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DR/DZ equivalence conjecture and tautological relations
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PAOLO ROSSI

In this paper we present a family of conjectural relations in the tautological
ring of the moduli spaces of stable curves which implies the strong double
ramification/Dubrovin-Zhang equivalence conjecture introduced in [3]. Our tau-
tological relations have the form of an equality between two different families
of tautological classes, only one of which involves the double ramification cycle.
We prove that both families behave the same way upon pullback and pushforward
with respect to forgetting a marked point. We also prove that our conjectural rela-
tions are true in genus 0 and 1 and also when first pushed forward from M, .,
to ﬂg,n and then restricted to M, ,,, for any g,n,m > 0. Finally we show that,
for semisimple CohFTs, the DR/DZ equivalence only depends on a subset of our
relations, finite in each genus, which we prove for g < 2. As an application we
find a new formula for the class A, as a linear combination of dual trees intersected
with kappa and psi classes, and we check it for g < 3.

14H10; 37K10

1 Introduction

A cohomological field theory (CohFT) ¢, , is a family of cohomology classes on the
moduli spaces Mgvn of genus g stable curves with n marked points (parameterized by n
tensor copies of a vector space) which satisfy certain compatibility axioms with respect
to the natural morphisms among different moduli spaces. They were introduced by
Kontsevich and Manin [20] to axiomatize the properties of Gromov-Witten classes for a
given smooth projective variety, but have since then also proved to be a powerful probe
for the cohomology and Chow rings of Mg,n itself, and their tautological subrings in
particular [22, 18, 19].

Recall that the tautological rings R*(Mgﬁ), for g,n > 0 satisfying 2¢g —2 +n > 0,
are the smallest (Q-subalgebras of H* (ﬂgﬁ, Q) closed under pushforward along the
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morphisms forgetting marked points and gluing two marked points together to form
anode. R* (Mg,n) is much smaller than the full cohomology ring, but still has a rich
structure and contains most of the natural and geometrically interesting classes. The
ring structure of R*(Mgm), however, is not yet completely under control. We know
a system of additive generators, the so-called strata algebra, formed by basic classes
which are represented by the closure of the loci of curves with fixed dual stable graph
intersected with a given monomial in kappa and psi classes. The product of basic
classes is explictly described, but the full system of relations is still unknown, although
Pixton has found a large set of relations that is conjectured to be complete, see [22].

In this paper we present a new family of conjectural relations in the form of an equality
between two families of tautological classes. We denote these classes in R* (Mg,n) by
Afil,..., 4, and Bfll,---, 4,» Where the n integer non-negative parameters di, ..., d, satisfy
2¢ — 1 < > d; < 3¢ — 3+ n. Their precise definition is given in Sections 2.2
and 2.3 respectively, but here we stress that they can be described as two different
linear combinations of stable trees with psi classes at the half-edges and, moreover, for
the A-classes only, a double ramification cycle times the Hodge class A, is attached at
each vertex.

The motivation for this conjecture comes from the study of the double ramification
(DR) hierarchy, an integrable system of Hamiltonian PDEs associated to a CohFT and
involving the geometry of the DR cycle, introduced by the first author in [1] and further
studied in [7, 8, 5, 3, 4] (see also [2, 23] for a review). In [3], sharpening a conjecture
from [1], it was conjectured that (the logarithm of) the tau-function of (a particular
solution of) the DR hierarchy coincides with the reduced potential of the CohFT. The
reduced potential is obtained from the full potential, i.e. the generating series of the
intersection numbers of the CohFT with monomials in the psi classes, by an explicit
procedure, also described in [3], which only depends on the potential itself and which
ultimately forgets part of the information.

In case the CohFT is semisimple (a technical condition on its genus O part), the
conjecture translates into a statement about the relation between the DR hierarchy and
the Dubrovin—Zhang hierarchy, another, more classical, construction associating an
integrable system to a semisimple CohFT for which we have the Witten-type result that
(the logarithm of) the tau-function of (a special solution of) the DZ hiearchy coincides
with the potential of the CohFT.

In this case the strong DR/DZ equivalence conjecture states that the two hierarchies
are related by a normal Miura transformation, i.e. a change of coordinates preserving
the tau-structure, and hence acting in particular on the tau-functions. This action on
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the tau-functions precisely corresponds to the reduction procedure described above for
the potential of the CohFT.

As we have seen, the DR/DZ equivalence conjecture is about intersection numbers,
not cohomology classes. However in Section 3 we show how the coefficients of the
two involved generating series, the (logarithm of the) DR tau-function and the reduced
potential of the CohFT, are the intersection numbers of the CohFT with two different
families of cohomology classes. These two families are precisely the A- and B-classes
above. So the DR/DZ equivalence conjecture states that the intersection numbers of
the A- and B-classes with any (possibly non tautological) CohFT are equal:

8 _ 8
/ Adl,...,dnc&" - / Bd],...,dncgvn'
Mo M

8n

This motivates us to conjecture that it is the A- and B-classes themselves to be equal:

8 — R8
Ad],...,dn _ Bd],...,dn'

In the rest of the paper we work towards the proof of such conjecture. In Section 4 we
prove the string and dilaton equations for both A- and B-classes, establishing that their
behaviour upon pullback and pushforward along the morphism 7 : ﬂg7n+1 — ﬂg,n
that forgets the last marked point is the same.

The string equation allows us to prove that the conjecture is true if and only if it is true
when all the parameters dj, ... ,d, are strictly positive. This in turn yields a full proof
of the conjecture in genus 0 and genus 1.

The dilaton equation is used to show that the relations in R*(M, ,) obtained by pushing
forward our conjectural relations from R*(H&Hm) to R*(ﬂw) and then restricting
them to R*(M, ,) are valid. This is what we mean by saying that the conjecture is
valid on Mg ,.

We then show that our relations imply in particular a new expression for the top Chern
class of the Hodge bundle )\, as a linear combination of basic classes whose dual graph
is a tree (with psi and kappa classes). No expression of this type for A\, was known
before. We check its validity for g < 3.

Finally, in Section 5 we show that, for semisimple CohFTs, the DR/DZ equivalence
conjecture actually depends on just a subset of our conjectural relations, namely the
ones for which )" d; = 2g and d; > 0. This means that the number of relations one
needs to check is finite in each genus, and equal to the number of partitions of 2g.

In the appendix we check this finite subset of relations for g = 2 thereby proving the
strong DR/DZ equivalence conjecture in genus g < 2 for any semisimple CohFT.
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2 Tautological relations

In this section we present our conjectural tautological relations.

2.1 Tautological ring of m&n

Here we fix notations concerning tautological cohomology classes on Mg,n. We will
use the notations from [22, Sections 0.2 and 0.3].

Recall that for any stable graph I" we have the associated moduli space

My = H M)

vev()

and the canonical morphism

&r: Mr = My jury)-
Recall [22] that given numbers x;[v],y[h] > 0,i > 1,v € V'), h € HT'), we can
define a basic cohomology class on Mt by
(1) v= 11 [I&0r™ I @™ edMr,Q),

veV(T) i>1 heH(I)

where r;[v] is the i-th kappa class on M) n(v) and vy, is the psi class on Mguay) nuii) -
A cohomology class on M&n of the form £r.(y), where I is a stable graph of genus g
with 7 legs and v is a basic class on Mr, will be called a basic tautological class.
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Denote by R*(Mg,n) the subspace of H*(ﬂg,n, Q) spanned by all basic tautological
classes. The subspace R*(Mgﬁ) is closed under multiplication and is called the
tautological ring of the moduli space of curves. Let

R'(M, ) = R* (M, ) N H* (M, 0, Q).

Enote by M?n C Mg,n the moduli space of curves of compact type and by M, , C
M » the moduli space of smooth curves. We will use the notations

Ri(M?’n) = Ri(mgﬁ)‘M?n , Ri(,/\/ng,) = Ri(m&")‘Mg,n .

Linear relations between basic tautological classes are called tautological relations.
The class &r.(1) € R|E(F)‘(ﬂg(r),\L(F)|) will be called a boundary stratum.

We will represent a basic tautological class £r.(y) on Mg(r),\L(F )| by a picture of the
graph I where we put the monomial [ [~ &;[v]" ' next to each vertex v and the power

of the psi class wi[h] next to each half-edge h. For example, we have the following

well-known formulas:
1 3
1 = € R' (Mo,
2 4

1
=—1
24
where we denote by \; € H 2 (ﬂgﬁ, Q) the i-th Chern class of the Hodge vector bundle
over ﬂw. It is well-known that the class J; is tautological (see e.g. [12]).

by € R'(M,)),

Suppose I'y and I', are two stable graphs, both of genus g and with n legs. They are
called isomorphic, if there exists a pair f = (f1,f>) of set isomorphisms f;: V(I';) —
V(';) and fo: HI';) — H(I';) that preserve all the additional structure of the stable
graphs. Suppose v and v, are two basic classes on the spaces Mr, and Mr,
respectively:

n= [T ITmbr® IT o™ = II IImbr>®- I o™
vev(Ty) i>1 heH() vev(ly) i>1 heH(T,)
We will say that the pairs (I'1, ;) and (I'2,v;) are combinatorially equivalent, if there
exists a pair of maps f = (f1,f2), fi: V') — VI2)., f2: HT'y) — H(I';), that defines
an isomorphism between the stable graphs I'; and I'; and also satisfies the properties
x1,ivl =x2,i[fi)], forany i > 1andv € V(I'y),
b =nlfah)], forany h € H(T').
Obviously, if the pairs (I';,v;) and (I'p,7,) are combinatorially equivalent, then
Ery«(11) = &rpx(72)-
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Consider the set of stable graphs of genus g with n legs. Suppose I is a subset of
{1,2,...,n}. The symmetric group S |1 acts on our set of stable graphs by permutations
of markings from the set /. This gives an S -action on the set of pairs (I',7), where I’
is astable graph and -y is abasic class on M. Letus fix some stable graph I" and a basic
class «v. The sum of the basic tautological classes corresponding to combinatorially
non-equivalent pairs in the S}, -orbit of the pair (I', ) will be represented by the picture
corresponding to the class &r. (), where we erase the labels from the set /. Let us
give two examples in order to illustrate this rule:

@0@@00@0@@00
2 3 4 1 3 2 4 1 4 2 3
\ 31¢2 21¢3

1

As another useful example, we can write the topological resursion relations in genus 0
and 1:

2
@) =y 1 €R' Mon), nz4,
itj=n=3 L3 P

i21,j20

ilegs  jlegs

1 -
(3) 1/;1:—1@ + 1ﬂ (D) € R' (M)
24 H—jgn:—l

i>1,j20 v N~

ilegs  jlegs

By stable tree we mean a stable graph I' with the first Betti number »(I") equal to
zero. Suppose I is a stable tree. Let

HT) := HD\LD).

A path in I' is a sequence of pairwise distinct vertices vi,va,...,v € V(I'), v; # v,
for i # j, such that forany 1 < i < k — 1 the vertices v; and v;;| are connected by an
edge. For a vertex v € V(I') define a number r(v) by

r(v) :=2g(v) — 2 + n(v).

Denote by STy, the set of stable trees of genus g with m vertices and with n legs
marked by numbers 1,...,n. For a stable tree I' € STy, denote by /;(I") the leg in I
that is marked by i. For aleg [ € L(I') denote by 1 < i(/) < n its marking.

A stable rooted tree is a pair (I',v;), where I' is a stable tree and v; € V(I'). The
vertex v; is called the root. Denote by H,(I') the set of half-edges of I' that are
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directed away from the root v;. Clearly, L(I') C H(I"). Let
HE () := Hi(D)\LD).

A vertex w is called a descendant of a vertex v, if v is on the unique path from the
root v; to w. Note that according to our definition the vertex v is a descendant of
itself. Denote by Desc[v] the set of all descendants of v. A vertex w is called a direct
descendant of v, if w € Desc[v], w # v and w and v are connected by an edge. In this
case the vertex v is called the mother of w.

2.2 Double ramification cycle and the definition of the A-class

Consider integers ay, . . ., a, suchthat a; +. . .4+a, = 0. The double ramification cycle
DRy(ay, ... ,a,) is a cohomology class in Hzg(ﬂgﬁ7 Q). If not all of g;’s are equal to
zero, then the restriction DRg(ay, ..., a,)] M,, €30 be defined as the Poincaré dual to
the locus of pointed smooth curves (C,py, ..., p,) satisfying O¢ (Z:’: 1 aipi) = Oc,
and we refer the reader, for example, to [9] for the definition of the double ramification
cycle on the whole moduli space Mg,n . We will often consider the Poincaré dual to the

double ramification cycle DRy(ay, ... ,a,). It is an element of Hz(gg_3+n)(ﬂg,n, Q)
and, abusing our notations a little bit, it will also be denoted by DRg(ay, ..., a,).
The double ramification cycle DR,(ay, . .., a,) is a tautological class on ﬂg,n [13]. A
simple explicit formula for the restriction DRg(ay, . . ., a,)| e Was derivedin[16, 21]:
&,n
“)
g
1 [ ~dy 1 2o 1 g_lzl
1
DRg(dl,...,an)’Mgn:Q ZT—E Z aléo—z Z Za15h 5
i=1 Ic{1,...,n} I1c{1,...,n} h=1
[1|>2

where for a subset 7 C {1,2,...,n} and a number 0 < h < g we use the following
notations:

ay = E ai,

i€l
o= M ER'M,,), IF:={1,2,....n}\I, W :=g—h.
1 I°
Formula (4) is usually referred as Hain’s formula. Itimplies that the class DR,(ay, . . . , ay)| Met
g,n

is apolynomial in the variables ay, . . . , a, homogeneous of degree 2g. Since >‘8|ﬂg Me =
SN g,n
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0, we obtain that the class A\;DR(ai,...,a,) € R%’(Mg,n) is a polynomial in
ai,...,a, homogeneous of degree 2g. The full double ramification cycle is also
polynomial, but not necessarily homogeneous [19].

The following properties of the double ramification cycle will be useful for us. Let
it MMH — Mg,n be the forgetful map that forgets the i-th marked point. Then

DR(ay,...,a,,0) = 7, DRe(ai, ..., a,).

Let 7: Mg’n_l,_g — M&n be the forgetful map that forgets the last ¢ marked points.
Then we have [9, Example 3.7]

©) TDRy(@1, ..., apsg) = glan 1+ g [ M nl.
It is also useful to remember that (see e.g. [19])
DR,(0,0,...,0) = (—1)¥\; € R8(Mg,).
We will denote by DR, (ay, . .., d;, . .., a,) theclass m;DRy(ay, . . . ,a,) € Rg_l(ﬂgm_l).
Recall the following important divisibility property.

Lemma 2.1 ([3]) Let g,n > 1. Then the polynomial class

DRg <_Zai7a176127"'7&;l> M

is divisible by a>.

g—1 ct
L ERETM,)
g,n

Consider a stable tree I' € STgn and integers ay, ..., a, suchthata; + ... +a, = 0.
To each half-edge & € H(I') we assign an integer a(h) in such a way that the following
conditions hold:

a) If h € L(I'), then a(h) = ajpy;
b) If h € HYI), then a(h) + a(u(h)) = 0;
¢) For any vertex v € V(I'), we have ), Hp 4h) = 0.
Clearly, such a function a: HI') — Z exists and is uniquely determined by the

numbers ay, . ..,a,. For each moduli space Mg(vm(v), v € V(I'), the numbers a(h),
h € H|[v], define the double ramification cycle

DR,y (Anp) € RV (M) nt)-

Here App, denotes the list a(hy), . .., a(hyy)), where {hy, ... hyw} = H[v]. If we
multiply all these cycles, we get the class

H DR, (Anpy) € H*(Mp, Q).
vev(I)
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We define a class DRr(ay, . . ., a,) € RET"1(M,,) by

DRr(ay, ..., a) := &r« H DR, (Anp)
veV(T)

Clearly, the class
A\DRr (ay, ..., a,) € R¥T™ (M, )
is a polynomial in ay, . .., a, homogeneous of degree 2g.

Suppose now that ay, . .. ,a, are arbitrary integers and let ag := — >, a;. Consider
the set of stable trees ST}, ;. It would be convenient for us to assume that the legs of
stable trees from ST/, ., are marked by 0,1,...,n. Let I' € ST, . | be an arbitrary

gn+ g.n+
stable tree. Consider it as a rooted tree with the root vi(I") := v(lp(I")). As above, the
numbers ag, ay, ... ,a, define a function a: H(I') — Z. Define a coefficient a(I") by
ary= [ I am| | [T =
zveDesc[v] r(")

heH¢, () veV(I)

Letm: Mg,n+ 1 — Mg,n be the forgetful map that forgets the first marked point. Define
aclass AS™(a;,...,a,) € R2g+m—2(ﬂg7n) by

AS™ay, .. an) =Y aD)AmDRr(ag,ar, ... ,a).

resT!, .\
We know that this class is a polynomial in ay, . . . , a, homogeneous of degree 2g+m—1.
Note that the expression for the class A%!(ay, ..., a,) is actually very simple:

A$Y(ay, ... a,) = \{DRy(ap, ay, . . ., a,).
Lemma 2.2 The polynomial class Zg’m(al, ...,ay) is divisible by z:’: 1 Gi-
Proof If m = 1, then the lemma follows from Lemma 2.1. Suppose m > 2 and
ap = — Yy i, a; = 0. We have to prove that
A8y, ... ay) = 0.
Consider a stable tree I' € STg’,n 11+ If g(vi (X)) = 1, then, again by Lemma 2.1,
)\gﬂ'*DRp (0, al, ... ,an) =0.
If g(vi(I)) = 0, then 7, DRy (0,ay,...,a,), unless n(vi(I')) = 3. We obtain

(6) AS™ay,...,a)) = Y a@AmDRp(0,a,...,a,).
rest .|

g (r)=0
n(vi(I')=3
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Let us define certain maps
ST?;1 — {T € STg,11g(v1(I)) = 0, n(vi(I") = 3}.

Note that we mark the legs of stable trees from STZ,’;1 by 1,...,n and the legs of
stable trees from ST, ., by 0,1,....n. LetI' € ST{’g’,”;l. Choose a leg [ € L(I).
Suppose that it is marked by number 1 < i < n. Let us attach to the leg / a new vertex
of genus 0 with two legs marked by numbers O and i. Denote the resulting stable tree
by &,I") € STg’,n 11~ Similarly, if we choose an edge e € E(I'), then we can break
this edge and insert a genus 0 vertex with one leg marked by 0. Denote the resulting
stable tree by ®.(I") € ST, ;. Using these operations, we can rewrite formula (6) in

g7n+
the following way:

AsM™ay, . a) = > [ D a@@)+ Y a@D) | ADRr(ar, ..., ap).

FEST;;l leL(l") ecE)

We see that it is sufficient to prove that for any stable tree I' € STZ,’;1 we have the
identity

(7 ST a@@)+ Y a@.I) = 0.

leLI) ecE()

We prove (7) by induction on m. It will be convenient for us to assume that the genus
g(v) of avertex v € V(I') can be a rational number such that 2g(v) —2 + n(v) > 0. So
the total genus g = ZVEV(F) g(v) can also be rational. If m = 2, then

n

S a@my=>" zg__i‘l’ﬂ =0

leL(T) i=1

Suppose m > 3. Choose a vertex v € V(I') such that |[H[v]\L[v]| = 1. Let & be the
unique half-edge from the set H[v]\L[v]. Denote

Wo=uh), Vi=vH), ri=rwv), r:=r0), R:=2g-2+n.

Denote by e the edge of T' corresponding the pair of half-edges (h,’). Let us erase
the vertex v together with all half-edges incident to it. Then the half-edge 4’ becomes
aleg. Letus denote it by / and mark by n+ 1. Finally, let us increase the genus of the
vertex V' by 5. As a result, we get a stable tree from ST?J:;n_‘ LvI|+1
by I". Note that the legs of I are marked by the numbers i(/),! € L(I)\L[v], and

n+ 1. We want to apply the induction assumption to the tree I, Naturally, we assign

that we denote
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to aleg [ € L(I") the number a;), if [ # I', and the number a(h’) = 276 L0 a(l), if
[ =/'. It is not hard to see that

/

> (@) =(—alh)) e a(@y (I"),
leL[v] ( )( tr )

¥R
o) =a(h') ———F—a(®y ().
a(®(I') =a( )(R v, r’)a( r(I))
It is also easy to see that for any leg [ € L(I"), [ # I', and for any edge ¢’ € E(I") we
have

/ /

a®) = @), @) =

a(ha(® . (T).
Therefore, we obtain

Yo a@m)+ Y a@e (D) =

1eLT) e'€ET)

a) | > a@@)+ Y a@.I") | =0,

/
rr IELTY) ¢/ €E(T)

where the last equality follows from the induction assumption. The lemma is proved.
O

The lemma allows to define a class A$™(ay,...,a,) by

ASM(ay, . an) = A (ar, . . ay) € RETTA (M ).

1
> ai

It is a polynomial in ay, ..., a, homogeneous of degree 2g + m — 2.

Definition 2.3 Forany d,...,d, > O such that § := )" | d; > 2g — 1 we define

. ,0—2g+2 S A
AS 4= Coef a__mA* $2(a, . .. ay) € RO (Mg ).

If > d; =2g — 1, then the formula for Afll,..., 4, becomes particularly simple:

Afll —Coefdl i <Z l)\ ¢DR, <—Zai,a1,...,an>>.
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2.3 Definition of the B-class and the main conjecture

Let T be a stable rooted tree with at least n legs, where we split the set of legs in two
subsets:

- the legs oy, ..., 0, corresponding to the markings,

- some extra legs, whose set is denoted by F(T), corresponding to additional
marked points that we will eventually forget.

We will never call marking an element of F(7T') and let
HY'(T) := Hy(T)\F(T).

There is a natural level function /: V(T) — N* such that the root is of level 1 and if a
vertex v is the mother of a vertex V', then /(') = I(v) + 1. The total number of levels
in T will be denoted by deg(7T) and called the degree of T. It is also convenient to
extend the level function to HY"(T') by taking I(h) := k if the half-edge & is attached to
a vertex of level k. We say that T is complete if the following conditions are satisfied:

every vertex has at least one of its descendants with level deg(T),
- all the markings are attached to the vertices of level deg(7),

- each vertex of level deg(7T) is attached to at least one marking,

- there are no extra legs attached to the root,

- for every vertex except the root there is at least one extra leg attached to it.
For a complete tree T define a power function
q: H.(T) = N

by requiring that for a half-edge h € H¢ (T) there is exactly g(h)+ 1 extra legs attached
to the vertex v which is the direct descendant of /2. We say that T is stable if

- forevery 1 < k < deg(T), there is at least one vertex v € V(T) of level k such
that v remains stable once we forget all the extra legs,

- every vertex of genus 0 with exactly one half-edge & € H{"(T) attached to it
has exactly g(h) + 1 extra legs attached to it,

- every vertex of genus 0 with exactly two half-edges hy,h, € H{"(T) attached
to it has exactly g(h1) + g(hy) extra legs attached to it.
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We say that a stable complete tree T is admissible if for every 1 < k < deg(T) we
have the condition

®) Y oa<2 ) g -2

heH (T) veV(T)
I(hy=k )<k
We denote by le’? .., the setof pairs (7', g), where T is an admissible stable complete
tree with total genus g and n markings, and ¢g: H{"(T) — N is the extension of the
power function from above defined by ¢g(o;) := d;. We denote by

(T,q1:=¢r | [ ¢ € R*Mganinra)

heH(T)

and by
c: Mg,n—i—#F(T) — M&n

the map forgetting all the extra legs.

Definition 2.4 For any dy,...,d, > 0 with § :=d, + - - - + d,,, we define

©) BS .= Y. (=Dl (T,q] € RB(M,,).

B,
(T7q)Eleé:A.A,dy,

Conjecture 2.5 Suppose g > 0, n > 1 and 2¢ —2 4+ n > 0. Then for any
dy,...,d, >0, suchthat  d; > 2g — 1, we have

(10) A§17---,dn = B§17---7dn'

Remark 2.6 Let us show how to express the B-class in terms of basic tautological
classes. Let T be a stable complete tree with n markings. For a vertex v € V(T)
denote by F[v] the set of extra legs incident to v and by H{"[v] the set of half-edges
h € HY(T) incident to v. The vertex v will be called strongly stable if it remains
stable once we forget all the extra legs. Otherwise, we call it weakly stable. Clearly,
the vertex v is weakly stable if and only if g(v) = 0 and |H{"[v]| = 1. The set of all
strongly stable vertices of T will be denoted by V*(T).

For a stable complete tree T denote by st(7') the stable rooted tree obtained by forgetting
all extra legs of T and then contracting all unstable vertices. Clearly, we can identify
V(st(T)) = V*(T) and we also identify the set H(st(T)) with the set of half-edges
h € H(T) such that v(h) is strongly stable.
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Suppose 7: Mg,n—l—m — Mg,n is the forgetful map that forgets the last m marked

points. Then for any numbers cy,...,c, > 0 we have
m! -
C ny — . bi
77*(7!)117;[)2)— E b 'Hwi.
et 8 C it
bi<c;
STbitm=3ci

Using this formula, it is easy to see that equation (9) can be rewritten in the following
way:

Bil = Z (_l)deg(T)—lx

n

,,,,,

[FIv]|! p(h)
| 2 Tt —pai 1L 4
VEV(SUT)  p: Hy[VI—Zg hEH V]
p(h)<q(h)

2o p(W+FIV=3 q(h)

Let us immediately present some examples of relations (10). Consider genus 0. Then
it is easy to see that for any dy,...,d, > 0 we have

0 _d d,
By a4, =01y

On the other hand, let us compute, for example, A(l) 0.00- We have

A% (ay, ay, a3, a4) =, Z (@ +aj)(a,-6+ 4G+ an (0)—(0)—(0]

{igk,1}={1,2,3,4} l k j
i<j

N Z (a; + aj)ay + ap) o © j

(=)
[

3
(i 1 ={1,2,3,4} ©
i<j, k<l,i<k

3 2 4

1 3
where a := > a;. This gives A(1)70,070 = that is indeed equal to
2 4

_ o
Y = BI,O,O,O'

Consider genus 1 and the case n = 1, d; = 1. Then we have

1
A% = Coefa (5)\17T*DR1(—61,61)> = )\1 = ¢1, B% = 1,[)1.
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Let us give one more example with g =2, n = 1 and d; = 3. We compute

1 N
A% = Coef 3 <5A2DR2(—a,a)> ,

(11 B} = ¢} — (D—(%.
Now the relation A% = B% is not so trivial, and we will prove it in Section A.

Below we will check that the conjecture is true in genus 0 and 1 for arbitrary d;’s, and
also in genus 2 in the case > d; < 4.

3 DR/DZ equivalence conjecture and the new tautological
relations

In this section we explain the relation between the above Conjecture 2.5 and the
strong double ramification/Dubrovin-Zhang hierarchies equivalence conjecture from
[3]. After recalling the main notions, we prove in particular how the first implies the
second.

3.1 Dubrovin-Zhang hierarchy

Consider an arbitrary cohomological field theory (CohFT, see [20]) cgp: yen
H"'Ven(ﬂgm7 C), with V its N-dimensional vector space, ei,...,ey a basis of V, ¢;
the unit and 7 its symmetric non-degenerate bilinear form. Let F' = F(#}, €) denote its
potential, i.e. the generating series of its intersection numbers with monomials in the
psi classes:

n
<Td1(ea1) e 'Td,,(eocn»g ::/_ Cg,n(®?:16ai)ledi7 28 —2+n> 07 1 <o < N,
M

gn i=1
F(t;,¢) == Z Engg(tI), where
g>0
1 " "
Fot) = ) al > < Td,.(ea,.)> 11
n>0 “di,endn >0 \i=1 g i=1
2g—24n>0

In case the cohomological field theory is semisimple, in [10, 6] the authors associate
to it an integrable hierarchy of Hamiltonian PDEs. Let ./Zﬂvf] be the degree d part of
Cllws, ell, where wi¥, a = 1,...,N, k = 0,1,2..., are formal variables of degree
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degwy = k and dege = —1. Let K{ﬁ” be its quotient with respect to constants and the
image of the operator 0, = > ;- Wi % (we perform sums over repeated Greek
- k

indices here and in what follows) and, if f € .,Zﬂvf], let f denote its equivalence class in
A9l The Dubrovin-Zhang (DZ) hierarchy consists in Hamiltonian densities

W2 e AN 1<a<N, p>-1,
with hgz_l = Nouw", and a Hamiltonian operator

(KPZy =N "(KPEOL, (KPE e AN
] bl
Jj=0
such that
-DZ

oh
7DZ DZ P KDZ wo | 2By o _
{h a,p? KDZ. /5W ( ) <5wy>dx_07 lgaaﬁSNa pqu 17

where we have used the variational derivative 6‘% = Zizo(—ﬁx)"a%b. This guarantees
that solutions w{(x,;,e) = Okwa(x,t,¢) € Cl[x,1,€]] exist for the system of
Hamiltonian PDEs

—DZ
—Qwuqﬂ%W<ﬁ@g, 1<a,B<N, ¢>0.
ot Swv

Notice how this Hamiltonian system in fact only depends on the Hamiltonian func-
tionals h » € A[O] and not on the Hamiltonian densities hDZ S .,Zt\[o]. Nonetheless,
Dubrovin and Zhang’s construction of specific Hamiltonian densities hgi € ﬁ{?l is
important because it is a tau-structure (see [3] for details), which implies in particular
that, for any solution w*(x, £, ) € Cl[[x, 15, €]], there exists a formal series, called (the
logarithm of) the tau-function, F(z;, ¢) € C[[}, €]] such that

PF
8t 8ta8tq

a,p

8tq

ondZ |
ol 1<a,B<N, p,qg>0.

Wi=wi,r5,8)|=0
An important property of the DZ hierarchy is that the so-called topological solution,

«—o = §%!x, has the potential
F (%, ¢) of the underlying semisimple CohFT as the logarithm of its tau-function,

i.e. the solution with the initial condition (W'°P)*(x, t*,

%%1

oty

_PF
101501,

1<a,B<N, p,g=0.

Wi=(WOP)E(x, 15 ,8) =0
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3.2 Double ramification hierarchy

The double ramification (DR) hierarchy, see [1, 3], is another tau-symmetric hierarchy
of Hamiltonian PDEs associated to an arbitrary CohFT, this time even without the
requirement of semisimplicity. This time it is the Hamiltonians that are constructed as
generating series of certain intersection numbers of the CohFT with psi classes, the A,
class and the double ramification cycle. Written in formal variables ﬁ? a=1,...,N,
k=0,1,2...,it consists of differential polynomials

DR 0
ha,pe"zl\’[,;]7 ISQSN, PE—L
with th_l = 7)quu", and a Hamiltonian operator
—j+1
j20

such that

5EDR
7DR DR Map DR B.q _
{h o KDR. / = (K Yo <—5;,;u—> =0, 1<a,B<N, p,g>—1.

Like for the DZ hierarchy, the DR Hamiltonian densities hDI}, € .A 9 form a tau-
structure and we can define the DR potential as (the logarithm of) the tau-function
of the topological solution, (@'°P)* € C[[x,#},e]] with @P)*(x,;, )|z = 6%'x,

i.e. FPR(t: e) € C[[tf, €]] satisfies

83 FDR
8t 1501,

717

o1y

OnR |

wE=@'P); (x,1%,8) =0

Clearly, this equation doesn’t determine the function FPR uniquely, but we can addi-
tionaly require that FPR should satisfy the string and the dilaton equations. Then this
fixes the potential FPR completely. We define the DR correlators as the coefficients of
the power series FPR(t*, ),

FPR(t,e) =y e FPR(ty),  where

>0
DR ,
FRe = > — <Hm,(ea,)> 11
n>0 dy,...,d,>0 g i=1

2g—24n>0
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3.3 Strong DR/DZ equivalence conjecture

In the effort of understanding the relation between the DR and DZ hierarchies associated
to the same semisimple CohFT, in [3] it was conjectured that a change of coordinates
w® — u® existed, transforming one hierarchy into the other and preserving the given
tau-structures. A natural family of such changes of coordinates (called normal Miura
transformations) has the form

(12) W) = W + 1, {7?, E%}

xbz’

where P € _,Zf[w—ll is an arbitrary differential polynomial and

—DZ
—DZ oP k < DZ 5h,u 0
[P}, =D ok | &2y (222 ).
>0 Hx
KDPZ = owy, owv
The effect of such a transformation on the topological tau-function of the DZ hierarchy

is the following:
F— F+ Pwj,e)

WE=(WOP)E(x, 1 ,€)|x=0 *

In [3] the following results were proved.

Proposition 3.1 ([3]) Let g,m > 0 such that 2g —2 + m > 0. Then

(le (eal) te Td,,,(eam)>gDR =0, if Zdi <2g-—1.

i=1

Proposition 3.2 ([3]) There exists a unique differential polynomial P € ./Zﬂw_z] such
that for the power series F™4 € C[[t!, €], defined by

(13) F0i= F o+ PO )| —uonyso, oo
the correlators
o" Fred
<’7'a’1 (eal) cee Tdn(ean»;ed = C06f82g W

di dn tx=0
satisfy the following vanishing property:

n
(14) (Tay(ea)) -+ Ta(ea))st =0, if > di<2g—1.

i=1

In light of these two results the following conjecture was formulated in [3].
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Conjecture 3.3 (Strong DR/DZ equivalence) Consider a semisimple cohomological
field theory and the associated DZ and DR hierarchies. Then the normal Miura
transformation (12) defined by the differential polynomial P of Proposition 3.2 maps
the DZ hierarchy to the DR hierarchy respecting their tau-structures.

As proved in [3] this conjecture is equivalent to saying that F = FPR_ This last
form of the conjecture can be generalized to arbitrary CohFTs, forgetting about the DZ
hierarchy and concentrating on the reduced and DR potentials.

Conjecture 3.4 (Generalized strong DR/DZ equivalence) For an arbitrary cohomo-

logical field theory we have FPR = Fred,

3.4 From intersection numbers to cohomology classes

The following result makes the relation between Conjecture 2.5 and Conjecture 3.4
explicit, showing in particular how the first implies the second.

Proposition 3.5 Consider an arbitrary cohomological field theory cg,: V" —
H"'Ven(ﬂgm7 C). Then for any g,n > 0, 2¢ — 24+ n > 0, and numbers di, . ..,d, > 0
such that Y d; > 2g — 1 we have

(15) (Tay(eay) -+ Ta(€a,)) g = /_ AS  aCon(ea, @ @ eq,),
Mg
(16) <Td1 (eal) T Td,,(ean»z,ed = /m Bil,m,dncg,n(eal Q- ea,,)'

g,n
Proof In [4] the authors proved that for any d > 2g — 1 we have

Z DR d d,
<le(eal)...7—dn(ean)>g all ...an” =
d],---7dn20
S di=d

1
:za_ Z al) | DRr (— Zai,al, . ,a,,) AgCont1 (e1 ® ®?:1€a,-) =
1

FEsTd—ngJrz Mg,n+l
g,n+

d—2g+2
= / A2 2(qy ,n)Can (®l'-’zlea,.) .
Mg

Equation (15) is proved.

Let us prove equation (16). The reduced potential F™¢ can be constructed in the
following way. Let us recursively construct a sequence of power series

FO=) — p g0 g0 gD g2 pGO pGD pGA-2 e Ol ],
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Suppose thata series FU9 is already defined. Introduce correlators (74, (eq,) " - - 74, (€a, )>g’k)
by

o' FUk)
<7'd1 (eal) te Td,,(ea,,)>g k= Coefgng
notE=0
If k < 2j — 2, then we define the series FU**D by
7)
FUAD . G _ Z Z — <HTd,(€a, > H(( 0Py — 516 1) ooy
n>0dy,...,d,>0
S di=k+1

If k = 2j — 2, then we define the series FU+19 by an analogous formula

i+1,0 2o e¥t? [ L R ,
o3 2 () Tl

n>0 j+1

Recall that
. O°F
ot o}

(Wtop )a —

th—sth+x '
The string equation for the potential F',
o = ;ml% ¥ 3 maptfs + € (me),
implies that the function (W'°P)%|,—o has the form
WP |vmo = 6% 61 + 17 + 1y + O(ED),

where the power series r; € C[[#;]] doesn’t contain monomials tbl1 e tf: with Y b; <
n. Clearly, if g < j, then we have the property

2g - 27 if g < j7
K, ifg—j
Define a series F’ by F' := limj_,o, F¥¥~2. The series F’ has the form

F'=F+ P'W"P WP, ""E)‘xZO

(4, (€a) -+ Ta, (e, )) I = 0, if Zdl-s{

for some non-homogeneous differential polynomial P = .., P/, P/ € Alil.
Moreover, we have the property

871 Fl
8 * atdn

Coef 2 =0, if > di<2-2.

=0
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One can notice that the recursive construction, described above, is slightly different
from the recursive construction of the reduced potential F™, presented in the proof
of Proposition 7.2 in [3]. However, using the uniqueness argument given there we can
see that F' = F™ and that actually P’ € Al-21.

For a stable complete tree 7 and 1 < m < deg(T) let
gn() = > g0).

veV(T)
Iv)<m

Before we proceed, let us prove the following simple lemma.

Lemma 3.6 Letd;,...,d, > 0, (T,q) € le’g___dn and 1 < m < deg(T). Suppose
that gm+1(T) = gm(T) and e.[T,q] # 0. Then 3 pens,ry q(h) > X nens, 1) 4(h).
[(h)y=m+1 I(hy=m

Proof Consider a half-edge h € HS (T) with I(h) = m and let v := v(u(h)). We have
g(v) = 0 and the map e forgets all g(h) + 1 extra legs incident to v. Therefore, if v is
strongly stable, then ZhleHiM g(h') > q(h). If v is weakly stable, then |[H%[v]] = 1
and g(h') = q(h), where I € H¢[v]. Since at least one vertex of level m + 1 is
strongly stable, the lemma is true. D

A stable complete tree 7" will be called (j, k)-admissible, if for any 1 < m < deg(T)
we have g,,(T) <j and

S ath < {2gm(T)—2, if (1) < J.

heH’, (T) k, if gm(T) = .
I(hy=m
Let le’jg.’.(.’;’d]? ={(T,q) € ng .4,|T is (j, k)-admissible } . Define a class Bfil(]k) 4, by
" B o
B =Y ORI € RS,

B.,8,(.k)
(T,cz)eﬂdl dn

Clearly, Bfi;(”:’.]_‘?dn =B ,.ifj>g.

In order to prove equation (16), it is sufficient to prove that for any pair (j, k) from the
sequence

18  0,-2),d,0),(2,0),2,1),2,2),...,G,0,0, D, ..., (,2 = 2),...

we have

i i,k
(19) (Ta(eay) - - Ta,(€0,)) I = /_ B con(ea, @ ®ea,),
M

&,n
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if g>j,or g <jand
2¢ — 2, ifg <,
SRS
k, ifg=j.
We proceed by induction. Obviously, equation (19) is true for (j, k) = (0, —2). Suppose

that equation (19) is true for a pair (j, k) from the sequence (18). Let us check it for
the next pair.

Suppose k < 2j — 2. For any di,...,d, > 0 we have le’;g'"(";’d]? C ng"('{fjl). Using
the induction assumption and formula (17), we see that it remains to check that

20 ) En—2g > > (— 1)t

gn>0 " d,. ,dn>o(Tq)eQBgok+1>\QB,g,o,k>

,,,,, dy,...,dn

X </_ e« T, q]cg,n(@’zr'l:leai)) Htof'i -
Mg,n

-2 % S {Inen))” (g - suotea - T117).

n>0 dy,....dn>0

S di=k+1
Consider a pair (T, q) € le’jg_’_(_’;grl)\f)gf"('{fn) such that e, [T, g] # 0. Then there exists
1 < m < deg(T) such that g,,(T) = j and ZheHi(T) q(h) = k+ 1. By Lemma 3.6,

I(hy=m
m = deg(T) — 1. Denote by T’ the stable rooted tree obtained by erasing all vertices

in T of level m + 1 together with half-edges incident to them. Half-edges h € H% (T)
with /(h) = m become marked legs of T’. Clearly, T’ is a stable complete tree.
By Lemma 3.6, the tree T’ is (j, k)-admissible. Using the induction assumption, we
conclude that equation (20) is true. This completes the induction step in the case
k < 2j —2. The case k = 2j — 2 is analagous. The proposition is proved. O

4 Further structure of the relations

In this section we discuss the structure of the conjectural relations (10) in more details.
In Section 4.1 we recall the formulas for the intersections of the double ramification
cycle with a 1 -class and with a boundary divisor on M&n. In Section 4.2 we show
that for a fixed g > 1 all relations Afl = Bfl, d > 2g — 1, follow from the relation
Ag o1 = Bg o1 In Section 4.3 we prove that the A - and the B-class behave in the same
way upon the pullback along the forgetful map. We then use this result in Section 4.4
in order to show that Conjecture 2.5 is true if and only if it is true when all d;’s are
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positive. In Section 4.5 we prove that the classes Afihm’ 4,1 and Bfihm’ 4,1 behave in
the same way upon the pushforward along the map forgetting the last marked point.
Using this result, in Section 4.6 we show that Conjecture 2.5 is valid on M, ,. In
Section 4.7 we show that the conjectural relations (10) give a new formula for the class
Ag €ERS (Mg) and check the resulting formula for g < 3.

4.1 Formulas with the double ramification cycles

First of all, let us recall the formula from [9] for the product of the double ramification
cycle with a i -class. Denote by
glk: Mgl,rll-i-k X Mgz,nz-i-k — mg1+g2+k—17n1+n2

the gluing map that corresponds to gluing a curve from Mgl .n,+k toacurve from Mgz,n2+k
along the last £ marked points on the first curve and the last k marked points on the
second curve. Introduce the notation
DR, (ai,...,a,) X DRy, (by,...,by,) =
:glk* (DRg1 (a17 s ,dn) X DRgz(b17 s 7bm)) € Rgl+g2+k(mg1+g2+k—l,n+m—2k)'
Let ay,...,a, be alist of integers with vanishing sum. For a subset I = {iy,...,ix} C

{1,...,n}, i1 <iy < ... <y, letus denote by A; the list a;,,...,a; and by a; the
sum Ziel a;. Assume that a; # 0 for some 1 < s < n. Then we have [9, Theorem 4]

- plli ki
@) a@DRg(ar,...,a)= > > > > FaI

I={1,...n} p>1  £1,82>0  ki,...kp>1
a;>0 g1+g+p—1=g S k=a;

x DRy, (A7, —ki,...,—ky) X, DRy, (Ay, ki, ..., kp),
where r := 2g — 2 + n and

_J2e =2+ +p, ifsel;
=g — 24 1| +p), ifse .

Let us also recall the formula for the intersection of the double ramification cycle with
a boundary divisor on Mgm- For 0 < h < gandasubset I C {l,...,n} we have [9]
8, - DRy(ar, ..., a,) = DRy, (A7, —a) )y DR (A, ap)

where [¢ := {1,2,...,n}\I.
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4.2 One-point case

Lemmad4.1 Letg > 1. Then for any k > 0 we have Agg—l-i-k = w’ngg_l.

Proof Let 7: Mg,z — Mg,l be the forgetful map that forgets the second marked
point. We compute

ay1A%! (@) =1 A\, DRy(a, —a) = 7. (7"t - \{DRy(a, —a)) =
= (11 - A¢DRg(a, —a)) — . (531’2} - A¢DR,(a, —a)> =

— Z &ﬂ-* ()\gDRgl(a7 —a) ‘le DRgz(_a7 a))

81,82>1
811+82=¢

— 7, (A¢DRg(0) ®; DRo(a, —a,0)) =
=A**(a),
where we used that \,DR,(0) = (—1)8 )\§ = 0. If kK = 1, then the lemma is proved.

If k > 2, then we write the equation (a;v;)fA%'(a) = (a111)*~'A%%(a) and apply
formula (21) to the right-hand side of it K — 1 times. The lemma is proved. m|

On the other hand, it is not hard to get an explicit expression for the class BY. Let
81,82,---,8 > landdy,...,d; > 0. Introduce aclass Cfl:’:::’ﬁ’; € deﬁk_l(ngi,l)
by

R . Tz}dl ,djdz d)dk
CErs = @@ - —@
Then it is easy to see that for g > 1 and d > 2g — 1 we have
8
Bi=> 2 2. CuTalT
k=1 gi1,....gx>1dy,....dx
2.8i=8

where the last sum is taken over all non-negative integers dy, . . . , d; satisfying

1 1
ddi+1-1<2) g—2, ifl<i<g—1,
i=1 i=1

k
Zd,-Jrk—l:d.
i=1

We see that B‘g = ‘f_ngng_ |- Thus, for n = 1 Conjecture 2.5 is equivalent to the
sequence of relations
g  _ 8
A1 =By, 821
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4.3 String equation

In this section we prove that the A- and the B-class behave in the same way upon the
pullback along the forgetful map : M&H [ — ﬂg,n.

Proposition 4.2 Denote by 7: Mg’n_i.l — M&n the forgetful map that forgets the
last marked point. Then we have

(22)

T*Afil,...,dn’ it di=2g—1,
* .7 +1 * .

& Aflly---ydn + Zldgégln 5(? " }7T Aff[,...,d,’—l,...,d,,’ Ifzdi 2 2g

8
Ady, 0

Proof Letm:= > d; —2g+ 2. The proposition is equivalent to the equation
(23) AS"(ay,...,ay,0) =

TAS™(ay, . .. ay), ifm=1,
ﬂ_*gg,m(al, ceeyay) + Z?:l aié'gﬁn—l-l}»n*gg,m—l(al’ coay), ifm>2,

where ay,...,a, are arbitrary integers. Let ay = — E?zl a;. Introduce a class
Ag’m(a(h ap,... 7an) by

A$™ag,ay, ... ap) =Y a(D)ADRr (ag,ai, ..., a).
rest .|

Formula (23) follows from the equation
(24) A$"(ap,. .., ay,0) =

W*A\g’m(aOJ e 7an)7 lfm = 1’
T ASM(ag, .. an) + S aiaéz,n+1}77*,’4\g,m—1(a07 coay), ifm>2,

where the map 7: M&n” — Mg’n_i_l forgets the last marked point.

For m = 1 equation (24) is clear. Suppose that m > 2. Consider a stable tree
I' € STy, Recall that we denote by /;(I") the leg of I' marked by 0 <i <n+ 1.
We will call a vertex v € V(I') exceptional, if g(v) = 0, n(v) = 3 and the leg [, (I")
is incident to v. An exceptional vertex v € V(I') will be called bad, if it is not incident
to any leg /;(I'), where 1 < i < n. We will call the tree I" bad, if it has a bad vertex.

Otherwise, it will be called good. For a vertex v € V(I') let

') 2g(v) +n(v) — 2, if [, (') is not incident to v,
rw) =
2g(v) +n(v) — 3, if [,41(I') is incident to v.
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For a good stable tree I' € ST, , introduce a constant a' (') by

')
dD):=| [ am I —_
2 r®)
heH¢ () vev(D) veDesc[v]

v is not exceptional

Using these notations, we can rewrite the right-hand side of (24) as follows:

n
W*Zg""(ao, N Z aic?gl’nﬂ}w*ﬁgvm—l(ao, e, ay) =
i=1
= Z a'(F))\gDRp (ap,ay,...,a,,0).

resT .,

I'is good
On the other hand, by definition,
gg’m(ao, e, ay,0) = Z a(I)ADRr (ag, ai, . ..,a,,0).
resT

gn+2

We see that we have to prove the equation

(25)
Z a(l)\DRr (ag, ay, . . ., an,0) = Z d' (D)ADRr (ag, ay, . . . ,ay,0).
resT?, ., rest, .,
I'is good

Let us prove equation (25). Suppose I' is a bad stable tree. Let us show how to
express the class a(I')A\,DRr(ag,ai, ... ,a,,0) as a linear combination of the classes
)\gDRl:(ao, ai,...,a,,0), where the stable trees T are good. Suppose that s > 2 and
bi,...,bs are integers with vanishing sum. We have the following relation in the
cohomology of M&HQ (see e.g. [1, eq. (5.2)]):

26) A > Y bDRg(0,B;,—b;) R DR, (0,By, —b)) = 0.
ILJ={1,...,s} 81+8=¢
I1J#0
Suppose that the point with the zero multiplicity in the second double ramification
cycle is marked by s + 2. Let us multiply relation (26) by s, and push it forward to

M 11 by forgetting the last marked point:

27)

_ > bi(28 + || — DDRg, (0, B;, —by) & DRy, (By, —by) = 0.

IUj={1,....,s} 81+8&=¢
LIAD  28+J]—1>0
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Figure 1: Stable tree I"

Suppose that the level of the bad vertex in our bad stable tree I' is equal to k. Then
relation (27) allows to express the class a(I")A;DRr(ay,...,a,,0) in terms of the
classes A;DRg(ao, - . ., an,0), where the tree T is good or bad with the bad vertex of
level k + 1. Therefore, applying relation (27) sufficiently many times, we come to a
decomposition

a(l)A\DRr(ap, ..., a,,00= > a(l',[)\DRy(ap, ..., ay,0),
rest .,
Tis good
where a(l’, r ) are certain coefficients. We see that for any good graph I' we have to
prove the identity

(28) al)+ > a,I)=d@).

Test!, .,

T is bad

Let us prove (28). Suppose that the leg /,,+1 = [,41(I") is incident to a vertex of level
k. Denote it by v;. Denote by v; the root of I". Let vi,vs, ..., v be the unique path
connecting v; and v;. Denote by v,lc FRTR ,vi +1- [ > 0, the direct descendants of vy.
Let L' := L[v¢]\{l,+1}. In Fig. 1 we draw our tree I". Note that each vertex v in the
picture is decorated by the number r(v), instead of the genus. This is more convenient
for the computations. We use the notations r; := r(v;), 1 <i < k,and ri 41 = r(vi +1),
1 <j < I. The symbols A; and AJ,.( 1 indicate the pieces of the tree I that don’t contain

the vertices v; and vf{ +1- Letus also introduce the following notations:

Ri= Y 1w, 1<i<k
veDesc[vi]
Riyi= Y. rw, 1<j<],

vEDesc[vf{H]
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Figure 3: Bad stable tree of the second type

a:a(r)/ H i H k+1
Ry

1

There are two cases: the vertex v can be exceptional or not.

Suppose that vy is not exceptional. Then

. " rl...rk_l(rk_l) k+1
F pr—
a(l’) a(Rl_l)---(Rk—l)H R

It is not hard to understand the structure of bad stable trees I such that a(f, I #0.
These trees are of two types. A bad tree of of the first type is shown in Fig. 2, where
1 <i<k—1and7=r_;+r,— 1. Abad tree of the second type is shown in Fig. 3,
where 1 <i<k,1<j<land7r= rk—i-r{c , — L. Itis not hard to see that

~ r =1 k+l e
~ A RER—D R H if " is of the first type
al,T) = Ri--Ri(Ri—1)--(R—1—1) 1 1j= k+l B ,
r 1y . .
aRl R(Iél_lk) I(Rk ) k+1 Hm 1 ka“ , if I" is of the second type.
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Therefore, equation (28) follows from the identity
k k-1

dl ryc k-l
<
iI;[lRi ;Rl”’Ri(Ri_1)"'(Rk_1—1)
L Pl .
_Z 1 k—1 R]lc-‘,-l:
R RR 1D R~ D)

_ e — 1))
Ri—1D--Re— 1)’

or, equivalently,
k—1

Tk 1
(29) —t 4
Ry Ry ;Rl"'Ri(Ri—l)“‘(Rk—l_1)

k

Z Ry — ¢ B
4~ R - RR DR~ 1)

_ rn—1
TR - Re— 1)
Note that
Tk R, — B re — 1
Ri-Ry Ri-RiRy—1) Ry R (R — 1)
1 Ry — ¢ .
Ri-RR—1D-Rici =D Ri-—RER—D--Re—1)
rn—1

"R RRi— 1) (R — 1)
where 1 < i < k — 1. Therefore, equation (29) is equivalent to the equation

k—1 1 1

30) —— -
00 R T AR RE D R DR DR

which can be easily proved by induction on k.

Suppose that v, is exceptional. Then [ = 0, the set L' consists of only one leg and
r. = Ry = 1. We have

!
(Ri— 1) (R — 1)

A bad stable tree I' with a(f, I") # 0 should necessarily be of the first type (see Fig. 2)
and then we have

dl)=a

rp o Tr—]
Ry RiRi— 1) (R—1 — 1)

al,T)=a
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We immediately see that again equation (28) follows from the elementary identity (30).
The proposition is proved. m|

Proposition 4.3 Denote by 7: Mg,,,ﬂ — ﬂg,n the forgetful map that forgets the
last marked point. Then we have
(3D

”*Bfll,...,du ifY di=2g—1,

B = j,n+1

dy,y...idn,0 * p& ) {im+1} _xpg . )

1s+esdns T Bdl,...,d,, + zldgg (50 s Bdl,---,di—17---7dn’ Ide, > 2g.
i

Proof Let (T,q) € le’g_ .a, be an admissible and stable complete tree with a power
function
q: H"(T) — N,

as in Definition 2.4. We denote by deg(7T) its number of levels. In particular, there
are extra legs at every vertex (except the root) that we will eventually forget when
computing the B-class.

Choose a vertex v € V(T). Let C = (elc,vlc, e ,egeg(T)_l(v),vgeg(T)_l(v),0n+1) be a
chain of weakly stable vertices with a new marking o,;. Precisely, the edge elc is
attached to the vertex vlc, the edge e,f links the vertex v,f_l to vkc, and the leg 0,41 is
attached to the vertex vgeg(T)_ Iv)- Moreover, every vertex is of genus 0 and contains
an extra leg. We construct a tree 7T, obtained from 7" by gluing the edge elc (and thus
the chain C) to the vertex v. We have H"(T) C H{"(T,) and we extend the power
function ¢ into a function ¢, : H{"(T,) — N by taking

¢h$):=0 and ¢ (0,41):=0,

where hkc is the half-edge in H¢"(T,) contained in the edge ekc. It is easy to see that
we get
B
(TV7qV) € le’(?___,dm()-

Choose a half-edge h € HY"(T) attached to the vertex v and such that g(h) > 0. We
construct a tree T(, ), obtained from T by adding an extra level between the levels /(v)
and [(v) + 1 of T as follows:

- denote by hy, ..., h, € H{"(T) the half-edges of level I(v), with hgy := h,

- insert a pair (eg,vx) between the half-edge h; and the vertex it is attached to,
where e; = (h,, hZ ) is an edge and vy is a vertex of genus 0,

- glue the half-edge hlc from the chain C to the vertex vy,
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- add g(h) extra legs to the vertex vy and g(h;) + 1 extra leg to the vertex vy, for
1 <k<m.

Therefore, the number of levels of the tree T, ) is deg(T) + 1, the vertex vy €
V(T 1) is the only strongly stable vertex at its level, and we have a natural inclusion
H(T,) € HY"(T,n). Then, we extend the power function g, into a function
g, H(Ty ) — N by taking

h) —1, ifk=0
. h/ = CI( k ) s
2o { ah), kA0

The complete tree T, 5 is obviously stable, but not necessarily admissible. We get

n
(Toviy Go) € S 4o == 1) #deg(T) or > d;=2g— 1.
i=1
Furthermore, observe that when /(v) = deg(T), then the half-edge & corresponds to a
marking o; and we get

i,n+1 * Vi
e[ Tom qom] = OiseslT, qi] = 63" - %€, [T, g1 € R*(Mgpi),

where the morphism o; denotes here the section of the i-th marking in the universal
curve Cy p ﬂg7n+1, and where g;: H{"(T) — N is defined by

d,’ - 1, ifh = agj,
(h) ==
ai(h) { q(h), otherwise.

Conversely, let (T',q") € ng ..d,0 and denote by v the first strongly stable ancestor
of the marking o,4. In particular, the marking o, is attached to the vertex v via
a chain C of weakly stable vertices and we denote by h"+1 ¢ HY™(T') the half-edge

from C attached to v. We have two possibilities:

(1) visavertex of genus 0 with exactly two half-edges i, A"+D ¢ H (T attached
to it and v is the only strongly stable vertex of level I(v),

(2) v is another type of vertex.

Denote by T the tree obtained from 7" by forgetting the chain C containing the marking
on+1, and contracting the level I(v) in case (1). In particular, the power function ¢’
restricts to a function g and we get

(T, goy)  in case (1),

T 05 d (I'.q)=
(T,q) € dyyedy A (T,q) {(TV,CIV) in case (2).
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Furthermore, from the formula

o b
n+l l<l<r

q,>0 q1--gi*qr i

expressing the pullback of 1 -classes via the map 7, we obtain

e (T, q) =Y e | [Thyal— D [Tomdoml |

veT heH<(T)
h—v,q(h)>0

for every (T, q) € le’g. g, and where i — v means that the half-edge % is incident to
the vertex v. As a consequence, when d; + - - - + d,, > 2g, we obtain

By .a) = Z (=D =1r*e [T, q] =
(T7‘1)€le’é’:m,dn
— Z (_l)deg(T)—le*ﬂ_* [T, Q],
(T, q)Ele ,,,,, dn

where the second equality comes from the general fact that Mg,n—l—Z is birational to the
fiber product M&H 1 X, M&H 1, and then

B )= >, EDREDTIN e Tl - Y el Tom qoml | =

(T, q)EQ 0 veT hEHim(T)
""" h—v,q(h)>0

= > (=DM T ]

(T dVEQ® 4o

»»»»» n,

= ) EDEEDTNT N e T, o] =

(T, LI)EQ,JI ,,,,, dn I(v)= deTg(T) h}ff;:;z()i)o
=B o= > (1Dt N i e T g =
T 4 ldﬁiéﬁon
:Bfll,...,dn,o - Z ‘%MH} ) 7T*Bi,...,d,~—17...,d,,'
1<i<n

d;>0
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When d; +- - -+d, = 2g— 1, then we have seen that (T(, 1), gv,n)) s always admissible,
so that the first three equalities are the same, but there is no second term in the last
three equalities. Hence we get

* & _ n&
™ By, .d, = Bay,...dp 0"

4.4 Reduction of the conjecture

Proposition 4.4 Conjecture 2.5 is true if and only if it is true when all d; ’s are positive.
Furthermore, Conjecture 2.5 is true in genus 0 and in genus 1.

Proof The first statement follows immediately from Propositions 4.2 and 4.3.

Assume g = 0. Since dimﬂom = n — 3, the classes A217~~~7dn and thm’dn are non-
trivial only if Y d; < n — 3. Therefore, we can always apply formulas (22) and (31)
to them, unless n = 3 and d; = d» = d3 = 0, where we get

AQo0=Bloo=1€ H' Moz, Q).

Assume g = 1. Since dim Ml,n = n, the classes A}ll dy and Bcli1 .d, are non-trivial
only if Y d; < n. Therefore, we can always apply formulas (22) and (31) to them,
unless d = d = ... = d, = 1. In order to prove that A{, | = B}, ,,itis
sufficient to check that fﬂl,n Ai ol = fﬂl,n Bi 1....1- Note that these two integrals

are equal to (7 (el)”>11)R and (7 (el)">rled, respectively, for the trivial cohomological

field theory. The equality FPR = F™d for the trivial cohomological field theory was
checked in [3]. Therefore, Conjecture 2.5 is true in genus 1. O

4.5 Dilaton equation

g g :
Here we prove that the classes A dyoooody ] and B dyooo ] behave in the same way upon

ooy

the pushforward along the map forgetting the last marked point.

Proposition 4.5 Denote by 7: Mg,,,ﬂ — ﬂg,n the forgetful map that forgets the
last marked point. Then we have

Qg —2+mAS . ifYdi>2g -2,

(33) (A8 ) =
1 yooosd 1 0. if Y dy =2g—2.
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Before proving the proposition let us formulate three auxiliary statements. Recall that

for astable tree I' € ST;’inH we denote by v{(I") the root of " and by [;(1"), 0 < i < n,

the leg of I marked by i.

Lemma 4.6 Letay,...,a,, n > 1, be integers with vanishing sum and m > 2. Then
we have

n Tgm—1

Agﬂﬂ(a()’ [ Jan) - alwlAg’m (a07 e 7an) =

2¢ — 1
= Y B TYADR (o, - ., ).
resTr r(vi(I))
g,n+1

vl (T)=v; (T)

m—1

a1 WE can write a

Proof Using formula (21), for an arbitrary stable tree I' € ST
decomposition

a1y - a()A\DRr(a, . . . ,a,) = Z a(F,f))\gDRl:(ao, ce,ay),

rest’, .

where a(T’, f) are certain coefficients. Let I" € STg’n 11~ The statement of the lemma
is equivalent to the following equation:

r(vi1))?
0, otherwise.

2¢—1+n . s
~ if /{(T") is incident to v;(I"),
349 al)— Y a@,D)= { @ 1
Testy ||
Let v € V(I') be the vertex incident to /; = [;(I'). Denote by v/,...,v/, [ > 0,
the direct descendants of v. Let L' := LivI\{/i}, r :== r(v), / := r(V/), R :=

ZVEDesc[v] r(v) and R;, = ZVEDesc[v{/] r(v).

Suppose that v # v{(I'). Denote by v/ € V(I') the mother of v and let ¥ := r(/) and
R =3 Sepesep) '(V). We draw the stable tree I' in Fig. 4. Similarly to the figures in
the proof of Proposition 4.2, we decorate a vertex w of I' by number r(w). It is not
hard to see that there are exactly [+ 1 stable trees Te ST:;”;I such that a(f, ) #0.
The first one is shown on the left-hand side of Fig. 5, and the other / trees are on the
right-hand side, where 1 <j < [. Let
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Figure 5: Stable trees T such that a(f, H#£0

The coefficient a(f7 I') for the left tree in Fig. 5 is equal to HI%I, Hi:l 1% and for the
k

. . . .. ~I'R; i
right tree in Fig. 5 it is equal to —arRTI’Q Hi:l %},{,. We compute

/ 1 /Il 1 I , 1 1
= ~[r r'R; re - rr I
2 ath=al =2 g | gy =agg 7 =
rest) || Jj=1 k=1"k k=1""k

Therefore, formula (34) is proved in the case when /; is not incident to v (T').

Suppose that v = v{(I"). The tree I' and stable trees T such that a(f,F) % 0 are

shown in Fig. 6. Let
r l 7
~._ J
a = a(F)/ ﬁ H R_j”

j=1

The coefficient a(f, I") for the right tree in Fig. 6 is equal to —51% Hi:l %. So we
k
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Figure 6: Stable tree I" and stable trees [ such that a(f, N=#0

compute
l 1" l l
~ . r R r// r// R
al)— > aCD=a| o+ - | [z =al]z = a®.
Fest-1, j=1 k=1""k k=1""k
g,n
The lemma is proved. O
Lemmad4.7 Letay,...,a,, n > 1, be integers with vanishing sum and m > 2. Then
we have
A\g,M(ao’ s 7an) - aowogg’m_l(aoa s 7an) =
2¢ —1+n
= Y =———a(XDRr(a,...,a).
res r(vi(I)
EST{MJrl
Proof The proof is analogous to the proof of the previous lemma. O
Corollary 4.8 Let a;,...,a,, n > 1, be arbitrary integers and m > 2. Denote by

T Mg 1 — M&n the forgetful map that forgets the first marked point. Then we
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have
(35) AS™M(ay, ... ay) — a1 A9 Nay, . ay) =
2¢ — 1+ nal)
s Z gTr*DRF ( Zahal? “7 )
riT,, @) S a
vl T)=vi ()
gvi(M)>1

+ A8 1( Za,,az, ..,a )

Proof The corollary is an elementary exercise that uses two previous lemmas and the
fact that

1 ~
Ag7m(aly' .- 7an) = Za.ﬂ-*Ag’m (_Zaivab' . 7an> .
1

Proof of Proposition 4.5 Let m := > d; — 2g + 3. Let us prove that
(36)

W*Ag’m(dl, e ,an+1)
aan-i—l

0, ifm=1
ap41=0 T (wn-ﬁ-lAg’m_l(ala -+ Qn,y O)) ’ lfm 2 2.

For m = 1 this equation immediately follows from Lemma 2.1. Suppose m > 2. Let
us rewrite equation (35) in the way that is more suitable for us:

(37) AS™(ay, . anst) — Gp1 Vet AS N an, - ap) =
2¢+n a(I‘)
- 70+ DR ( a;,ag,...,a >
r Z roviM) X a AgmoDRr Z ir @1y -5 Antl
ST, s
V(1 (T)=v1(T)
gviI)=>1

n

Agm—1 § :
+Ag <_ ai7a17"'7an>7

i=1

where the map 7 : M&HZ — ﬂg7n+1 forgets the first marked point. The last term
on the right-hand side of this equation doesn’t depend on a,;. Note also that, by
Lemma 2.1, after applying the pushforward 7, each term in the sum on the right-hand
side of (37) becomes divisible by aﬁ 41~ This proves equation (36).
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Equation (36) immediately implies the statement of the proposition for m = 1. In the
case m > 2 equation (36) yields

by Prop. 4.2
8 — 8 pht * A8 —
mdly g = (el 0) T e (el ) =

=Qg—-2+ ”)Afil,...,d .

n

The proposition is proved. m|

Proposition 4.9 Denote by 7: Mg,,,ﬂ — ﬂg,n the forgetful map that forgets the
last marked point. Then we have

(38) (B )= 2g=2+mBj 4. if3di>2g-2,
R 0, ifSd; =2g —2.

Proof Let (T,q) € le’g_ .a, be an admissible and stable complete tree with a power
function
q: H"(T) — N,

as in Definition 2.4. We denote by e: {1,...,deg(T) — 1} — N the function

ck):=2 Y g — > qh)—2

veW(T) heH(T)
)<k 1=k

measuring the distance to non-admissibility at the level k. As in the proof of Proposi-
tion 4.3, we have two possible ways to add a new marking labelled by n + 1.

First, choose a vertex v € V(T). Let C = (elc, vlc, ... ,egegm_ Iv)? vgeg(T)_ 1) Ont1) be
a chain of weakly stable vertices with a new marking o,1. Precisely, the edge elc is
attached to the vertex vlc, the edge e,f links the vertex v,f_l to v,f, and the leg 0,41 is
attached to the vertex v(ig(T)_ I~ Moreover, every vertex is of genus 0 and contains
two extra legs. We construct a tree 7, obtained from 7 by gluing the edge elc (and
thus the chain C) to the vertex v. We have H{"(T) C HY"(T,) and we extend the
power function g into a function ¢, : H{"(T,) — N by taking

qv(h,f) =1 and g¢qy(ou+1) =1,

where hkc is the half-edge in HY"(T,) contained in the edge ekc. It is easy to see that
we get
(Ty,q) € Qe == Vk € [I(v),deg(T) — 1], €(k) > 1.

In particular, when the vertex v is at the maximal level deg(7T’), then the tree T, is
always admissible.
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Second, choose a half-edge h € HY"(T) attached to the vertex v. We construct a tree
T.n), obtained from T by adding an extra level between the levels /(v) and I(v) + 1 of
T as follows:

- denote by hy, ..., h, € H{"(T) the half-edges of level /(v), with hgy := h,

- insert a pair (e, vx) between the half-edge /; and the vertex it is attached to,
where e, = (), h})) is an edge and vy is a vertex of genus 0,

- glue the half-edge hlc from the chain C to the vertex vg,
- add g(hg) + 1 extra legs to the vertex v, for 0 < k < m.

Therefore, the number of levels of the tree T(, ) is deg(T) + 1, the vertex vy €
V(T ) is the only strongly stable vertex at its level, and we have a natural inclusion
H(T,) € HY"(T,p). Then, we extend the power function g, into a function
qo.y > HY'(Tw,n) — N by taking
g () = q(hy).
‘We obtain
Vk € [l(v),deg(T) — 1], e(k) > 1, and
T QB,g ) ) )
Topns qorm) € dyseedn;1 (l(v) # deg(T) or >\ ,di=2g— 2) .
In particular, when the vertex v is at the maximal level deg(T), the tree T(, ) is
admissible if and only if dy 4 --- + d,, = 2¢g — 2.
Let I € [1,deg(T)] be the smallest integer such that
Vk € [Ir,deg(T) — 1], e(k) > 1.
When dy +- - -+d, > 2g—2 (resp. when d; +- - - +d,, = 2g —2), the two constructions

(T7 q, V) = (TV7 qv) and (T7 q,V, h) — (T(VJl)a Q(v,h))
give a bijection from the set

|| {vevDliw) > tr}u{w,h) € VIDxHD)|h — v,Ip < 1(v) < deg(T)}

5,
T’ 4,

(resp. the same set with the inequality /r < I(v) < deg(T)) to the set leg AL
Furthermore, we get the contributions

(39) e ([Ty, gv]) =(2g(v) — 2 + n(v) + q(v) + DexlT, ql,
(40) e*ﬂ'*([T(v,h)y Q(v,h)]) :(Q(h) + De[T, ql,

where g(v) denotes the value of the power function g: H{"(T) — N at the (half-)edge
linking the mother of the vertex v to the vertex v, and n(v) denotes the number of
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half-edges attached to the vertex v, without counting the extra legs. Thus, the total
number of half-edges attached to the vertex v is indeed n(v) + g(v) + 1.

Finally, when d; + --- +d,, > 2g — 2, we get

7T*<B§17---,dn,1) = Z (—1)deeD=1 o [T 4] =
(T

dn,1

= Z (_l)deg(T)—l Z mx€«[Ty, qv]

B.,g veV(T)
Ty 4, I(v)=deg(T)

+ Z T[Ty, qv] — Z T5Cx [T(v,h)7 Q(v,h)] =

veV(T) heH(T)
Ir<l(v)<deg(T) h—v
= Z (_l)deg(T)—l Z exm«[Ty, qy]
B,g veV(T)
(T’q)Ele ,,,,, dn I(v)=deg(T)

+ Z e« [Ty, qv] — Z Cu Ty [T(v,h)7 Q(v,h)] s

veV(T) heH(T)
Iy <i(v)<deg(T) h—v

where the minus sign in the second line of the second equality comes from the fact that
the number of levels in the tree T, ;) is deg(T) + 1, the third equality comes from the

relation e o m = 7 o e among the forgetful maps. Using equations (39) and (40), we
get

8 _
(B, . a,1) =

= Y DT gl | Y (2e0) =24 a0+ q(v) + 1)

T eb veV(T)
TOEL 1(v)=deg(T)

+ > 214 a0 = DY @+ | | =

veV(T) heH(T)
Ir<I(v)<deg(T) h—v
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= > 0Dl gl | Y (280) 4 n() — 1 4 q()

B,g veV(T)
T9ey 4, I(v)=deg(T)

+ Y |20+ = Y g | | =
vev(T) heHS"(T)
Ir<I(v)<deg(T) h—v

= > DD le T gl |2 ) g +n

N vev(T)
Ty 4, Iv)>Ir

+ Y am— DY D> || =

vev(T) veV(T)  heHY(T)
v)2lr lr<Iv)<deg(T)  p—y

= > DT T gl [2 ) g+t Y qO)

T,9)c0b8 veV(T) veV(T)
DL 10)>1r 10)=lr

We conclude using the equality e(l7 — 1) = 0:

8 —
7T*(Bd17"'7dn71) o

= > =Dl Tl |2 ) g +nt+2 Y g -2 =

B ev(T) ev(T)
(qu)eﬂdl ,,,,, dn })(V)ZIT })(V)<1T
=Q2g—2+n) Y (DD e [T ql= Qg —2+mB .
T 4

When d; + --- +d, = 2g — 2, we have the same sequence of equalities with the
additional term

_ Z Z Z (— l)deg(T)_le*ﬂ'* [T(V,h)7 Q(v,h)] -

(T VvEV(T) heH"(T)
D=0a1dn j)=deg() 1%,

—— S (DD e T gl dy 4o+ dy) =

8,
T 4,

=—(2g—-2+ n)Bflh___dn,
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coming from the fact that (T, 1), gov,n) € le’{”. dy 1 when [(v) = deg(T). D

4.6 Validity of the conjecture on M, ,

Let g,n,m > 0 such that 2g — 2 + n > 0 and denote by 7™ : ﬂngJ,_m — Mgv,, the
map forgetting the last m markings. By definition, the restriction of Conjecture 2.5
to M, , is the following statement.

Proposition 4.10 The restriction of Conjecture 2.5 to M, , is true. Precisely, for
every integers dy, ... ,dn1m > 1 such that

we have

(Wim)(Acgll,---,dner)) ‘ - (ﬂ-im)(Bil 7“'7dn+"’)> ‘M

€ R*(M, ).
ngn , ( g,n)

&

Proof Using Propositions 4.5 and 4.9, we can assume that dy4q,...,dpm > 2.
Furthermore, the Chow degree of the two classes in the statement is

5::d1+"'+dn+(dn+l_1)+"'+(dn+m_1)'

We get
0>2¢—2—m and §>n+m.

Summing these two inequalities yields
5>g+g—12g—1.
We conclude with the following result from [17]:

R'(Mg,) =0, forallp >g—1.

4.7 New expression for )\,

Let us show that our conjectural relations (10) give a new formula for the class A, €

RS(My).

Let g > 2 and consider the class

1
Ag,l(al, coy Q) = )\gﬁDRg <— Zai,al, .. ,ag_1> .
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Let 7: Mg,g_l — Mg be the forgetful map that forgets all marked points. Then,
by (),
A% ay, . .. A1) = g!)\ga% .- 'ag_l Zai.

Thus,

1 -
A = QW*A§,27___72 € RS (My).

So, Conjecture 2.5 implies that

1 -
(41) Ag = QW*B‘;;___J € RS(M,).

We can easily see that the expression on the right-hand side of this equation is a
linear combination of basic tautological classes ér«(y), where I is a tree. No such
expressions for the class A\, were known before. Let us write explicitly and prove the
resulting formulas in genus 2 and 3.

4.7.1 Genus 2

We already wrote the expression for B% in (11). Pushing it forward to M and dividing
by 2, we get that Conjecture 2.5 implies

1 1 il

(42) Ao = 52 = 5(%@-

The relation A% = B% is proved in Section A, so formula (42) is true.

4.7.2 Genus 3

We compute

4 1 Y 1 )2 1 0
B =vivi - 0@ -@*Q —20%C -@-C
2 2

2 2
1 o 21 ol
@ ¢2:2_3 - w:2_3 - 2_%02:2 ol (e}

2 1

& 2 1 2 1 2
~O-E +10@-O@ + 10050 + -0
2 2

P= T2
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P2 2 2 2
" 7/}1 d)zl N 3 1
3OO H3O-OHA +O-Q-05 1 +100-04@
Yo 2 ¥ 2

2
oy N 02
—10O—O—0=0_ - 10000~ -O—0O—-Q-01.
2 2
2

Pushing forward this expression to M3 and dividing it by 6, we get that Conjecture 2.5
implies

301 2 K LR E 5 14
@) N=-smtormt ;@O0 - OO+ @O0~ &0
1 il
O 020
Let us prove this equation. In [11] C. Faber proved that the whole cohomology ring
of M3 is tautological and that it is generated by the classes

(5() = @ 51 = @—@ )\1 R).
There are 13 monomials of cohomological degree 6 in these classes. C. Faber proved
that dim R*(M3) = 10 and found 3 relations between the 13 monomials (see [11,
page 407]). These relations easily imply that the following 10 classes form a basis in
R3(M3):
55AL, 0061 A1, ST, ok, 67, 0T AL, 1AL, AY, G1k2, Aika.

It is not hard to check that each of these 10 classes has the same intersection numbers
with both sides of equation (43). So, formula (43) is true.

5 Restricted set of relations

In this section we show that the strong DR/DZ equivalence conjecture for semisimple
cohomological field theories follows from the restricted set of relations (10), where
> di=2gand d; > 1.

Consider an arbitrary cohomological field theory in genus 0, cq yen _ H* (ﬂo,n, ©).
Let Fy(z;) be its potential. Suppose we have a deformation F (£}, <) of Fy the form

F=Fy+ Y e%F, F,cCl£]]
g>1
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. 2
Introduce formal power series (W) (x, %, €) by (wohe := por_dE , and
ot o, sl by
0 0
let (w*he := 9"(w*°)*. We will use the following notation:
0"F,
(Tay(€a)** Ta,(€a,)) g = Far—aan
ory! - Oty o

A correlator (74,(eq,) - - - Ta,(€q,)) ¢ will be called admissible, if Y d; < 2g.

Lemma 5.1 Suppose that the following conditions are satisfied:
e we have the vanishing property
(44) (Tay(eay) - Ta(ea,)), =0, if > di<2¢—2;
e the string and the dilaton equations hold:

OF oF 1 P
8_t(1) = Z t3+18—t;} + 5770461870,

n>0

OF  OF L OF N
—zsg—l-z:tn%—ﬂ—”—l-e -,

orl 24
e for each yu there exists a differential polynomial 2y 1., € ,I[WOJ such that
O’F
45) Q1 1:0,0] 1ol = T .
I ’w,?—(w 8 3%3%‘ Bt

Then all correlators (74,(eq,) - - - Ta,(€a,)) g are uniquely determined by the admissible
correlators.

Proof The topological recursion relation in genus zero implies that the primary corre-
lators (1p(eq,) - - - To(ean)>0 determine all correlators in genus zero. Denote by R, the
subspace of C[[}]] defined by

Ra _{chh 4 Tl e cren ‘dh =, 1de,-§d—1}.

From the string equation and the vanishing property (44) it follows that the function
(w*°H)%|,—o has the form

46) (Wm0 = 6%100 1 +15 + 10+ > 5,7, 1S € Ruy1, G5 € Ragin.
g1
Introduce a grading in the ring C[[#]] by deg ] := d and consider the expansion

020 = i degql, i =28+n+k.
>0
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Note that the functions ¢y,  and gy, , are determined by the admissible correlators.

P 11,0
A(wh)?

Let us show that = 0. Consider a monomial f of the form

(47) f=Mwlwgl w1+ di =2k, (i, dy) # (1,1,
Then property (46) implies that

(48) (f|wr(l)¢:(wsol)na)|x:0 — gzh(tgll . tsfnn + ho) + Z €2h+2khk7m,

k>1
m>0

where hy € Rop—i41, deghy, = 2h + 2k — [ + m and the functions Ay, 0 and hy; are

completely determined by the admissible correlators. Suppose now that Q' l')’z‘ 0 £ 0.
Consider monomials f (47) with the minimal 4 such that [ > 2 and the coefﬁ01ent of
f in the differential polynomial €24 ., is non-zero. Let us choose such a monomial
with as big [ as possible. Then using equation (45) we can see that

(e [T ratea)), = 5 {miteomew [T ratea)), #0

This contradicts the vanishing property (44), because » d; = 2h —1 < 2h — 2. We
0 0
awhr T

conclude that

Let us now prove that the differential polynomial €2 1., o is completely determined by
the admissible correlators. Let

0", 10,0
;1107[1’,{ o = Coefgzga—gan Zdi =2g.

17 7dn

Let us prove by induction on g that all coefficients c,.5; """ o, are uniquely determined
by the admissible correlators. We already know it for g = 0. Suppose g > 1. Using
property (48) we see that if (5;,¢q;) # (1,1) and > ¢; = 2g — 1, then the difference

17 yeedm
<7'1 (el)TO(eu) H qu'(eﬁi)> — G [1“517 qum

can be expressed in terms of the admissible correlators and the coefficients ch" e

-

with i < g. Similarly, if (5;,¢;) # (1,1) and > ¢; = 2g, then the difference
(renme [Traten) — e,

can be expressed in terms of the admissible correlators, the coefficients chl’ o with

7177

h < g and the coefficients ¢ el prp Ve conclude that the differential polynom1al
24,1.,0 is completely determined by the admissible correlators.
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We see that the functions (w*°)* are solutions of the following system of partial
differential equations:

ow®

-1 =10 10, 1 <a<N.

ot
The argument from the proof of Proposition 5.2 in [5] shows that using this system
together with the string and the dilaton equations for F' one can uniquely reconstruct
the whole solution (w*°")® starting from the dispersionless part (ws"l)a\ —0. After that
using the string and the dilaton equations it is easy to reconstruct the whole function

F. The lemma is proved. O

Proposition 5.2 Suppose that all relations (10) with Y d; = 2g and d; > 1 are true.
Then the strong DR/DZ equivalence conjecture is true for any semisimple cohomolog-
ical field theory.

Proof Consider an arbitrary semisimple cohomological field theory. Propositions4.2,4.3,
4.5 and 4.9 imply that all relations (10) with > d; < 2g are true. Therefore,
(IT Tdi(eai)>?R = (1 Tdi(eai)>;ed, if 3" d; < 2g. Both potentials FPR and F™¢ satisfy
the assumptions of Lemma 5.1 (see [3]). Therefore, the lemma implies that FPR = Fred,
So the strong DR/DZ equivalence conjecture is true. O

In the appendix we will prove that relations (10) are true, when g = 2, d; > 1
and > d; < 4. Therefore, the strong DR/DZ equivalence conjecture is true for all
semisimple cohomological field theories at the approximation up to genus 2.

A Proof of the restricted genus 2 relations

Here we prove relations (10), when g =2, d; > 1 and ) d; < 4.

A.1 Relation A = B

As we know from Section 4.2, in order to prove that Afl = Bfl for any d > 3, it is
sufficient to prove that A% = B%. We have

2

Bgzw?_wv
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and A% = Coef 4 ()\QDRQ(:ZI,G)). The group Hz(ﬂg,l,(@) has dimension 3 and a
basis is given by (see e.g. [15])

1/11 5() = @ (51 = @—@—

So it is sufficient to check that the intersection of the difference A% - B% with these
three classes is zero. We compute

/ Aoth a - / A2y !
21 = 1= ==
DRy("7.0) 1152 oy 1152
/ Adp =0 = / A%éo =0,
DR,(Za,a) Mai
4
a 1
/\251 = — = / A251 = =,
/DRz(:Zz,a) 576 Mo 3 576

and

1
B§¢l = ? = T124°
/szl Mo, 1152
3 2
[, 0= - (-0 =0
2,1
1

2

/_ B36) = DD = 76"
Ma i

Thus, A3 = B3.

A.2 Relation A7, = B3|

‘We have

(49)

2 1 Y
By = v 30200 -0
2

1 le 1
~O—@_ +30—0-@ .
2

2
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In [15] E. Getzler proved that H*(ﬂg,z, Q) = R*(Mm). Moreover, he proved that
the group RZ(MM) has dimension 14 with a basis given by

(50)

1
02 1= 511| = 511|1 =000
2 1 2

1 2
! ()
511|12 = O—0—0] 501| = OxO,
2
1

511\2 =0O—0—0
2
2 1
1
501\1 = 501|2 = 5 ® 501|12 =
2
2 1 1 2

do| 1:2 dopp == 1—CQLI0—2 o= 22— (0)—1

(50“2 = : doo := 24@1

We compute

/ - Ady =
DRy (—aj—ay,ay,az)

(a1 + ap)* 5 1
N W At = s = A5 10m = —,
DRy (—aj—ay,a;+az) 1152 Mos ) 384
/ A2y =0 = / A%,1511| =0,
DRy (—aj—az,a1,a2) Mo

2 2
as(a; + ar) 2 1
o )\2511|1 =L = / A3 1511|1 = =7
/DRz(—al—azﬂhaz) 576 My, ’ 576

2 2
as(a) + az) 2
/ o A0y = 56 = | A310112 =0,
DRy (—a1—ay,ay,az) Ma

(a; + 02)4 2 1
o Al = — = A3 101112 = 55
/DRz(—al—azﬂhaz) 576 My, 192

Since )‘g’ﬂ”\ M, = 0, the intersections of all remaining 9 classes from (50) with

A% | are equal to zero. It is not hard to compute the intersections of the class B% | with
the classes from (50) ans see that they agree with what we have just computed for A% 1
Thus, A3, = B3 ;.
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A3 Relation AT, | = B} ||

We have

G B, =w1wzw3—2—6—2—®<ff£
+4QH@ @+ 20O @ +20-0LEC
6D DEE + 20— D—EL — 4D D@ .

Introduce the following notations:

@ @
oq::.—ﬂ—?—. (O—0—1 = (0—(0) as = (0)—(0)

@ @

@
o = D—D—@O—@ as:: a5 = D@D~

@
A (e it (o
= @l = = D@
ilegs  jlegs  klegs ilegs jlegs  klegs ilegs  jlegs  klegs
ik _ () o "
alzx{3,1 = (010 blz‘{3,1 = (1 T0)—(0) blf{3,2 = (10 Y0
jlegs ilegs  klegs ilegs jlegs  klegs ilegs  jlegs  klegs
y ©) (0]
ko L1l 02,1,
bli{z@ = (0)—(1] T0) Cron = “‘Q Cron = 0‘@

klegs ilegs  jlegs

Denote by L’ the subspace of R> (mm) spanned by boundary strata £r.(1), where the
first Betti number of a stable graph I' is equal to 2. The symmetric group S3; acts on
Mzﬁ by permutations of marked points. This action induces an action on R*(Mm).
Define a map Sym: R*(ﬂzg) — R*(ﬂzg) by

1 .
Sym(a) := 3 Z oo, «a€ R (Mjy).
TgES;
Let L := Sym(L') C R3(M273)S3. For two classes «a, 3 € R3(M273) we will write

o L B, if a«— B € L. Using the formulas for ¢% € RZ(MM) and Y11, € Rz(ng)
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from [15] and also the topological recursion relations in genus O and 1, after a long
computation we obtain

2 mod L 3a1 3a2 4a3 4a4
Ly — 7 T ET:%

Qs 4046 1 0,1
10 1,2

5 075 T T10T s T30
10,3,0 L 110 1 4120 1

210 5 003 1 012
24 123 E 23+ 180 123 120 123 48 141 %al,4,l
1 4102 1 003 T o1 , 1 4102 1 012 T 01,2
144 141 +2a 80 23 1 240612’ s % 2,3,1 + 90 90 as ,2,1 + %b1,3,2
L1 1 021 1 Loy oos 1ooip 1 1,0,2_ib0,1,2
45 1,3,2 90 1,3,2 30 23,1 10 2,3,1 90 2,3,1 30 3,2,1

1 021 2 L
+z 5 ) 2,2 + oz 45 ) 2,2°
On the other hand, a direct computation using Hain’s formula gives
1 _—
Coef ——DRy(—a; —ay —az,a;,a,a
a1 ara <a1 PR 2ol—ay —ay —az,ar,az 3)>

ct
M,

=(¢1+¢2+¢3)—6—3—g®—%_%&®<'

In this computation one should use that (see e.g. [15])

1 o0+ =@ e it

Using the formula ([19])

1 1 _
- — R?
M = g5e5 (0 )+ 525 € (M),
we obtain the following formula for the class A%’l 1

2 modlZ 1 0,1,2

od 4 +1 021 1 030 1 I 120 1 210
1,1,1 120 1,2,3

60 123 40 123 120 1 +60 1,2,3 120 123

iao,og _ LaOJ,Z _ Laho,z 1 003 1 Loz 1 4102
80 1,4,1 240 1,4,1 240 1,4,1 80 231 240 2,3,1 240 2,3,1
Thus,
g2 a2 mdl 3on 3o 4oz doy a5 das 1 o2
LLL AL 5 10 5 15 10 5 180 '23
I 021 030 L 111 1 120 1 210
- %”1,2,3 T 15%23 + @%,2,3 - %%,2,3 - @”1,2,3
11 003 1 12 1 a0z L 1 003_iao,1,2
120 141 120 141 360 141 40 231 40 2,31
I qo02, 1 o012 7,012, 1,021 11,1
+ To0 %231 + 90 %21 + 907132 + = 250132 + 90b1 32
11b0’0’3 I o1z 1 102 1,012 1021, 2 AL
T 307231 797231 gpPaan T 30520 +z 5 Cont oz 456222
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The famous Getzler relation [14] says that

) 1= Q- O-@ 3OO -5 O-@ +§+

=0 € R2 (M 4).

We will adopt the following notation. Suppose gi,8> > 0 and let ij,...,i and
J1s---,Jji1 be two lists of integers such that {i1, ..., i, ji,..., 0t = {1,2,...,k+[}.
Consider the moduli spaces Mgl J+1 and Mgz,pr 1, but let us label the marked points on
curves from Mgh]H_l and Mng_l by the numbers iy, ..., i, k+I+1and j;,...,j, k+
[+ 2, respectively. Denote by

g1le

[P /4 Y /i Mé’lvk‘irl X Mgz,H-l - Mg1+gz,k+l

the gluing map that glues the marked points labeled by k + 1+ 1 and k + [ + 2. From
Getzler’s relation we obtain

11 ap 1 021
(53) (g1|1,234)*([M11]><’Y) __Z_a3_?+7+a6+ﬁa123
I 030 1 003 1,012 3
+ﬁ 123"’24 141 12b132—0€R(M2,3)'

Notice that the WDV'V relation on My s implies that — S+ @ + 5 =0. Using this
observation and expressing the class ag via formula (53) we get

1 02! 1 2030 1
2, 180 ayr3— 30 a;n3 @”
I 210 7 2003 I o121 4102 1 003
60611,2,3 120 141 12001,4,1

B}, —A?,  TET o —
1,1,1 1,1,1 180“

I o012 L q0p, 1 012 L o2 1 021
50231—1_ 120 231+90 321+90b132+45 1,3,2
L oyig 1003 1 012 1102 1 012
+ 00”132 ~ 39”231~ 1_0b2,3,1 - %bz,m - %b3,2,1
Lop1 2 111
+ gcz,z,z + Ecz,z,z

Let 7: MI,S — M 4 be the forgetful map that forgets the fifth marked point and
gl s: MI,S — M3 3 be the gluing map that glues the first and the fifth marked points.
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Then from Getzler’s relation (52) we obtain

arl 212
glls*(7T )mo b Aoz —

We can obtain another consequence from (52). Let gl ,: ﬂhs — Mm the the gluing
map that glues the first two marked points. Then Getzler’s relation implies that

modLl 0

5 op1 1 2030 L ot 5 120 2210
Sym(gl, 2*(77 M) = g 1,2 "’ 1_8a1,2,3 6 aphrs+ 18“1,2,3 1_8a1,2,3 - §”1,2,3
1 003 | o012 102 , 003, L oi2 1 102
- 601,4,1 - Eal,4,l 18141 taysy + §a2,3,1 + 502,3,1
003 1b0, 2 2021 1 102 1b1,1,1 4b2,0,1
132 T 9P132 7 P32 7 gP1s2 T 3P T P13
2,003 %bo,m _ 2b1 02 ‘_‘60,2,1 . gc1,1,1 cL
37231 7 gP231 T gP2a1 T g2 T g

Adding % gly 5. (") — %Sym(gll’z*(ﬂ*y)) to the right-hand side of (54), we get

(55)
1 . _A, mo:dLLao,l,z 1 021 7 2030 1 Ao REEX)
L, 360 1,2,3 144 123 240 123 240 1,2,3 240 1,2,3
1 20 3 003 1 1012 _ A o2 103
90 1,2,3 80 1,4,1 80 1,4,1 80 1,4,1 120 1,3,2
1 021 1 Loq1 2,0,1
360 3 457132 120b 2+ 1207132 T gpbian

1 1 2 1
0,0,3 12 10,2 02,1 L
b2,3,1 9 31 6Ob231+9 C20 T gy

The WDVYV relations on Mo 4, Moﬁ and My ¢ imply that

ALl 102
€2 —bz EXE
21 3,005 0,12
Crpn = b2,3,1 + §b2,3,17
2,1,0 b2,0,1

i3 =D1325

102 1o, 12 1111
bo 1) 70__b77

13,2 —2”1,2,3 +ais3 77132
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L1 120 1,02

by'y, =ay53 +aysy,
003 1 012 21 030 2,012 l,o21
1,3,2 —§a1,2,3 + 501,2,3 taj3 — §b1,3,2 3b1,3,2’
021 L o21 3030, 3003, 1012 ,012

b1,3,2 —§a1,2,3 + 5”1,2,3 + 5“1,4,1 + 5“1,4,1 - b1,3,2

Using these relations, one can easily check that the right-hand side of (55) is zero. We
conclude that B%,LI - A%,Ll cL.

It is easy to see that the space L is spanned by the following classes:

By 1=

The WDVYV relations on M 7 give the following relations:

B2 — Ba + 7 — Bs =0,
D DU D PR PR
B+ B2+ 53+§55+§57—§58—§59— .

Therefore, dim L < 7. On the other hand, in Figure 7 we compute the intersection ma-
trix of the classes fi, ..., 89 with the following seven classes: 1/)?, 1/)%1/)2, V13, K3,

K1k, Y1k, P16 ; where
5im W

This matrix is non-degenerate, so dimL = 7. Thus, is order to prove that A% =
B% 11 it is sufficient to check that the intersections of A% 11— B% 1.1 with the classes

%, Y3y, Y1, K3, k1Ko, Y1 k2,30 are zero. This is a simple direct computation.
The relation A% 1= B% 1.1 1s proved.
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Bi| B | Bs | Ba|Bs|Be|Br|Bs| Bo

Y3 O 1 [O0O]1[1|O0|O]O]?2
Y, |0 3 0|30 | 1|1 ]1]3
Vi3 | 0] 6 [0 6[0]0]|6[6|0
K3 o1 |of[1|3]0[0|0]3
kikg | 1|9 | 1 ]9 273 |3]3]27
Yy [ 1| 4|04 421 |1]8
Yis |0 |21 [0]2|0]2]0]2

Figure 7: Intersection matrix of (3,..., By with zbf, w%wz, V13, K3, KK, Y1K2, 1/)%5

A.4 Relations A3, = B3, and A3, = B3,

Suppose g,n > 1 and ay,...,a, € Z. Let a := ) _ a;. The following formula is the
particular case of Corollary 4.8 when m = 2:

(56)  AS%ay,...,a,) — a1 A¥ ay, . .. a,) =
=XDR, (a1 —a,a, ..., a,)

+ Ag Z Z c;_JDRgl (:Zl7A17aj) X DRy, (Ay, —ay) .

g1>1,8>0 ILJ={1,...,n}
81+82=¢ 1€l
2g,—1+]J|>0

Let us prove now that Afil b= Bfil > where (dy,d;) = (3,1) or (d1,d») = (2,2). By
equation (56), we have

2 2 _
Adl,dz - wlAdl—l,dz -

=Coef 4, 4 <

a, 4

MDRi(—ay — az,ay1,a) Wi DR (ay, —612)> =
ar +ap

_ (a1 + a2)a _
=Coef i, 1, (T ’ =0.

On the other hand, it is easy to compute that

w2 1 w3 1
2 3
Biy =uive - O—@ - O~ ,
2 2
5 5 5 wZ 1 W) 1
B3a =vivi - O~ —@% :
2 2
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Comparing these expressions with formula (49), we can easily see that B% = ¢1B% |
and B% 5 = ¢1B% »- Since the relation A% 1= B% | 1s already checked, the relations
A% = B% ; and A% ) = B% , are now also proved.

A5 Relation A2, | = B3,

Using equation (56), we compute
A%,l,l - wlA%,l,l =
(57)
aj —_ —
= Z Coef 24,4, <§A2DR1 <—Zdi,A1,dJ> X; DR;(Ay, —aJ)> +

117={1,2,3}
1er, |J]>1

(58)

a +as
+ Coef 244 < Sa A2DR, (— Zai,alaQZ + a3> X DRo(az, a3, —az — d3)> -
1

Let us look at a term in the sum in line (57). The class A;DR(A;, —ay) is a polynomial

in the variables a;,j € J, and it doesn’t depend on a;. We have
1 — -
———— A\ DRy(—a; — ay — a3, A, a5) = (a1 + @z + a3)A; € R'(M j141).
ay +ax +as
So, the polynomial class in the brackets in line (57) depends on a; at most linearly.
Therefore, the expression in line (57) is equal to zero. Let us look at the expression in

line (58). We can easily see that it is equal to

b — _
2. Coefazbz(gl%igﬁ)* <a+—b)\2DR2(—a — b,a,b) x [M073]> _

2|0 —-—
=2 (g11I2,3)* (431 x [Mo3]) -
As a result, we obtain

2/0 ——
A%,m = ¢1A%,1,1 +2- (g11I2,3)* (A%,1 x [Mo3]) -

On the other hand, we have

_ T o Yo !
B —thih —6@LGE —30KQE ~0-G - O-T
Wb 1 1

+6O—DHC +30—-0OHE
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Using also formula (51), we compute
R 1 1
B%,l,l - T/JIB%,M = - 3 +3® ¢ +2
1
—20-Q-@ - 20-Q-EC =
VN N
2
=20 - 6@ @ - 20—
VN 1 YN
20~ @+ 6O~ @
1 1

Using (49) we see that the last expression is equal to 2 - (glﬂgﬁ)* (B%1 X [ﬂog]) and

we get

200 _—
B3, =1v1Bi,, +2- (g11i2,3)* (B3 x [Mo3]) .

Since the relations A% | = B% , and A% 1= B% |1 are proved, we conclude that relation
2 . 2 . b K b b
A3, = B3, istrue.

syl

We follow the same strategy, as in the previous section. Using equation (56), we
compute

2 2 _
A1111_¢1A0111_

sty ds IREEE]

a —~
(9 = > Cocfuuua (LADRi(=a,Ara) B DRi(A), —ay)) +
1L={1,2,3,4}
51, 1J)>1
a —
©60)  + Y Cocfuuua (NDRa(=a,As,a)) B DRo(As, —a))
1L={1,2,3,4}
51, ]J]>2
where a = Z?:l a;. Let us look at a term in the sum in line (59). We have

é)\lDRl(:zl,A],aJ) = a\ € RI(ML‘]H_l) and the class \{DR(A,, —ay) doesn’t
depend on the variables a;, i € I. Therefore, the coefficient of ajayazas can be
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non-zero only if I = {1}. So the expression in line (59) is equal to

(61)

(glﬂég’“)* (A1 x Coefyyaya, (@2 + a3 + as)\iDR(a, a3, a4, —a — a3 — as))) =

Y Y A A A Y
=- —3+2+3
I I I I

The expression in line (60) is equal to

70, 0 (R Vosl) 42 Y @l (4, ¢ [Vios)
{ij.k} <{2 3,4}
J

On the other hand, we have

)
B 11,1 =t1tath3is — 6 - 2— 2— @(ﬁ
@
4+4+6+2
+2+2+8

4D D@ 48

After a long direct computation, that uses only the genus 0 topological recursion
relation, we obtain

(62) B%,l,l,l - wlB%,l,l,l :6(glﬂg73,4)* (B%J x [Mo.])
+2 Z (gﬁ!?[j,k)* (Bil,l X [MOJ])

{ijk}=1{2,3,4}
Jj<k
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O + 20— — 20—0-0—@)
+6¢M+2.M 2.w
—6+2 :

Using the formula

!
=AM + € R'(M, 2),
2

we can rewrite the expression in brackets on the right-hand side of equation (62) as

A A A A

1 1 1 1
. @ @ @
1 1 1 1

@ @
—6 +2 .

1 1

The expression on the right-hand side of equation (61) has the form (glﬂé 3 DA X @),

where

1

+3 4.
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The part in brackets in expression (63) has the form (gll‘1 )«(A1 X B), where

102,3,4
ﬁ:ﬁp%b_u_u—m
+2 4—1)—~0)~0).

Expressing all psi classes using the genus 1 topological recursion relation and also
using the WDVYV relation, it is easy to show that « = (. Since A% | = B% , and
A% 1 :B% 11> We obtain

2
(64) BT 11 —AT 11 :6‘1‘2—2 (DO—()

1 1 1

1 1

+20—O0—0O—O—O-

1
Define an operator Sym: R*(MM) — R*(ﬂu) by

1 p—
Sym(a) := a Z oa, o€ R (Myy),

" oES,

where the symmetric group S acts on M2’4 by permutations of marked points. Ap-
plying the operator Sym to both sides of equation (64) we obtain

3 2 1 1
Bil,l,l—Ail,l,l :E w*‘z :f_i “@ (0)
Ho—o-0, - Lo—o-0—®

no, ?w*w 2

080 w—%

Bl
<=

+
D= =
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We see that the expression on the right-hand side has the form (ng 12 3.4)% (ﬂ 1,1 X p) ,
where

3 2 1 1 1
_> i 2 U _z (4 _Z
O ECl ORE Ry O ORt RGO ORFEEZOF

(D 0) +
—© ¢!’w B

E
__% S‘PH"y7S!\+*% s —0—D—0—©).

It is sufficient to prove that p = 0. For this we express all the psi classes using the
genus 1 topological recursion relation, and then prove that p = 0 using the WDVV
relation and Getzler’s relation. This computation is straightforward, but quite long, so
we present here only the most interesting parts of it. Expressing all the psi classes we
obtain

p= At + 02,

where 0, € Rz(ﬂm) and 6, € R3(ﬂl,5) are sums of boundary strata. Using the
WDVYV relation it is not hard to prove that #, = 0. For the class A;#; we get the
following expression:

013, Loao T yao 1 ooa, 7013, 1oz2 5103, 1 112
)\191 —al + gal — 6(,11 — Zaz + gaz + gaz + Z 2 + Zaz
4202 _ T3 3022 01 oosr T a1 oi2g 4 022
2 16 3 473 16 3 1273 1273 !
B §b0,1,3 _ lbl,m
272 272 7
where we use the following notations:
5
ijk M ijk M
ilegs  jlegs  klegs ilegs  jlegs  klegs
)\1 >\1
ij,k 0,2,2 .
TEREET
o = =~ 5
ilegs  jlegs  klegs
ik M
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Consider Getzler’s relation (52). Let m: Mhs — MM be the forgetful map that
forgets the last marked point. We have

Aot _1 0,1,3 lao,z,z 1 a2 1a0,1,3 1 02,2 lal,l,Z
=R 6" T3 T T T 3m

1 1 M
— oty =y B = 0 € R (M ).

I 013
—da

+23

Let 7': Mlﬁ — M 4 be the forgetful map that forgets the first marked point. We
assume, that after forgetting the first marked point, a point labeled by i, i > 2, on a
curve from MI,S becomes a point labeled by i — 1 on a curve in MM. The symmetric
group S4 acts on MI,S by permutations of the first four marked points. Define a map
Sym’: R*(M 5) — R*(M; s) by

1 o
Sym’ () := a0 Z oo, o€ R(Mis).

" oES,
‘We have
« 1 13 Lopa 1 qi2 1 ooa 1 gop 1 2103
/\18}71’11/((71'/) nN=-= 4 a, _gal - ﬁ 1 +§ 2 — 12612 8 a,
LSRN lazoz_i_ 3a0,1,3+1 022 L os1 1 112
82 6 2 g3 6 3 g% 24
5 121 3 013 022 1. 112 3,7
_ eyt 77 b s by _b7 b [ OER .
2w T ™ Ty TRt gh (Mis)

We compute

A6y =X6) — N7y + 20 Sym' ()" y) =

3 004 §a0,1,3 1022 1,0,3

1,2 2 2,0,2 3 0,1 1 0,2,2
- + - " - =P — —a

1
‘a7 +zay 7" +

e 8 2 g 3 372 16 4%
_30a _La Laan Lo
16 3 3% 3% 3%
Finally, applying the WDV'V relations
a%’l’l :2a§’0’2,
1 1
03 — , 2 1,1,2 1,2,1
2 - + 3613 + 3613 s
1 1 1 1 1
0,0,4 0,1,3 0,2,2 13 0,2,2 0,3,1
a =5 T e +43 —1-33 +43 )

it is easy to see that A\;6; = 0. The relation A%U’l = B%,Ll,l is proved.
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