
straints on parameters. In some cases, by rejecting
non admissible estimates, one can arrive at a globally
identifiable model.

(4) provide reliable initial conditions for statistical meth-
ods such as multi-start searches and profile likelihood.

Thus we show that knowledge of the numerical values of
multiple solutions allows to solve the identification prob-
lem in a more rigorous way. The relevance of applying this
identifiability methodology is illustrated by an example
with a three compartment model.

Being based on analytic calculations, this approach is
limited by the model dimension. However, we successfully
applied it to several models published in the recent bio-
logical literature. A case study describing a classical HIV
model is also reported. The model has two different so-
lutions describing equivalently the I/O experimental data,
but showing two completely different scenarios with regard
to the unobservable variables.

2. MATHEMATICAL BACKGROUND

This section provides the definitions that are necessary
to set the notations used in the paper. Consider a nonlinear
dynamic system described in state space form as

x(t) = £(x(t), u(t), 0) (1)

y(t) = g(x(t),u(t),0) (2)
with state x(¢) € R”; input u(t) € R? ranging on
some vector space, U, of piecewise smooth (infinitely
differentiable) functions; output y(¢) € R™; and constant
unknown parameter vector 8 belonging to some admissible
subset ® C CP. f and g are rational functions. Yet
nonlinearities as exponential or logarithmic can be dealt
with as illustrated in (DAngio et al. (2009)). The class of
admissible parameters is assumed to be © = {0 € R?|0 >
0}. It is further assumed that at least one admissible
parameter exists, which will be indicated by 8*, which does
not represent a true, yet unknown value to be estimated,
but rather a feasible reference value for model parameters
obtained, e.g., from fitting the model to pilot experimental
data.

Whenever initial conditions are specified, the equation
x(0) = xg is added to the system. We also assume that
there is no feedback, so that u is a free variable not
depending on y. If equality constraints on the parameters
are present, these can be considered in the model by adding
the polynomial equation:

h@)=0. (3)

The I/0 map of system (1, 2) with initial state xo will be
denoted with

Y = ¥x,(60,u) . (4)

This equation has at least one solution if evaluated in 6.

In the following we focus on local identifiability (the

reader is referred to (Saccomani et al., 2004) for other
definitions of identifiability).

Definition 1. The system (1, 2) is locally identifiable at
0" € © from I/0 data, if there exists (at least) one input
function u and a neighborhood Upg~ of 8, such

Uxo (0,1) = 1%, (67, 1) (5)
has a unique solution 8 € Uy~ for all xg € X C R™.

This definition deals thus with multiple solutions of Equa-
tion (5), provided that they are isolated points in C. It is
important to stress that multiple solutions are not rare,
even in unsophisticated models, as will be shown in the
case study in Section 4.

The analysis of identifiability for a particular system (1,
2), can be viewed as the study of the properties of the
equivalence classes induced by the equivalence relation (5).
This defines the indistinguishability between the elements
of the algebraic variety

V(O*)={0"~80,,i=1,...,n9| 0%, (0,u) = wxo(g*,u()g)
where ~ means equivalent, and ng is the number of
parameter solutions of system (1, 2) in the whole complex
space. In particular, ng = 1 in the globally identifiable;
1 < ng < oo in the locally identifiable; or ng = oo in the
unidentifiable system case.

We will apply a structural identifiability method im-
plemented in the software DAISY (Differential Algebra
Identifiability of Systems) (Bellu et al., 2007). The reader
is referred to (Ritt, 1950) for a formal treatment of differ-
ential algebra, and to (Bellu et al., 2007; Saccomani et al.,
2004) for a detailed explanation of the theory behind the
software tool.

This differential algebra method provides a final alge-
braic nonlinear system in the unknown 6. This is solved
by applying the Buchberger algorithm which calculates
its Grobner basis. The Grobner basis provides exactly the
algebraic variety represented by Equation (6). It allows to
calculate the ng solutions of system (1, 2) in the complex
space. In particular, if Equation (5) has ng finitely multiple
solutions, the Grobner basis takes the form:

G(0,0") = {{6 —01},...,{6 —0,,}} (7)
If ng = 1, model (1, 2) is globally identifiable.

Note that if the k-th components of 8; are equal for
all i =1,...,ng, the k-th parameter component is globally
identifiable (see, for example, parameter ko1 of the locally
identifiable model (8)).

In this case of local identifiability, the basis provides the
following relevant information:

— the cardinality ng of the equivalence class of the
parameter solutions, i.e. the finite number of solutions
equivalently describing the experimental I/O data,

—a means for analytically calculating all other solutions,
that would otherwise remain “hidden” (see Section 3).

3. A COMBINED APPROACH TO CALCULATE ALL
SOLUTIONS OF LOCALLY IDENTIFIABLE MODELS

Prior knowledge of global or local uniqueness of param-
eter estimates is useful for assessing whether the experi-
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mental design is adequate for a hypothesized model and
whether the parameter estimation problem is well-posed.

It is worth noting that the solutions of structural identi-
fiability analysis, being roots of Equation (6) are sought in
the complex plane C, can be either real positive; real neg-
ative; or complex conjugate. Consequently, when a model
is globally identifiable, the unique solution corresponds to
a real one, but when the model is locally identifiable, the
solutions belong to the complex space, and not only to the
admissible parameter space ©.

In the following it is shown how practical identifiability
tests based on model output sensitivities, can be integrated
with the information provided by structural identifiability
analysis. In particular, we want to show how the specific
value simulated or estimated with the practical approach,
together with the class of equivalence of Equation (6),
allows to calculate all the other candidate solutions and,
possibly, by checking the known physical constraints on
these solutions, to accept or reject some of them. In
general, one can arrive at diminishing the number of
plausible solutions but still having more than one solution
left. For this purpose, the methodological steps are:

(1) estimate a numerical value 8* with a practical iden-
tification method;

) go back to Equation (6) and substitute the just esti-

mated value in order to provide its known coefficient;
(3) by solving the obtained equations, calculate all the
remaining solutions;

) check the known physical constraints on these solu-
tions, i.e. reality and positivity, in order to reject some
of them, possibly arriving at a unique solution.

The identifiability analysis is extended here by introduc-
ing constraints on parameters to define admissible regions,
typically positivity or interval constraints. In particular,
it is assumed that there exists one reference (admissi-
ble) parameter, 8 in ©. In this set, the a priori locally
identifiable model may well be reconsidered as uniquely
identifiable a posteriori if all the alternative solutions,
equivalently describing the I-O data, were to be discarded
because not admissible.

To appreciate the relevance of using both the structural
and practical approaches in local analysis, we consider
a simple locally identifiable model, that provides struc-
turally three solutions, i.e. identical model predictions for
three different values of parameter vectors. In this case
numerical optimisation algorithms could lead to multiple
different minima in the whole parameter space, having
all the same I/O prediction and thus producing the same
value of the cost function. The above methods cannot, in
principle, guarantee to find all of the equivalent solutions.
To do that, in fact, they should start from an infinite num-
ber of points in the admissible parameter space. Usually
the investigator considers one or at most a subset of all the
possible solutions, not even being aware of the existence
of the other equivalent ones. By neglecting these, one may
arrive at erroneous model interpretations providing unre-
liable results. This can be crucial in physiological models,
where a pathological state can be revealed by a specific
parameter value threshold.

Conversely, if an optimization algorithm is preceded by
a structural identifiability test, one becomes aware of the
presence of multiple solutions that can be found by using
the Grobner basis, Eq.(7). In particular, by starting from

an estimated global minimum, the Grobner basis allows to
analytically calculate all the equivalent model solutions.
It is worth noting that the differential algebra method is
placed in the analytic mathematical setting, not in the
statistical one. Thus its results can provide reliable initial
conditions for the statistical methods, such as multi-start
searches and profile likelihood, where issues related to
random noise are considered.

Note that if a model is structurally identifiable, it
may still turn out to be practically non-identifiable. In
this case the inability to unequivocally estimate model
parameters may be caused by a number of distinct reasons,
among which: 1) excessive noise in the measurements,
2) very sparse sampling schedules, 3) poorly designed
experiments, where measurement locations or inputs are
insufficiently informative. However, if the model turns
out to be practically unidentifiable, only by first checking
structural identifiability it is possible to know for sure if
the problem lays on an unwarranted model complexity or
on the above reasons related to experimental data.

To show the practical consequences of the joint use of
structural and practical identifiability for local identifiable
models, a simple example is illustrated in the following.

3.1 Calculation of all three solutions of a simple locally
identifiable model

We consider as a benchmark example the single-input
single-output three compartment model depicted in Fig-
ure 1. It is described by the following equations:

1 = — (ko1 + ko1) x1 + k13 23 + u(t)

Tg = ko 1 — k32 22 + ko3 3 (8)
&3 = kga x9 — (k13 + ko3) 23
y(t) = z2(2)

where 0 = [ko1, k13, k21, k23, k32| is the unknown parame-
ter vector, x = [r1, T2, x3] the states vector, u the input
and y the measured output. The initial conditions are
supposed to be unknown. First we count the parameter

kos

~—ko1
&

Fig. 1. A locally identifiable model. (Norton, 1982)

solutions by applying the differential algebra method im-
plemented by DAISY and we discover that the model has
three solutions (the only globally identifiable parameter
is k21) all being equivalently able to describe the output
function of the model. More important the fact that in cor-
respondence of each of these three solutions, the behavior
of all the unobservable variables is different.

This will be the starting point to provide a method able
to numerically calculate all the model solutions describing
the I/O experimental data. To find all the possible solu-
tions, by starting from the estimated one, is the relevant
finding of this work.



532

To show this we move now to the practical context and
provide the I/O simulated data by assuming two different
nominal values 8 in order to discuss two possible different
scenarios. We enter first 8 = [0.02374,0.00181, 0.01331,
0.03089,0.01729] in the differential algorithm. In particu-
lar, after having calculated the I-O map (4) of the model
with the differential algebra algorithm, its coefficients, are
extracted. These are known functions of the unknown
parameter vector 8. We calculate the so-called exhaustive
summary (Saccomani et al. (2004)) of the model by equat-
ing these functions of @ to a known coefficient obtained by
evaluating the same functions in 8*. The obtained system
of algebraic equations is:

10° - ko1 + 10° - k3o = 4103

5244385 - 10% - k13 — 154 - 10° - k2, + 4406795 - 10% - k3o = 39648431,

10° - ko1 = 1331,

1048877 - 10% - kag + 308 - 10% - k2, — 881359 - 10* - k3p = 263685917,

5-10 - k3, — 31335 - 10% - k3, + 4971978 - 105 - k3o = 1813508333
9)

Identifiability is then checked by solving, for the unknown
parameters 6, this system. To do that we apply the Buch-
berger algorithm which calculates the Groebner basis of
the system and provides the other two equivalent numeri-
cal solutions, reported in Table 1. In the following we will
denote 0" as 8; and the two remaining solutions as 8 and
05. This shows that the numerical solution 8* estimated by

Table 1. Admissible solutions for the first ran-
domized parameter vector

01 02 03
ko1 0.02374  0.03581 0.0008737
k13 0.00181  0.003971 0.02117
k21* | 0.01331  0.01331 0.01331
ka3 0.03089  0.02873 0.01153
k32 0.01729  0.005225 0.04016

@ globally identifiable parameter.

using an optimization algorithm (the plausible solution)
has nothing more or special with respect to those that
remain hidden. The relevant fact is that @5 and 03 predict
the output function of the model exactly as the selected
6" does, as shown in Figure 2, and, in this case, they
are both belonging to the admissible parameter space ©
(suppose the real and positive space). In addition one can
appreciate from Figure 2 that, while the evolution of the
measured variable x5 is invariant, the trajectories of the
unobservable variables 1 and x3 markedly change for each
solution, but maintain a similar shape, e.g. x1(t) decays
exponentially, and x3(¢) increases slowly with time. Thus,
the same measured curve can be equivalently described
by the three different parameter sets, and all of them are
possible candidates to be the true one.

Since in biological and biomedical studies, the goal of
model identification is usually to estimate variables that
are not directly measurable but whose distinct values can
discriminate a pathological from a normal state, neglecting
the hidden solutions could lead to completely erroneous
conclusions. Note that, in this case, the only way to
reject some solutions is to check if the behaviours of the
unobserved variables are physically unacceptable. If not,
the corresponding parameter value can be rejected.

Table 1 shows that all three solutions belong to the
admissible parameter space © and allow to conclude that
the three parameterisations are equally plausible. How-
ever, in general, we could obtain complex and/or negative
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Fig. 2. State trajectories of the three compartment model
of Figure 1 determined for the three locally identifi-
able parameterization (see Table 1). Top panel: the
identical model output y(t) = x2(¢). Middle panel:
the different time-courses of the unobserved variable
x1(t). Bottom panel: the different time-courses of the
unobserved variable x3(t).

solutions. If this is the case, only at this practical stage we
are allowed to reject the non admissible solutions possibly
arriving at a globally identifiable model.

An example of this situation can be viewed by using the
following second randomized nominal parameter vector
0™ = [0.02324,0.001834, 0.1202,0.03072, 0.01632]. By fol-
lowing the same line of reasoning as before, we analytically
calculate the other two equivalent solutions, reported in
Table 2, with the same notation adopted in Table 1. It is

Table 2. Non admissible solutions for the sec-
ond randomized parameter vector

01 02 03
ko1 0.02324 —0.000422 —0.07089
ki3 0.001834 —0.04121 —8.88-10~°
ko1® 0.1202 0.1202 0.1202
ko3 0.03072 0.07377 0.03264
k3o 0.01632 0.03998 0.1104

@ globally identifiable parameter.

easy to see that this additional two solutions do not belong
to the admissible parameter space. This is a favourable
situation in which additional solutions can be rejected,
showing, in practice, global identifiability of the model.
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4. CASE STUDY. A LOCALLY IDENTIFIABLE HIV
MODEL WITH TWO SOLUTIONS

We analyze a nonlinear model proposed for the study of
HIV virus dynamics (Perelson et al., 1993) and depicted in
Figure 3. The model examines the interaction of HIV with
CD4" T cells and is described by the following polynomial
nonlinear ODEs:

=s—purTe+rT. (1 — (T.+ Ty +T3)/Tmax)—
) kVT,

T1(t) = k1 VT — prThy — koTh

Tr(t) = ko1 — T

V() = NuwTs — kiVTe — oV

= Tc(t)

(10)
where T, is the population size of uninfected CD4™ cells;
T; of latently infected cells; Ty of productively (or actively)
infected cells; and V' of free HIV virus particles. 8 =
[$, 7, Tmax, T [y to, K1, k2, N] is the unknown parameter
vector, and y; and ys are measured outputs in blood. One
of the relevant goals of the model is that of predicting,
from the I/O experimental data, the time-course of the
unmeasured state variables, 77 and T,. By applying the

, <1¥ T.+Th+Ty)
Tmae /)

ko

N My

Fig. 3. A model of the HIV virus dynamics.

above described differential algebra method we show that
parameters ki, pur, fy, 7, s and T,,4, are globally identifi-
able, while the remaining ones have two different solutions.
Note that by applying a standard optimization technique
to numerically estimate the model parameter vector, only
one of these two existing solutions (indicated with 6%) is
obtained without any hint on the existence of the second
one.

By joining the two structural and practical identifiabil-
ity approaches we are able to analytically calculate the
second solution, say 0. In fact, as illustrated in the pre-
vious example, we can calculate the known coefficients of
Equation (6) as functions of the estimated 6™ and solve
the provided algebraic nonlinear system in the unknowns
8,7, Tmaxs 0T b, oy K1, k2, N. The two solutions 8* and
65 of the calculated Grobner basis are reported in Table
3. Note that only up, k2 and N have two solutions while
the remaining parameters are globally identifiable. The
relevant fact is that these two solutions are equivalent
in the sense that they equivalently describe the I/O data
but they are different even by an order of magnitude. Not
surprisingly, they lead to two different predictions of the
two unmeasured state variables 77 and T5. In particular

Table 3. The two solutions of the HIV model

Parameter Units o* 02
s (day~Tmm—3) 10 10
r (day—1) 0.03 0.03
T (mm—3) 1500 1500
wr (day—1) 0.02 0.02
b (day—1) 0.24 0.023
Ly (day~1) 2.4 2.4
k1 (mm? day~1!) | 2.4.107° 2.4.107°
ko (day—1) 0.003 0.22
N 1400 199.21

we refer to parameters pup, ko and N which have a central
role in the possible interpretations of the model and of
its results. In fact, by considering 8%, one can see that
the model predicts a very high viral cell production N
and a very low conversion rate ko of latent Ty cells to
infected T3 cells, and a high rate constant p;,. Conversely,
05 provides a much smaller value for N together with a
ko two orders of magnitude larger than before, and u;, one
order of magnitude smaller than before. This means that
the same time-course of V' and T, are due to both a high
value of ko and a small value of pp, and of IV, or viceversa.
Furthermore, by looking at Figure 4, one can easily realize
that not only these predictions are quite different, but the
difference appears only after two years. It is interesting

o
2
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E &7
E .
_ 84 0
=T 0
z g | 2
§ &
< [=3
| 3
o J
o
S
&
—
T g
E [
E
o
~ ©
[
he) [=3
s |
Qo -
3
.
"_E o
o J
} T T T T T T 1
0 1 2 3 4 5 6 7

years

Fig. 4. Predicted trajectories of the unobservable variables
representing cell concentrations of latent 77 (upper
panel) and infected 75 (bottom panel) cells.

to observe that the product of all rate constants that
influence the closed loop gain, namely ks - up - N, must
be invariant for both solutions 8 and 6,. In this case
the above product is equal to 1.008 corresponding to a
fractional daily growth rate of 0.8% (day~1).
Incidentally, in the original paper Perelson et al. (1993),
the authors state that some features did not match some
observations. Very interesting is the observation ” the num-
ber of latently infected cells grows to unrealistically high
levels, ...”. This may induce to think that the "hidden” so-
lution @5 could possibly be the more realistic one. From our
joint identifiability method, we know exactly the numerical
value of both the “candidates” 8" and 6. This knowledge
completes the results obtained in (Perelson et al., 1993)
and would allow a correct discussion on them. In principle,
in fact, the two solutions are equivalent with respect to the
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description of the I/O experimental data, thus the model
predictions provided by @, should be discussed on the same
terms as done for those provided by 8*. Maybe 65 should
be rejected in favour of 8%, maybe it could better match
the model independent known clinical data, providing the
correct solution and avoiding the introduction of assump-
tions made only to correct the model predictions.

In this case study, it is interesting to observe that the
”hidden” solution 6, predicts: 1. a number of latently
infected cells, appearing only after two years, very different
from that predicted by using 8%, 2. a number of free virus
produced by lysing a CD4" T cell about seven times
smaller than that predicted by using 8", which could be a
more plausible result. Ignoring this possible solution can
lead the physician to possibly erroneous decisions given
that depletion values are used in a clinical setting as
indicators of the disease stage.

5. CONCLUSIONS

In this paper we dealt with local identifiability analysis
of biological models, with the aim of determining whether
given I/0 experimental data can be equally well predicted
by a particular model but with different sets of parameter
values. This issue becomes a major problem whenever
model-based predictions are used as surrogate measure-
ments of unaccessible/unobservable model quantities. The
presence of multiple parameter solutions can in fact be
easily overlooked, as parameter estimation algorithms nor-
mally converge to one of the possible equivalent solutions.

We propose here to jointly use two different identifia-
bility analysis techniques, that are traditionally regarded
as independent, namely structural identifiability and prac-
tical identifiability, being based, in turn, on differential
algebraic manipulations and on numerical simulation of
models and sensitivity equations. We use first the struc-
tural identifiability tool, not only to count the parameter
solutions but also to determine the analytic expressions of
their equivalence classes with respect to the description
of the I/O experimental data. Successively, by starting
from a numerical parameter solution estimated with a
global optimization algorithm, e.g. multi-start searches,
these equivalence classes allow to analytically calculate
all the equivalent numerical parameter solutions, i.e. that
equivalently describe the I/O experimental data. It is
worth noting that these solutions, being calculated in a
noise-free hypothesis, can provide good initial conditions
for statistical methods, e.g. multi-start searches and profile
likelihood.

Finally, we are able to reject the numerical solutions
not belonging to the admissible parameter space, possibly
arriving a posterior: at a globally identifiable model.

The above methodology opens new perspectives in theo-
retical and practical identifiability analysis with important
practical implications, as illustrated by applying this joint
methodology to a benchmark biological model.

In order to show the relevance of these ideas in biolog-

ical/biomedical modeling, we applied them to a model of
HIV virus dynamics by showing that, without calculating
all the equivalent parameter solutions, there is a risk of
arriving to ambiguous conclusions.
We can conclude that the knowledge of each of the finite
number of parameter solutions of a locally identifiable
model is essential to provide a complete picture for a
correct interpretation of results.
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