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A B S T R A C T

Spontaneous brain activity at rest is spatially and temporally organized in networks of cortical and subcortical regions specialized for different functional domains.
Even though brain networks were first studied individually through functional Magnetic Resonance Imaging, more recent studies focused on their dynamic ‘inte-
gration’. Integration depends on two fundamental properties: the structural topology of brain networks and the dynamics of functional connectivity. In this scenario,
cortical hub regions, that are central regions highly connected with other areas of the brain, play a fundamental role in serving as way stations for network traffic. In
this review, we focus on the functional organization of a set of hub areas that we define as the ‘dynamic core’. In the resting state, these regions dynamically interact
with other regions of the brain linking multiple networks. First, we introduce and compare the statistical measures used for detecting hubs. Second, we discuss their
identification based on different methods (functional Magnetic Resonance Imaging, Diffusion Weighted Imaging, Electro/Magneto Encephalography). Third, we show
that the degree of interaction between these core regions and the rest of the brain varies over time, indicating that their centrality is not stationary. Moreover,
alternating periods of strong and weak centrality of the core relate to periods of strong and weak global efficiency in the brain. These results indicate that information
processing in the brain is not stable, but fluctuates and its temporal and spectral properties are discussed. In particular, the hypothesis of ‘pulsed’ information pro-
cessing, discovered in the slow temporal scale, is explored for signals at higher temporal resolution.
Introduction

Two complementary principles underlie cognition in the brain:
functional specialization and dynamic integration (Fox and Friston,
2012; Tononi et al., 1994). Over the past two decades it has been shown
that spontaneous brain activity (i.e. at rest in the absence of any task) is
organized in functionally specialized large-scale networks (or resting
state networks – RSNs) (Attwell and Laughlin, 2001; Biswal et al., 1995;
Fox et al., 1988; Snyder and Raichle, 2012). Several RSNs have been
observed: attentional, visual, somato-motor, auditory, language, execu-
tive control, and default systems that roughly correspond to different
functional domains (Doucet et al., 2011; Glasser et al., 2016; Hacker
et al., 2013; Yeo et al., 2011). These networks were originally studied
assuming temporal stationarity, but recent methodological developments
indicate that these networks are dynamic (i.e. they evolve over time). For
recent reviews, see (Hutchison et al., 2013; Preti et al., 2016), although
see the critique on the influence on the fMRI dynamics of head motion,
sampling variability and fluctuating sleep state reported in (Laumann
et al., 2016). We posit that efficient processing of information necessarily
must involve dynamic (i.e. time varying) integration among spatially
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separate networks as behavior unfolds. A possible mechanism easing this
dynamic integration is the presence of structural and functional ‘hub’
regions. By hub it is meant a node showing either many connections or
connections that place it in a central position for facilitating the
communication within a network (Power et al., 2013). The centrality can
be assessed by several metrics, as discussed in the next section, and the
connections can be both structural or functional. A fundamental question
is whether ‘structural’ and ‘functional’ hubs correspond (Cole et al.,
2014; Shirer et al., 2012; van den Heuvel and Sporns, 2013b).

However, most of what we know about brain dynamic integration
comes either from structural studies (e.g. diffusion weighted imaging
-DWI- imaging) that infer aspects of temporal organization based on the
structural properties of brain networks, or from functional studies,
mainly functional magnetic resonance imaging (fMRI), that examines
this integration at low temporal resolution. This review focuses on the
issue of dynamic integration as examined with electrophysiological
methods that allow for high temporal resolution, specifically magneto-
encephalography (MEG), electroencephalography (EEG), and electro-
corticography (EcoG). First, we briefly discuss different measures that
have been adopted to identify structural or functional hubs in the brain
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Table 1
List of abbreviations adopted in the text and figures.

Abbreviation Full Name Abbreviation Full Name

α band [8, 13] Hz L/R mt Left/Right Middle
Temporal

ACC Anterior Cingulate
Cortex

L/R pips Left/Right Posterior
Intraparietal Sulcus

AD Alzheimer Disease L/R put Left/Right Putamen
AIC Anterior Insula Cortex L/R SII Secondary

somatosensory region
aTL Anterior Temporal

Lobe
LAN Language Network

AUD Auditory Network LFP Local Field Potential
β band [14, 25] Hz LPC Lateral Prefrontal Cortex
BC Betweenness

Centrality
MOG Middle Occipital Gyrus

BLP Band Limited Power mPFC Medial Prefrontal Cortex
CCN Cognitive Control

Network
MTG

D L/R PFC Dorso (Left/Right)
Prefrontal Cortex

PCC Posterior Cingulate
Cortex

D/V AN Dorsal/Ventral
Attention Network

PFC Prefrontal Cortex

DC Degree Centrality PI Participation Index
DMN Default Mode Network PMC Pre-Motor Cortex
DPFC Dorso Prefrontal

Cortex
PPC Posterior Parietal Cortex

EVC Eigenvector Centrality θ band [3.5, 7] Hz
FEF Frontal Eye Field RSN Resting State Networks
FPN Fronto Parietal

Network
SFC Superior Frontal Cortex

γ band [27, 70] Hz SMA Supplementary Motor
Area

GE Global Efficiency SMN Sensory Motor Network
HMM Hidden Markov Model STG Superior Temporal

Gyrus
IFG*
Insula*

Inferior Frontal Gyrus TMPFC Temporal Cortex

L/R AG/IPL Left/Right Angular
Gyrus

V1,2,3,7 Visual Areas 1,2,3,7

L/R CS Left/Right Central
Sulcus

VIS Visual Network
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(Bassett and Sporns, 2017; van den Heuvel and Sporns, 2013b). This is
important since differences among these measures, and the different
metrics to estimate the spatiotemporal structure of connectivity typically
lead to discrepancies in the literature on the precise localization of cen-
tral regions, (Buckner et al., 2009; Bullmore and Sporns, 2012; Cole et al.,
2010; de Pasquale et al., 2012; de Pasquale et al., 2013; Hagmann et al.,
2008; Power et al., 2013; Tomasi and Volkow, 2011; van den Heuvel and
Sporns, 2013b). Next, we introduce the concept of dynamic core, defined
as a set of brain regions showing the most consistent dynamic centrality
with the rest of the brain (de Pasquale et al., 2016; de Pasquale et al.,
2013). These areas appear to be overlapping with structural and func-
tional hubs as identified with fMRI and DWI. We characterize the tem-
poral and frequency properties of these regions, and the dynamics of
their centrality. We propose that this dynamic core plays a fundamental
role for an efficient and flexible communication across different func-
tional domains. Specifically, such communication is not stable, but
slowly varies over time allowing for different temporal modes of network
interaction. These can be altered during active behavior and disease, and
may relate to faster modes of network synchronization.

Cortical hubs in the brain

Identification of cortical hubs: measures of centrality

Several local and global measures can be applied from graph theory to
characterize the topology of networks and to identify central (hub) re-
gions (Bassett and Sporns, 2017; Bullmore and Sporns, 2009; Sporns,
2013). In this framework, a graph is an ordered set of nodes and edges
represented by brain voxels (or parcels) and some measure of their
coupling, respectively. The coupling is typically represented by structural
(anatomical links), functional (statistical and symmetric dependence), or
effective (causal interactions) connectivity information (Friston, 1994).
The graph can be binarized (i.e. all connections are either 0 or 1) or
weighted and directed or undirected. A directed graph consists of a set N
of nodes and a set E of edges which are ordered pairs of elements of N.
The edges have a direction associated with them. On the contrary, in an
undirected graph the edges are bidirectional and thus correspond to
unordered pairs of nodes. Directed edges can be obtained from effective
connectivity or tract tracing studies. Since the concept of centrality in-
volves different aspects such as the number of edges, their strength and
quality (intra vs inter-modular connections), the definition of a cortical
hub depends on the metrics adopted. In what follows, we provide an
overview, far from exhaustive, of some typical measures of centrality,
more details can be found in (Rubinov and Sporns, 2010).

The degree K (for a complete list of abbreviations used in the text, see
Table 1) is defined as the number of edges connecting a node in a binary
graph, see eq. (1) in SI. In weighted graphs it is defined as the sum of edge
weights connecting to a node. This measure is widely adopted, for
example it has been reported that high K nodes, obtained from structural
connectomes, tend to be more connected to each other forming a “Rich
Club” (van den Heuvel and Sporns, 2011). However, as noted in (Power
et al., 2013), a drawback of K is its dependence on the community size.
This implies that assessing the centrality through K might inflate the
importance of nodes that belong to large networks. In fact a node with
high Kmay be either a connector (connecting nodes of different modules)
or a provincial (connecting nodes within the same module) hub.

An alternative measure, less sensitive to the eventual inflation
induced by the community size, is the betweenness centrality (BC), see
eq. (2) in SI, defined as the number of times a node participates in a
shortest path (i.e. the node acts as a bridge between the strongest con-
nections of any two nodes). BC is more sensitive to detecting connector
hubs than provincial ones, and it often co-varies with other measures of
nodal centrality (Zuo et al., 2012).

Another measure of hubness, less influenced by the community size,
is the participation index (PI), see eq. (3) in SI, that measures how ‘well-
distributed’ the links of a node are among different modules. The PI of a
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node is close to 1 if its links are uniformly distributed among all modules,
and 0 if all its links are within its own module (Guimera and Nunes
Amaral, 2005). Thus, this measure classifies hubs as nodes participating
to a large number of communities (i.e. showing a large number of edges
linking them to different modules). Nodes with a high PI behave as
connector hubs while nodes with a low PI as provincial ones. Thus, it may
happen that a node with a high degree scores a low PI, as in the case of a
provincial hub, while K and PI agree in connector hubs. For this reason,
the role of a node can be determined, to a great extent, by its
within-module degree and its participation index, which define how the
node is positioned in its own module and with respect to other modules,
see (Guimera and Nunes Amaral, 2005; Sporns et al., 2007). Notably, PI
depends on the outcome of the decomposition of the network into
modules, and thus on the modularity measure adopted.

The measures K, BC, PI are local metrics. A global measure of cen-
trality, although less used than the previous ones, is the recursive
Eigenvector Centrality (EVC). In eq. (4) in SI we provide the mathe-
matical definition, see (Lohmann et al., 2010; Zuo et al., 2012). The EVC
classifies a node as central only if it is connected to other central nodes
and thus it measures the influence of a node in a network. It assigns
relative scores to all nodes in the network based on the concept that
connections to high-scoring nodes contribute more to the score of the
node in question than equal connections to low-scoring nodes. For this
reason, EVC provides complementary information compared to K, since
the EVC of a node connected through few but important links might be
large despite a low K and vice versa. An important aspect in the analysis
of binary graphs and related estimation of centrality is the choice of the
threshold. This is discussed in the Supplementary Information.
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Functional hubs in fMRI and MEG

By measuring K, fMRI hubs (van den Heuvel and Sporns, 2013b) were
mainly found in the Default Mode Network (DMN, in regions/nodes such
as Posterior Cingulate Cortex (PCC), Medial Prefrontal Cortex (mPFC),
Angular Gyrus (AG)), see Fig. 1A and Table 1 (Buckner et al., 2009; Cole
et al., 2010; de Pasquale et al., 2013; Tomasi and Volkow, 2010; Zuo
et al., 2012). Additional functional cores have reported in the Somato
Motor Network (SMN, in the Supplementary Motor Area (SMA) and
Central Sulcus (CS)), in the Visual network (VIS) (Tomasi and Volkow,
2011) and frontoparietal (FPN) networks (regions marked by * in
Table 1) (Zuo et al., 2012). When using PI as a measure of centrality,
Power et al. found a poor agreement with findings in the DMN (Power
et al., 2013). In fact, the authors emphasize a different set of associative
regions more closely related to the FPN, DAN, and CCN (see Fig. 1B,
Table 1). However, given the uncertain spatial localization, some hub
regions labeled as DMN, for example AG, could easily fall within the FPN
(Cole et al., 2014; Vincent et al., 2008), and some regions in (de Pasquale
et al., 2013) fall within the DAN and SMN.

Compared to fMRI, the spectral richness of electrophysiological
techniques (MEG, EEG, and EcoG) allows the analysis of both slow (band
limited power, BLP) and fast (signal) temporal scales. These aspects are
particularly important when studying the temporal dynamics, see (Lar-
son-Prior et al., 2013) for a review. At the slow timescale, comparable to
that measured with fMRI (~0.01–0.1 Hz), the highest centrality was
consistently found in the β-band using different metrics and connectivity
estimates (see Fig. 1C–F) (de Pasquale et al., 2012; de Pasquale et al.,
2016; Hipp et al., 2012). In particular, in (Hipp et al., 2012) (Fig. 1C)
normalized BC peaks at about 16 Hz (range 8–32 Hz) with maximal
centrality in parietal, temporal, lateral and medial prefrontal cortex
(Fig. 1D). Accordingly, in (de Pasquale et al., 2012), where time-varying
correlation of β-BLP and weighted K were computed, central nodes were
localized mainly in the DMN (PCC, bilateral AG and mPFC), DAN (left
PIPS) and SMN (left CS). When using BC on the same data set (de Pas-
quale et al., 2016), the most central nodes were again PCC, bilateral PIPS,
and SMA (see Fig. 1E–F). This latter set of regions partially overlaps with
those found by means of BC computed on orthogonalized power times
series (Hipp et al., 2012). By using graphs obtained from
leakage-corrected β-BLP time series, K hubs were confirmed in PCC and
bilateral AG (Maldjian et al., 2014). Notably, there is evidence that
central regions in MEG are identified in the β-band, independently of the
connectivity estimator and metrics of centrality. In particular, PCC was
still a hub when analyzing connectivity at the fast time scale, although in
different bands (α or γ) (Jin et al., 2014). Interestingly, by combining K
and EVC to detect central nodes, bilateral precuneus, inferior parietal,
precentral and supramarginal regions were identified as hubs in MEG (β-
and γ-BLP), fMRI, and DWI (Garces et al., 2016). At fast timescale, using
the Phase Locking Index to estimate connectivity, frequency specific sets
of K based hubs were identified in the α, β and γ-band (Hillebrand et al.,
2012). Other relevant papers include (de Haan et al., 2012; Jin et al.,
2014; Schmidt et al., 2014).

In summary what did we learn? First, not surprisingly, the identifi-
cation of central areas strongly depends on the method (e.g. fMRI, MEG),
the metric (e.g. K, BC or PI), and the threshold used to derive the graphs,
see SI and (Zuo et al., 2012). However, several MEG and fMRI studies
using different metrics point to the DMN, specifically PCC and AG in
parietal cortex as hubs. Certainly other networks including FPN, DAN,
and SMN also contain central regions. For a recent work on the
anatomical scaffold of these central regions, see (de Pasquale
et al., 2017).

Core networks, the architecture of interaction among cortical
hubs

It has been suggested that the presence of cortical hubs, especially
connectors, is important for integrating information across functionally
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specialized networks, see for example (de Pasquale et al., 2016).
Furthermore, the modulation of hub dynamics occurring under different
cognitive states or disease is of considerable interest, especially because it
might provide important insights on the neurophysiological processes
underlying behavior and cognition. These aspects are reported in SI.
However, since behavior requires a flexible reconfiguration of task net-
works, the integration must occur across domains, notwithstanding the
high energetic cost of neural architectures connecting spatially distant
local modules.

Computational studies suggested that a balance between segregation
and integration may be achieved through networks emphasizing the local
efficiency through highly connected local modules, expert at processing
one kind of information, and the integration through sparse inter-module
connections involving a small number of hubs. This architecture is
denoted ‘Small World’ (Bassett and Bullmore, 2006, 2016) and it has
been observed across a wide range of imaging modalities including MEG
(Stam, 2004; Valencia et al., 2008), fMRI, DWI (Achard et al., 2006;
Salvador et al., 2005; Vaessen et al., 2010; van den Heuvel et al., 2008),
EEG (Smit et al., 2008) and tract-tracing (Hilgetag and Kaiser, 2004;
Sporns et al., 2004). The original idea behind small-worldness paved the
way for many successive works on the communication among these few
central regions. In a very influential paper, Van de Heuvel and colleagues
(van den Heuvel and Sporns, 2011) presented a refinement of the
hubs/small world idea by showing that the brain not only contains hubs,
but these are preferentially connected in a “Rich Club” (see Fig. 2). Using
deterministic tractography and a high-resolution parcellation of the
brain, they mapped sub-cortical and neocortical hubs and examined their
structural links. High K nodes tend to form denser connections among
themselves than with lower K nodes. These regions include bilateral
superior fronto-parietal regions, including PCC, as well as subcortical
regions such as hippocampus, thalamus, and putamen. Connections
linking non Rich-Club to Rich Club nodes are called feeder (see Fig. 2A),
while edges connecting non-Rich Club regions are labeled ‘local’
(Fig. 2B) and connections among rich-club members are called ‘rich-club’
(Fig. 2C). A model for these results suggests that hubs communicate as a
strongly interlinked ensemble able to flexibly link to different peripheral
networks in the course of different tasks. This idea was explored later on
in fMRI showing that a common set of hub regions tend to co-activate
across a large number of different cognitive tasks (Cole et al., 2013,
2014). This organization is a plausible solution to the issue of flexible
control since the rich club contains nodes participating in other networks
(Gollo et al., 2015; van den Heuvel and Sporns, 2013a; van den Heuvel
and Sporns, 2013b). In fact, it has been shown that rich-club nodes
distribute across different RSNs with a certain degree of overlap (see
Fig. 2D). However, it must noted that in (van den Heuvel and Sporns,
2013a) it was also reported that inter-modular connections are dispro-
portionately represented by hub-connections and these regions play a
critical role in network communication also in terms of longer
fiber-lengths and higher network traffic (Collin et al., 2014; van den
Heuvel et al., 2012). Finally, this architecture, might also be a convenient
way to protect global communication in the brain in the course of
damage or diseases (Kaiser et al., 2007). In the case of one malfunc-
tioning hub, distant effects may be felt in the system (Tuovinen et al.,
2016), but the effect on global communication may be alleviated by
strong connections among other hubs. In summary, the challenge of
flexible behavioral control leads to the possibility that the brain exploits a
small world architecture in which a few highly inter-connected regions
function as bridges dynamically linking to peripheral nodes involved in
local processing.

Cortical cores as a tool of dynamic network integration

Temporal and spectral dynamics of brain networks

It is well established that the electrophysiological signals recorded
from surface/deep electrodes show fractal features (e.g. scale-free



Fig. 1. Functional hubs in the human brain.
(The adopted labels are reported in Table 1)
A) Top 5% and 10% fMRI hubs found through weighted degree obtained from functional connectomes. The majority of top 5% hubs are comprised in the Default Mode Network (blue
labels) and the entire set of cognitive control network (CCN) (red labels) contains all top 10% hubs (Adapted with permission from (Cole et al., 2010). B) To identify nodes that routinely
participate in multiple communities, the Participation Index can be adopted. Here, this was computed on communities evaluated on the binary graph thresholded at 5% connection density.
Communities are shown on the surface (left) and through a spring-embedded plot. (Adapted with permission from (Power et al., 2013). C) The percentage of central nodes evaluated by
means of the Betweenness Centrality (BC). The reported nodes show significantly increased centrality compared to the average value in the brain (p < 0.05). These results were obtained
from MEG Band Limited Power connectivity matrices following signal orthogonalization. The larger, statistically significant percentage of hubs is found at the carrier frequencies in the β
band, extending also to the α band (adapted with permission from (Hipp et al., 2012)). D) From the same graph as in C), regions showing the highest centrality at 16 Hz were found in
bilateral medial/dorso-prefrontal and Temporal Cortex (see Table 1 for the definition of labels). The centrality evaluated by means of Betweenness Centrality is statistically masked at two
levels of significance, one corrected for the number of nodes (p < 0.05, saturated color scale) and the other uncorrected (p < 0.05) (Adapted with permission from (Hipp et al., 2012). E)
Hubs estimated from β Band Limited Power dynamic connectivity. It is reported the product of the mean Betweenness Centrality (BC) across epochs of high internal connectivity for the
Default, Dorsal/Ventral Attention, Motor, Visual and Language Networks and the consistency of BC in the same epochs. The hubs characterized by a strong and consistent centrality in all
epochs (red bars) are the Posterior Cingulate, left/right posterior interaperietal sulcus and supplementary motor area, see Table 1 for the definition of labels (Adapted with permission from
(de Pasquale et al., 2016)). F) Topography of connections of the above hubs (yellow) shows a large number of external connections driving the high value of centrality. These topographies
are obtained in epochs of high internal connectivity for the above mentioned networks (Adapted with permission from (de Pasquale et al., 2016)).
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Fig. 2. The Rich Club model.
Structural brain hubs exhibit a strong tendency to be mutually and densely interconnected, forming a structural core or “Rich Club”. This central high-cost, high-capacity backbone for
global brain communication comprises a set of spatially widely distributed brain regions including portions of the precuneus, anterior and PCC, superior frontal cortex, superior parietal
cortex and the insula, all in both hemispheres. Edges connecting Rich Club to non-Rich Club regions are labeled as ‘fedeer’ (A), while edges connecting non-rich club regions are labeled as
‘local’ (B) and connections among rich-club members are called ‘rich-club’ (C). Nodal degree K is reported on the right. Rich club nodes are selected based on k > 10 (red circles) (Adapted
with permission from (Sporns, 2014)). (D) (left Panel) structural Diffusion Tensor Imaging (left triangle) vs fMRI (right triangle) connections averaged across a group of 75 healthy
volunteers. Functional modules are based on independent component analysis: Pr visual, primary visual; Ex visual, extrastriate visual; FP, frontoparietal; (right Panel) Distribution of Rich
Club nodes in relation to resting state networks, expressed as proportions across networks (Adapted with permission from (van den Heuvel and Sporns, 2013a).
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properties) and are incredibly rich in the frequency domain ranging from
[0.001, >500] Hz (Buzsaki and Draguhn, 2004). This spectral richness
leads to three fundamental observations for our discussion.

First, brain networks observed with fMRI correspond to interactions
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involving both fast and slow electrophysiological signals. At slow fre-
quencies (<4 Hz), the coupling based on the slow cortical potential
represents one electrophysiological correlate of these networks, while at
higher frequencies such correspondence is lost (Hacker et al., 2017; He
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et al., 2008, 2010; Nir et al., 2008). The other correlate is the BLP
coupling at different frequencies. In ECoG studies, interactions occurring
at γ, α and β bands have been associated to fMRI RSNs (Hacker et al.,
2017; He et al., 2008; Keller et al., 2013; Leopold et al., 2003; Nir et al.,
2008). MEG studies have mainly reported similarities between fMRI and
MEG RSNs in α- and β-BLP (Brookes et al., 2011b; de Pasquale et al.,
2010; de Pasquale et al., 2012; de Pasquale et al., 2016; Hipp
et al., 2012).

Second, there appears to be frequency specific interactions both
within/across networks. Mantini et al. originally showed that EEG signals
at different frequencies differently contributed to fMRI signals recorded
in various RSNs (Mantini et al., 2007). A predominance of α power was
recorded in parietal and visual regions, while a predominance of β power
in SMN regions. MEG studies found stronger interactions among VIS
regions in the α-BLP, DAN in the α- and β-BLP, SMN in the β-BLP, and
DMN also in α- and β-BLP, and at a lesser extent in the θ-BLP (Brookes
et al., 2011a, 2012; de Pasquale et al., 2010; de Pasquale et al., 2012;
Hipp et al., 2012). In addition, across-network interactions were also
found spectrally selective. In the signal domain, DAN-VIS interactions
(estimated from imaginary coherence) occur in the α-band while
DAN-SMN interactions occur in the β-band (Marzetti et al., 2013). It must
be noted that at a larger spatial scale, when analyzing the correspondence
between fMRI and MEG functional connections across the entire cortex,
the correction of signal-to-noise ratio (SNR) across frequencies suggested
the involvement of a wider range of frequencies, namely [2, 128] Hz
(Hipp and Siegel, 2015); (see (Palva and Palva, 2012) for methodological
discussions). Very recently, Hacker et al. found in ECoG recordings that
regions involved in internal cognition (DMN, FPN) were more strongly
correlated in the θ band, whereas regions more involved in
sensory-attention-motor processing (DAN, SMN) were more strongly
coupled in the α band (Hacker et al., 2017).

Third, and more importantly, these connectivity patterns are not
static but slowly (in the order of seconds) vary over time. de Pasquale and
colleagues observed that the coupling between regions of a RSN slowly
changed over time alternating periods of strong and weak coupling (de
Pasquale et al., 2010). In a subsequent work, they showed that the
alternation of strong/weak network coupling (at least for some central
networks like DMN or regions like PCC) predicted varying degree of
across-network interactions (see next paragraph). Notably, in this work,
RSN connectivity and its temporal dynamics were studied in source space
by means of the combination of a Minimum Norm Estimator, Indepen-
dent Component Analysis and the Pearson correlation coefficient as a
measure of coupling over sliding windows (Betti et al., 2013; de Pasquale
et al., 2010; de Pasquale et al., 2012; de Pasquale et al., 2016; Mantini
et al., 2011). However, in other MEG studies such as (Brookes et al.,
2014) a beamforming technique supported by a leakage correction (that
could also be applied to Minimum Norm solutions, see for example
(Wens, 2015)) and canonical correlation were used to retrieve
time-varying functional interactions (O'Neill et al., 2015). Interestingly,
even though MEG signals are acquired at very high temporal resolution
(~1000 KHz), and different groups adopted different approaches to
measure time-varying interactions, there is consensus that these fluctu-
ations of coupling occur at slow temporal scales (few seconds). This is
comparable to what found in fMRI. Of note, while in fMRI the temporal
scale is limited by the temporal resolution induced by the neurovascular
coupling, in MEG the duration of the sliding window is longer than the
available MEG temporal resolution (around 1 ms), but it represents a
good compromise between the robustness of the connectivity estimator
and the temporal resolution of the investigated fluctuations. It is possible
that these slow time scales reflect the adopted measure (BLP), and that
faster frequencies would be observed in the signal domain. This is the
case for the so called MEG brain states, see (Baker et al., 2014), as dis-
cussed in Section 5.

The time-varying nature of connectivity has also been investigated
with fMRI, but is controversial if the observed dynamics truly reflects
non-stationarity (Hutchison et al., 2013; Preti et al., 2016) or rather just a
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poor estimate (influenced bymotion artifacts and sampling variability) of
a static coupling (Laumann et al., 2016). Early findings showed signifi-
cant fluctuations of inter-regional correlation (Chang and Glover, 2010),
mainly involving across-module interactions (Zalesky et al., 2014).
However, estimates of correlation in time are limited by several factors
including the number of available samples (Zalesky and Breakspear,
2015), residual subject's motion, see (Power et al., 2015), and a severe
trade-off between robustness and temporal resolution. Alternative ap-
proaches have been proposed including dynamic spectral analyses
(Yaesoubi et al., 2015), data-driven temporal ICA (Smith et al., 2012) and
connectivity states extraction (Allen et al., 2014), see next section.
Another important aspect is the connection between brain structure and
dynamics which is related to network motifs. These are the building
blocks of the network (Milo et al., 2002; Sporns and Kotter, 2004) and
provide a testbed for many hypotheses on empirical data as well as in
computational models. In this context, apex nodes can be considered the
core nodes of network motifs. They appear more often in hub regions and
play an important role in brain structure (Harriger et al., 2012) and dy-
namics (Alstott et al., 2009; Gollo et al., 2014; Senden et al., 2012, 2014;
Vasa et al., 2015; Wei et al., 2017). Moreover, frustrated network motifs
can be considered a structural basis for dynamic connectivity since they
facilitate dynamic functional connectivity via metastable transitions
(Gollo and Breakspear, 2014).

Finally, the slow and fast temporal scales of network interaction, the
frequency specificity by network and the time varying interactions have
important implications on how cortical cores may interact at rest and
during task processing. This is considered in the next section.

Dynamic core network as the substrate for an efficient global
communication in the brain.

The time-frequency properties of the functional architecture are
fundamental to unravel mechanisms of dynamic integration in the brain
(Bassett and Sporns, 2017). There are several important questions to be
addressed: do hub regions show fluctuations in their centrality similarly
to other networks? What are the implications of these fluctuations for
other regions that are connected to the hubs? Do these fluctuations have
a functional implication in healthy processing, aging, or disease? fMRI
studies tend to show that these central regions are topologically stable
during a task as compared to rest (Cole et al., 2013, 2014; Chiang et al.,
2016; Liao et al., 2015), but these results are just beginning to come in,
and other studies show a significant reorganization of network interac-
tion during task performance (see for example, Spadone et al., 2015).
Moreover, it must be considered that the limited temporal resolution of
fMRI may miss fast transient variations in topology. MEG results instead
provide a very interesting insight on cortical dynamics of RSNs and hubs.
In one set of observations, de Pasquale and collegues (de Pasquale et al.,
2012) showed that in the β-BLP, the DMN represented a functional core
of integration in the brain. This was observed during epochs of high in-
ternal coupling of this RSN. Specifically, in these epochs, PCC, bilateral
AG, and mPFC were strong K hubs. Similar observations were made for
other networks/hubs including DAN/left PIPS and SMN/left CS. Inter-
estingly, these nodes spent only a small part of time (20–30%) in epochs
of high centrality, and these epochs did not overlap indicating that
different hubs significantly alternated their central role, see Fig. 3A (de
Pasquale et al., 2016). These results were then the first hint that there
may be a link between dynamic connectivity and integration. In other
words, the amount of integration among different networks seems to
increase when some networks (DMN, DAN, SMN) are more strongly
coupled. More recently, in (de Pasquale et al., 2016) this work was
extended by focusing on BC as a measures of centrality. This measure, as
previously described, emphasizes ‘connector hubs’ and thus accounts
more explicitly for interactions among different networks. The temporal
evolution of BC was estimated and, on average, high BC nodes included
again PCC (DMN), bilateral PIPS (DAN), and SMA (SMN, see Fig. 3B). In
agreement with the prior MEG study, but in contrast to fMRI studies
indicating stable hubs over time, peaks of high BC occurred about 40% of
time. Again, these hubs asynchronously alternated epochs of high and



Fig. 3. The dynamic core network.
A set of functional hubs alternate their centrality forming a dynamic core of integration.
A) Dynamic binary graphs obtained from the β Band Limited Power connectivity matrices at three representative time samples. B) Centrality as estimated through the Betweenness
Centrality at the three epochs as in A), together with the random graph significance threshold (dotted line). Hubs forming the core network are transiently central: Posterior Cingulate
Cortex (left), Supplementary Motor Area (middle) and right Posterior Intraparietal Sulcus (right). C) Schematic model of the dynamic mechanism underlying the core network: central
nodes alternate their central role to ensure an efficient communication in the whole brain dynamically. (Adapted from (de Pasquale et al., 2016)).

F. de Pasquale et al. NeuroImage 180 (2018) 370–382
low centrality, forming what can be defined as a ‘dynamic core network’
(Fig. 3C). Notably, the regions comprising this dynamic core network
largely overlap with the previously discussed “Rich Club” (van den
Heuvel and Sporns, 2013a). Perhaps the most intriguing result of this
study was that epochs of high BC correspond to periods of high global
efficiency in the whole brain. The Global Efficiency (GE) is defined as the
average of the reciprocal shortest path length over all the network nodes
(Rubinov and Sporns, 2010). For RSNs including hubs of the core
network, epochs of high internal connectivity (i.e. epochs in which the
RSN shows a higher internal connectivity as compared to the rest of the
brain) predicted epochs of maximal GE (see for example a representative
timecourse of DMN in Fig. 4A). Interestingly, these epochs correspond to
peaks of centrality of PCC, see Fig. 4B (left panel - red bar). This property
seems to be lost outside these temporal windows and the centrality of the
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DMN is mainly realized by external to DMN connections (Fig. 4C, black
bar). To study if the GE peaks could be predicted by epochs of high in-
ternal coupling of these networks, de Pasquale and collegues classified
through Receiver-Operator-Curves these time intervals (Fig. 4D): epochs
of high internal connectivity within DMN, DAN and SMN predicted more
than 70% of GE peaks (see Fig. 4E). These epochs of high internal con-
nectivity were also epochs of high centrality for hubs included in the
dynamic core network. Of note, this mechanism linking the dynamic core
network, fluctuations of BC, and GE occurred specifically in the β-BLP.

In summary, these findings link in a novel mechanistic framework
three results. First, RSNs dynamically fluctuate and these fluctuations
involve changes in within/across network interactions. These occur
specifically between hub regions of specific RSNs and other nodes in
periods of strong coupling for the central networks. Second, these hubs



Fig. 4. The Global Efficiency of integration.
The dynamic core network corresponds to an optimal strategy of the brain in maximizing the efficiency of communication as measured through the global efficiency.
A) Transient global efficiency for a representative run. Epochs of high internal coupling for the Default Mode Network, shown as shaded areas, overlap with epochs of high Global Ef-
ficiency. B) Notably, these epochs correspond to high centrality for the Posterior Cingulate Cortex (red bar), a hub in the dynamic core network (left panel). Outside these epochs the
centrality of this node is lower (right panel). C) Percentage of connections contributing to the centrality of the Default Mode Network. The centrality of this network is realized by a
consistent proportion of external connections (black) compared to internal ones (red). D) The Receiver Operator Curve analysis shows that epochs of high internal coupling for the involved
networks classify peaks of global efficiency. E) Incremental percentage of classification of GE peaks computed for the networks involved in the dynamic core. DMN classifies 45%, DAN
increments this value by 19% and MN by 7%. Overall, 71% of the GE peaks are covered by these three RSNs internal coupling, see Table 1 for the definition of labels. (Adapted from (de
Pasquale et al., 2016)).
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are consistent over time, but they are engaged at different times. Third,
epochs of high RSN coupling and centrality correlate and predict periods
of high efficiency in the brain. As a whole, these findings suggest the
novel idea that transfer of information, as captured by GE, occurs with a
‘pulsatile’ regime controlled by the dynamics of network integration, at
least in the resting state. However, additional MEG studies are required
to fully characterized such pulses (e.g in terms of time-intervals etc …).

This framework fits a number of recent studies. Zalesky and col-
leagues linked the dynamics of fMRI connectivity to a measure of effi-
ciency (Regional Efficiency, a measure of nodal not global efficiency like
GE) (Zalesky et al., 2014). They reported that the most dynamic con-
nections link elements from topologically distinct subsystems. These
connections involve known DMN and FPN hubs that spontaneously in-
crease, for brief intervals, their efficiency producing temporarily globally
integrated network states. Since the integration through long connec-
tions might involve higher metabolic costs, their results suggest that
brain dynamics reflects a balance between integration of information and
metabolic expenditure (Zalesky et al., 2014). They also support the idea
that this transfer of information, occurring in specific epochs controlled
by the dynamics of network interaction, enables otherwise segregated
network elements to access a cognitive global workspace. The transient
exploration of this workspace may allow the brain to efficiently balance
segregated and integrated dynamics. A related study explored the origin
of slowly fluctuating patterns of cortical synchronization and found that
these patterns match well the activity within the Rich Club regions (Gollo
et al., 2015). Furthermore, it has been shown that fluctuations of global
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efficiency alter patterns of activity in local neuronal populations elicited
by changes in incoming sensory stimuli (Cocchi et al., 2017). Accord-
ingly, it was reported the presence of multiple cortical timescales
involving the emergence and dissolution of interactions of cortical re-
gions within the human visual system (e.g. with frontal eye fields) when
the neural activity is perturbed (e.g. by means of Trans Magnetic Stim-
ulation) was reported in (Cocchi et al., 2016).

To summarize, dynamic interactions among hubs occur at multiple
time scales, but also involve epochs of variable integration hence prob-
ably information processing. Thus, the brain seems to exploit a temporal
‘multi-scale pulsed’mode for network communication where slower time
scales provide information about the state of the system, while faster time
scales reflect the temporal details of behavior (this is elaborated more the
next section). This new perspective opens up a number of interesting new
issues for the field. In particular, it would be fundamental to understand
why the temporal dynamics in interacting brain networks occur on a slow
temporal scale, what is its origin (biophysical, neuronal), functional
significance and the role played by fast synchronizations during task/
cognitive processes.

Cortical cores and slow vs. fast dynamic brain states

The results reviewed thus far indicate that brain networks are not
segregated but dynamically integrated, and this property varies over
multiple temporal scales: slow, in the order of seconds, and fast in the
order of hundreds of milliseconds. Here, we elaborate on the functional
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roles of hub/cortical dynamics at rest and during task processing. We will
first consider the slow temporal scale.

The slow time-varying nature of BLP interactions at rest suggest that
these must reflect processes that are not changing rapidly as a function of
environmental or behavioral conditions. The mechanism linking the
dynamic core network and GE occurs in the β-BLP, which has been
proposed to reflect the band signaling the “status quo” of a current
behavioral state (Engel and Fries, 2010). Therefore, one possibility is that
these slow β-BLP fluctuations reflect endogeneous states occurring at a
slow temporal scale. Gollo and colleagues (Gollo et al., 2015) proposed
that the time-frequency of hub-regions match the slow time-scales of
autonomic regulation which are hence closely synced to affective expe-
riences, for a review of this emerging field see (Seth and Friston, 2016).
In contrast, the topology of the surrounding ‘feeder’ regions (see previous
definition and Fig. 2A) shows rapidly fluctuating dynamics likely to be
crucial for fast perceptual processes. It was suggested that the “Rich Club”
nodes promote a stable, dynamical core of spontaneous activity related to
internal processes, and highly unstable dynamical transitions in the pe-
riphery (Gollo et al., 2017). A similar notion that peripheral areas of the
brain's network change as a function of task demands, while a central
core remains relatively stable, is also part of the interpretation of recent
fMRI studies on the role of hubs in cognition (Cole et al., 2014). Another
interesting idea is that the dynamics in core regions reflects anticipatory
processes, both spatial and temporal. Spadone et al. compared fMRI
functional connectivity both at rest and during a demanding visuospatial
attention task (Spadone et al., 2015). Despite an overall preservation of
network structure they showed a significant increase in across network
interactions between DAN regions involved in control and VIS regions
involved in stimulus analysis. More importantly, they found that, during
attention, directional interactions between DAN and VIS became more
strongly top-down. On the contrary, functional interactions (as measured
via temporal correlation) within the DAN, a central network, did not
change from rest to task, and thus were set up in ways to anticipate task
states. This relates to the idea of spontaneous activity as a prior proposed
to explain the similarity between RSN and task states in fMRI (see also
(Raichle, 2011)). Accordingly, Betti et al. recently showed that slow
temporal scale dynamic fluctuations in the core predict the dynamics
during a natural visual stimulation. The idea that dynamics in core re-
gions synchronize multiple brain states is also suggested by Smith et al.
that used temporal ICA to decompose different temporal components in
spontaneous activity (Smith et al., 2012). In fact, at the slow time scale of
the fMRI functional connectivity, Multiple Temporal Functional Modes
(TFM) were identified, and the centrality of a node was measured by the
overlap among them. Interestingly, DMN regions were found to be
involved in many of these modes concerning semantic and language
systems. When multiple temporal functional modes were averaged, a
complete DMN topography was recovered with the strongest overlap in
PCC. Now, if TFMs represent how modes of connectivity evolve over
time, in this evolution, the observation that PCC at distinct temporal
epochs is involved with many different RSNs seems to suggest that its
dynamics allows it to coordinate interactions among separate functional
systems. Therefore, the centrality of this node does not reflect a single
state, rather the combination in time of multiple ones.

Which is the relationship between slow and fast temporal scale dy-
namics? Overall more research is needed on this point. There has been
important work on the notion of EEG microstates, reported for the first
time in (Lehmann et al., 1987). They showed that the electric topography
of the scalp does not change randomly and continuously over time, but
remains stable for ~80–120 ms; these periods of quasi-stability were
termed “EEG microstates”. Surprisingly, only few (between four and six)
distinct microstates are still consistently observed at rest. Recently, it has
been shown that these rapidly changing microstates correlate signifi-
cantly, albeit not strongly, with activity in fMRI RSNs after convolution
with the hemodynamic response function (Van de Ville et al., 2010).
While there is some uncertainty in linking microstates to fMRI networks,
EEG microstates nicely link to ongoing investigations of brain dynamics
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in whole brain recordings. Microstates have time scales that are in the
range of cognitive processes, and show a scale-free dynamics. This might
be the basis for the rapid reorganization and adaptation of the functional
networks in the brain (Van de Ville et al., 2010). However, caution must
be taken when comparing states across EEG and fMRI or MEG. In fact,
these EEG states are extracted in time epochs corresponding to peaks of
Global Field Power while fMRI and MEG connectomes are based on some
measure of synchronicity. However, since those peaks correspond to
moments of overall high activity and thus likely to high synchronicity,
some cross-modal agreement is not unexpected. Notably, recent work
shows an interesting link between microstates and cortical hubs. In fact,
Pasqual-Marqui and colleagues observed that all microstates have com-
mon generators in PCC, while three microstates additionally include
activity in the left occipital/parietal, right occipital/parietal, and anterior
cingulate (Pascual-Marqui et al., 2014). Thus, these generators appear to
be a fragmented version of DMN supporting the notion that these regions
activate sequentially at high temporal resolution, and that this RSNmight
correspond to a very low-pass time filtered version of this faster dy-
namics. Moreover, they show that PCC acts an important hub in con-
nections mediating the microstate transitions, sending alpha and beta
oscillatory information to all other microstate generator regions.

Brain states have also been identified withMEG. Baker and colleagues
(Baker et al., 2014), using Hidden Markov Models, revealed transient
(100–200 ms) brain states whose spatial topographies somehow resem-
bled those of well-known RSNs. In this temporal dynamics of state
transitions, functional hubs would seem essential. Yet PCC was notably
absent possibly due to its interaction with multiple states, which would
make it not detected with this strategy of analysis. A more speculative
avenue of investigation is the relationship between ongoing microstates,
and a general synchronization in the slow/fast temporal scale. Task
synchronization, especially in the high frequency range (high γ) has been
shown to index selective cortical communication during visuomotor and
attentional processing, as well as a number of other cognitive processes
(working memory, language, navigation, etc.) (Engel et al., 2001; Mel-
loni et al., 2007). An interesting recent development in the conceptual-
ization of task dependent synchronization is that this mechanism does
not only provide a way for spatially linking task relevant neuronal pop-
ulations, but also as a mechanism for temporally sampling the environ-
ment (Vanrullen and Dubois, 2011). In this respect, the alternation
between cycles of excitation and inhibition provides temporal windows
for perception and motor behavior, as well as cortical synchronization
between distant neural populations. This notion might be linked to the
temporal prior idea on the possible interaction between slow and fast
temporal scales. This has been shown to occur through a number of
cortical mechanisms, such as
amplitude-amplitude/phase-amplitude/phase-phase interactions (Jen-
sen and Colgin, 2007).

Theoretical aspects of hub dynamics and brain states

The observation that functional cores and their dynamics play a
fundamental role in a ‘pulsed’ (i.e. non stationary) synchronization of
distinct functional modules, seems to be supported also by theoretical
and modeling studies, see (Breakspear, 2017; Cabral et al., 2017) for a
review on computational models. The notion of distinct functional con-
nectivity states recurring at different points in time is compatible with
models of neuronal connectivity (Deco and Corbetta, 2011; Deco et al.,
2011). Accordingly, a ‘dynamic repertoire’ of states is expected to be
continuously explored to more quickly adopt the optimal network
configuration for a given impending input (Deco et al., 2011). Such dy-
namic exploration, where brain states never set in a fixed point (Cabral
et al., 2014), can provide the flexibility required to adapt to the rapidly
changing computational demands of cognitive processing (Bressler and
Tognoli, 2006). Hansen and colleagues showed that the resting state
regime has a rich structure, characterized by rapid transitions switching
between a few discrete connectivity states, see Fig. 5A and B (Hansen



Fig. 5. Models of dynamic integration through cortical cores.
Models of non-stationarity reveal a rich structure characterized by rapid transitions between a few discrete connectivity states reminiscent of some of the most frequently observed Resting
State Networks.
A) An appropriate choice of the parameters adopted in the enhanced non-linearity mean-field model leads to an out-of-equilibrium dynamics associated with a self-organized switching
between functional connectivity (FC) states (α and β) as revealed by the block structure of the matrix modeling the dynamics of Functional Connectivity. Epochs of stability in the α and β
states are reported in green and violet, respectively. B) Note the correspondence between representative functional connectivity matrices (left) obtained from time windows within “α” state
epochs (FCα, top) or within “β” state epochs (FCβ, bottom) and the empirical connectivity matrices extracted from BOLD data (right). (Adapted with permission from (Hansen et al., 2015)).
C) The connectivity among hubs plays a fundamental role in linking distinct modules in the brain. When hubs are disconnected, the modularity increases. The ratio between the mean
intra-modular synchrony and the whole brain synchrony is reported as a function of the cortical coupling factor when either edges between hub nodes (red) or random edges (black) have
been removed. In the critical regime the intra-modular synchrony increases when hub connectivity is suppressed. D) The effect of perturbation of internal modular frequencies on the whole
brain synchrony. When the internal frequencies of “Rich Club” nodes are altered, the rest of the modules are unable to synchronize. The synchronization is recovered when the hub nodes'
frequency comes down to the range of frequencies of the functional modules (left panel). When a random set of nodes, equal in number to the previous set, is perturbed the functional
modules are able to synchronize before these nodes join at a whole brain shared frequency. (Adapted from (Schmidt et al., 2015)).
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et al., 2015). This nicely links to the small dimensionality of both EEG
and MEG states. In particular, a slight enhancement of the non-linearity
in the model is sufficient to broaden the repertoire of possible network
behaviors, leading to modes of fluctuations that are reminiscent of the
observed RSNs. These can span multiple functional connectivity states
and a given state can generate fluctuation patterns related to multiple
RSNs similarly to what observed in Temporal Functional Modes observed
with fMRI, and transitions among MEG states (Baker et al., 2014; Smith
et al., 2012).

How does the brain move among these cognitive states? Again,
cortical hubs seem to play a fundamental role in such transitions. In fact,
Schmidt et al. (2015), by employing a Kuramoto model combined with
structural (DTI) connectivity reported that cortical hubs facilitate the
intermodular communication and global integration. They showed that
hub nodes lead to synchronization of functional modules (see Fig. 5C).
Notably, the suppression of connectivity among hubs resulted in an
elevated modular state, indicating that hub-to-hub connections are crit-
ical in intermodular synchronization. These results are consistent with
the empirical observations reported in (de Pasquale et al., 2016). In
addition, the model suggests that the perturbation of connectivity among
hubs prevents the synchronization of functional modules (Fig. 5D). In
other words, the hub dynamics seems to have a causal influence on the
functional module synchronization.
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Future directions

At this stage of development, it is relatively well established that the
brain contains central areas that are structurally and functionally well
connected with more peripheral regions. There is also growing evidence
that these regions may be important for linking functionally specialized
modules of the brain across different tasks. However, more studies are
needed on the spatio-temporal and spectral modifications occurring in
the core regions at rest and during active behavior.

An important advance highlighted here is that core regions show
variable strength of integration with more peripheral regions, and that
this fluctuating centrality is related to global efficiency and putatively
information processing. We hypothesize that this dynamic integration
reflects a pulsedmode of information processing that is dependent on the
temporal scales of connectivity across the brain, slow in the order of
seconds or fast in the order of hundred of milliseconds. A fundamental
question then, is the relationship between connectivity at slow vs. fast-
time scales and related dynamics. Do network interactions observed at
different time-scales and frequencies reflect separate processes (e.g.
endogeneous homeostatic vs. sensory-attention-motor states) or similar
neural processes that unfolds at different temporal scales? Is the dy-
namics of hubs the same for slow or fast activity fluctuations? (He, 2014;
Linkenkaer-Hansen et al., 2001; Van de Ville et al., 2010). The functional
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significance of these multi-scale properties is of considerable interest. To
this aim, some effort has already been done in characterizing multilayer
networks. This modeling, where nodes are connected by different types
of edges in different layers, allows to encode in the same network in-
formation gathered from different imaging modalities, time, and fre-
quency scales (Brookes et al., 2016). The characterization of
multidimensional hubs and their architecture of interaction is certainly
an exciting future development, see for example the first characterization
of hubs in multi-frequency networks (De Domenico et al., 2016).
Furthermore, by extending these approaches, multidimensional brain
states might be estimated. In this framework, the characterization of
cortical cores would be crucial in understanding transitions across states,
as supported by the preliminary evidence of the involvement of PCC and
DMN as sources of EEG microstates (Pascual-Marqui et al., 2014).

Another key question is the functional role of the internal dynamics. It
is well established that most of the metabolic budget of the brain is spent
in intrinsic activity, and that task activity costs relatively little (Attwell
and Laughlin, 2001; Raichle and Mintun, 2006). It has also been pro-
posed that connections between hubs are in general longer and more
expensive metabolically to maintain (Bullmore and Sporns, 2012). Then,
there must be a significant functional advantage in maintaining such a
high ongoing cost, partly due to hub organization and dynamics. Thus, an
intriguing question is whether functional hubs and their dynamics
encode at rest models of behavior and environment that are helpful
during actual behavior (i.e. an internal model). We believe that this
question will lead to significant insight on the role of spontaneous ac-
tivity in the brain.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.
org/10.1016/j.neuroimage.2017.09.063.
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