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DR/DZ equivalence conjecture and tautological relations

ALEXANDR BURYAK

JÉRÉMY GUÉRÉ

PAOLO ROSSI

In this paper we present a family of conjectural relations in the tautological

ring of the moduli spaces of stable curves which implies the strong double

ramification/Dubrovin­Zhang equivalence conjecture introduced in [3]. Our tau­

tological relations have the form of an equality between two different families

of tautological classes, only one of which involves the double ramification cycle.

We prove that both families behave the same way upon pullback and pushforward

with respect to forgetting a marked point. We also prove that our conjectural rela­

tions are true in genus 0 and 1 and also when first pushed forward from Mg,n+m

to Mg,n and then restricted to Mg,n , for any g, n,m ≥ 0. Finally we show that,

for semisimple CohFTs, the DR/DZ equivalence only depends on a subset of our

relations, finite in each genus, which we prove for g ≤ 2. As an application we

find a new formula for the class λg as a linear combination of dual trees intersected

with kappa and psi classes, and we check it for g ≤ 3.

14H10; 37K10

1 Introduction

A cohomological field theory (CohFT) cg,n is a family of cohomology classes on the

moduli spaces Mg,n of genus g stable curves with n marked points (parameterized by n

tensor copies of a vector space) which satisfy certain compatibility axioms with respect

to the natural morphisms among different moduli spaces. They were introduced by

Kontsevich and Manin [20] to axiomatize the properties of Gromov­Witten classes for a

given smooth projective variety, but have since then also proved to be a powerful probe

for the cohomology and Chow rings of Mg,n itself, and their tautological subrings in

particular [22, 18, 19].

Recall that the tautological rings R∗(Mg,n), for g, n ≥ 0 satisfying 2g − 2 + n > 0,

are the smallest Q­subalgebras of H∗(Mg,n,Q) closed under pushforward along the

http://arxiv.org/abs/1705.03287v2
http://www.ams.org/mathscinet/search/mscdoc.html?code=14H10,(37K10)
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morphisms forgetting marked points and gluing two marked points together to form

a node. R∗(Mg,n) is much smaller than the full cohomology ring, but still has a rich

structure and contains most of the natural and geometrically interesting classes. The

ring structure of R∗(Mg,n), however, is not yet completely under control. We know

a system of additive generators, the so­called strata algebra, formed by basic classes

which are represented by the closure of the loci of curves with fixed dual stable graph

intersected with a given monomial in kappa and psi classes. The product of basic

classes is explictly described, but the full system of relations is still unknown, although

Pixton has found a large set of relations that is conjectured to be complete, see [22].

In this paper we present a new family of conjectural relations in the form of an equality

between two families of tautological classes. We denote these classes in R∗(Mg,n) by

A
g
d1,...,dn

and B
g
d1,...,dn

, where the n integer non­negative parameters d1, . . . , dn satisfy

2g − 1 ≤
∑

di ≤ 3g − 3 + n. Their precise definition is given in Sections 2.2

and 2.3 respectively, but here we stress that they can be described as two different

linear combinations of stable trees with psi classes at the half­edges and, moreover, for

the A­classes only, a double ramification cycle times the Hodge class λg is attached at

each vertex.

The motivation for this conjecture comes from the study of the double ramification

(DR) hierarchy, an integrable system of Hamiltonian PDEs associated to a CohFT and

involving the geometry of the DR cycle, introduced by the first author in [1] and further

studied in [7, 8, 5, 3, 4] (see also [2, 23] for a review). In [3], sharpening a conjecture

from [1], it was conjectured that (the logarithm of) the tau­function of (a particular

solution of) the DR hierarchy coincides with the reduced potential of the CohFT. The

reduced potential is obtained from the full potential, i.e. the generating series of the

intersection numbers of the CohFT with monomials in the psi classes, by an explicit

procedure, also described in [3], which only depends on the potential itself and which

ultimately forgets part of the information.

In case the CohFT is semisimple (a technical condition on its genus 0 part), the

conjecture translates into a statement about the relation between the DR hierarchy and

the Dubrovin–Zhang hierarchy, another, more classical, construction associating an

integrable system to a semisimple CohFT for which we have the Witten­type result that

(the logarithm of) the tau­function of (a special solution of) the DZ hiearchy coincides

with the potential of the CohFT.

In this case the strong DR/DZ equivalence conjecture states that the two hierarchies

are related by a normal Miura transformation, i.e. a change of coordinates preserving

the tau­structure, and hence acting in particular on the tau­functions. This action on
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the tau­functions precisely corresponds to the reduction procedure described above for

the potential of the CohFT.

As we have seen, the DR/DZ equivalence conjecture is about intersection numbers,

not cohomology classes. However in Section 3 we show how the coefficients of the

two involved generating series, the (logarithm of the) DR tau­function and the reduced

potential of the CohFT, are the intersection numbers of the CohFT with two different

families of cohomology classes. These two families are precisely the A­ and B­classes

above. So the DR/DZ equivalence conjecture states that the intersection numbers of

the A­ and B­classes with any (possibly non tautological) CohFT are equal:
∫

Mg,n

A
g
d1,...,dn

cg,n =

∫

Mg,n

B
g
d1,...,dn

cg,n.

This motivates us to conjecture that it is the A­ and B­classes themselves to be equal:

A
g
d1,...,dn

= B
g
d1,...,dn

.

In the rest of the paper we work towards the proof of such conjecture. In Section 4 we

prove the string and dilaton equations for both A­ and B­classes, establishing that their

behaviour upon pullback and pushforward along the morphism π : Mg,n+1 → Mg,n

that forgets the last marked point is the same.

The string equation allows us to prove that the conjecture is true if and only if it is true

when all the parameters d1, . . . , dn are strictly positive. This in turn yields a full proof

of the conjecture in genus 0 and genus 1.

The dilaton equation is used to show that the relations in R∗(Mg,n) obtained by pushing

forward our conjectural relations from R∗(Mg,n+m) to R∗(Mg,n) and then restricting

them to R∗(Mg,n) are valid. This is what we mean by saying that the conjecture is

valid on Mg,n .

We then show that our relations imply in particular a new expression for the top Chern

class of the Hodge bundle λg as a linear combination of basic classes whose dual graph

is a tree (with psi and kappa classes). No expression of this type for λg was known

before. We check its validity for g ≤ 3.

Finally, in Section 5 we show that, for semisimple CohFTs, the DR/DZ equivalence

conjecture actually depends on just a subset of our conjectural relations, namely the

ones for which
∑

di = 2g and di > 0. This means that the number of relations one

needs to check is finite in each genus, and equal to the number of partitions of 2g.

In the appendix we check this finite subset of relations for g = 2 thereby proving the

strong DR/DZ equivalence conjecture in genus g ≤ 2 for any semisimple CohFT.
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2 Tautological relations

In this section we present our conjectural tautological relations.

2.1 Tautological ring of Mg,n

Here we fix notations concerning tautological cohomology classes on Mg,n . We will

use the notations from [22, Sections 0.2 and 0.3].

Recall that for any stable graph Γ we have the associated moduli space

MΓ :=
∏

v∈V(Γ)

Mg(v),n(v)

and the canonical morphism

ξΓ : MΓ → Mg(Γ),|L(Γ)|.

Recall [22] that given numbers xi[v], y[h] ≥ 0, i ≥ 1, v ∈ V(Γ), h ∈ H(Γ), we can

define a basic cohomology class on MΓ by

γ =
∏

v∈V(Γ)

∏

i≥1

κi[v]xi[v] ·
∏

h∈H(Γ)

ψ
y[h]
h ∈ H∗(MΓ,Q),(1)

where κi[v] is the i­th kappa class on Mg(v),n(v) and ψh is the psi class on Mg(v(h)),n(v(h)) .

A cohomology class on Mg,n of the form ξΓ∗(γ), where Γ is a stable graph of genus g

with n legs and γ is a basic class on MΓ , will be called a basic tautological class.
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Denote by R∗(Mg,n) the subspace of H∗(Mg,n,Q) spanned by all basic tautological

classes. The subspace R∗(Mg,n) is closed under multiplication and is called the

tautological ring of the moduli space of curves. Let

Ri(Mg,n) := R∗(Mg,n) ∩ H2i(Mg,n,Q).

Denote by Mct
g,n ⊂ Mg,n the moduli space of curves of compact type and by Mg,n ⊂

Mg,n the moduli space of smooth curves. We will use the notations

Ri(Mct
g,n) := Ri(Mg,n)

∣∣
Mct

g,n
, Ri(Mg,n) := Ri(Mg,n)

∣∣
Mg,n

.

Linear relations between basic tautological classes are called tautological relations.

The class ξΓ∗(1) ∈ R|E(Γ)|(Mg(Γ),|L(Γ)|) will be called a boundary stratum.

We will represent a basic tautological class ξΓ∗(γ) on Mg(Γ),|L(Γ)| by a picture of the

graph Γ where we put the monomial
∏

i≥1 κi[v]xi[v] next to each vertex v and the power

of the psi class ψ
y[h]
h next to each half­edge h. For example, we have the following

well­known formulas:

ψ1 =

1

2

3

4

0 0 ∈ R1(M0,4),

λ1 =
1

24
1 0 ∈ R1(M1,1),

where we denote by λi ∈ H2i(Mg,n,Q) the i­th Chern class of the Hodge vector bundle

over Mg,n . It is well­known that the class λi is tautological (see e.g. [12]).

Suppose Γ1 and Γ2 are two stable graphs, both of genus g and with n legs. They are

called isomorphic, if there exists a pair f = (f1, f2) of set isomorphisms f1 : V(Γ1) →

V(Γ2) and f2 : H(Γ1) → H(Γ2) that preserve all the additional structure of the stable

graphs. Suppose γ1 and γ2 are two basic classes on the spaces MΓ1
and MΓ2

respectively:

γ1 =
∏

v∈V(Γ1)

∏

i≥1

κi[v]x1,i[v] ·
∏

h∈H(Γ1)

ψ
y1[h]
h , γ2 =

∏

v∈V(Γ2)

∏

i≥1

κi[v]x2,i[v] ·
∏

h∈H(Γ2)

ψ
y2[h]
h .

We will say that the pairs (Γ1, γ1) and (Γ2, γ2) are combinatorially equivalent, if there

exists a pair of maps f = (f1, f2), f1 : V(Γ1) → V(Γ2), f2 : H(Γ1) → H(Γ2), that defines

an isomorphism between the stable graphs Γ1 and Γ2 and also satisfies the properties

x1,i[v] =x2,i[f1(v)], for any i ≥ 1 and v ∈ V(Γ1),

y1[h] =y2[f2(h)], for any h ∈ H(Γ1).

Obviously, if the pairs (Γ1, γ1) and (Γ2, γ2) are combinatorially equivalent, then

ξΓ1∗(γ1) = ξΓ2∗(γ2).
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Consider the set of stable graphs of genus g with n legs. Suppose I is a subset of

{1, 2, . . . , n}. The symmetric group S|I| acts on our set of stable graphs by permutations

of markings from the set I . This gives an S|I| ­action on the set of pairs (Γ, γ), where Γ

is a stable graph and γ is a basic class on MΓ . Let us fix some stable graph Γ and a basic

class γ . The sum of the basic tautological classes corresponding to combinatorially

non­equivalent pairs in the S|I| ­orbit of the pair (Γ, γ) will be represented by the picture

corresponding to the class ξΓ∗(γ), where we erase the labels from the set I . Let us

give two examples in order to illustrate this rule:

0 1 0 =

1 2 3 4

0 1 0 +

1 3 2 4

0 1 0 +

1 4 2 3

0 1 0 ,

1

1 1
ψ

=

3 1 2

1 1
ψ

+

2 1 3

1 1
ψ
.

As another useful example, we can write the topological resursion relations in genus 0

and 1:

ψ1 =
∑

i+j=n−3
i≥1, j≥0

1

2

3

0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

∈ R1(M0,n), n ≥ 4,(2)

ψ1 =
1

24
1 0

...︸︷︷︸
n − 1 legs

+
∑

i+j=n−1
i≥1, j≥0

1 0 1

...︸︷︷︸
i legs

...︸︷︷︸
j legs

∈ R1(M1,n).(3)

By stable tree we mean a stable graph Γ with the first Betti number b1(Γ) equal to

zero. Suppose Γ is a stable tree. Let

He(Γ) := H(Γ)\L(Γ).

A path in Γ is a sequence of pairwise distinct vertices v1, v2, . . . , vk ∈ V(Γ), vi 6= vj

for i 6= j, such that for any 1 ≤ i ≤ k − 1 the vertices vi and vi+1 are connected by an

edge. For a vertex v ∈ V(Γ) define a number r(v) by

r(v) := 2g(v) − 2 + n(v).

Denote by STm
g,n the set of stable trees of genus g with m vertices and with n legs

marked by numbers 1, . . . , n. For a stable tree Γ ∈ STm
g,n denote by li(Γ) the leg in Γ

that is marked by i. For a leg l ∈ L(Γ) denote by 1 ≤ i(l) ≤ n its marking.

A stable rooted tree is a pair (Γ, v1), where Γ is a stable tree and v1 ∈ V(Γ). The

vertex v1 is called the root. Denote by H+(Γ) the set of half­edges of Γ that are
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directed away from the root v1 . Clearly, L(Γ) ⊂ H+(Γ). Let

He
+(Γ) := H+(Γ)\L(Γ).

A vertex w is called a descendant of a vertex v, if v is on the unique path from the

root v1 to w . Note that according to our definition the vertex v is a descendant of

itself. Denote by Desc[v] the set of all descendants of v. A vertex w is called a direct

descendant of v, if w ∈ Desc[v], w 6= v and w and v are connected by an edge. In this

case the vertex v is called the mother of w .

2.2 Double ramification cycle and the definition of the A­class

Consider integers a1, . . . , an such that a1+. . .+an = 0. The double ramification cycle

DRg(a1, . . . , an) is a cohomology class in H2g(Mg,n,Q). If not all of ai ’s are equal to

zero, then the restriction DRg(a1, . . . , an)|Mg,n
can be defined as the Poincaré dual to

the locus of pointed smooth curves (C, p1, . . . , pn) satisfying OC

(∑n
i=1 aipi

)
∼= OC ,

and we refer the reader, for example, to [9] for the definition of the double ramification

cycle on the whole moduli space Mg,n . We will often consider the Poincaré dual to the

double ramification cycle DRg(a1, . . . , an). It is an element of H2(2g−3+n)(Mg,n,Q)

and, abusing our notations a little bit, it will also be denoted by DRg(a1, . . . , an).

The double ramification cycle DRg(a1, . . . , an) is a tautological class on Mg,n [13]. A

simple explicit formula for the restriction DRg(a1, . . . , an)|Mct
g,n

was derived in [16, 21]:

DRg(a1, . . . , an)|Mct
g,n

=
1

g!




n∑

i=1

a2
i ψi

2
−

1

2

∑

I⊂{1,...,n}
|I|≥2

a2
I δ

I
0 −

1

4

∑

I⊂{1,...,n}

g−1∑

h=1

a2
I δ

I
h




g

,

(4)

where for a subset I ⊂ {1, 2, . . . , n} and a number 0 ≤ h ≤ g we use the following

notations:

aI :=
∑

i∈I

ai,

δI
h := h h′

...︸︷︷︸
I

...︸︷︷︸
Ic

∈ R1(Mg,n), Ic := {1, 2, . . . , n}\I, h′ := g − h.

Formula (4) is usually referred as Hain’s formula. It implies that the class DRg(a1, . . . , an)|Mct
g,n

is a polynomial in the variables a1, . . . , an homogeneous of degree 2g. Since λg|Mg,n\Mct
g,n

=
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0, we obtain that the class λgDRg(a1, . . . , an) ∈ R2g(Mg,n) is a polynomial in

a1, . . . , an homogeneous of degree 2g. The full double ramification cycle is also

polynomial, but not necessarily homogeneous [19].

The following properties of the double ramification cycle will be useful for us. Let

πi : Mg,n+1 → Mg,n be the forgetful map that forgets the i­th marked point. Then

DRg(a1, . . . , an, 0) = π∗n+1DRg(a1, . . . , an).

Let π : Mg,n+g → Mg,n be the forgetful map that forgets the last g marked points.

Then we have [9, Example 3.7]

π∗DRg(a1, . . . , an+g) = g!a2
n+1 · · · a2

n+g[Mg,n].(5)

It is also useful to remember that (see e.g. [19])

DRg(0, 0, . . . , 0) = (−1)gλg ∈ Rg(Mg,n).

We will denote by DRg(a1, . . . , ãi, . . . , an) the class πi∗DRg(a1, . . . , an) ∈ Rg−1(Mg,n−1).

Recall the following important divisibility property.

Lemma 2.1 ([3]) Let g, n ≥ 1. Then the polynomial class

DRg

(
−
∑

ai, a1, a2, . . . , ãn

)∣∣∣
Mct

g,n

∈ Rg−1(Mct
g,n)

is divisible by a2
n .

Consider a stable tree Γ ∈ STm
g,n and integers a1, . . . , an such that a1 + . . . + an = 0.

To each half­edge h ∈ H(Γ) we assign an integer a(h) in such a way that the following

conditions hold:

a) If h ∈ L(Γ), then a(h) = ai(h) ;

b) If h ∈ He(Γ), then a(h) + a(ι(h)) = 0;

c) For any vertex v ∈ V(Γ), we have
∑

h∈H[v] a(h) = 0.

Clearly, such a function a : H(Γ) → Z exists and is uniquely determined by the

numbers a1, . . . , an . For each moduli space Mg(v),n(v) , v ∈ V(Γ), the numbers a(h),

h ∈ H[v], define the double ramification cycle

DRg(v)

(
AH[v]

)
∈ Rg(v)(Mg(v),n(v)).

Here AH[v] denotes the list a(h1), . . . , a(hn(v)), where {h1, . . . , hn(v)} = H[v]. If we

multiply all these cycles, we get the class
∏

v∈V(Γ)

DRg(v)

(
AH[v]

)
∈ H2g(MΓ,Q).
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We define a class DRΓ(a1, . . . , an) ∈ Rg+m−1(Mg,n) by

DRΓ(a1, . . . , an) := ξΓ∗


 ∏

v∈V(Γ)

DRg(v)

(
AH[v]

)

 .

Clearly, the class

λgDRΓ (a1, . . . , an) ∈ R2g+m−1(Mg,n)

is a polynomial in a1, . . . , an homogeneous of degree 2g.

Suppose now that a1, . . . , an are arbitrary integers and let a0 := −
∑n

i=1 ai . Consider

the set of stable trees STm
g,n+1 . It would be convenient for us to assume that the legs of

stable trees from STm
g,n+1 are marked by 0, 1, . . . , n. Let Γ ∈ STm

g,n+1 be an arbitrary

stable tree. Consider it as a rooted tree with the root v1(Γ) := v(l0(Γ)). As above, the

numbers a0, a1, . . . , an define a function a : H(Γ) → Z . Define a coefficient a(Γ) by

a(Γ) :=


 ∏

h∈He
+

(Γ)

a(h)




 ∏

v∈V(Γ)

r(v)∑
ṽ∈Desc[v] r(̃v)


 .

Let π : Mg,n+1 → Mg,n be the forgetful map that forgets the first marked point. Define

a class Ãg,m(a1, . . . , an) ∈ R2g+m−2(Mg,n) by

Ãg,m(a1, . . . , an) :=
∑

Γ∈STm
g,n+1

a(Γ)λgπ∗DRΓ(a0, a1, . . . , an).

We know that this class is a polynomial in a1, . . . , an homogeneous of degree 2g+m−1.

Note that the expression for the class Ãg,1(a1, . . . , an) is actually very simple:

Ãg,1(a1, . . . , an) = λgDRg(ã0, a1, . . . , an).

Lemma 2.2 The polynomial class Ãg,m(a1, . . . , an) is divisible by
∑n

i=1 ai .

Proof If m = 1, then the lemma follows from Lemma 2.1. Suppose m ≥ 2 and

a0 = −
∑n

i=1 ai = 0. We have to prove that

Ãg,m(a1, . . . , an) = 0.

Consider a stable tree Γ ∈ STm
g,n+1 . If g(v1(Γ)) ≥ 1, then, again by Lemma 2.1,

λgπ∗DRΓ (0, a1, . . . , an) = 0.

If g(v1(Γ)) = 0, then π∗DRΓ (0, a1, . . . , an), unless n(v1(Γ)) = 3. We obtain

Ãg,m(a1, . . . , an) =
∑

Γ∈STm
g,n+1

g(v1(Γ))=0
n(v1(Γ))=3

a(Γ)λgπ∗DRΓ (0, a1, . . . , an) .(6)
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Let us define certain maps

STm−1
g,n → {Γ ∈ STm

g,n+1|g(v1(Γ)) = 0, n(v1(Γ)) = 3}.

Note that we mark the legs of stable trees from STm−1
g,n by 1, . . . , n and the legs of

stable trees from STm
g,n+1 by 0, 1, . . . , n. Let Γ ∈ STm−1

g,n . Choose a leg l ∈ L(Γ).

Suppose that it is marked by number 1 ≤ i ≤ n. Let us attach to the leg l a new vertex

of genus 0 with two legs marked by numbers 0 and i. Denote the resulting stable tree

by Φl(Γ) ∈ STm
g,n+1 . Similarly, if we choose an edge e ∈ E(Γ), then we can break

this edge and insert a genus 0 vertex with one leg marked by 0. Denote the resulting

stable tree by Φe(Γ) ∈ STm
g,n+1 . Using these operations, we can rewrite formula (6) in

the following way:

Ãg,m(a1, . . . , an) =
∑

Γ∈STm−1
g,n


∑

l∈L(Γ)

a(Φl(Γ)) +
∑

e∈E(Γ)

a(Φe(Γ))


λgDRΓ(a1, . . . , an).

We see that it is sufficient to prove that for any stable tree Γ ∈ STm−1
g,n we have the

identity

∑

l∈L(Γ)

a(Φl(Γ)) +
∑

e∈E(Γ)

a(Φe(Γ)) = 0.(7)

We prove (7) by induction on m . It will be convenient for us to assume that the genus

g(v) of a vertex v ∈ V(Γ) can be a rational number such that 2g(v) − 2+ n(v) > 0. So

the total genus g =
∑

v∈V(Γ) g(v) can also be rational. If m = 2, then

∑

l∈L(Γ)

a(Φl(Γ)) =

n∑

i=1

−ai

2g − 1 + n
= 0.

Suppose m ≥ 3. Choose a vertex v ∈ V(Γ) such that |H[v]\L[v]| = 1. Let h be the

unique half­edge from the set H[v]\L[v]. Denote

h′ := ι(h), v′ := v(h′), r := r(v), r′ := r(v′), R := 2g − 2 + n.

Denote by e the edge of Γ corresponding the pair of half­edges (h, h′). Let us erase

the vertex v together with all half­edges incident to it. Then the half­edge h′ becomes

a leg. Let us denote it by l′ and mark by n+ 1. Finally, let us increase the genus of the

vertex v′ by r
2

. As a result, we get a stable tree from STm−2
g+ r

2
,n−|L[v]|+1

that we denote

by Γ′ . Note that the legs of Γ′ are marked by the numbers i(l), l ∈ L(Γ)\L[v], and

n + 1. We want to apply the induction assumption to the tree Γ′ . Naturally, we assign
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to a leg l ∈ L(Γ′) the number ai(l) , if l 6= l′ , and the number a(h′) =
∑

l̃∈L[v]
a(̃l), if

l = l′ . It is not hard to see that

∑

l∈L[v]

a(Φl(Γ)) =(−a(h′))
rr′

(R − r)(r + r′)
a(Φl′ (Γ

′)),

a(Φe(Γ)) =a(h′)
r′R

(R − r)(r + r′)
a(Φl′ (Γ

′)).

It is also easy to see that for any leg l ∈ L(Γ′), l 6= l′ , and for any edge e′ ∈ E(Γ′) we

have

a(Φl(Γ)) =
r′

r + r′
a(h′)a(Φl(Γ

′)), a(Φe′(Γ)) =
r′

r + r′
a(h′)a(Φe′ (Γ

′)).

Therefore, we obtain

∑

l∈L(Γ)

a(Φl(Γ)) +
∑

e′∈E(Γ)

a(Φe′ (Γ)) =

=
r′

r + r′
a(h′)


 ∑

l∈L(Γ′)

a(Φl(Γ
′)) +

∑

e′∈E(Γ′)

a(Φe′(Γ
′))


 = 0,

where the last equality follows from the induction assumption. The lemma is proved.

The lemma allows to define a class Ag,m(a1, . . . , an) by

Ag,m(a1, . . . , an) :=
1∑
ai

Ãg,m(a1, . . . , an) ∈ R2g+m−2(Mg,n).

It is a polynomial in a1, . . . , an homogeneous of degree 2g + m − 2.

Definition 2.3 For any d1, . . . , dn ≥ 0 such that δ :=
∑n

i=1 di ≥ 2g − 1 we define

A
g
d1,...,dn

:= Coef
a

d1
1
···adn

n
Ag,δ−2g+2(a1, . . . , an) ∈ Rδ(Mg,n).

If
∑

di = 2g − 1, then the formula for A
g
d1,...,dn

becomes particularly simple:

A
g
d1,...,dn

= Coef
a

d1
1
···adn

n

(
1∑
ai

λgDRg

(
˜
−
∑

ai, a1, . . . , an

))
.
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2.3 Definition of the B­class and the main conjecture

Let T be a stable rooted tree with at least n legs, where we split the set of legs in two

subsets:

­ the legs σ1, . . . , σn corresponding to the markings,

­ some extra legs, whose set is denoted by F(T), corresponding to additional

marked points that we will eventually forget.

We will never call marking an element of F(T) and let

Hem
+ (T) := H+(T)\F(T).

There is a natural level function l : V(T) → N∗ such that the root is of level 1 and if a

vertex v is the mother of a vertex v′ , then l(v′) = l(v) + 1. The total number of levels

in T will be denoted by deg(T) and called the degree of T . It is also convenient to

extend the level function to Hem
+ (T) by taking l(h) := k if the half­edge h is attached to

a vertex of level k . We say that T is complete if the following conditions are satisfied:

­ every vertex has at least one of its descendants with level deg(T),

­ all the markings are attached to the vertices of level deg(T),

­ each vertex of level deg(T) is attached to at least one marking,

­ there are no extra legs attached to the root,

­ for every vertex except the root there is at least one extra leg attached to it.

For a complete tree T define a power function

q : He
+(T) → N

by requiring that for a half­edge h ∈ He
+(T) there is exactly q(h)+1 extra legs attached

to the vertex v which is the direct descendant of h. We say that T is stable if

­ for every 1 ≤ k ≤ deg(T), there is at least one vertex v ∈ V(T) of level k such

that v remains stable once we forget all the extra legs,

­ every vertex of genus 0 with exactly one half­edge h ∈ Hem
+ (T) attached to it

has exactly q(h) + 1 extra legs attached to it,

­ every vertex of genus 0 with exactly two half­edges h1, h2 ∈ Hem
+ (T) attached

to it has exactly q(h1) + q(h2) extra legs attached to it.
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We say that a stable complete tree T is admissible if for every 1 ≤ k < deg(T) we

have the condition
∑

h∈He
+

(T)

l(h)=k

q(h) ≤ 2
∑

v∈V(T)
l(v)≤k

g(v) − 2.(8)

We denote by Ω
B,g
d1,...,dn

the set of pairs (T, q), where T is an admissible stable complete

tree with total genus g and n markings, and q : Hem
+ (T) → N is the extension of the

power function from above defined by q(σi) := di . We denote by

[T, q] := ξT∗


 ∏

h∈Hem
+

(T)

ψ
q(h)
h


 ∈ R∗(Mg,n+#F(T))

and by

e: Mg,n+#F(T) → Mg,n

the map forgetting all the extra legs.

Definition 2.4 For any d1, . . . , dn ≥ 0 with δ := d1 + · · ·+ dn , we define

(9) B
g
d1,...,dn

=
∑

(T,q)∈ΩB,g
d1,...,dn

(−1)deg(T)−1e∗[T, q] ∈ Rδ(Mg,n).

Conjecture 2.5 Suppose g ≥ 0, n ≥ 1 and 2g − 2 + n > 0. Then for any

d1, . . . , dn ≥ 0, such that
∑

di ≥ 2g − 1, we have

A
g
d1,...,dn

= B
g
d1,...,dn

.(10)

Remark 2.6 Let us show how to express the B­class in terms of basic tautological

classes. Let T be a stable complete tree with n markings. For a vertex v ∈ V(T)

denote by F[v] the set of extra legs incident to v and by Hem
+ [v] the set of half­edges

h ∈ Hem
+ (T) incident to v. The vertex v will be called strongly stable if it remains

stable once we forget all the extra legs. Otherwise, we call it weakly stable. Clearly,

the vertex v is weakly stable if and only if g(v) = 0 and |Hem
+ [v]| = 1. The set of all

strongly stable vertices of T will be denoted by Vss(T).

For a stable complete tree T denote by st(T) the stable rooted tree obtained by forgetting

all extra legs of T and then contracting all unstable vertices. Clearly, we can identify

V(st(T)) = Vss(T) and we also identify the set H(st(T)) with the set of half­edges

h ∈ H(T) such that v(h) is strongly stable.
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Suppose π : Mg,n+m → Mg,n is the forgetful map that forgets the last m marked

points. Then for any numbers c1, . . . , cn ≥ 0 we have

π∗(ψc1

1 · · ·ψcn
n ) =

∑

b1,...,bn≥0
bi≤ci∑

bi+m=
∑

ci

m!∏
(ci − bi)!

n∏

i=1

ψbi
i .

Using this formula, it is easy to see that equation (9) can be rewritten in the following

way:

B
g
d1,...,dn

=
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1×

× ξst(T)∗

∏

v∈V(st(T))

∑

p : H+[v]→Z≥0

p(h)≤q(h)∑
p(h)+|F[v]|=

∑
q(h)

|F[v]|!∏
(q(h) − p(h))!

∏

h∈H+[v]

ψ
p(h)
h .

Let us immediately present some examples of relations (10). Consider genus 0. Then

it is easy to see that for any d1, . . . , dn ≥ 0 we have

B0
d1,...,dn

= ψd1

1 · · ·ψdn
n .

On the other hand, let us compute, for example, A0
1,0,0,0 . We have

Ã0,3(a1, a2, a3, a4) =π∗




∑

{i,j,k,l}={1,2,3,4}
i<j

(ai + aj)(ai + aj + ak)

6
0

l k

i

j

0 0 0

+
∑

{i,j,k,l}={1,2,3,4}
i<j, k<l, i<k

(ai + aj)(ak + al)

3
0

i

j

k

l

0

0

0


 =

=
a2

3
0 0 = a2

1

2

3

4

0 0 ,

where a :=
∑

ai . This gives A0
1,0,0,0 =

1

2

3

4

0 0 that is indeed equal to

ψ1 = B0
1,0,0,0 .

Consider genus 1 and the case n = 1, d1 = 1. Then we have

A1
1 = Coefa

(
1

a
λ1π∗DR1(−a, a)

)
= λ1 = ψ1, B1

1 = ψ1.
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Let us give one more example with g = 2, n = 1 and d1 = 3. We compute

A2
3 = Coefa3

(
1

a
λ2DR2(−̃a, a)

)
,

B2
3 = ψ3

1 − 1 1
ψ2

.(11)

Now the relation A2
3 = B2

3 is not so trivial, and we will prove it in Section A.

Below we will check that the conjecture is true in genus 0 and 1 for arbitrary di ’s, and

also in genus 2 in the case
∑

di ≤ 4.

3 DR/DZ equivalence conjecture and the new tautological

relations

In this section we explain the relation between the above Conjecture 2.5 and the

strong double ramification/Dubrovin­Zhang hierarchies equivalence conjecture from

[3]. After recalling the main notions, we prove in particular how the first implies the

second.

3.1 Dubrovin­Zhang hierarchy

Consider an arbitrary cohomological field theory (CohFT, see [20]) cg,n : V⊗n →

Heven(Mg,n,C), with V its N ­dimensional vector space, e1, . . . , eN a basis of V , e1

the unit and η its symmetric non­degenerate bilinear form. Let F = F(t∗∗, ε) denote its

potential, i.e. the generating series of its intersection numbers with monomials in the

psi classes:

〈τd1
(eα1

) · · · τdn (eαn )〉g :=

∫

Mg,n

cg,n(⊗n
i=1eαi )

n∏

i=1

ψdi
i , 2g − 2 + n > 0, 1 ≤ αi ≤ N,

F(t∗∗, ε) :=
∑

g≥0

ε2gFg(t∗∗), where

Fg(t∗∗) :=
∑

n≥0
2g−2+n>0

1

n!

∑

d1,...,dn≥0

〈
n∏

i=1

τdi(eαi )

〉

g

n∏

i=1

tαi

di
.

In case the cohomological field theory is semisimple, in [10, 6] the authors associate

to it an integrable hierarchy of Hamiltonian PDEs. Let Â[d]
w be the degree d part of

C[[w∗
∗, ε]], where wαk , α = 1, . . . ,N , k = 0, 1, 2 . . . , are formal variables of degree



16 Alexandr Buryak, Jérémy Guéré and Paolo Rossi

deg wαk = k and deg ε = −1. Let Λ̂[d]
w be its quotient with respect to constants and the

image of the operator ∂x =
∑

k≥0 wαk+1
∂
∂wα

k
(we perform sums over repeated Greek

indices here and in what follows) and, if f ∈ Â[d]
w , let f denote its equivalence class in

Λ̂[d]
w . The Dubrovin­Zhang (DZ) hierarchy consists in Hamiltonian densities

hDZ
α,p ∈ Â[0]

w , 1 ≤ α ≤ N, p ≥ −1,

with hDZ
α,−1 = ηαµwµ , and a Hamiltonian operator

(KDZ)µν =
∑

j≥0

(KDZ)
µν
j ∂j

x, (KDZ)
µν
j ∈ Â[−j+1]

w ,

such that

{
h

DZ

α,p, h
DZ

β,q

}
KDZ

:=

∫
δh

DZ
α,p

δwµ
(KDZ)µν

(
δh

DZ

β,q

δwν

)
dx = 0, 1 ≤ α, β ≤ N, p, q ≥ −1,

where we have used the variational derivative
δf
δwµ :=

∑
i≥0(−∂x)i ∂f

∂w
µ

i
. This guarantees

that solutions wαk (x, t∗∗ , ε) = ∂k
x wα(x, t∗∗, ε) ∈ C[[x, t∗∗ , ε]] exist for the system of

Hamiltonian PDEs

∂

∂t
β
q

wα = (KDZ)αν

(
δh

DZ

β,q

δwν

)
, 1 ≤ α, β ≤ N, q ≥ 0.

Notice how this Hamiltonian system in fact only depends on the Hamiltonian func­

tionals h
DZ

α,p ∈ Λ̂[0]
w and not on the Hamiltonian densities hDZ

α,p ∈ Â[0]
w . Nonetheless,

Dubrovin and Zhang’s construction of specific Hamiltonian densities hDZ
α,p ∈ Â[0]

w is

important because it is a tau­structure (see [3] for details), which implies in particular

that, for any solution wα(x, t∗∗ , ε) ∈ C[[x, t∗∗ , ε]], there exists a formal series, called (the

logarithm of) the tau­function, F(t∗∗, ε) ∈ C[[t∗∗, ε]] such that

∂hDZ
α,p−1

∂t
β
q

∣∣∣∣∣
w∗
∗=w∗

∗(x,t∗∗ ,ε)|x=0

=
∂3F

∂t1
0∂tαp ∂t

β
q

, 1 ≤ α, β ≤ N, p, q ≥ 0.

An important property of the DZ hierarchy is that the so­called topological solution,

i.e. the solution with the initial condition (wtop)α(x, t∗∗, ε)|t∗∗=0 = δα,1x, has the potential

F(t∗∗, ε) of the underlying semisimple CohFT as the logarithm of its tau­function,

∂hDZ
α,p−1

∂t
β
q

∣∣∣∣∣
w∗
∗=(wtop)∗∗(x,t∗∗ ,ε)|x=0

=
∂3F

∂t1
0∂tαp ∂t

β
q

, 1 ≤ α, β ≤ N, p, q ≥ 0.
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3.2 Double ramification hierarchy

The double ramification (DR) hierarchy, see [1, 3], is another tau­symmetric hierarchy

of Hamiltonian PDEs associated to an arbitrary CohFT, this time even without the

requirement of semisimplicity. This time it is the Hamiltonians that are constructed as

generating series of certain intersection numbers of the CohFT with psi classes, the λg

class and the double ramification cycle. Written in formal variables ũαk , α = 1, . . . ,N ,

k = 0, 1, 2 . . . , it consists of differential polynomials

hDR
α,p ∈ Â[0]

ũ
, 1 ≤ α ≤ N, p ≥ −1,

with hDR
α,−1 = ηαµũµ , and a Hamiltonian operator

(KDR)µν =
∑

j≥0

(KDR)
µν
j ∂j

x, (KDR)
µν
j ∈ Â[−j+1]

ũ
,

such that

{
h

DR

α,p, h
DR

β,q

}
KDR

:=

∫
δh

DR

α,p

δũµ
(KDR)µν

(
δh

DR

β,q

δũν

)
dx = 0, 1 ≤ α, β ≤ N, p, q ≥ −1.

Like for the DZ hierarchy, the DR Hamiltonian densities hDR
α,p ∈ Â[0]

ũ
form a tau­

structure and we can define the DR potential as (the logarithm of) the tau­function

of the topological solution, (ũtop)α ∈ C[[x, t∗∗ , ε]] with (ũtop)α(x, t∗∗ , ε)|t∗∗=0 = δα,1x,

i.e. FDR(t∗∗, ε) ∈ C[[t∗∗, ε]] satisfies

∂hDR
α,p−1

∂t
β
q

∣∣∣∣∣
ũ∗∗=(ũtop)∗∗(x,t∗∗ ,ε)|x=0

=
∂3FDR

∂t1
0∂tαp ∂t

β
q

, 1 ≤ α, β ≤ N, p, q ≥ 0.

Clearly, this equation doesn’t determine the function FDR uniquely, but we can addi­

tionaly require that FDR should satisfy the string and the dilaton equations. Then this

fixes the potential FDR completely. We define the DR correlators as the coefficients of

the power series FDR(t∗∗, ε),

FDR(t∗∗, ε) =:
∑

g≥0

ε2gFDR
g (t∗∗), where

FDR
g (t∗∗) =:

∑

n≥0
2g−2+n>0

1

n!

∑

d1,...,dn≥0

〈
n∏

i=1

τdi(eαi )

〉DR

g

n∏

i=1

tαi

di
.
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3.3 Strong DR/DZ equivalence conjecture

In the effort of understanding the relation between the DR and DZ hierarchies associated

to the same semisimple CohFT, in [3] it was conjectured that a change of coordinates

wα 7→ ũα existed, transforming one hierarchy into the other and preserving the given

tau­structures. A natural family of such changes of coordinates (called normal Miura

transformations) has the form

(12) ũα(w) = wα + ηαµ∂x

{
P, h

DZ

µ,0

}
KDZ

,

where P ∈ Â[−2]
w is an arbitrary differential polynomial and

{
P, h

DZ

µ,0

}
KDZ

=
∑

k≥0

∂P

∂w
µ
k

∂k
x

(
(KDZ)µν

(
δh

DZ
µ,0

δwν

))
.

The effect of such a transformation on the topological tau­function of the DZ hierarchy

is the following:

F 7→ F + P(w∗
∗, ε)|w∗

∗=(wtop)∗∗(x,t∗∗ ,ε)|x=0
.

In [3] the following results were proved.

Proposition 3.1 ([3]) Let g,m ≥ 0 such that 2g − 2 + m > 0. Then

〈τd1
(eα1

) · · · τdm(eαm )〉DR
g = 0, if

m∑

i=1

di < 2g − 1.

Proposition 3.2 ([3]) There exists a unique differential polynomial P ∈ Â[−2]
w such

that for the power series Fred ∈ C[[t∗∗, ε]], defined by

Fred := F + P(w∗
∗, ε)|w∗

∗=(wtop)∗∗(x,t∗∗ ,ε)|x=0
,(13)

the correlators

〈τd1
(eα1

) · · · τdn(eαn )〉red
g := Coefε2g

∂nFred

∂t
α1

d1
· · · ∂tαn

dn

∣∣∣∣∣
t∗∗=0

satisfy the following vanishing property:

〈τd1
(eα1

) · · · τdn (eαn )〉red
g = 0, if

n∑

i=1

di < 2g − 1.(14)

In light of these two results the following conjecture was formulated in [3].
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Conjecture 3.3 (Strong DR/DZ equivalence) Consider a semisimple cohomological

field theory and the associated DZ and DR hierarchies. Then the normal Miura

transformation (12) defined by the differential polynomial P of Proposition 3.2 maps

the DZ hierarchy to the DR hierarchy respecting their tau­structures.

As proved in [3] this conjecture is equivalent to saying that Fred = FDR . This last

form of the conjecture can be generalized to arbitrary CohFTs, forgetting about the DZ

hierarchy and concentrating on the reduced and DR potentials.

Conjecture 3.4 (Generalized strong DR/DZ equivalence) For an arbitrary cohomo­

logical field theory we have FDR = Fred .

3.4 From intersection numbers to cohomology classes

The following result makes the relation between Conjecture 2.5 and Conjecture 3.4

explicit, showing in particular how the first implies the second.

Proposition 3.5 Consider an arbitrary cohomological field theory cg,n : V⊗n →

Heven(Mg,n,C). Then for any g, n ≥ 0, 2g − 2 + n > 0, and numbers d1, . . . , dn ≥ 0

such that
∑

di ≥ 2g − 1 we have

〈τd1
(eα1

) · · · τdn(eαn )〉DR
g =

∫

Mg,n

A
g
d1,...,dn

cg,n(eα1
⊗ · · · ⊗ eαn),(15)

〈τd1
(eα1

) · · · τdn(eαn )〉red
g =

∫

Mg,n

B
g
d1,...,dn

cg,n(eα1
⊗ · · · ⊗ eαn ).(16)

Proof In [4] the authors proved that for any d ≥ 2g − 1 we have
∑

d1,...,dn≥0∑
di=d

〈τd1
(eα1

) · · · τdn(eαn )〉DR
g a

d1

1 · · · adn
n =

=
1∑
ai

∑

Γ∈ST
d−2g+2
g,n+1

a(Γ)

∫

Mg,n+1

DRΓ

(
−
∑

ai, a1, . . . , an

)
λgcg,n+1

(
e1 ⊗⊗n

i=1eαi

)
=

=

∫

Mg,n

Ag,d−2g+2(a1, . . . , an)cg,n

(
⊗n

i=1eαi

)
.

Equation (15) is proved.

Let us prove equation (16). The reduced potential Fred can be constructed in the

following way. Let us recursively construct a sequence of power series

F(0,−2)
= F,F(1,0),F(2,0),F(2,1),F(2,2), . . . ,F(j,0),F(j,1), . . . ,F(j,2j−2), . . . ∈ C[[t∗∗, ε]].
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Suppose that a series F(j,k) is already defined. Introduce correlators 〈τd1
(eα1

) · · · τdn(eαn )〉(j,k)
g

by

〈τd1
(eα1

) · · · τdn(eαn )〉(j,k)
g := Coefε2g

∂nF(j,k)

∂t
α1

d1
· · · ∂tαn

dn

∣∣∣∣∣
t∗∗=0

.

If k < 2j − 2, then we define the series F(j,k+1) by

F(j,k+1) := F(j,k) −
∑

n≥0

∑

d1,...,dn≥0∑
di=k+1

ε2j

n!

〈∏
τdi(eαi )

〉(j,k)

j

∏
((wtop)αi

di
− δαi ,1δdi,1)|x=0.

(17)

If k = 2j − 2, then we define the series F(j+1,0) by an analogous formula

F(j+1,0) := F(j,2j−2) −
∑

n≥0

ε2j+2

n!

〈
n∏

i=1

τ0(eαi )

〉(j,2j−2)

j+1

∏
(wtop)αi |x=0.

Recall that

(wtop)α = ηαµ
∂2F

∂t
µ
0 ∂t1

0

∣∣∣∣
t10 7→t10+x

.

The string equation for the potential F ,

∂F

∂t1
0

=
∑

n≥0

tαn+1

∂F

∂tαn
+

1

2
ηαβ tα0 t

β
0 + ε2 〈τ0(e1)〉1 ,

implies that the function (wtop)αn |x=0 has the form

(wtop)αn |x=0 = δα,1δn,1 + tαn + rαn + O(ε2),

where the power series rαn ∈ C[[t∗∗]] doesn’t contain monomials t
β1

b1
· · · t

βm

bm
with

∑
bi ≤

n. Clearly, if g ≤ j, then we have the property

〈τd1
(eα1

) · · · τdn(eαn )〉(j,k)
g = 0, if

∑
di ≤

{
2g − 2, if g < j,

k, if g = j.

Define a series F′ by F′ := limj→∞ F(j,2j−2) . The series F′ has the form

F′
= F + P ′(wtop,wtop

x , . . . , ε)
∣∣
x=0

for some non­homogeneous differential polynomial P ′ =
∑

i≤−2 P
′
i , P ′

i ∈ Â[i]
w .

Moreover, we have the property

Coefε2g

∂nF′

∂t
α1

d1
· · · ∂tαn

dn

∣∣∣∣∣
t∗∗=0

= 0, if
∑

di ≤ 2g − 2.
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One can notice that the recursive construction, described above, is slightly different

from the recursive construction of the reduced potential Fred , presented in the proof

of Proposition 7.2 in [3]. However, using the uniqueness argument given there we can

see that F′ = Fred and that actually P ′ ∈ Â[−2]
w .

For a stable complete tree T and 1 ≤ m ≤ deg(T) let

gm(T) :=
∑

v∈V(T)
l(v)≤m

g(v).

Before we proceed, let us prove the following simple lemma.

Lemma 3.6 Let d1, . . . , dn ≥ 0, (T, q) ∈ Ω
B,g
d1,...,dn

and 1 ≤ m < deg(T). Suppose

that gm+1(T) = gm(T) and e∗[T, q] 6= 0. Then
∑

h∈He
+

(T)

l(h)=m+1

q(h) >
∑

h∈He
+

(T)

l(h)=m

q(h).

Proof Consider a half­edge h ∈ He
+(T) with l(h) = m and let v := v(ι(h)). We have

g(v) = 0 and the map e forgets all q(h) + 1 extra legs incident to v. Therefore, if v is

strongly stable, then
∑

h′∈He
+

[v] q(h′) > q(h). If v is weakly stable, then |He
+[v]| = 1

and q(h′) = q(h), where h′ ∈ He
+[v]. Since at least one vertex of level m + 1 is

strongly stable, the lemma is true.

A stable complete tree T will be called (j, k)­admissible, if for any 1 ≤ m < deg(T)

we have gm(T) ≤ j and

∑

h∈He
+

(T)

l(h)=m

q(h) ≤

{
2gm(T) − 2, if gm(T) < j,

k, if gm(T) = j.

Let Ω
B,g,(j,k)
d1,...,dn

:= {(T, q) ∈ Ω
B,g
d1,...,dn

|T is (j, k)­admissible}. Define a class B
g,(j,k)
d1,...,dn

by

B
g,(j,k)
d1,...,dn

:=
∑

(T,q)∈ΩB,g,(j,k)
d1,...,dn

(−1)deg(T)−1e∗[T, q] ∈ R
∑

di (Mg,n).

Clearly, B
g,(j,k)
d1,...,dn

= B
g
d1,...,dn

, if j > g.

In order to prove equation (16), it is sufficient to prove that for any pair (j, k) from the

sequence

(0,−2), (1, 0), (2, 0), (2, 1), (2, 2), . . . , (j, 0), (j, 1), . . . , (j, 2j − 2), . . .(18)

we have

〈τd1
(eα1

) · · · τdn(eαn )〉(j,k)
g =

∫

Mg,n

B
g,(j,k)
d1,...,dn

cg,n(eα1
⊗ · · · ⊗ eαn ),(19)
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if g > j, or g ≤ j and

∑
di >

{
2g − 2, if g < j,

k, if g = j.

We proceed by induction. Obviously, equation (19) is true for (j, k) = (0,−2). Suppose

that equation (19) is true for a pair (j, k) from the sequence (18). Let us check it for

the next pair.

Suppose k < 2j − 2. For any d1, . . . , dn ≥ 0 we have Ω
B,g,(j,k)
d1,...,dn

⊂ Ω
B,g,(j,k+1)
d1,...,dn

. Using

the induction assumption and formula (17), we see that it remains to check that

∑

g,n≥0

ε2g

n!

∑

d1,...,dn≥0

∑

(T,q)∈Ω
B,g,(j,k+1)
d1,...,dn

\Ω
B,g,(j,k)
d1,...,dn

(−1)deg(T)×(20)

×

(∫

Mg,n

e∗[T, q]cg,n(⊗n
i=1eαi )

)
∏

tαi

di
=

=
∑

n≥0

∑

d1,...,dn≥0∑
di=k+1

ε2j

n!

〈∏
τdi(eαi )

〉(j,k)

j

(∏
((wtop)αi

di
− δαi,1δdi,1)|x=0 −

∏
tαi

di

)
.

Consider a pair (T, q) ∈ Ω
B,g,(j,k+1)
d1,...,dn

\ΩB,g,(j,k)
d1,...,dn

such that e∗[T, q] 6= 0. Then there exists

1 ≤ m < deg(T) such that gm(T) = j and
∑

h∈He
+

(T)

l(h)=m

q(h) = k + 1. By Lemma 3.6,

m = deg(T) − 1. Denote by T ′ the stable rooted tree obtained by erasing all vertices

in T of level m + 1 together with half­edges incident to them. Half­edges h ∈ He
+(T)

with l(h) = m become marked legs of T ′ . Clearly, T ′ is a stable complete tree.

By Lemma 3.6, the tree T ′ is (j, k)­admissible. Using the induction assumption, we

conclude that equation (20) is true. This completes the induction step in the case

k < 2j − 2. The case k = 2j − 2 is analagous. The proposition is proved.

4 Further structure of the relations

In this section we discuss the structure of the conjectural relations (10) in more details.

In Section 4.1 we recall the formulas for the intersections of the double ramification

cycle with a ψ ­class and with a boundary divisor on Mg,n . In Section 4.2 we show

that for a fixed g ≥ 1 all relations A
g
d = B

g
d , d ≥ 2g − 1, follow from the relation

A
g
2g−1 = B

g
2g−1 . In Section 4.3 we prove that the A­ and the B­class behave in the same

way upon the pullback along the forgetful map. We then use this result in Section 4.4

in order to show that Conjecture 2.5 is true if and only if it is true when all di ’s are
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positive. In Section 4.5 we prove that the classes A
g
d1,...,dn,1

and B
g
d1,...,dn,1

behave in

the same way upon the pushforward along the map forgetting the last marked point.

Using this result, in Section 4.6 we show that Conjecture 2.5 is valid on Mg,n . In

Section 4.7 we show that the conjectural relations (10) give a new formula for the class

λg ∈ Rg(Mg) and check the resulting formula for g ≤ 3.

4.1 Formulas with the double ramification cycles

First of all, let us recall the formula from [9] for the product of the double ramification

cycle with a ψ ­class. Denote by

glk : Mg1,n1+k ×Mg2,n2+k → Mg1+g2+k−1,n1+n2

the gluing map that corresponds to gluing a curve from Mg1,n1+k to a curve from Mg2,n2+k

along the last k marked points on the first curve and the last k marked points on the

second curve. Introduce the notation

DRg1
(a1, . . . , an) ⊠k DRg2

(b1, . . . , bm) :=

=glk∗
(
DRg1

(a1, . . . , an) × DRg2
(b1, . . . , bm)

)
∈ Rg1+g2+k(Mg1+g2+k−1,n+m−2k).

Let a1, . . . , an be a list of integers with vanishing sum. For a subset I = {i1, . . . , ik} ⊂

{1, . . . , n}, i1 < i2 < . . . < ik , let us denote by AI the list ai1 , . . . , aik and by aI the

sum
∑

i∈I ai . Assume that as 6= 0 for some 1 ≤ s ≤ n. Then we have [9, Theorem 4]

asψsDRg(a1, . . . , an) =
∑

I⊔J={1,...,n}
aI>0

∑

p≥1

∑

g1,g2≥0
g1+g2+p−1=g

∑

k1,...,kp≥1∑
kj=aI

ρ

r

∏p
i=1 ki

p!
×(21)

× DRg1
(AI,−k1, . . . ,−kp) ⊠p DRg2

(AJ, k1, . . . , kp),

where r := 2g − 2 + n and

ρ :=

{
2g2 − 2 + |J| + p, if s ∈ I;

−(2g1 − 2 + |I|+ p), if s ∈ J.

Let us also recall the formula for the intersection of the double ramification cycle with

a boundary divisor on Mg,n . For 0 ≤ h ≤ g and a subset I ⊂ {1, . . . , n} we have [9]

δI
h · DRg(a1, . . . , an) = DRh (AI,−aI) ⊠1 DRg−h (AIc , aI) ,

where Ic := {1, 2, . . . , n}\I .
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4.2 One­point case

Lemma 4.1 Let g ≥ 1. Then for any k ≥ 0 we have A
g
2g−1+k = ψk

1A
g
2g−1 .

Proof Let π : Mg,2 → Mg,1 be the forgetful map that forgets the second marked

point. We compute

aψ1Ag,1(a) =ψ1λgDRg(a, −̃a) = π∗
(
π∗ψ1 · λgDRg(a,−a)

)
=

=π∗
(
ψ1 · λgDRg(a,−a)

)
− π∗

(
δ
{1,2}
0 · λgDRg(a,−a)

)
=

=
∑

g1,g2≥1
g1+g2=g

g2

g
π∗
(
λgDRg1

(a,−a) ⊠1 DRg2
(−a, a)

)

− π∗
(
λgDRg(0) ⊠1 DR0(a,−a, 0)

)
=

=Ag,2(a),

where we used that λgDRg(0) = (−1)gλ2
g = 0. If k = 1, then the lemma is proved.

If k ≥ 2, then we write the equation (a1ψ1)kAg,1(a) = (a1ψ1)k−1Ag,2(a) and apply

formula (21) to the right­hand side of it k − 1 times. The lemma is proved.

On the other hand, it is not hard to get an explicit expression for the class B
g
d . Let

g1, g2, . . . , gk ≥ 1 and d1, . . . , dk ≥ 0. Introduce a class C
g1,...,gk

d1,...,dk
∈ R

∑
di+k−1(M∑

gi,1)

by

C
g1,...,gk

d1,...,dk
:= g1 g2 gk

ψd1 ψd2
... ψdk

.

Then it is easy to see that for g ≥ 1 and d ≥ 2g − 1 we have

B
g
d =

g∑

k=1

∑

g1,...,gk≥1∑
gi=g

∑

d1,...,dk

(−1)k−1C
g1,...,gk

d1,...,dk
,

where the last sum is taken over all non­negative integers d1, . . . , dk satisfying

l∑

i=1

di + l − 1 ≤ 2

l∑

i=1

gi − 2, if 1 ≤ l ≤ g − 1,

k∑

i=1

di + k − 1 = d.

We see that B
g
d = ψ

d−2g+1
1 B

g
2g−1 . Thus, for n = 1 Conjecture 2.5 is equivalent to the

sequence of relations

A
g
2g−1 = B

g
2g−1, g ≥ 1.
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4.3 String equation

In this section we prove that the A­ and the B­class behave in the same way upon the

pullback along the forgetful map π : Mg,n+1 → Mg,n .

Proposition 4.2 Denote by π : Mg,n+1 → Mg,n the forgetful map that forgets the

last marked point. Then we have

A
g
d1,...,dn,0

=




π∗A

g
d1,...,dn

, if
∑

di = 2g − 1,

π∗A
g
d1,...,dn

+
∑

1≤i≤n
di≥1

δ
{i,n+1}
0 π∗A

g
d1,...,di−1,...,dn

, if
∑

di ≥ 2g.

(22)

Proof Let m :=
∑

di − 2g + 2. The proposition is equivalent to the equation

(23) Ãg,m(a1, . . . , an, 0) =

=

{
π∗Ãg,m(a1, . . . , an), if m = 1,

π∗Ãg,m(a1, . . . , an) +
∑n

i=1 aiδ
{i,n+1}
0 π∗Ãg,m−1(a1, . . . , an), if m ≥ 2,

where a1, . . . , an are arbitrary integers. Let a0 := −
∑n

i=1 ai . Introduce a class

Âg,m(a0, a1, . . . , an) by

Âg,m(a0, a1, . . . , an) :=
∑

Γ∈STm
g,n+1

a(Γ)λgDRΓ (a0, a1, . . . , an) .

Formula (23) follows from the equation

(24) Âg,m(a0, . . . , an, 0) =

=

{
π∗Âg,m(a0, . . . , an), if m = 1,

π∗Âg,m(a0, . . . , an) +
∑n

i=1 aiδ
{i,n+1}
0 π∗Âg,m−1(a0, . . . , an), if m ≥ 2,

where the map π : Mg,n+2 → Mg,n+1 forgets the last marked point.

For m = 1 equation (24) is clear. Suppose that m ≥ 2. Consider a stable tree

Γ ∈ STm
g,n+2 . Recall that we denote by li(Γ) the leg of Γ marked by 0 ≤ i ≤ n + 1.

We will call a vertex v ∈ V(Γ) exceptional, if g(v) = 0, n(v) = 3 and the leg ln+1(Γ)

is incident to v. An exceptional vertex v ∈ V(Γ) will be called bad, if it is not incident

to any leg li(Γ), where 1 ≤ i ≤ n. We will call the tree Γ bad, if it has a bad vertex.

Otherwise, it will be called good. For a vertex v ∈ V(Γ) let

r′(v) :=

{
2g(v) + n(v) − 2, if ln+1(Γ) is not incident to v,

2g(v) + n(v) − 3, if ln+1(Γ) is incident to v.
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For a good stable tree Γ ∈ STm
g,n+2 introduce a constant a′(Γ) by

a′(Γ) :=


 ∏

h∈He
+

(Γ)

a(h)


 ∏

v∈V(Γ)
v is not exceptional

r′(v)∑
ṽ∈Desc[v] r′ (̃v)

.

Using these notations, we can rewrite the right­hand side of (24) as follows:

π∗Âg,m(a0, . . . , an) +

n∑

i=1

aiδ
{i,n+1}
0 π∗Âg,m−1(a0, . . . , an) =

=
∑

Γ∈STm
g,n+2

Γ is good

a′(Γ)λgDRΓ (a0, a1, . . . , an, 0) .

On the other hand, by definition,

Âg,m(a0, . . . , an, 0) =
∑

Γ∈STm
g,n+2

a(Γ)λgDRΓ (a0, a1, . . . , an, 0) .

We see that we have to prove the equation

∑

Γ∈STm
g,n+2

a(Γ)λgDRΓ (a0, a1, . . . , an, 0) =
∑

Γ∈STm
g,n+2

Γ is good

a′(Γ)λgDRΓ (a0, a1, . . . , an, 0) .

(25)

Let us prove equation (25). Suppose Γ is a bad stable tree. Let us show how to

express the class a(Γ)λgDRΓ(a0, a1, . . . , an, 0) as a linear combination of the classes

λgDR
Γ̃

(a0, a1, . . . , an, 0), where the stable trees Γ̃ are good. Suppose that s ≥ 2 and

b1, . . . , bs are integers with vanishing sum. We have the following relation in the

cohomology of Mg,s+2 (see e.g. [1, eq. (5.2)]):

λg

∑

I⊔J={1,...,s}
I,J 6=∅

∑

g1+g2=g

bIDRg1
(0,BI ,−bI) ⊠1 DRg2

(0,BJ,−bJ) = 0.(26)

Suppose that the point with the zero multiplicity in the second double ramification

cycle is marked by s+ 2. Let us multiply relation (26) by ψs+2 and push it forward to

Mg,s+1 by forgetting the last marked point:

λg

∑

I⊔J={1,...,s}
I,J 6=∅

∑

g1+g2=g
2g2+|J|−1>0

bI(2g2 + |J| − 1)DRg1
(0,BI ,−bI) ⊠1 DRg2

(BJ,−bJ) = 0.

(27)
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ln+1

r1 rk−1 rk

r1
k+1

rl
k+1

. . . ...

A1 Ak−1

A1
k+1

Al
k+1

. . .
L′

︷ ︸︸ ︷

Figure 1: Stable tree Γ

Suppose that the level of the bad vertex in our bad stable tree Γ is equal to k . Then

relation (27) allows to express the class a(Γ)λgDRΓ(a0, . . . , an, 0) in terms of the

classes λgDR
Γ̃

(a0, . . . , an, 0), where the tree Γ̃ is good or bad with the bad vertex of

level k + 1. Therefore, applying relation (27) sufficiently many times, we come to a

decomposition

a(Γ)λgDRΓ(a0, . . . , an, 0) =
∑

Γ̃∈STm
g,n+2

Γ̃ is good

a(Γ, Γ̃)λgDR
Γ̃

(a0, . . . , an, 0),

where a(Γ, Γ̃) are certain coefficients. We see that for any good graph Γ we have to

prove the identity

a(Γ) +
∑

Γ̃∈STm
g,n+2

Γ̃ is bad

a(Γ̃,Γ) = a′(Γ).(28)

Let us prove (28). Suppose that the leg ln+1 = ln+1(Γ) is incident to a vertex of level

k . Denote it by vk . Denote by v1 the root of Γ . Let v1, v2, . . . , vk be the unique path

connecting v1 and vk . Denote by v1
k+1, . . . , v

l
k+1 , l ≥ 0, the direct descendants of vk .

Let L′ := L[vk]\{ln+1}. In Fig. 1 we draw our tree Γ . Note that each vertex v in the

picture is decorated by the number r(v), instead of the genus. This is more convenient

for the computations. We use the notations ri := r(vi), 1 ≤ i ≤ k , and r
j
k+1 := r(v

j
k+1),

1 ≤ j ≤ l. The symbols Ai and A
j
k+1 indicate the pieces of the tree Γ that don’t contain

the vertices vi and v
j
k+1 . Let us also introduce the following notations:

Ri :=
∑

v∈Desc[vi]

r(v), 1 ≤ i ≤ k,

R
j
k+1 :=

∑

v∈Desc[v
j

k+1
]

r(v), 1 ≤ j ≤ l,
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ln+1

r1 ri−1 11 ri rk−2 r̃

r1
k+1

rl
k+1

. . . . . . ...

A1 Ai−1 Ai Ak−2 Ak−1

A1
k+1

Al
k+1

. . .
L′

︷ ︸︸ ︷

Figure 2: Bad stable tree of the first type

ln+1

r1 ri−1 11 ri rk−1 r̃

r1
k+1

rl
k+1

. . . . . .

...

...
A1 Ai−1 Ai Ak−1

A1
k+1

Al
k+1

. . .

A
j
k+1

L′

︷ ︸︸ ︷

Figure 3: Bad stable tree of the second type

ã := a(Γ)

/


k∏

i=1

ri

Ri

l∏

j=1

r
j
k+1

R
j
k+1


 .

There are two cases: the vertex vk can be exceptional or not.

Suppose that vk is not exceptional. Then

a′(Γ) = ã
r1 · · · rk−1(rk − 1)

(R1 − 1) · · · (Rk − 1)

l∏

j=1

r
j
k+1

R
j
k+1

.

It is not hard to understand the structure of bad stable trees Γ̃ such that a(Γ̃,Γ) 6= 0.

These trees are of two types. A bad tree of of the first type is shown in Fig. 2, where

1 ≤ i ≤ k − 1 and r̃ = rk−1 + rk − 1. A bad tree of the second type is shown in Fig. 3,

where 1 ≤ i ≤ k , 1 ≤ j ≤ l and r̃ = rk + r
j
k+1 − 1. It is not hard to see that

a(Γ̃,Γ) =





ã
r1···rk−1

R1···Ri(Ri−1)···(Rk−1−1)

∏l
j=1

r
j
k+1

R
j

k+1

, if Γ̃ is of the first type,

−ã
r1···rk−1

R1···Ri(Ri−1)···(Rk−1)
R

j
k+1

∏l
m=1

rm
k+1

Rm
k+1
, if Γ̃ is of the second type.
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Therefore, equation (28) follows from the identity

k∏

i=1

ri

Ri

+

k−1∑

i=1

r1 · · · rk−1

R1 · · ·Ri(Ri − 1) · · · (Rk−1 − 1)

−

k∑

i=1

l∑

j=1

r1 · · · rk−1

R1 · · ·Ri(Ri − 1) · · · (Rk − 1)
R

j
k+1 =

=
r1 · · · rk−1(rk − 1)

(R1 − 1) · · · (Rk − 1)
,

or, equivalently,

rk

R1 · · · Rk

+

k−1∑

i=1

1

R1 · · · Ri(Ri − 1) · · · (Rk−1 − 1)
(29)

−

k∑

i=1

Rk − rk

R1 · · ·Ri(Ri − 1) · · · (Rk − 1)
=

=
rk − 1

(R1 − 1) · · · (Rk − 1)
.

Note that

rk

R1 · · ·Rk

−
Rk − rk

R1 · · ·Rk(Rk − 1)
=

rk − 1

R1 · · ·Rk−1(Rk − 1)
,

1

R1 · · ·Ri(Ri − 1) · · · (Rk−1 − 1)
−

Rk − rk

R1 · · ·Ri(Ri − 1) · · · (Rk − 1)
=

=
rk − 1

R1 · · ·Ri(Ri − 1) · · · (Rk − 1)
,

where 1 ≤ i ≤ k − 1. Therefore, equation (29) is equivalent to the equation

1

R1 · · ·Rk−1

+

k−1∑

i=1

1

R1 · · ·Ri(Ri − 1) · · · (Rk−1 − 1)
=

1

(R1 − 1) · · · (Rk−1 − 1)
,(30)

which can be easily proved by induction on k .

Suppose that vk is exceptional. Then l = 0, the set L′ consists of only one leg and

rk = Rk = 1. We have

a′(Γ) = ã
r1 · · · rk−1

(R1 − 1) · · · (Rk−1 − 1)
.

A bad stable tree Γ̃ with a(Γ̃,Γ) 6= 0 should necessarily be of the first type (see Fig. 2)

and then we have

a(Γ̃,Γ) = ã
r1 · · · rk−1

R1 · · · Ri(Ri − 1) · · · (Rk−1 − 1)
.
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We immediately see that again equation (28) follows from the elementary identity (30).

The proposition is proved.

Proposition 4.3 Denote by π : Mg,n+1 → Mg,n the forgetful map that forgets the

last marked point. Then we have

B
g
d1,...,dn,0

=




π∗B

g
d1,...,dn

, if
∑

di = 2g − 1,

π∗B
g
d1,...,dn

+
∑

1≤i≤n
di≥1

δ
{i,n+1}
0 π∗B

g
d1,...,di−1,...,dn

, if
∑

di ≥ 2g.

(31)

Proof Let (T, q) ∈ Ω
B,g
d1,...,dn

be an admissible and stable complete tree with a power

function

q : Hem
+ (T) → N,

as in Definition 2.4. We denote by deg(T) its number of levels. In particular, there

are extra legs at every vertex (except the root) that we will eventually forget when

computing the B­class.

Choose a vertex v ∈ V(T). Let C = (eC
1 , v

C
1 , . . . , e

C
deg(T)−l(v), v

C
deg(T)−l(v), σn+1) be a

chain of weakly stable vertices with a new marking σn+1 . Precisely, the edge eC
1 is

attached to the vertex vC
1 , the edge eC

k links the vertex vC
k−1 to vC

k , and the leg σn+1 is

attached to the vertex vC
deg(T)−l(v) . Moreover, every vertex is of genus 0 and contains

an extra leg. We construct a tree Tv , obtained from T by gluing the edge eC
1 (and thus

the chain C ) to the vertex v. We have Hem
+ (T) ⊂ Hem

+ (Tv) and we extend the power

function q into a function qv : Hem
+ (Tv) → N by taking

qv(hC
k ) := 0 and qv(σn+1) := 0,

where hC
k is the half­edge in Hem

+ (Tv) contained in the edge eC
k . It is easy to see that

we get

(Tv, qv) ∈ Ω
B,g
d1,...,dn,0

.

Choose a half­edge h ∈ Hem
+ (T) attached to the vertex v and such that q(h) > 0. We

construct a tree T(v,h) , obtained from T by adding an extra level between the levels l(v)

and l(v) + 1 of T as follows:

­ denote by h0, . . . , hm ∈ Hem
+ (T) the half­edges of level l(v), with h0 := h,

­ insert a pair (ek, vk) between the half­edge hk and the vertex it is attached to,

where ek = (h′k, h
′′
k ) is an edge and vk is a vertex of genus 0,

­ glue the half­edge hC
1 from the chain C to the vertex v0 ,
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­ add q(h) extra legs to the vertex v0 and q(hk) + 1 extra leg to the vertex vk , for

1 ≤ k ≤ m .

Therefore, the number of levels of the tree T(v,h) is deg(T) + 1, the vertex v0 ∈

V(T(v,h)) is the only strongly stable vertex at its level, and we have a natural inclusion

Hem
+ (Tv) ⊂ Hem

+ (T(v,h)). Then, we extend the power function qv into a function

q(v,h) : Hem
+ (T(v,h)) → N by taking

q(v,h)(h
′
k) :=

{
q(hk) − 1, if k = 0,

q(hk), if k 6= 0.

The complete tree T(v,h) is obviously stable, but not necessarily admissible. We get

(T(v,h), q(v,h)) ∈ Ω
B,g
d1,...,dn,0

⇐⇒ l(v) 6= deg(T) or

n∑

i=1

di = 2g − 1.

Furthermore, observe that when l(v) = deg(T), then the half­edge h corresponds to a

marking σi and we get

e∗[T(v,h), q(v,h)] = σi∗e∗[T, qi] = δ
{i,n+1}
0 · π∗e∗[T, qi] ∈ R∗(Mg,n+1),

where the morphism σi denotes here the section of the i­th marking in the universal

curve Cg,n ≃ Mg,n+1 , and where qi : Hem
+ (T) → N is defined by

qi(h) :=

{
di − 1, if h = σi,

q(h), otherwise.

Conversely, let (T ′, q′) ∈ Ω
B,g
d1,...,dn,0

and denote by v the first strongly stable ancestor

of the marking σn+1 . In particular, the marking σn+1 is attached to the vertex v via

a chain C of weakly stable vertices and we denote by h(n+1) ∈ Hem
+ (T ′) the half­edge

from C attached to v. We have two possibilities:

(1) v is a vertex of genus 0 with exactly two half­edges h, h(n+1) ∈ Hem
+ (T ′) attached

to it and v is the only strongly stable vertex of level l(v),

(2) v is another type of vertex.

Denote by T the tree obtained from T ′ by forgetting the chain C containing the marking

σn+1 , and contracting the level l(v) in case (1). In particular, the power function q′

restricts to a function q and we get

(T, q) ∈ Ω
B,g
d1,...,dn

and (T ′, q′) =

{
(T(v,h), q(v,h)) in case (1),

(Tv, qv) in case (2).
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Furthermore, from the formula

π∗ v

q1···qr

=
n+1

v

q1···qr

−
∑

1≤i≤r
qi>0

v

q1···q̂i···qr i

n+1

0
qi−1

(32)

expressing the pullback of ψ ­classes via the map π , we obtain

e∗π
∗([T, q]) =

∑

v∈T

e∗


[Tv, qv] −

∑

h∈Hem
+

(T)

h→v,q(h)>0

[T(v,h), q(v,h)]


 ,

for every (T, q) ∈ Ω
B,g
d1,...,dn

and where h → v means that the half­edge h is incident to

the vertex v. As a consequence, when d1 + · · ·+ dn ≥ 2g, we obtain

π∗(B
g
d1,...,dn

) =
∑

(T,q)∈Ω
B,g

d1,...,dn

(−1)deg(T)−1π∗e∗[T, q] =

=
∑

(T,q)∈Ω
B,g

d1,...,dn

(−1)deg(T)−1e∗π
∗[T, q],

where the second equality comes from the general fact that Mg,n+2 is birational to the

fiber product Mg,n+1 ×Mg,n
Mg,n+1 , and then

π∗(B
g
d1,...,dn

) =
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1
∑

v∈T


e∗[Tv, qv] −

∑

h∈Hem
+

(T)

h→v,q(h)>0

e∗[T(v,h), q(v,h)]


 =

=
∑

(T′,q′)∈ΩB,g
d1,...,dn,0

(−1)deg(T′)−1e∗[T ′, q′]

−
∑

(T,q)∈ΩB,g
d1,...,dn

(−1)deg(T)−1
∑

v∈T
l(v)=deg(T)

∑

h∈Hem
+

(T)

h→v,q(h)>0

e∗[T(v,h), q(v,h)] =

=B
g
d1,...,dn,0

−
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1
∑

1≤i≤n
di>0

δ
{i,n+1}
0 · π∗e∗[T, qi] =

=B
g
d1,...,dn,0

−
∑

1≤i≤n
di>0

δ
{i,n+1}
0 · π∗B

g
d1,...,di−1,...,dn

.
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When d1+ · · ·+dn = 2g−1, then we have seen that (T(v,h), q(v,h)) is always admissible,

so that the first three equalities are the same, but there is no second term in the last

three equalities. Hence we get

π∗B
g
d1,...,dn

= B
g
d1,...,dn,0

.

4.4 Reduction of the conjecture

Proposition 4.4 Conjecture 2.5 is true if and only if it is true when all di ’s are positive.

Furthermore, Conjecture 2.5 is true in genus 0 and in genus 1.

Proof The first statement follows immediately from Propositions 4.2 and 4.3.

Assume g = 0. Since dimM0,n = n − 3, the classes A0
d1,...,dn

and B0
d1,...,dn

are non­

trivial only if
∑

di ≤ n − 3. Therefore, we can always apply formulas (22) and (31)

to them, unless n = 3 and d1 = d2 = d3 = 0, where we get

A0
0,0,0 = B0

0,0,0 = 1 ∈ H0(M0,3,Q).

Assume g = 1. Since dimM1,n = n, the classes A1
d1,...,dn

and B1
d1,...,dn

are non­trivial

only if
∑

di ≤ n. Therefore, we can always apply formulas (22) and (31) to them,

unless d1 = d2 = . . . = dn = 1. In order to prove that A1
1,1,...,1 = B1

1,1,...,1 , it is

sufficient to check that
∫
M1,n

A1
1,1,...,1 =

∫
M1,n

B1
1,1,...,1 . Note that these two integrals

are equal to 〈τ1(e1)n〉DR
1 and 〈τ1(e1)n〉red

1 , respectively, for the trivial cohomological

field theory. The equality FDR = Fred for the trivial cohomological field theory was

checked in [3]. Therefore, Conjecture 2.5 is true in genus 1.

4.5 Dilaton equation

Here we prove that the classes A
g
d1,...,dn,1

and B
g
d1,...,dn,1

behave in the same way upon

the pushforward along the map forgetting the last marked point.

Proposition 4.5 Denote by π : Mg,n+1 → Mg,n the forgetful map that forgets the

last marked point. Then we have

π∗(A
g
d1,...,dn,1

) =

{
(2g − 2 + n)A

g
d1,...,dn

, if
∑

di > 2g − 2,

0, if
∑

di = 2g − 2.
(33)



34 Alexandr Buryak, Jérémy Guéré and Paolo Rossi

Before proving the proposition let us formulate three auxiliary statements. Recall that

for a stable tree Γ ∈ STm
g,n+1 we denote by v1(Γ) the root of Γ and by li(Γ), 0 ≤ i ≤ n,

the leg of Γ marked by i.

Lemma 4.6 Let a0, . . . , an , n ≥ 1, be integers with vanishing sum and m ≥ 2. Then

we have

Âg,m(a0, . . . , an) − a1ψ1Âg,m−1(a0, . . . , an) =

=
∑

Γ∈STm
g,n+1

v(l1(Γ))=v1(Γ)

2g − 1 + n

r(v1(Γ))
a(Γ)λgDRΓ(a0, . . . , an).

Proof Using formula (21), for an arbitrary stable tree Γ ∈ STm−1
g,n+1 we can write a

decomposition

a1ψ1 · a(Γ)λgDRΓ(a0, . . . , an) =
∑

Γ̃∈STm
g,n+1

a(Γ, Γ̃)λgDR
Γ̃

(a0, . . . , an),

where a(Γ, Γ̃) are certain coefficients. Let Γ ∈ STm
g,n+1 . The statement of the lemma

is equivalent to the following equation:

a(Γ) −
∑

Γ̃∈STm−1
g,n+1

a(Γ̃,Γ) =

{
2g−1+n
r(v1(Γ))

, if l1(Γ) is incident to v1(Γ),

0, otherwise.
(34)

Let v ∈ V(Γ) be the vertex incident to l1 = l1(Γ). Denote by v′′1 , . . . , v
′′
l , l ≥ 0,

the direct descendants of v. Let L′ := L[v]\{l1}, r := r(v), r′′i := r(v′′i ), R :=∑
ṽ∈Desc[v] r(̃v) and R′′

i :=
∑

ṽ∈Desc[v′′i ] r(̃v).

Suppose that v 6= v1(Γ). Denote by v′ ∈ V(Γ) the mother of v and let r′ := r(v′) and

R′ :=
∑

ṽ∈Desc[v′] r(̃v). We draw the stable tree Γ in Fig. 4. Similarly to the figures in

the proof of Proposition 4.2, we decorate a vertex w of Γ by number r(w). It is not

hard to see that there are exactly l + 1 stable trees Γ̃ ∈ STm−1
g,n+1 such that a(Γ̃,Γ) 6= 0.

The first one is shown on the left­hand side of Fig. 5, and the other l trees are on the

right­hand side, where 1 ≤ j ≤ l. Let

ã := a(Γ)

/
 r′

R′

r

R

l∏

j=1

r′′j

R′′
j


 .
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l1

r′ r

r′′1

r′′l

...

A′

A′′
1

A′′
l

. . .
L′

︷ ︸︸ ︷

Figure 4: Stable tree Γ

l1 r′+r

r′′1

r′′l

...

A′

A′′
1

A′′
l

. . .
L′

︷ ︸︸ ︷

l1

r′ r+r′′j

r′′1

r′′l

...

...

A′

A′′
1

A′′
l

. . .

A′′
j

L′

︷ ︸︸ ︷

Figure 5: Stable trees Γ̃ such that a(Γ̃,Γ) 6= 0

The coefficient a(Γ̃,Γ) for the left tree in Fig. 5 is equal to ã r′

R′

∏l
k=1

r′′k
R′′

k

and for the

right tree in Fig. 5 it is equal to −ã
r′R′′

j

R′R

∏l
k=1

r′′k
R′′

k

. We compute

∑

Γ̃∈STm−1
g,n+1

a(Γ̃,Γ) = ã


 r′

R′
−

l∑

j=1

r′R′′
j

R′R




l∏

k=1

r′′k
R′′

k

= ã
r′r

R′R

l∏

k=1

r′′k
R′′

k

= a(Γ).

Therefore, formula (34) is proved in the case when l1 is not incident to v1(Γ).

Suppose that v = v1(Γ). The tree Γ and stable trees Γ̃ such that a(Γ̃,Γ) 6= 0 are

shown in Fig. 6. Let

ã := a(Γ)

/
 r

R

l∏

j=1

r′′j

R′′
j


 .

The coefficient a(Γ̃,Γ) for the right tree in Fig. 6 is equal to −ã
R′′

j

R

∏l
k=1

r′′k
R′′

k

. So we
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l1

r

r′′1

r′′l

...

A′′
1

A′′
l

. . .
L′

︷ ︸︸ ︷

Γ

l1

r+r′′j

r′′1

r′′l

...

...

A′′
1

A′′
l

. . .

A′′
j

L′

︷ ︸︸ ︷

Γ̃

Figure 6: Stable tree Γ and stable trees Γ̃ such that a(Γ̃,Γ) 6= 0

compute

a(Γ) −
∑

Γ̃∈STm−1
g,n+1

a(Γ̃,Γ) = ã


 r

R
+

l∑

j=1

R′′
j

R




l∏

k=1

r′′k
R′′

k

= ã

l∏

k=1

r′′k
R′′

k

=
R

r
a(Γ).

The lemma is proved.

Lemma 4.7 Let a0, . . . , an , n ≥ 1, be integers with vanishing sum and m ≥ 2. Then

we have

Âg,m(a0, . . . , an) − a0ψ0Âg,m−1(a0, . . . , an) =

=
∑

Γ∈STm
g,n+1

2g − 1 + n

r(v1(Γ))
a(Γ)λgDRΓ(a0, . . . , an).

Proof The proof is analogous to the proof of the previous lemma.

Corollary 4.8 Let a1, . . . , an , n ≥ 1, be arbitrary integers and m ≥ 2. Denote by

π : Mg,n+1 → Mg,n the forgetful map that forgets the first marked point. Then we
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have

Ag,m(a1, . . . , an) − a1ψ1Ag,m−1(a1, . . . , an) =(35)

=
∑

Γ∈STm
g,n+1

v(l1(Γ))=v1(Γ)
g(v1(Γ))≥1

2g − 1 + n

r(v1(Γ))

a(Γ)∑
ai

λgπ∗DRΓ

(
−
∑

ai, a1, . . . , an

)

+ Âg,m−1

(
−

n∑

i=2

ai, a2, . . . , an

)
.

Proof The corollary is an elementary exercise that uses two previous lemmas and the

fact that

Ag,m(a1, . . . , an) =
1∑
ai

π∗Âg,m
(
−
∑

ai, a1, . . . , an

)
.

Proof of Proposition 4.5 Let m :=
∑

di − 2g + 3. Let us prove that

∂

∂an+1

π∗Ag,m(a1, . . . , an+1)

∣∣∣∣
an+1=0

=

{
0, if m = 1,

π∗
(
ψn+1Ag,m−1(a1, . . . , an, 0)

)
, if m ≥ 2.

(36)

For m = 1 this equation immediately follows from Lemma 2.1. Suppose m ≥ 2. Let

us rewrite equation (35) in the way that is more suitable for us:

Ag,m(a1, . . . , an+1) − an+1ψn+1Ag,m−1(a1, . . . , an+1) =(37)

=
∑

Γ∈STm
g,n+2

v(ln+1(Γ))=v1(Γ)
g(v1(Γ))≥1

2g + n

r(v1(Γ))

a(Γ)∑
ai

λgπ0∗DRΓ

(
−
∑

ai, a1, . . . , an+1

)

+ Âg,m−1

(
−

n∑

i=1

ai, a1, . . . , an

)
,

where the map π0 : Mg,n+2 → Mg,n+1 forgets the first marked point. The last term

on the right­hand side of this equation doesn’t depend on an+1 . Note also that, by

Lemma 2.1, after applying the pushforward π∗ each term in the sum on the right­hand

side of (37) becomes divisible by a2
n+1 . This proves equation (36).
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Equation (36) immediately implies the statement of the proposition for m = 1. In the

case m ≥ 2 equation (36) yields

π∗A
g
d1,...,dn,1

= π∗

(
ψn+1A

g
d1,...,dn,0

)
by Prop. 4.2

= π∗

(
ψn+1π

∗A
g
d1,...,dn

)
=

= (2g − 2 + n)A
g
d1,...,dn

.

The proposition is proved.

Proposition 4.9 Denote by π : Mg,n+1 → Mg,n the forgetful map that forgets the

last marked point. Then we have

π∗(B
g
d1,...,dn,1

) =

{
(2g − 2 + n) B

g
d1,...,dn

, if
∑

di > 2g − 2,

0, if
∑

di = 2g − 2.
(38)

Proof Let (T, q) ∈ Ω
B,g
d1,...,dn

be an admissible and stable complete tree with a power

function

q : Hem
+ (T) → N,

as in Definition 2.4. We denote by ǫ : {1, . . . , deg(T) − 1} → N the function

ǫ(k) := 2
∑

v∈V(T)
l(v)≤k

g(v) −
∑

h∈Hem
+

(T)

l(h)=k

q(h) − 2

measuring the distance to non­admissibility at the level k . As in the proof of Proposi­

tion 4.3, we have two possible ways to add a new marking labelled by n + 1.

First, choose a vertex v ∈ V(T). Let C = (eC
1 , v

C
1 , . . . , e

C
deg(T)−l(v), v

C
deg(T)−l(v), σn+1) be

a chain of weakly stable vertices with a new marking σn+1 . Precisely, the edge eC
1 is

attached to the vertex vC
1 , the edge eC

k links the vertex vC
k−1 to vC

k , and the leg σn+1 is

attached to the vertex vC
deg(T)−l(v) . Moreover, every vertex is of genus 0 and contains

two extra legs. We construct a tree Tv , obtained from T by gluing the edge eC
1 (and

thus the chain C ) to the vertex v. We have Hem
+ (T) ⊂ Hem

+ (Tv) and we extend the

power function q into a function qv : Hem
+ (Tv) → N by taking

qv(hC
k ) := 1 and qv(σn+1) := 1,

where hC
k is the half­edge in Hem

+ (Tv) contained in the edge eC
k . It is easy to see that

we get

(Tv, qv) ∈ Ω
B,g
d1,...,dn,1

⇐⇒ ∀k ∈ [l(v), deg(T) − 1], ǫ(k) ≥ 1.

In particular, when the vertex v is at the maximal level deg(T), then the tree Tv is

always admissible.
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Second, choose a half­edge h ∈ Hem
+ (T) attached to the vertex v. We construct a tree

T(v,h) , obtained from T by adding an extra level between the levels l(v) and l(v) + 1 of

T as follows:

­ denote by h0, . . . , hm ∈ Hem
+ (T) the half­edges of level l(v), with h0 := h,

­ insert a pair (ek, vk) between the half­edge hk and the vertex it is attached to,

where ek = (h′k, h
′′
k ) is an edge and vk is a vertex of genus 0,

­ glue the half­edge hC
1 from the chain C to the vertex v0 ,

­ add q(hk) + 1 extra legs to the vertex vk , for 0 ≤ k ≤ m .

Therefore, the number of levels of the tree T(v,h) is deg(T) + 1, the vertex v0 ∈

V(T(v,h)) is the only strongly stable vertex at its level, and we have a natural inclusion

Hem
+ (Tv) ⊂ Hem

+ (T(v,h)). Then, we extend the power function qv into a function

q(v,h) : Hem
+ (T(v,h)) → N by taking

q(v,h)(h
′
k) := q(hk).

We obtain

(T(v,h), q(v,h)) ∈ Ω
B,g
d1,...,dn,1

⇐⇒

{
∀k ∈ [l(v), deg(T) − 1], ǫ(k) ≥ 1, and(
l(v) 6= deg(T) or

∑n
i=1 di = 2g − 2

)
.

In particular, when the vertex v is at the maximal level deg(T), the tree T(v,h) is

admissible if and only if d1 + · · ·+ dn = 2g − 2.

Let lT ∈ [1, deg(T)] be the smallest integer such that

∀k ∈ [lT , deg(T) − 1], ǫ(k) ≥ 1.

When d1+ · · ·+dn > 2g−2 (resp. when d1+ · · ·+dn = 2g−2), the two constructions

(T, q, v) 7→ (Tv, qv) and (T, q, v, h) 7→ (T(v,h), q(v,h))

give a bijection from the set
⊔

(T,q)∈Ω
B,g

d1,...,dn

{v ∈ V(T)|l(v) ≥ lT}⊔{(v, h) ∈ V(T)×Hem
+ (T)|h → v, lT ≤ l(v) < deg(T)}

(resp. the same set with the inequality lT ≤ l(v) ≤ deg(T)) to the set Ω
B,g
d1,...,dn,1

.

Furthermore, we get the contributions

e∗π∗([Tv, qv]) =(2g(v) − 2 + n(v) + q(v) + 1)e∗[T, q],(39)

e∗π∗([T(v,h), q(v,h)]) =(q(h) + 1)e∗[T, q],(40)

where q(v) denotes the value of the power function q : Hem
+ (T) → N at the (half­)edge

linking the mother of the vertex v to the vertex v, and n(v) denotes the number of
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half­edges attached to the vertex v, without counting the extra legs. Thus, the total

number of half­edges attached to the vertex v is indeed n(v) + q(v) + 1.

Finally, when d1 + · · ·+ dn > 2g − 2, we get

π∗(B
g
d1,...,dn,1

) =
∑

(T,q)∈Ω
B,g

d1,...,dn,1

(−1)deg(T)−1π∗e∗[T, q] =

=
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1




∑

v∈V(T)
l(v)=deg(T)

π∗e∗[Tv, qv]

+
∑

v∈V(T)
lT≤l(v)<deg(T)


π∗e∗[Tv, qv] −

∑

h∈Hem
+

(T)

h→v

π∗e∗[T(v,h), q(v,h)]





 =

=
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1




∑

v∈V(T)
l(v)=deg(T)

e∗π∗[Tv, qv]

+
∑

v∈V(T)
lT≤l(v)<deg(T)


e∗π∗[Tv, qv] −

∑

h∈Hem
+

(T)

h→v

e∗π∗[T(v,h), q(v,h)]





 ,

where the minus sign in the second line of the second equality comes from the fact that

the number of levels in the tree T(v,h) is deg(T) + 1, the third equality comes from the

relation e ◦ π = π ◦ e among the forgetful maps. Using equations (39) and (40), we

get

π∗(B
g
d1,...,dn,1

) =

=
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1e∗[T, q] ·




∑

v∈V(T)
l(v)=deg(T)

(2g(v) − 2 + n(v) + q(v) + 1)

+
∑

v∈V(T)
lT≤l(v)<deg(T)


2g(v) − 1 + n(v) + q(v) −

∑

h∈Hem
+

(T)

h→v

(q(h) + 1)





 =
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=
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1e∗[T, q] ·




∑

v∈V(T)
l(v)=deg(T)

(2g(v) + n(v) − 1 + q(v))

+
∑

v∈V(T)
lT≤l(v)<deg(T)


2g(v) + q(v) −

∑

h∈Hem
+

(T)

h→v

q(h)





 =

=
∑

(T,q)∈ΩB,g
d1,...,dn

(−1)deg(T)−1e∗[T, q] ·


2

∑

v∈V(T)
l(v)≥lT

g(v) + n

+



∑

v∈V(T)
l(v)≥lT

q(v) −
∑

v∈V(T)
lT≤l(v)<deg(T)

∑

h∈Hem
+

(T)

h→v

q(h)





 =

=
∑

(T,q)∈Ω
B,g

d1,...,dn

(−1)deg(T)−1e∗[T, q] ·


2

∑

v∈V(T)
l(v)≥lT

g(v) + n +
∑

v∈V(T)
l(v)=lT

q(v)


 .

We conclude using the equality ǫ(lT − 1) = 0:

π∗(B
g
d1,...,dn,1

) =

=
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1e∗[T, q] ·


2

∑

v∈V(T)
l(v)≥lT

g(v) + n + 2
∑

v∈V(T)
l(v)<lT

g(v) − 2


 =

=(2g − 2 + n)
∑

(T,q)∈ΩB,g

d1,...,dn

(−1)deg(T)−1e∗[T, q] = (2g − 2 + n)B
g
d1,...,dn

.

When d1 + · · · + dn = 2g − 2, we have the same sequence of equalities with the

additional term

−
∑

(T,q)∈ΩB,g

d1,...,dn

∑

v∈V(T)
l(v)=deg(T)

∑

h∈Hem
+

(T)

h→v

(−1)deg(T)−1e∗π∗[T(v,h), q(v,h)] =

=−
∑

(T,q)∈ΩB,g
d1,...,dn

(−1)deg(T)−1e∗[T, q] · (n + d1 + · · ·+ dn) =

=− (2g − 2 + n)B
g
d1,...,dn

,
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coming from the fact that (T(v,h), q(v,h)) ∈ Ω
B,g
d1,...,dn,1

when l(v) = deg(T).

4.6 Validity of the conjecture on Mg,n

Let g, n,m ≥ 0 such that 2g − 2 + n > 0 and denote by π(m) : Mg,n+m → Mg,n the

map forgetting the last m markings. By definition, the restriction of Conjecture 2.5

to Mg,n is the following statement.

Proposition 4.10 The restriction of Conjecture 2.5 to Mg,n is true. Precisely, for

every integers d1, . . . , dn+m ≥ 1 such that

d1 + · · · + dn+m > 2g − 2,

we have (
π(m)
∗ (A

g
d1,...,dn+m

)
)∣∣∣

Mg,n

=

(
π(m)
∗ (B

g
d1,...,dn+m

)
)∣∣∣

Mg,n

∈ R∗(Mg,n).

Proof Using Propositions 4.5 and 4.9, we can assume that dn+1, . . . , dn+m ≥ 2.

Furthermore, the Chow degree of the two classes in the statement is

δ := d1 + · · · + dn + (dn+1 − 1) + · · · + (dn+m − 1).

We get

δ > 2g − 2 − m and δ ≥ n + m.

Summing these two inequalities yields

δ > g +
n

2
− 1 ≥ g − 1.

We conclude with the following result from [17]:

Rp(Mg,n) = 0, for all p > g − 1.

4.7 New expression for λg

Let us show that our conjectural relations (10) give a new formula for the class λg ∈

Rg(Mg).

Let g ≥ 2 and consider the class

Ag,1(a1, . . . , ag−1) = λg

1∑
ai

DRg

(
˜
−
∑

ai, a1, . . . , ag−1

)
.
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Let π : Mg,g−1 → Mg be the forgetful map that forgets all marked points. Then,

by (5),

π∗Ag,1(a1, . . . , ag−1) = g!λga2
1 · · · a2

g−1

∑
ai.

Thus,

λg =
1

g!
π∗A

g
3,2,...,2 ∈ Rg(Mg).

So, Conjecture 2.5 implies that

λg =
1

g!
π∗B

g
3,2,...,2 ∈ Rg(Mg).(41)

We can easily see that the expression on the right­hand side of this equation is a

linear combination of basic tautological classes ξΓ∗(γ), where Γ is a tree. No such

expressions for the class λg were known before. Let us write explicitly and prove the

resulting formulas in genus 2 and 3.

4.7.1 Genus 2

We already wrote the expression for B2
3 in (11). Pushing it forward to M2 and dividing

by 2, we get that Conjecture 2.5 implies

λ2 =
1

2
κ2 −

1

2
1 1

κ1

.(42)

The relation A2
3 = B2

3 is proved in Section A, so formula (42) is true.

4.7.2 Genus 3

We compute

B3
3,2 =ψ3

1ψ
2
2 − 10

1

2

3 0
ψ4

−
1

2

2 1
ψ ψ

ψ2

− 2
1

2

2 1
ψ ψ2

ψ
−

1

2

2 1
ψ ψ3

−
1

2

2 1
ψ2

ψ2

− 3
1

2

2 1
ψ2

ψ

ψ
− 3

1

2

2 1
ψ2 ψ2

− 1

2

2 1
ψ2

ψ2

−
1

2

1 2
ψ3

ψ

−
1

2

1 2
ψ2

ψ2

+ 10
1

2

2 1 0
ψ ψ2

+ 10
1

2

2 1 0
ψψ2

+ 1

2

2 0 1
ψ ψ2
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+

1

2

1 1 1
ψ

ψ2

+ 2
1

2

1 1 1
ψ2

ψ
+

1

2

1 1 1
ψ3

+

1

2

1 1 1
ψ

ψ2

+ 3
1

2

1 1 1
ψ

ψ

ψ
+ 3

1

2

1 1 1
ψ ψ2

+ 1

2

1 1 1
ψ2

ψ
+ 10

1

2

1 2 0
ψ3

− 10
1

2

1 1 1 0
ψ2

− 10
1

2

1 1 1 0
ψ ψ − 1

2

1 1 0 1
ψ2

.

Pushing forward this expression to M3 and dividing it by 6, we get that Conjecture 2.5

implies

λ3 =−
3

2
κ3 +

1

6
κ1κ2 +

2

3
2 1
ψ

κ1

−
1

6
2 1

κ1 κ1

+
5

6
2 1

κ2

−
1

6
2 1

κ2
1

(43)

−
1

3
1 1 1

κ1

.

Let us prove this equation. In [11] C. Faber proved that the whole cohomology ring

of M3 is tautological and that it is generated by the classes

δ0 := 2 δ1 := 2 1 λ1 κ2.

There are 13 monomials of cohomological degree 6 in these classes. C. Faber proved

that dim R3(M3) = 10 and found 3 relations between the 13 monomials (see [11,

page 407]). These relations easily imply that the following 10 classes form a basis in

R3(M3):

δ2
0λ1, δ0δ1λ1, δ0λ

2
1, δ0κ2, δ

3
1 , δ

2
1λ1, δ1λ

2
1, λ

3
1, δ1κ2, λ1κ2.

It is not hard to check that each of these 10 classes has the same intersection numbers

with both sides of equation (43). So, formula (43) is true.

5 Restricted set of relations

In this section we show that the strong DR/DZ equivalence conjecture for semisimple

cohomological field theories follows from the restricted set of relations (10), where∑
di = 2g and di ≥ 1.

Consider an arbitrary cohomological field theory in genus 0, c0,n : V⊗n → H∗(M0,n,C).

Let F0(t∗∗) be its potential. Suppose we have a deformation F(t∗∗, ε) of F0 the form

F = F0 +
∑

g≥1

ε2gFg, Fg ∈ C[[t∗∗]].
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Introduce formal power series (wsol)α(x, t∗∗ , ε) by (wsol)α := ηαµ ∂2F

∂t
µ

0 ∂t10

∣∣∣
t1
0
7→t1

0
+x

, and

let (wsol)αn := ∂n
x (wsol)α . We will use the following notation:

〈τd1
(eα1

) · · · τdn(eαn )〉g :=
∂nFg

∂t
α1

d1
· · · ∂tαn

dn

∣∣∣∣∣
t∗∗=0

.

A correlator 〈τd1
(eα1

) · · · τdn(eαn )〉g will be called admissible, if
∑

di ≤ 2g.

Lemma 5.1 Suppose that the following conditions are satisfied:

• we have the vanishing property

〈τd1
(eα1

) · · · τdn(eαn )〉g = 0, if
∑

di ≤ 2g − 2;(44)

• the string and the dilaton equations hold:

∂F

∂t1
0

=
∑

n≥0

tαn+1

∂F

∂tαn
+

1

2
ηαβtα0 t

β
0 ,

∂F

∂t1
1

= ε
∂F

∂ε
+
∑

n≥0

tαn
∂F

∂tαn
− 2F + ε2 N

24
;

• for each µ there exists a differential polynomial Ω1,1;µ,0 ∈ Â[0]
w such that

Ω1,1;µ,0|wγ

n =(wsol)
γ

n
=

∂2F

∂t1
1∂t

µ
0

∣∣∣∣
t1
0
7→t1

0
+x

.(45)

Then all correlators 〈τd1
(eα1

) · · · τdn(eαn )〉g are uniquely determined by the admissible

correlators.

Proof The topological recursion relation in genus zero implies that the primary corre­

lators 〈τ0(eα1
) · · · τ0(eαn )〉0 determine all correlators in genus zero. Denote by Rd the

subspace of C[[t∗∗]] defined by

Rd :=
{∑

cd1,...,dn
α1,...,αn

∏
tαi

di
∈ C[[t∗∗]]

∣∣∣cd1,...,dn
α1,...,αn

= 0, if
∑

di ≤ d − 1
}
.

From the string equation and the vanishing property (44) it follows that the function

(wsol)αn |x=0 has the form

(wsol)αn |x=0 = δα,1δn,1 + tαn + rαn +
∑

g≥1

qαg,nε
2g, rαn ∈ Rn+1, qαg,n ∈ R2g+n.(46)

Introduce a grading in the ring C[[t∗∗]] by deg tαd := d and consider the expansion

qαg,n =
∑

k≥0

qαg,n,k, deg qαg,n,k = 2g + n + k.
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Note that the functions qαg,n,0 and qαg,n,1 are determined by the admissible correlators.

Let us show that
∂2Ω1,1;µ,0

∂(w1
x )2 = 0. Consider a monomial f of the form

f = ε2h(w1
x)lw

α1

d1
· · ·wαn

dn
, l +

∑
di = 2h, (αi, di) 6= (1, 1).(47)

Then property (46) implies that

(f |wα
n =(wsol)αn

)|x=0 = ε2h(t
α1

d1
· · · tαn

dn
+ h0) +

∑

k≥1
m≥0

ε2h+2khk,m,(48)

where h0 ∈ R2h−l+1 , deg hk,m = 2h + 2k − l + m and the functions hk,0 and hk,1 are

completely determined by the admissible correlators. Suppose now that
∂2Ω1,1;µ,0

∂(w1
x )2 6= 0.

Consider monomials f (47) with the minimal h such that l ≥ 2 and the coefficient of

f in the differential polynomial Ω1,1;µ,0 is non­zero. Let us choose such a monomial

with as big l as possible. Then using equation (45) we can see that

〈
τ0(eµ)

∏
τdi(eαi )

〉
h
=

1

2h − 1 + n

〈
τ1(e1)τ0(eµ)

∏
τdi(eαi )

〉
h
6= 0.

This contradicts the vanishing property (44), because
∑

di = 2h − l ≤ 2h − 2. We

conclude that
∂2Ω1,1;µ,0

∂(w1
x )2 = 0.

Let us now prove that the differential polynomial Ω1,1;µ,0 is completely determined by

the admissible correlators. Let

cd1,...,dn
g;α1,...,αn

:= Coefε2g

∂nΩ1,1;µ,0

∂w
α1

d1
· · · ∂wαn

dn

,
∑

di = 2g.

Let us prove by induction on g that all coefficients c
d1,...,dn
g;α1,...,αn are uniquely determined

by the admissible correlators. We already know it for g = 0. Suppose g ≥ 1. Using

property (48) we see that if (βi, qi) 6= (1, 1) and
∑

qi = 2g − 1, then the difference
〈
τ1(e1)τ0(eµ)

∏
τqi(eβi

)
〉

g
− c

1,q1,...,qm

g;1,β1,...,βm

can be expressed in terms of the admissible correlators and the coefficients c
r1,...,ri

h;γ1,...,γi

with h < g. Similarly, if (βi, qi) 6= (1, 1) and
∑

qi = 2g, then the difference
〈
τ1(e1)τ0(eµ)

∏
τqi(eβi

)
〉

g
− c

q1,...,qm

g;β1,...,βm

can be expressed in terms of the admissible correlators, the coefficients c
r1,...,ri

h;γ1,...,γi
with

h < g and the coefficients c
1,s1,...,sj

g;1,ρ1,...,ρj
. We conclude that the differential polynomial

Ω1,1;µ,0 is completely determined by the admissible correlators.
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We see that the functions (wsol)α are solutions of the following system of partial

differential equations:

∂wα

∂t1
1

= ηαµ∂xΩ1,1;µ,0, 1 ≤ α ≤ N.

The argument from the proof of Proposition 5.2 in [5] shows that using this system

together with the string and the dilaton equations for F one can uniquely reconstruct

the whole solution (wsol)α starting from the dispersionless part (wsol)α|ε=0 . After that

using the string and the dilaton equations it is easy to reconstruct the whole function

F . The lemma is proved.

Proposition 5.2 Suppose that all relations (10) with
∑

di = 2g and di ≥ 1 are true.

Then the strong DR/DZ equivalence conjecture is true for any semisimple cohomolog­

ical field theory.

Proof Consider an arbitrary semisimple cohomological field theory. Propositions 4.2, 4.3,

4.5 and 4.9 imply that all relations (10) with
∑

di ≤ 2g are true. Therefore,

〈
∏
τdi(eαi )〉

DR
g = 〈

∏
τdi (eαi )〉

red
g , if

∑
di ≤ 2g. Both potentials FDR and Fred satisfy

the assumptions of Lemma 5.1 (see [3]). Therefore, the lemma implies that FDR = Fred .

So the strong DR/DZ equivalence conjecture is true.

In the appendix we will prove that relations (10) are true, when g = 2, di ≥ 1

and
∑

di ≤ 4. Therefore, the strong DR/DZ equivalence conjecture is true for all

semisimple cohomological field theories at the approximation up to genus 2.

A Proof of the restricted genus 2 relations

Here we prove relations (10), when g = 2, di ≥ 1 and
∑

di ≤ 4.

A.1 Relation A2
d = B2

d

As we know from Section 4.2, in order to prove that A2
d = B2

d for any d ≥ 3, it is

sufficient to prove that A2
3 = B2

3 . We have

B2
3 = ψ3

1 − 1 1
ψ2

,
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and A2
3 = Coefa4

(
λ2DR2(−̃a, a)

)
. The group H2(M2,1,Q) has dimension 3 and a

basis is given by (see e.g. [15])

ψ1 δ0 := 1 δ1 := 1 1 .

So it is sufficient to check that the intersection of the difference A2
3 − B2

3 with these

three classes is zero. We compute

∫

DR2(−̃a,a)

λ2ψ1 =
a4

1152
⇒

∫

M2,1

A2
3ψ1 =

1

1152
,

∫

DR2(−̃a,a)

λ2δ0 = 0 ⇒

∫

M2,1

A2
3δ0 = 0,

∫

DR2(−̃a,a)

λ2δ1 =
a4

576
⇒

∫

M2,1

A2
3δ1 =

1

576
,

and

∫

M2,1

B2
3ψ1 =

∫

M2,1

ψ4
1 =

1

1152
,

∫

M2,1

B2
3δ0 = 1

ψ3

− 0 1
ψ2

= 0,

∫

M2,1

B2
3δ1 = 1 1

ψ2ψ
=

1

576
.

Thus, A2
3 = B2

3 .

A.2 Relation A2
2,1 = B2

2,1

We have

B2
2,1 = ψ2

1ψ2 − 3
1

2

2 0
ψ2

−
1

2

1 1
ψ

ψ
−

1

2

1 1
ψ2

+ 3
1

2

1 1 0
ψ

.

(49)
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In [15] E. Getzler proved that H∗(M2,2,Q) = R∗(M2,2). Moreover, he proved that

the group R2(M2,2) has dimension 14 with a basis given by

δ22 :=
1

2

2 0
ψ

δ11| :=

1 2

1 0 1 δ11|1 :=

1 2

1 0 1

(50)

δ11|2 :=

2 1

1 0 1 δ11|12 :=
1

2

1 1 0 δ01| :=

1 2

0 1

δ01|1 :=

2 1

0 1 δ01|2 :=

1 2

0 1 δ01|12 :=
1

2

0 1

δ0| :=
1

2

1 0 δ0|1 := 1 21 0 δ0|2 := 2 11 0

δ0|12 :=
1

2

1 0 δ00 := 12 0

We compute∫

DR2(−̃a1−a2,a1,a2)

λ2δ22 =

=

∫

DR2(−̃a1−a2,a1+a2)

λ2ψ1 =
(a1 + a2)4

1152
⇒

∫

M2,2

A2
2,1δ22 =

1

384
,

∫

DR2(−̃a1−a2,a1,a2)

λ2δ11| = 0 ⇒

∫

M2,2

A2
2,1δ11| = 0,

∫

DR2(−̃a1−a2,a1,a2)

λ2δ11|1 =
a2

1(a1 + a2)2

576
⇒

∫

M2,2

A2
2,1δ11|1 =

1

576
,

∫

DR2(−̃a1−a2,a1,a2)

λ2δ11|2 =
a2

2(a1 + a2)2

576
⇒

∫

M2,2

A2
2,1δ11|2 = 0,

∫

DR2(−̃a1−a2,a1,a2)

λ2δ11|12 =
(a1 + a2)4

576
⇒

∫

M2,2

A2
2,1δ11|12 =

1

192
.

Since λg|Mg,n\Mct
g,n

= 0, the intersections of all remaining 9 classes from (50) with

A2
2,1 are equal to zero. It is not hard to compute the intersections of the class B2

2,1 with

the classes from (50) ans see that they agree with what we have just computed for A2
2,1 .

Thus, A2
2,1 = B2

2,1 .
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A.3 Relation A2
1,1,1 = B2

1,1,1

We have

B2
1,1,1 =ψ1ψ2ψ3 − 2 2 0

ψ

ψ
− 6 2 0

ψ2

− 2 2 0
ψ ψ

− 1 1
ψ

ψ
(51)

+ 4 2 0 0
ψ

+ 2 1 1 0
ψ

+ 2 1 1 0
ψ

+ 6 1 1 0
ψ

+ 2 1 1 0
ψ

− 4 1 1 0 0 .

Introduce the following notations:

α1 := 1 0 0 1 α2 :=
1

1

0 0 α3 :=
1

1

0 0

α4 := 1 1 0 0 α5 :=
1

1

0 0 α6 := 1 0 1 0

a
i,j,k
3,2,1 := 1 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

a
i,j,k
1,4,1 := 1 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

a
i,j,k
1,2,3 := 1 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

a
i,j,k
2,3,1 := 0 1 0

...︸︷︷︸
j legs

...︸︷︷︸
i legs

...︸︷︷︸
k legs

b
i,j,k
2,3,1 := 1 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

b
i,j,k
1,3,2 := 1 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

b
i,j,k
3,2,1 := 0 1 0

...︸︷︷︸
k legs

...︸︷︷︸
i legs

...︸︷︷︸
j legs

c
1,1,1
2,2,2 := 1

0

0

c
0,2,1
2,2,2 := 1

0

0

Denote by L′ the subspace of R3(M2,3) spanned by boundary strata ξΓ∗(1), where the

first Betti number of a stable graph Γ is equal to 2. The symmetric group S3 acts on

M2,3 by permutations of marked points. This action induces an action on R∗(M2,3).

Define a map Sym: R∗(M2,3) → R∗(M2,3) by

Sym(α) :=
1

3!

∑

σ∈S3

σα, α ∈ R∗(M2,3).

Let L := Sym(L′) ⊂ R3(M2,3)S3 . For two classes α, β ∈ R3(M2,3) we will write

α
mod L
= β , if α−β ∈ L . Using the formulas for ψ2

1 ∈ R2(M2,1) and ψ1ψ2 ∈ R2(M2,2)
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from [15] and also the topological recursion relations in genus 0 and 1, after a long

computation we obtain

B2
1,1,1

mod L
= −

3α1

5
+

3α2

10
+

4α3

5
+

4α4

15
+
α5

10
−

4α6

5
+

1

360
a

0,1,2
1,2,3 −

1

90
a

0,2,1
1,2,3

−
1

24
a

0,3,0
1,2,3 +

1

40
a

1,1,1
1,2,3 +

1

180
a

1,2,0
1,2,3 −

1

120
a

2,1,0
1,2,3 −

5

48
a

0,0,3
1,4,1 −

1

80
a

0,1,2
1,4,1

−
1

144
a

1,0,2
1,4,1 +

1

80
a

0,0,3
2,3,1 −

7

240
a

0,1,2
2,3,1 +

1

240
a

1,0,2
2,3,1 +

1

90
a

0,1,2
3,2,1 +

7

90
b

0,1,2
1,3,2

+
1

45
b

0,2,1
1,3,2 +

1

90
b

1,1,1
1,3,2 −

11

30
b

0,0,3
2,3,1 −

1

10
b

0,1,2
2,3,1 −

1

90
b

1,0,2
2,3,1 −

1

30
b

0,1,2
3,2,1

+
1

5
c

0,2,1
2,2,2 +

2

45
c

1,1,1
2,2,2.

On the other hand, a direct computation using Hain’s formula gives

Coefa1a2a3

(
1

a1 + a2 + a3

DR2( ˜−a1 − a2 − a3, a1, a2, a3)

)∣∣∣∣
Mct

2,3

=

=(ψ1 + ψ2 + ψ3) − 6 2 0 − 3 2 0 −
6

5
1 1 −

1

5
1 1 .

In this computation one should use that (see e.g. [15])

κ1 =
7

10
1 1 +

1

10
1 ∈ R1(M2).

Using the formula ([19])

λ2 =
1

960
0 +

1

240
1 0 ∈ R2(M2),

we obtain the following formula for the class A2
1,1,1 :

A2
1,1,1

mod L
=

1

120
a

0,1,2
1,2,3 +

1

60
a

0,2,1
1,2,3 +

1

40
a

0,3,0
1,2,3 +

1

120
a

1,1,1
1,2,3 +

1

60
a

1,2,0
1,2,3 +

1

120
a

2,1,0
1,2,3

−
1

80
a

0,0,3
1,4,1 −

1

240
a

0,1,2
1,4,1 −

1

240
a

1,0,2
1,4,1 −

1

80
a

0,0,3
2,3,1 −

1

240
a

0,1,2
2,3,1 −

1

240
a

1,0,2
2,3,1.

Thus,

B2
1,1,1 − A2

1,1,1
mod L
= −

3α1

5
+

3α2

10
+

4α3

5
+

4α4

15
+
α5

10
−

4α6

5
−

1

180
a

0,1,2
1,2,3

−
1

36
a

0,2,1
1,2,3 −

1

15
a

0,3,0
1,2,3 +

1

60
a

1,1,1
1,2,3 −

1

90
a

1,2,0
1,2,3 −

1

60
a

2,1,0
1,2,3

−
11

120
a

0,0,3
1,4,1 −

1

120
a

0,1,2
1,4,1 −

1

360
a

1,0,2
1,4,1 +

1

40
a

0,0,3
2,3,1 −

1

40
a

0,1,2
2,3,1

+
1

120
a

1,0,2
2,3,1 +

1

90
a

0,1,2
3,2,1 +

7

90
b

0,1,2
1,3,2 +

1

45
b

0,2,1
1,3,2 +

1

90
b

1,1,1
1,3,2

−
11

30
b

0,0,3
2,3,1 −

1

10
b

0,1,2
2,3,1 −

1

90
b

1,0,2
2,3,1 −

1

30
b

0,1,2
3,2,1 +

1

5
c

0,2,1
2,2,2 +

2

45
c

1,1,1
2,2,2.
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The famous Getzler relation [14] says that

γ := 0 1 0 −
1

3
1 0 0 −

1

6
1 0 0 +

1

2
1 0 0 +(52)

+
1

24
0 0 +

1

24
0 0 −

1

12
0 0 =

=0 ∈ R2(M1,4).

We will adopt the following notation. Suppose g1, g2 ≥ 0 and let i1, . . . , ik and

j1, . . . , jl be two lists of integers such that {i1, . . . , ik, j1, . . . , jl} = {1, 2, . . . , k + l}.

Consider the moduli spaces Mg1,k+1 and Mg2,l+1 , but let us label the marked points on

curves from Mg1,k+1 and Mg2,l+1 by the numbers i1, . . . , ik, k+l+1 and j1, . . . , jl, k+

l + 2, respectively. Denote by

gl
g1|g2

i1,...,ik|j1,...,jl
: Mg1,k+1 ×Mg2,l+1 → Mg1+g2,k+l

the gluing map that glues the marked points labeled by k + l + 1 and k + l + 2. From

Getzler’s relation we obtain

(gl
1|1
|1,2,3,4)∗([M1,1] × γ) =

α1

3
−
α2

6
− α3 −

α4

3
+
α5

2
+ α6 +

1

24
a

0,2,1
1,2,3(53)

+
1

24
a

0,3,0
1,2,3 +

1

24
a

0,0,3
1,4,1 −

1

12
b

0,1,2
1,3,2 = 0 ∈ R3(M2,3).

Notice that the WDVV relation on M0,5 implies that −α1

3
+

α2

6
+

α5

2
= 0. Using this

observation and expressing the class α6 via formula (53), we get

B2
1,1,1 − A2

1,1,1
mod L
= −

1

180
a

0,1,2
1,2,3 +

1

180
a

0,2,1
1,2,3 −

1

30
a

0,3,0
1,2,3 +

1

60
a

1,1,1
1,2,3 −

1

90
a

1,2,0
1,2,3

(54)

−
1

60
a

2,1,0
1,2,3 −

7

120
a

0,0,3
1,4,1 −

1

120
a

0,1,2
1,4,1 −

1

360
a

1,0,2
1,4,1 +

1

40
a

0,0,3
2,3,1

−
1

40
a

0,1,2
2,3,1 +

1

120
a

1,0,2
2,3,1 +

1

90
a

0,1,2
3,2,1 +

1

90
b

0,1,2
1,3,2 +

1

45
b

0,2,1
1,3,2

+
1

90
b

1,1,1
1,3,2 −

11

30
b

0,0,3
2,3,1 −

1

10
b

0,1,2
2,3,1 −

1

90
b

1,0,2
2,3,1 −

1

30
b

0,1,2
3,2,1

+
1

5
c

0,2,1
2,2,2 +

2

45
c

1,1,1
2,2,2.

Let π : M1,5 → M1,4 be the forgetful map that forgets the fifth marked point and

gl1,5 : M1,5 → M2,3 be the gluing map that glues the first and the fifth marked points.
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Then from Getzler’s relation (52) we obtain

gl1,5∗(π∗γ)
mod L
=

1

2
a

0,1,2
1,2,3 −

1

6
a

0,2,1
1,2,3 −

1

3
a

1,1,1
1,2,3 +

1

2
a

0,0,3
1,4,1 −

1

6
a

0,1,2
1,4,1 −

1

3
a

1,0,2
1,4,1 + a

0,1,2
2,3,1

−
1

3
a

0,1,2
3,2,1 +

1

2
b

0,0,3
1,3,2 +

1

3
b

0,1,2
1,3,2 −

1

6
b

0,2,1
1,3,2 −

1

3
b

1,0,2
1,3,2 −

1

3
b

1,1,1
1,3,2

+
1

2
b

0,0,3
2,3,1 −

1

2
b

0,1,2
2,3,1 −

1

3
b

1,0,2
2,3,1 + b

0,1,2
3,2,1 + c

0,2,1
2,2,2 −

2

3
c

1,1,1
2,2,2 ∈ L.

We can obtain another consequence from (52). Let gl1,2 : M1,5 → M2,3 the the gluing

map that glues the first two marked points. Then Getzler’s relation implies that

Sym(gl1,2∗(π∗γ))
mod L
=

1

3
a

0,1,2
1,2,3 +

5

18
a

0,2,1
1,2,3 −

1

6
a

0,3,0
1,2,3 +

1

18
a

1,1,1
1,2,3 −

5

18
a

1,2,0
1,2,3 −

2

9
a

2,1,0
1,2,3

−
1

6
a

0,0,3
1,4,1 −

1

18
a

0,1,2
1,4,1 −

1

18
a

1,0,2
1,4,1 + a

0,0,3
2,3,1 +

1

3
a

0,1,2
2,3,1 +

1

3
a

1,0,2
2,3,1

+ b
0,0,3
1,3,2 +

1

9
b

0,1,2
1,3,2 −

2

9
b

0,2,1
1,3,2 −

1

9
b

1,0,2
1,3,2 −

1

3
b

1,1,1
1,3,2 −

4

9
b

2,0,1
1,3,2

−
2

3
b

0,0,3
2,3,1 −

2

9
b

0,1,2
2,3,1 −

2

9
b

1,0,2
2,3,1 +

4

9
c

0,2,1
2,2,2 +

2

9
c

1,1,1
2,2,2 ∈ L.

Adding 1
30

gl1,5∗(π∗γ) − 1
40

Sym(gl1,2∗(π∗γ)) to the right­hand side of (54), we get

B2
1,1,1 − A2

1,1,1
mod L
=

1

360
a

0,1,2
1,2,3 −

1

144
a

0,2,1
1,2,3 −

7

240
a

0,3,0
1,2,3 +

1

240
a

1,1,1
1,2,3 −

1

240
a

1,2,0
1,2,3

(55)

−
1

90
a

2,1,0
1,2,3 −

3

80
a

0,0,3
1,4,1 −

1

80
a

0,1,2
1,4,1 −

1

80
a

1,0,2
1,4,1 −

1

120
b

0,0,3
1,3,2

+
7

360
b

0,1,2
1,3,2 +

1

45
b

0,2,1
1,3,2 −

1

120
b

1,0,2
1,3,2 +

1

120
b

1,1,1
1,3,2 +

1

90
b

2,0,1
1,3,2

−
1

3
b

0,0,3
2,3,1 −

1

9
b

0,1,2
2,3,1 −

1

60
b

1,0,2
2,3,1 +

2

9
c

0,2,1
2,2,2 +

1

60
c

1,1,1
2,2,2.

The WDVV relations on M0,4 , M0,5 and M0,6 imply that

c
1,1,1
2,2,2 =b

1,0,2
2,3,1,

c
0,2,1
2,2,2 =

3

2
b

0,0,3
2,3,1 +

1

2
b

0,1,2
2,3,1,

a
2,1,0
1,2,3 =b

2,0,1
1,3,2,

b
1,0,2
1,3,2 =

1

2
a

1,1,1
1,2,3 + a

1,2,0
1,2,3 −

1

2
b

1,1,1
1,3,2,
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b
1,1,1
1,3,2 =a

1,2,0
1,2,3 + a

1,0,2
1,4,1,

b
0,0,3
1,3,2 =

1

3
a

0,1,2
1,2,3 +

2

3
a

0,2,1
1,2,3 + a

0,3,0
1,2,3 −

2

3
b

0,1,2
1,3,2 −

1

3
b

0,2,1
1,3,2,

b
0,2,1
1,3,2 =

1

2
a

0,2,1
1,2,3 +

3

2
a

0,3,0
1,2,3 +

3

2
a

0,0,3
1,4,1 +

1

2
a

0,1,2
1,4,1 − b

0,1,2
1,3,2.

Using these relations, one can easily check that the right­hand side of (55) is zero. We

conclude that B2
1,1,1 − A2

1,1,1 ∈ L .

It is easy to see that the space L is spanned by the following classes:

β1 := 0 0 β2 := 0 0 β3 := 0 0 β4 := 0 0

β5 := 0 0 β6 := 0 0 β7 := 0 0 β8 := 0 0

β9 := 0 0

The WDVV relations on M0,7 give the following relations:

β2 − β4 + β7 − β8 =0,

β1 + β2 + 2β3 +
1

3
β5 +

1

3
β7 −

4

3
β8 −

2

3
β9 =0.

Therefore, dim L ≤ 7. On the other hand, in Figure 7 we compute the intersection ma­

trix of the classes β1, . . . , β9 with the following seven classes: ψ3
1 , ψ

2
1ψ2, ψ1ψ2ψ3, κ3 ,

κ1κ2, ψ1κ2, ψ
2
1δ ; where

δ := 1 1 .

This matrix is non­degenerate, so dim L = 7. Thus, is order to prove that A2
1,1,1 =

B2
1,1,1 it is sufficient to check that the intersections of A2

1,1,1 − B2
1,1,1 with the classes

ψ3
1 , ψ

2
1ψ2, ψ1ψ2ψ3 , κ3, κ1κ2, ψ1κ2, ψ

2
1δ are zero. This is a simple direct computation.

The relation A2
1,1,1 = B2

1,1,1 is proved.
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β1 β2 β3 β4 β5 β6 β7 β8 β9

ψ3
1 0 1 0 1 1 0 0 0 2

ψ2
1ψ2 0 3 0 3 0 1 1 1 3

ψ1ψ2ψ3 0 6 0 6 0 0 6 6 0

κ3 0 1 0 1 3 0 0 0 3

κ1κ2 1 9 1 9 27 3 3 3 27

ψ1κ2 1 4 0 4 4 2 1 1 8

ψ2
1δ 0 −2 1 0 2 0 2 0 2

Figure 7: Intersection matrix of β1, . . . , β9 with ψ3
1 , ψ

2
1ψ2, ψ1ψ2ψ3, κ3, κ1κ2, ψ1κ2, ψ

2
1δ

A.4 Relations A2
3,1 = B2

3,1 and A2
2,2 = B2

2,2

Suppose g, n ≥ 1 and a1, . . . , an ∈ Z . Let a :=
∑

ai . The following formula is the

particular case of Corollary 4.8 when m = 2:

Ag,2(a1, . . . , an) − a1ψ1Ag,1(a1, . . . , an) =(56)

=λgDRg (a1 − a, a2, . . . , an)

+ λg

∑

g1≥1, g2≥0
g1+g2=g

∑

I⊔J={1,...,n}
1∈I

2g2−1+|J|>0

aJ

a
DRg1

(
−̃a,AI , aJ

)
⊠1 DRg2

(AJ,−aJ) .

Let us prove now that A2
d1,d2

= B2
d1,d2

, where (d1, d2) = (3, 1) or (d1, d2) = (2, 2). By

equation (56), we have

A2
d1,d2

− ψ1A2
d1−1,d2

=

=Coef
a

d1
1

a
d2
2

(
1

a1 + a2

λ2DR1( ˜−a1 − a2, a1, a2) ⊠1 DR1(a2,−a2)

)
=

=Coef
a

d1
1

a
d2
2

(
(a1 + a2)a3

2

576 1 2

0 0 0

)
= 0.

On the other hand, it is easy to compute that

B2
3,1 =ψ3

1ψ2 −
1

2

1 1
ψ2

ψ
−

1

2

1 1
ψ3

,

B2
2,2 =ψ2

1ψ
2
2 −

1

2

1 1
ψ2

ψ
−

1

2

1 1
ψ

ψ2

.
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Comparing these expressions with formula (49), we can easily see that B2
3,1 = ψ1B2

2,1

and B2
2,2 = ψ1B2

1,2 . Since the relation A2
2,1 = B2

2,1 is already checked, the relations

A2
3,1 = B2

3,1 and A2
2,2 = B2

2,2 are now also proved.

A.5 Relation A2
2,1,1 = B2

2,1,1

Using equation (56), we compute

A2
2,1,1 − ψ1A2

1,1,1 =

=
∑

I⊔J={1,2,3}
1∈I, |J|≥1

Coefa2
1
a2a3

(
aJ∑

ai

λ2DR1

(
˜
−
∑

ai,AI , aJ

)
⊠1 DR1(AJ,−aJ)

)
+

(57)

+ Coefa2
1a2a3

(
a2 + a3∑

ai

λ2DR2

(
˜
−
∑

ai, a1, a2 + a3

)
⊠1 DR0(a2, a3,−a2 − a3)

)
.

(58)

Let us look at a term in the sum in line (57). The class λ1DR1(AJ,−aJ) is a polynomial

in the variables aj, j ∈ J , and it doesn’t depend on a1 . We have

1

a1 + a2 + a3

λ1DR1( ˜−a1 − a2 − a3,AI , aJ) = (a1 + a2 + a3)λ1 ∈ R1(M1,|I|+1).

So, the polynomial class in the brackets in line (57) depends on a1 at most linearly.

Therefore, the expression in line (57) is equal to zero. Let us look at the expression in

line (58). We can easily see that it is equal to

2 · Coefa2b2(gl
2,0
1|2,3)∗

(
b

a + b
λ2DR2(−̃a − b, a, b) × [M0,3]

)
=

= 2 · (gl
2|0
1|2,3)∗

(
A2

2,1 × [M0,3]
)
.

As a result, we obtain

A2
2,1,1 = ψ1A2

1,1,1 + 2 · (gl
2|0
1|2,3)∗

(
A2

2,1 × [M0,3]
)
.

On the other hand, we have

B2
2,1,1 =ψ2

1ψ2ψ3 − 6
1

2 0
ψ2 ψ

− 3
1

2 0
ψ

ψ2

− 1 1

ψ
ψ

ψ
−

1

1 1
ψ

ψ2

+ 6
1

1 1 0
ψ ψ

+ 3
1

1 1 0
ψ

ψ
.
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Using also formula (51), we compute

B2
2,1,1 − ψ1B2

1,1,1 =− 3
1

2 0
ψ

ψ2

+ 3
1

1 1 0
ψ

ψ
+ 2

1

2 0
ψ

ψ2

− 2

1

1 1 0

ψ2

− 2

1

1 1 0
ψ

ψ
=

=2

1

2 0
ψ

ψ2

− 6

1

2 0 0
ψ2

− 2

1

1 1 0
ψ

ψ

− 2

1

1 1 0

ψ2

+ 6

1

1 1 0 0
ψ

.

Using (49) we see that the last expression is equal to 2 · (gl
2|0
1|2,3)∗

(
B2

2,1 × [M0,3]
)

and

we get

B2
2,1,1 = ψ1B2

1,1,1 + 2 · (gl
2|0
1|2,3)∗

(
B2

2,1 × [M0,3]
)
.

Since the relations A2
2,1 = B2

2,1 and A2
1,1,1 = B2

1,1,1 are proved, we conclude that relation

A2
2,1,1 = B2

2,1,1 is true.

A.6 Relation A2
1,1,1,1 = B2

1,1,1,1

We follow the same strategy, as in the previous section. Using equation (56), we

compute

A2
1,1,1,1 − ψ1A2

0,1,1,1 =

=
∑

I⊔J={1,2,3,4}
I∋1, |J|≥1

Coefa1a2a3a4

(aJ

a
λ2DR1(−̃a,AI, aJ) ⊠1 DR1(AJ,−aJ)

)
+(59)

+
∑

I⊔J={1,2,3,4}
I∋1, |J|≥2

Coefa1a2a3a4

(aJ

a
λ2DR2(−̃a,AI, aJ) ⊠1 DR0(AJ,−aJ)

)
,(60)

where a :=
∑4

i=1 ai . Let us look at a term in the sum in line (59). We have
1
a
λ1DR1(−̃a,AI , aJ) = aλ1 ∈ R1(M1,|I|+1) and the class λ1DR1(AJ,−aJ) doesn’t

depend on the variables ai , i ∈ I . Therefore, the coefficient of a1a2a3a4 can be
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non­zero only if I = {1}. So the expression in line (59) is equal to

(gl
1|1
1|2,3,4)∗

(
λ1 × Coefa2a3a4

((a2 + a3 + a4)λ1DR1(a2, a3, a4,−a2 − a3 − a4))
)
=

(61)

=−

1

1 1 0

λ1 λ1

− 3

1

1 1 0

λ1 λ1

+ 2

1

1 0 1

λ1 λ1

+ 3

1

1 0 1

λ1 λ1

+ 3

1

1 0 1

λ1 λ1

.

The expression in line (60) is equal to

6(gl
2|0
1|2,3,4)∗

(
A2

1,2 × [M0,4]
)
+ 2

∑

{i,j,k}={2,3,4}
j<k

(gl
2|0
1,i|j,k)∗

(
A2

1,1,1 × [M0,3]
)
.

On the other hand, we have

B2
1,1,1,1 =ψ1ψ2ψ3ψ4 − 6 2 0

ψ2 ψ
− 2 2 0

ψ

ψ

ψ
− 2 2 0

ψ

ψ

ψ
− 1 1

ψ
ψ
ψ

− 4 2

0

0

ψ

ψ
+ 4 2 0 0

ψ ψ
+ 6 1 1 0

ψ ψ
+ 2 1 1 0

ψ

ψ

+ 2 1 1 0
ψ

ψ
+ 2 1 1 0

ψ ψ
+ 8 0

0

0

2
ψ

− 4 1 1 0 0
ψ

+ 4 1

0

0

1
ψ

− 8 1 1 0

0

0

.

After a long direct computation, that uses only the genus 0 topological recursion

relation, we obtain

B2
1,1,1,1 − ψ1B2

0,1,1,1 =6(gl
2|0
1|2,3,4)∗

(
B2

1,2 × [M0,4]
)

(62)

+ 2
∑

{i,j,k}={2,3,4}
j<k

(gl
2|0
1,i|j,k)∗

(
B2

1,1,1 × [M0,3]
)
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+ 6

1

1 1 0
ψ2

+ 2

1

1 1 0
ψ

ψ
− 2

1

1 1 0 0
ψ

−
1

1 1 ψ
ψψ

+




1

1 1
ψψψ

− 2

1

1 1 0
ψψ

− 2

1

1 1 0
ψ

ψ

−6

1

1 1 0
ψ

ψ
+ 2

1

1 1 0 0
ψ


 .

Using the formula

ψ1 = λ1 +

1

2

1 0 ∈ R1(M1,2),

we can rewrite the expression in brackets on the right­hand side of equation (62) as




1

1 1
ψψ

λ1

− 2

1

1 1 0
ψ

λ1

− 2

1

1 1 0
ψ

λ1

− 6

1

1 1 0
ψ

λ1

(63)

+ 2

1

1 1 0 0

λ1


+

1

1

0 1
ψψ

− 2

1

1

0 1 0
ψ

− 2

1

1

0 1 0
ψ

− 6

1

1

0 1 0
ψ

+ 2

1

1

0 1 0 0 .

The expression on the right­hand side of equation (61) has the form (gl
1|1
1|2,3,4)∗(λ1 ×α),

where

α =− 4 1 0

λ1

− 3 4 1 0

λ1

+ 2 4 0 1

λ1

+ 3 4 0 1

λ1

+ 3 4 0 1

λ1

.
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The part in brackets in expression (63) has the form (gl
1|1
1|2,3,4)∗(λ1 × β), where

β = 4 1
ψψ

− 2 4 1 0
ψ

− 2 4 1 0
ψ

− 6 4 1 0
ψ

+ 2 4 1 0 0 .

Expressing all psi classes using the genus 1 topological recursion relation and also

using the WDVV relation, it is easy to show that α = β . Since A2
2,1 = B2

2,1 and

A2
1,1,1 = B2

1,1,1 , we obtain

B2
1,1,1,1 − A2

1,1,1,1 =6

1

1 1 0
ψ2

+ 2

1

1 1 0
ψ

ψ
− 2

1

1 1 0 0
ψ

(64)

−
1

1 1 ψ
ψψ

+

1

1 0 1
ψψ

− 2

1

1 0 1 0
ψ

− 2

1

1 0 1 0
ψ

− 6

1

1 0 1 0
ψ

+ 2

1

1 0 1 0 0 .

Define an operator Sym: R∗(M2,4) → R∗(M2,4) by

Sym(α) :=
1

4!

∑

σ∈S4

σα, α ∈ R∗(M2,4),

where the symmetric group S4 acts on M2,4 by permutations of marked points. Ap­

plying the operator Sym to both sides of equation (64) we obtain

B2
1,1,1,1 − A2

1,1,1,1 =
3

2
1 1 0

ψ2

+
1

2
1 1 0

ψ

ψ
−

1

2
1 1 0 0

ψ

−
1

4
1 1 ψ

ψψ

+
1

4
1 0 1

ψψ
−

1

2
1 0 1 0

ψ

−
1

2
1 0 1 0

ψ
−

3

2
1 0 1 0

ψ

+
1

2
1 0 1 0 0 .
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We see that the expression on the right­hand side has the form (gl
1|1
|1,2,3,4)∗

(
M1,1 × ρ

)
,

where

ρ =
3

2
5 1 0

ψ2

+
1

2
5 1 0

ψ

ψ
−

1

2
5 1 0 0

ψ
−

1

4
5 1 ψ

ψψ

+
1

4
5 0 1

ψψ
−

1

2
5 0 1 0

ψ
−

1

2
5 0 1 0

ψ

−
3

2
5 0 1 0

ψ
+

1

2
5 0 1 0 0 .

It is sufficient to prove that ρ = 0. For this we express all the psi classes using the

genus 1 topological recursion relation, and then prove that ρ = 0 using the WDVV

relation and Getzler’s relation. This computation is straightforward, but quite long, so

we present here only the most interesting parts of it. Expressing all the psi classes we

obtain

ρ = λ1θ1 + θ2,

where θ1 ∈ R2(M1,5) and θ2 ∈ R3(M1,5) are sums of boundary strata. Using the

WDVV relation it is not hard to prove that θ2 = 0. For the class λ1θ1 we get the

following expression:

λ1θ1 =a
0,1,3
1 +

1

6
a

0,2,2
1 −

1

6
a

1,1,2
1 −

1

4
a

0,0,4
2 +

7

8
a

0,1,3
2 +

1

8
a

0,2,2
2 +

5

4
a

1,0,3
2 +

1

4
a

1,1,2
2

+ a
2,0,2
2 −

7

16
a

0,1,3
3 −

3

4
a

0,2,2
3 +

1

16
a

0,3,1
3 −

7

12
a

1,1,2
3 +

1

12
a

1,2,1
3 + b

0,2,2
1

−
3

2
b

0,1,3
2 −

1

2
b

1,1,2
2 ,

where we use the following notations:

a
i,j,k
1 := 5 1 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

λ1

a
i,j,k
2 :=

5

1 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

λ1

a
i,j,k
3 := 51 0 0

...︸︷︷︸
i legs

...︸︷︷︸
j legs

...︸︷︷︸
k legs

λ1

b
0,2,2
1 :=

5

0 1 0

λ1

b
i,j,k
2 := 5 0 1 0

...︸︷︷︸
j legs

...︸︷︷︸
i legs

...︸︷︷︸
k legs

λ1
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Consider Getzler’s relation (52). Let π : M1,5 → M1,4 be the forgetful map that

forgets the last marked point. We have

λ1π
∗γ =

1

2
a

0,1,3
1 −

1

6
a

0,2,2
1 −

1

3
a

1,1,2
1 +

1

2
a

0,1,3
2 −

1

6
a

0,2,2
2 −

1

3
a

1,1,2
2 +

1

2
a

0,1,3
3

−
1

6
a

0,2,2
3 −

1

3
a

1,1,2
3 + b

0,2,2
1 + b

0,2,2
2 = 0 ∈ R3(M1,5).

Let π′ : M1,5 → M1,4 be the forgetful map that forgets the first marked point. We

assume, that after forgetting the first marked point, a point labeled by i, i ≥ 2, on a

curve from M1,5 becomes a point labeled by i−1 on a curve in M1,4 . The symmetric

group S4 acts on M1,5 by permutations of the first four marked points. Define a map

Sym′ : R∗(M1,5) → R∗(M1,5) by

Sym′(α) :=
1

4!

∑

σ∈S4

σα, α ∈ R∗(M1,5).

We have

λ1Sym′((π′)∗γ) =−
1

4
a

0,1,3
1 −

1

6
a

0,2,2
1 −

1

12
a

1,1,2
1 +

1

2
a

0,0,4
2 −

1

12
a

0,2,2
2 −

1

8
a

1,0,3
2

−
1

8
a

1,1,2
2 −

1

6
a

2,0,2
2 +

3

8
a

0,1,3
3 +

1

6
a

0,2,2
3 −

1

8
a

0,3,1
3 −

1

24
a

1,1,2
3

−
5

24
a

1,2,1
3 −

1

6
a

2,1,1
3 +

3

4
b

0,1,3
2 +

1

2
b

0,2,2
2 +

1

4
b

1,1,2
2 = 0 ∈ R3(M1,5).

We compute

λ1θ1 =λ1θ1 − λ1π
∗γ + 2λ1Sym′((π′)∗γ) =

=
3

4
a

0,0,4
2 +

3

8
a

0,1,3
2 +

1

8
a

0,2,2
2 + a

1,0,3
2 +

1

3
a

1,1,2
2 +

2

3
a

2,0,2
2 −

3

16
a

0,1,3
3 −

1

4
a

0,2,2
3

−
3

16
a

0,3,1
3 −

1

3
a

1,1,2
3 −

1

3
a

1,2,1
3 −

1

3
a

2,1,1
3 .

Finally, applying the WDVV relations

a
2,1,1
3 =2a

2,0,2
2 ,

a
1,0,3
2 =−

1

3
a

1,1,2
2 +

1

3
a

1,1,2
3 +

1

3
a

1,2,1
3 ,

a
0,0,4
2 =−

1

2
a

0,1,3
2 −

1

6
a

0,2,2
2 +

1

4
a

0,1,3
3 +

1

3
a

0,2,2
3 +

1

4
a

0,3,1
3 ,

it is easy to see that λ1θ1 = 0. The relation A2
1,1,1,1 = B2

1,1,1,1 is proved.
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[3] A. Buryak, B. Dubrovin, J. Guéré, P. Rossi, Tau­structure for the double ramification

hierarchies, Communications in Mathematical Physics 363 (2018), no. 1, 191–260.
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