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Abstract

The aim of this study is to analyze the relevance of recently developed news-based measures of

economic policy and equity market uncertainty in causing and predicting the conditional quantiles of

crude oil returns and risk. For this purpose, we studied both the causality relationships in quantiles

through a non-parametric testing method and, building on a collection of quantiles forecasts, we

estimated the conditional density of oil returns and volatility, the out-of-sample performance of

which was evaluated by using suitable tests. A dynamic analysis shows that the uncertainty indexes

are not always relevant in causing and forecasting oil movements. Nevertheless, the informative

content of the uncertainty indexes turns out to be relevant during periods of market distress, when

the role of oil risk is the predominant interest, with heterogeneous e�ects over the di�erent quantiles

levels.

Keywords: Granger Causality in Quantiles; Quantile Regression; Forecast of Oil Distribution;

Forecast Evaluation.

JEL codes: C58, C32, C53, Q02, Q35.

1 Introduction

Following the seminal work of Hamilton (1983), a large literature connects movements in oil returns and

its volatility with recessions and in�ationary episodes in the US economy (see, e.g., Elder and Serletis

∗We would like to thank three anonymous referees for many helpful comments. However, any remaining errors are
solely ours.
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(2010), Kang and Ratti (2013b,a) and Antonakakis et al. (2014) for detailed reviews). Hamilton (2008)

indicates that nine out of ten recessions in the US since World War II have been preceded by an increase

in oil prices. Interestingly, Hamilton (2009) even goes as far as arguing that a large proportion of the

recent downturn in the US GDP during the `Great Recession' can also be attributed to the oil price

shock in the period 2007�2008.

Commodity markets, just like asset prices, are known to be functions of the state of the economy

(Bekiros et al., 2015). In this regard, a recently growing literature emphasizes the role of economic

policy uncertainty on business cycles (see, e.g., Bloom (2009), Colombo (2013), Jones and Olson

(2013), Mumtaz and Zanetti (2013), Karnizova and Li (2014) and Jurado et al. (2015) for detailed

reviews) which in turn a�ects oil-price movements (see, e.g., Kang and Ratti (2013b,a), Antonakakis

et al. (2014) and Aloui et al. (2016)). On the demand side, uncertainties can also drive economic

concerns on the part of consumers, thus a�ecting the level of consumption growth in the economy.

Therefore, considering the suggestion by Bernanke (2016) that both oil and the stock markets tend to

move together, as they both react to a common factor re�ecting global aggregate demand, one obvious

channel that links uncertainty to oil market movements is its potential e�ect on growth expectations for

both output and consumption. Equity-market uncertainty also feeds into oil price movements because,

as Bloom (2009)'s �rm-based theoretical framework notes, equity-market uncertainty a�ects hiring

and investment and, hence, the production decisions of �rms. In this regard, the empirical evidence

relating to oil price movements and stock market volatility can be found in Kang and Ratti (2013b,a).

While these channels are likely to cause economic uncertainties to a�ect oil market movements at lower

frequencies, high frequency (for example, daily) impacts can originate from other possible channels.

For instance, uncertainty can a�ect oil return dynamics via its contribution to jump risk in oil

prices. There is growing evidence suggesting that jumps account for a large part of the variation in

crude oil prices and that a substantial part of the risk premium in oil derivatives prices is due to jumps

(see, e.g., Larsson and Nossman (2011), Christo�ersen et al. (2016) and Baum and Zerilli (2016)).

Therefore, it could be argued that economic uncertainties contribute to the presence of jumps in oil

prices, which in turn drive return and volatility dynamics in the oil market. Hence, even though the

oil market is one of the most deep and liquid markets, complemented by a set of oil-related derivative

instruments, if the jump risks emanating from economic policy and equity market uncertainties cannot

be e�ectively hedged through the variety of available instruments, then these uncertainties are likely to

in�uence the oil market. Alternatively, given that these uncertainties have been shown to a�ect equity

markets (see, e.g., Chuliá et al. (2017) for a detailed literature review in this regard), investors might in

fact move funds to diversify their portfolios by investing in the commodity market, including in oil, in

the hope of hedging portfolio risks (Andreasson et al., 2016). These sudden movements of investments

into the oil market could also impact on returns and the volatility of crude oil. As indicated by Ji and

Guo (2015b,a), uncertainty tends to move the oil market through a behavioural channel as well, i.e.,
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by a�ecting market participants' psychological expectations.

Against this backdrop, the objective of this paper is to analyze the role of recently developed news-

based measures of economic policy uncertainty (EPU) and equity market uncertainty (EMU) by Baker

et al. (2013) in causing in the Granger (1969) sense and forecasting oil returns and their risk. Given the

possibility that the oil market is also likely to drive these uncertainty measures�see, e.g., Kang and

Ratti (2013b,a) and Antonakakis et al. (2014)�we employed a modi�ed bivariate quantile causality-

based model, as developed by Balcilar et al. (2016a,b,c); notably, it combines the causality in quantile

test of Jeong et al. (2012) with the k-th order nonparametric Granger causality test of Nishiyama et al.

(2011). By resorting to this quantile-based analysis of causality, we evaluated the impact of news-

based measures of uncertainty on both the returns and the risk of oil across a collection of quantiles.

Testing for causality in risk allows us to shed some light on the volatility spillover phenomenon, since

at times, the simple causality in returns series may not exist, but there may be signi�cant relationships

at higher moments. Notably, using quantile-based methods allows us to analyze the causality structure

depending on the volatility state (high versus low).

Balcilar et al. (2016a) developed the framework we employed in this study to analyze the causality

relationships running from EPU and EMU to oil returns and risk. They concluded that, for oil returns,

EPU and EMU have strong predictive power over the entire distribution, barring the regions around

the median, but for risk the predictability virtually covers the entire distribution, with some exceptions

in the tails.1 We extend the paper by Balcilar et al. (2016a) in various important ways. First, we made

use of a rolling window procedure, by which we provided a time-varying approach to the in-sample

quantile causality for both oil returns and risk. This is important, given that we detected structural

breaks in the estimated conditional distributions over time; therefore, the full-sample quantile causality,

as in Balcilar et al. (2016a), could possibly be misleading. Indeed, in contrast to Balcilar et al. (2016a),

the empirical �ndings arising from the rolling window analysis suggest that EPU and EMU are not

always relevant drivers in causing and forecasting the conditional quantiles of oil returns and risk, but

are only so during particular periods, especially ones of market distress. Furthermore, our results show

evidence of stronger relationships between the two uncertainty indexes and oil risk, with respect to oil

returns. This important �nding is consistent with the fact that EPU and EMU are uncertainty indexes

and, therefore, are directly connected to oil risk, quanti�ed by its volatility, which itself is a measure

of dispersion, or uncertainty.

Second, starting with Balcilar et al. (2016a,b,c), in which causality in risk is implemented by using

squared returns, we went further by directly considering the realized volatility of oil. We found that

the two approaches provide similar implications at central quantiles levels, but di�er for the extreme

quantiles, thus challenging the use of squared oil returns for the analyses of volatility causation between

1Note that Balcilar et al. (2016a) focus just on the in-sample analysis. In contrast, we provide here an extensive
analysis both in-sample and out-of-sample.
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oil and uncertainty measures.

Finally, we accompanied the causality exercise with a forecasting analysis. In contrast to Bekiros

et al. (2015), where the authors focus only on a point forecast of oil returns, we were able to analyze

the density forecast for both oil returns and risk. In particular, we made use of the causality detected

in designing the quantile regression models (Koenker and Bassett, 1978), and in doing that we adjusted

the original estimated quantiles to guarantee their coherence; that is, their increasing monotonicity in

τ ∈ (0, 1). Indeed, the approach introduced by Koenker and Bassett (1978) allows the estimation of the

single quantiles individually. As a consequence, when the analysis focuses on many quantiles, they may

cross each other at speci�c quantile levels. Then, from a large collection of corrected quantiles, we built

the conditional density of oil returns and risk through a non-parametric kernel-based method. This

again is more informative than the point forecasts, since we were able to understand the role of EPU

and EMU in forecasting oil movements in di�erent phases (bearish, normal and bullish) of the market.

Moreover, extending the analysis to the entire conditional distribution is of relevant importance in

evaluating the uncertainty associated with the single point estimates and forecasts. Additionally, we did

not restrict our attention to the in-sample analysis, but also evaluated the out-of-sample performance

of the method we proposed by using various suitable tests. Both in- and out-of-sample results show

evidence of the heterogeneous e�ects of EPU and EMU over the di�erent regions of the oil movements

distribution.

We also compared our approach with a competitive method; that is, an exponential generalized

autoregressive conditional heteroskedasticity model (EGARCH), which gave stronger evidence of the

causality impact of EPU and EMU when we focused on oil returns, but a weaker evidence when we

focused on oil variance. Furthermore, we directly compared our approach with the EGARCH model

in terms of predictive accuracy using various testing methods. Notably, our approach overperformed

the EGARCH model in the majority of cases. Therefore, the methods we propose could provide

useful insights for many of the decision makers in several areas of economics and �nance, such as risk

management, pricing and trading strategies, when the focus is placed on instruments depending on oil

returns and risk.

The rest of the paper is organized as follows: Section 2 presents the details of the methodologies

pursued, while we describe the empirical set�up in Section 3. Section 4 presents the results and Section

5 concludes with an economic discussion of the results obtained.

2 Data and methodology

In the empirical analysis, we made use of four series: oil prices, the realized volatility of oil future

prices and the two uncertainty indexes�EPU and EMU. Note that, instead of using the VIX2, a

2Often referred to as the fear index or the fear gauge, it represents one measure of the market's expectation of
stock-market volatility over the next 30 day period.
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popular measure of the implied volatility of S&P500 index options, we use the news-based measure

of EMU index to ensure that both our measures of uncertainty (i.e., EPU and EMU) are derived in

a similar method (i.e., news articles-based) and hence, the results, in terms of their relationship with

oil are comparable. Also, since we are extending the work of Balcilar et al. (2016a), we too use the

same measures of uncertainties as these authors, though ideally we should be using some measure

of global uncertainty, as oil is a global market. But then again, we are analyzing the WTI oil price

movements, which are likely to be a�ected more due to US-based uncertainties, besides the fact that,

there is no global measure of uncertainty available at daily frequency. Moreover, as indicated by Ajmi

et al. (2015), US uncertainty leads uncertainties of other economies around the worl, thus making it an

important source and a relevant proxy of global uncertainty. For oil prices and both EMU and EPU,

we considered a sample period starting on January 2, 1986 and ending on April 23, 2015, for a total of

7646 days. In contrast, we estimated the daily realized volatility of oil future prices from �ve-minutes

data from January 2, 2007 to April 23, 2015.3 Appendix B provides a detailed description of the series

and of their properties, as well as a discussion concerning the estimator we used to recover the daily

realized volatility.

Let {yt}t∈T be the time series of oil returns computed as yt = log (oilt)− log (oilt−1), where oilt is

the oil spot price at time t. We also denote by {x1,t}t∈T and {x2,t}t∈T the logarithm of the Economic

Policy Uncertainty (EPU) and the logarithm of the Equity Market Uncertainty (EMU), respectively.

Finally, let bpvt be the estimated daily realized volatility of oil future prices.

Next, we move to a brief description of the methodological tools we used in our empirical analysis.

2.1 Causality in quantiles

We �rst consider the methods we used to shed light on the causality relations between oil return

dynamics and the two uncertainty indexes in a bivariate framework. For simplicity of notation, we

used xt in place of x1,t or x2,t when we studied the causality implications of EPU or EMU on yt.

Let Fyt|Zt−1
(yt|Zt−1) and Fyt|Yt−1

(yt|Yt−1) be the distributions of yt conditional on Zt−1 and Yt−1

respectively, where Yt−1 ≡ (yt−1, ..., yt−p) and Zt−1 ≡ (yt−1, ..., yt−p, xt−1, ..., xt−q), for (p, q) > 1.

Besides, Qτ (Zt−1) ≡ Qτ (yt|Zt−1) and Qτ (Yt−1) ≡ Qτ (yt|Yt−1) are the τ -th quantiles of yt conditional

on Zt−1 and Yt−1, respectively, for τ ∈ (0, 1).

In studying the Granger causality in quantiles, we followed Jeong et al. (2012): xt does not cause

the τ -th quantile of yt with respect to Zt−1 if Qτ (Zt−1) = Qτ (Yt−1). In contrast, xt is a prima facie

cause in the τ -th quantile of yt with respect to Zt−1 if Qτ (Zt−1) 6= Qτ (Yt−1). We evaluated the null

hypothesis of no causality (H0) using the test statistic proposed by Jeong et al. (2012), which we

denote as Ĵ∗T throughout the paper. Notably, Ĵ∗T is asymptotically distributed as N (0, 1).4

3The series of oil prices was recovered from Thomson Reuters Datastream. The data and the details about EPU and
EMU are available at http : //www.policyuncertainty.com/. High-frequency data were obtained from TickData.com.

4Other contributions that use Ĵ∗T are, for instance, Balcilar et al. (2016a,b,c).
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More recently, Balcilar et al. (2016a,b,c) extended the approach introduced by Jeong et al. (2012)

to the second moment of yt. This novel approach aims at testing for the presence of quantile causality

when considering the density of the risk or of the dispersion characterizing the variable yt. In particular,

Balcilar et al. (2016a,b,c) studied the causality impact on the τ -th quantile of oil's variance by replacing

yt by y
2
t , preserving the asymptotic distribution of Ĵ∗T . Balcilar et al. (2016a,b,c) proved the validity

of this approach, starting with the �ndings in Nishiyama et al. (2011).

Nevertheless, using squared values of the dependent variable, that is, y2
t does not provide a direct

focus on causation from the uncertainty measures to the quantiles of oil risk. In fact, if there is some

quantile causality in the �rst-order moment, this might distort the outcomes of quantile causality in

the second-order moment, as pointed out by Nishiyama et al. (2011) and Balcilar et al. (2016a,b,c).

More clearly, the test involving squares is used for causality up to the second-order moment, and can be

interpreted as a test for causality in risk only if there is no quantile causality for yt. We then extended

the existing literature by directly implementing the Jeong et al. (2012) test to realized measures of

volatility. In this way, we could evaluate the �tness of the method used in Balcilar et al. (2016a,b,c),

where the squared returns of the variables of interest were taken as a proxy of their second moment, for

analyzing the causality relationships in quantiles. By replacing yt or y
2
t with bpvt, that is, oil's bipower

variation (Barndor�-Nielsen and Shephard, 2004), in Ĵ∗T , we tested the causality impact of EPU and

EMU on the τ -th quantile of the yt's realized variance.

2.2 Quantiles and density forecasting

In this section we summarize the methods we used for studying the forecasting implications of EMU

and EPU on yt, y
2
t and bpvt. As mentioned in the introduction, one of the research questions deals

with evaluating the potentially di�erent impact of the two uncertainty indexes. A forecasting exercise

allows for a direct comparison of EPU and EMU, which can be jointly introduced in a single model for

testing their statistical and forecasting impact. In particular, we aimed to forecast both the conditional

quantiles and distributions of yt, y
2
t and bpvt taking into account the information associated with EPU

and EMU.

The testing approach discussed in Section 2.1 allows for the detection of causation, but it does

not provide guidance as to the speci�cation of any particular functional form. We decided to adopt

the simplest speci�cation for the quantiles, that is, a linear one, resorting to the quantile regression

introduced by Koenker and Bassett (1978). We stress that the model is linear only at the quantiles,

and we did not impose a distributional assumption on the residuals. We then used a parametric model

for the quantiles and recovered the density forecasts in a non-parametric way.

Given Wt−1 ≡ (yt−1, ..., yt−p, x1,t−1, ..., x1,t−q, x2,t−1, ..., x2,t−r), for (p, q, r) > 1, the �rst step con-

sisted in forecasting the conditional quantiles of yt, by estimating a quantile regression model (Koenker
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and Bassett, 1978), which led to the following conditional quantile function:5

Qτ (yt|Wt−1) = α0(τ) + β1(τ)yt−1 + ...+ βp(τ)yt−p + δ1(τ)x1,t−1

+ ...+ δq(τ)x1,t−q + λ1(τ)x2,t−1 + ...+ λr(τ)x2,t−r. (1)

We then obtained from (1) the forecast with a horizon of one period ahead as follows:

Q̂τ (yt+1|Wt) = α̂0(τ) + β̂1(τ)yt + ...+ β̂p(τ)yt−p+1 +

+ δ̂1(τ)x1,t + ...+ δ̂q(τ)x1,t−q+1 + λ̂1(τ)x2,t + ...+ λ̂r(τ)x2,t−r+1. (2)

The standard quantile regression approach allows estimating individual quantiles, but it does not

guarantee their coherence, i.e. their increasing monotonicity in τ ∈ (0, 1). For instance, it might

have occurred that the predicted 95-th percentile of the response variable was lower than the 90-th

percentile. If quantiles cross, corrections must be applied to obtain a valid conditional distribution of

volatility. For instance, to cope with the crossing problem, Koenker (1984) applied parallel quantile

planes, whereas Bondell et al. (2010) estimated the quantile regression coe�cients with a constrained

optimization method. We followed a di�erent approach, that is, the one proposed by Zhao (2011).

Given a collection of ϑ predicted conditional quantiles (Q̂τ1(yt+1|Wt), ..., Q̂τϑ(yt+1|Wt)), for 0 < τj <

τj+1 < 1, j = 1, ..., ϑ− 1, we �rst rearranged them into ascending order, by making use of the quantile

bootstrap method proposed by Chernozhukov et al. (2010). We denote the rearranged quantiles as

Q?τ1(yt+1|Wt), ..., Q
?
τϑ

(yt+1|Wt).

We then estimated the entire conditional distribution with a nonparametric kernel method. The

predicted density is obtained as follows:

f̂yt+1|Wt
(y?|Wt) =

1

ϑhϑ

ϑ∑
i=1

Ke

(
y? −Q?τi(yt+1|Wt)

hϑ

)
, (3)

where y? are evenly interpolated points that generate the support of the estimated distribution, hϑ is

the bandwidth and Ke(·) is the kernel function. Following Gaglianone and Lima (2012), we used the

Epanechnikov kernel as Ke(·).

By implementing the same method described above, we also forecasted the quantiles and densities of

y2
t , which we respectively denoted as Q̂τ (y2

t+1|W2,t) and f̂y2t+1|W2,t
(y2?|W2,t), by replacing yt in (1)�(3)

with y2
t , given W2,t−1 ≡ (y2

t−1, ..., y
2
t−p, x1,t−1, ..., x1,t−q, x2,t−1, ..., x2,t−r). Likewise, we forecasted the

quantiles and densities of bpvt (Q̂τ (bpvt+1|W3,t) and f̂bpvt+1|W3,t
(bpv?|W3,t)) by replacing yt in (1)�(3)

with bpvt, given W3,t−1 ≡ (bpvt−1, ..., bpvt−p, x1,t−1, ..., x1,t−q, x2,t−1, ..., x2,t−r).

We computed the coe�cients' standard errors using the bootstrap method (Efron, 1979), the ad-

5We followed a standard practice, reporting the expected conditional quantiles where the intercept includes a param-
eter and the quantile of the error term; we refer the reader to Koenker (2005) for details.
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vantages of which are well-known: it assumes no particular distribution of the errors, it is not based on

asymptotic model properties and it is available regardless of the complexity of the statistic of interest.

Among all the available bootstrapping methods, we made use of the xy-pair method (Kocherginsky,

2003), which provides various advantages for quantile regression problems (Davino et al., 2014).

We evaluated the predictive accuracy of the methods described above by implementing the tests

proposed by Berkowitz (2001), Diebold and Mariano (2002), Diks et al. (2011) and Gneiting and

Ranjan (2011), where the variance of the di�erences of the losses/scores provided by the competitive

models was computed using the heteroskedasticity and autocorrelation consistent (HAC) estimator.

We give the main details of the tests in Appendix A.

3 Empirical set-up: dynamic analysis and rolling window procedure

As noticed by Balcilar et al. (2016a), the relationships between yt or y
2
t and the uncertainty indexes

are not stable over time. The authors implemented the Bai and Perron (2003)'s test, detecting the

presence of multiple structural breaks in oil return series for the EPU- and EMU-based VARs.6 Here,

we implemented the DQ and the SQ tests introduced by Qu (2008), which best �t our analysis, as they

reveal structural changes in regression quantiles with unknown timing. Following Tillmann and Wolters

(2015), whose study focuses on US in�ation persistence, we proceeded in two stages. First, we used

the DQ test to capture possible changes in the entire conditional distribution of the response variable.

Given that we did not have any prior information about the part of the conditional distribution a�ected

by breaks, we took into account a broad number of quantiles levels, that is, τ = {0.05, 0.1, 0.15, ..., 0.95}.

Second, we implemented the SQ test at the dates where the null hypothesis of the DQ test was

rejected at the level of 0.01. For simplicity, we implemented the SQ test at three quantile levels,

that is, τ = {0.1, 0.5, 0.9}. Notably, the DQ and the SQ tests highlighted the presence of several

structural breaks for di�erent regions of the conditional distributions of yt, y
2
t and bpvt. As a result,

the conclusions drawn from the full sample analysis might be misleading also in the quantile regression

framework.7

In capturing the dynamics in the relations between the variables of interest, we di�ered from Balcilar

et al. (2016a) by implementing a rolling window procedure for causality testing, model estimating and

forecast computing. The window used to estimate the model has a width of 500 observations, roughly

two years. We believe an estimation window of this size represents a good balance between the precision

of quantile regression estimates and the possible presence of a time-change in the parameters of the

quantile regression. Moreover, to create a balance between �exibility, e�ciency and computational

burden, we re-estimated the model with steps of �ve days. Hence, the �rst window we considered here

6We were also able to detect four (18/01/1991, 26/03/2003, 02/12/2008, and 05/11/2011) and �ve (18/02/1999,
24/03/2003, 31/05/2007, 11/12/2008 and 05/11/2011) breaks with EPU and EMU being the independent variables
respectively, in relation to oil returns.

7The results obtained by implementing the DQ and the SQ tests are more thoroughly analyzed in Appendix C.
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includes the observations recorded between the �rst and the 500-th day of the sample. It is important

to highlight that when we studied the conditional distribution and quantiles of yt (and then y2
t ), t = 1,

that is, the �rst day of our analysis was January 7, 1986 (here the �rst two lags of yt and y2
t are

available). In the case of bpvt, in contrast, t = 1 coincides with January 9, 2007 due to the availability

of data (the dataset is described in Appendix B). In this way, the �rst window we have in the case of

bpvt coincides with the 1097-th window determined in the case of yt and y
2
t .

At t = 500 (December 7, 1987, for yt and y
2
t , December 8, 2008 for bpvt), we computed for the �rst

time the test statistic Ĵ∗T discussed in Section 2.1 at di�erent quantiles levels, with τ ranging from 0.05

to 0.95 and a step of 0.05, for a total of 19 Ĵ∗T values. Given the step of �ve days in the rolling window

procedure, Ĵ∗T is computed also in t = 505, 510, ..., until the available time series were exploited.
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Figure 1: The dynamic correlations, ρ(·), of the variables yt, y2
t , bpvt, x1,t, x2,t. The linear correlations

coe�cients were computed using a rolling window procedure with a window size of 500 observations
and a step of 5 days.

As a preliminary experiment, after determining the rolling windows through the previously men-

tioned procedure, we could compute the correlations between the variables of interest for each sub-

sample. The series are a�ected by structural breaks, as mentioned above, and consistent with that

evidence, the correlations are not constant over time, as can be seen in Figure 1. We could also con-

dition the dynamic correlations displayed in Figure 1, according to the fact that yt, y
2
t and bpvt are,

respectively, lower (greater) than their τ -th in-sample quantiles, for τ = {0.1, 0.5, 0.9}. For instance,

for each window, we computed the correlation between yt and x1,t from the values of the pair (yt, x1,t),

taking into account only the days where yt was lower (greater) than its τ -th in-sample quantile. By

repeating this method for all the subsamples, we computed the mean of the conditional correlations,

denoted as ρ̄(yt, x1,t). The results are given in Table 1. From this table we can see that, for each

pair of variables and for each τ , the results di�er considerably depending on whether we conditioned

the correlation coe�cients on the values of yt, y
2
t or bpvt being greater or lower than their respective
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in-sample τ quantiles.

Table 1: Conditional average correlations

τ = 0.1 τ = 0.5 τ = 0.9

lower greater lower greater lower greater

ρ̄(yt, x1,t) -0.1415 0.0286 -0.0837 0.0785 -0.0474 0.1428
ρ̄(yt, x2,t) -0.1750 0.0272 -0.1023 0.0941 -0.0716 0.1535
ρ̄(y2t , x1,t) -0.0600 0.0610 0.0064 0.0853 0.0179 0.1277
ρ̄(y2t , x2,t) -0.0649 0.0810 -0.0176 0.1140 0.0190 0.1993
ρ̄(bpvt, x1,t) -0.0374 0.1845 0.0326 0.1676 0.1612 0.1072
ρ̄(bpvt, x2,t) -0.0584 0.2508 -0.0129 0.2564 0.1664 0.1148

The table reports the average correlations between the variables yt, y
2
t , bpvt, x1,t and x2,t. The correlation coe�cients

were computed by conditioning the pairs of the variables on the values of yt, y
2
t and bpvt, respectively, such that yt, y

2
t

or bpvt are lower or greater than their τ -th quantiles, for τ = {0.1, 0.5, 0.9}.

To summarize, the results discussed above highlight the importance of using the quantile regression

method, given the asymmetric relations among the variables at di�erent τ levels. In particular, at

t = 500, we estimated for the �rst time the parameters of the quantile regression model (1) when

we focused on Qτ (yt|Wt−1), by setting τ from 0.01 to 0.99, with step of 0.01, to obtain quantile

vectors of length 99. We proceeded similarly for Qτ (y2
t |W2,t−1) and Qτ (bpvt|W3,t−1). In contrast

with the causality analysis, the �ner grid of quantiles used in the forecasting exercise was due to the

need to estimate the conditional distributions of yt, y
2
t and bpvt with adequate precision. Given the

parameter estimates obtained at time t = 500, we computed the forecasts of the conditional quantiles

and distributions of yt, y
2
t and bpvt for t = 501, ..., 505. Note, we were not making a �ve-step-ahead

forecast, but were simply �xing the model parameters for �ve days, computing �ve one-step-ahead

forecasts. For instance, to recover the quantile forecasts, we multiplied the values of the predictors

observed in t = 500, ..., 504 by the coe�cients estimated in t = 500.

The second window includes the observations between the 6-th and the 505-th day. Hence, at

t = 505, we computed for the second time, updating the previous output obtained in t = 500, the

estimated parameters with which we forecasted, for t = 506, ..., 510, the conditional quantiles and

distributions of yt, y
2
t and bpvt. The procedure went on until the entire dataset was completely

exploited. We stress that we made such a choice only to reduce computation time. In fact, for each

estimation sample, we were, in practice, estimating 99 quantile regressions for each model speci�cation.

Re-estimating the model every �ve observations allowed the computation time to be sensibly reduced.

As for the implementation of the tests proposed by Berkowitz (2001), Diebold and Mariano (2002),

Diks et al. (2011) and Gneiting and Ranjan (2011) (see the details of these tests in Appendix A),

starting from t+ 1 = 501, we compared the forecasts formulated in t with the respective out-of-sample

observations yt+1, y
2
t+1 and bpvt+1. Therefore, on the basis of those comparisons, we computed, for

each point in the forecast sample, the scores characterizing the respective tests. In our analysis, the

forecasting evaluation was not carried out on the full sample, but on rolling intervals consisting of
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M = 500 periods. We motivate this choice by the possibility of controlling, in that way, for changes in

the impact of uncertainty measures on the improvement of density forecasts. Therefore, in t = 1000

(November 6, 1989 for yt and y
2
t , November 8, 2010 for bpvt), we computed for the �rst time the four

test statistics mentioned above. Similarly, by updating the scores of each test by one period ahead,

we computed the statistics for the second time in t = 1001, and the procedure was continued until the

entire dataset was completely exploited. Note that we made use of two windows: the �rst refers to

the model estimation, while the latter de�nes the range over which we evaluated the density forecast

performances of the restricted and unrestricted models.

In applying the test introduced by Jeong et al. (2012), as in Balcilar et al. (2016a), we might have

determined the lag order q using the Schwarz Information Criterion computed on the VAR comprising

oil returns and EPU or EMU, and estimated over the full sample. However, our analysis adopted

the rolling window procedure described above. Consequently, on the one hand, a large q would imply

huge computational costs and, on the other, q most likely would change from one window to another.

For this reason, as a rule of thumb, and to create a balance between the precision of the analyses

and computational burden, we set q = 2 in applying the causality test in quantiles. Likewise, for the

forecasting exercise, we set p = q = r = 2.

4 Empirical results

4.1 Time variation of quantile causality

We �rst analyzed the causality in quantiles as detected by the test proposed by Jeong et al. (2012),

discussed in Section 2.1. We report in Figure 2 the values of the test statistic Ĵ∗T when we studied the

causality implications of x1,t (the logarithm of EPU) on the quantiles of yt (oil return). In contrast,

Figure 3 displays the output of the test implemented using x2,t (the logarithm of EMU). The results in

Figures 2�3 are very similar: periods in which Ĵ∗T takes low values (pointing out the low or inexistent

power of the two uncertainty indexes in causing the yt's quantiles) are followed by periods of relevant

peaks. Nevertheless, the periods in which EPU and EMU are not signi�cant in causing the yt's quantiles

are more persistent. Moreover, we can see that the causality relations are stronger at the central τ 's

levels.

Next, we focus on the impact of EPU and EMU on oil's variance. We observe in Figures 4�5

the results obtained for the quantiles of oil's realized variance (bpvt), whereas Figures 6�7 display the

results we obtained for the quantiles of the squared oil returns (y2
t ). For both bpvt and y

2
t we detected

a stronger impact of EPU and EMU with respect to the case of yt, as the periods in which x1,t and x2,t

are signi�cant in the causality relationships become more persistent. In contrast with the other cases,

the values of Ĵ∗T in Figures 6�7 exhibit evident peaks on the extreme quantile levels in some periods.

Hence, for causality in risk assessment purposes, we could think that using y2
t in place of bpvt would

11



Figure 2: The causality of the Economic Policy Uncertainty (in logarithm) on the quantiles of oil's
returns. The �gure reports the values of Ĵ∗T for di�erent quantile levels, computed using a rolling
procedure with a window size of 500 observations and step of 5 periods ahead. The blue cutting plane
represents the 5% con�dence bound.

Figure 3: The causality of the Market Equity Uncertainty (in logarithm) on the quantiles of oil's
returns. The �gure reports the values of Ĵ∗T for di�erent quantile levels, computed using a rolling
procedure with a window size of 500 observations and step of 5 periods ahead. The blue cutting plane
represents the 5% con�dence bound.

be a good approximation just for the central quantiles levels; on the other hand, when we consider

the tails, this approximation could lead to inaccurate results. We stress that the di�erence between

the results for y2
t and bpvt depend on both the use of oil future prices volatility as a proxy for oil spot

prices volatility and on y2
t being a noisy proxy for oil spot price volatility.

The aforesaid results are con�rmed by those given in Table 2, where we report the p-values of the χ2
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Figure 4: The causality of the Economic Policy Uncertainty (in logarithm) on the quantiles of oil's
realized volatility. The �gure reports the values of Ĵ∗T for di�erent quantile levels, computed using a
rolling procedure with a window size of 500 observations and step of 5 periods ahead. The blue cutting
plane represents the 5% con�dence bound.
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Figure 5: The causality of the Market Equity Uncertainty (in logarithm) on the quantiles of oil's
realized volatility. The �gure reports the values of Ĵ∗T for di�erent quantile levels, computed using a
rolling procedure with a window size of 500 observations and step of 5 periods ahead. The blue cutting
plane represents the 5% con�dence bound.

test of independence, at a signi�cance level of 0.05, implemented on the variables described below. In

particular, we transformed Ĵ∗T into a dichotomous variable taking the value of 1 if the null hypothesis of

non-causality is rejected at the 0.05 level for a given value of τ , and the value of 0 otherwise. Therefore,

the χ2 test is computed using contingency tables built for each of the pairs in {yt, y2
t , bpvt}, depending

on whether the causal variable is x1,t (in the left panel of Table 2) or x2,t (in the right panel of Table

2). For instance, in the left panel of Table 2, χ2(yt, y
2
t ) denotes the p-value of the χ

2 test applied to

the dichotomized values displayed in Figures 2�6, for a given value of τ . Given that the time series
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Figure 6: The causality of the Economic Policy Uncertainty (in logarithm) on the quantiles of oil's
squared returns. The �gure reports the values of Ĵ∗T for di�erent quantile levels, computed using a
rolling procedure with a window size of 500 observations and step of 5 periods ahead. The blue cutting
plane represents the 5% con�dence bound.

Figure 7: The causality of the Market Equity Uncertainty (in logarithm) on the quantiles of oil's
squared returns. The �gure reports the values of Ĵ∗T for di�erent quantile levels, computed using a
rolling procedure with a window size of 500 observations and step of 5 periods ahead. The blue cutting
plane represents the 5% con�dence bound.

of yt and y
2
t cover a longer time period with respect to bpvt, for consistency we applied the χ2 test of

independence by using the same time interval for all the variables, which starts on December 8, 2008

(i.e. the closing point of the �rst window for bpvt, where we computed for the �rst time the values

in Figures 4�5). We point out that we never rejected the null hypothesis of independence (at the

0.05 level) in the case of χ2(yt, y
2
t ), whereas we rarely rejected it for χ2(yt, bpvt). In contrast, the null

hypothesis of independence was almost always rejected, with very low p-values, for the pair {y2
t , bpvt};

the exceptions occurred at extreme τ levels. Therefore, using y2
t in the Jeong et al. (2012)'s test for
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analysing causality in risk, in place of bpvt, leads to satisfactory approximations for the central values

of τ ; that evidence does not hold at extreme quantiles levels. We might also read this result from a

di�erent viewpoint: the use of oil future prices to recover a proxy for oil spot price volatility seems

appropriate at central quantiles only.

Table 2: χ2 test of independence

τ causal variable x1,t causal variable x2,t

χ2(yt, y
2
t ) χ2(yt, bpvt) χ2(y2t , bpvt) χ2(yt, y

2
t ) χ2(yt, bpvt) χ2(y2t , bpvt)

0.05 0.61 1.00 0.99 1.00 0.54 0.77
0.15 0.20 1.64E-03 8.33E-06 0.82 0.05 0.03
0.25 0.58 0.02 7.49E-05 0.93 0.12 0.46
0.35 0.84 7.33E-03 8.24E-04 1.00 0.55 2.11E-05
0.45 1.00 0.03 2.48E-03 1.00 1.00 1.32E-08
0.55 1.00 2.46E-03 5.61E-03 0.89 0.05 9.97E-03
0.65 0.96 0.08 0.03 0.80 0.51 4.97E-03
0.75 1.00 0.61 2.39E-03 0.78 0.14 0.02
0.85 1.00 0.94 0.27 0.46 0.38 0.02
0.95 1.00 0.11 1.00 0.95 0.54 0.02

The table shows the p-values of the χ2 test of independence, at a signi�cance level of 0.05. The test was applied by
transforming Ĵ∗T into a dichotomous variable taking a value of 1 if the null hypothesis of non-causality in quantile, for a
given value of τ , was rejected at the 0.05 level, and a value of 0 otherwise. Therefore, the χ2 test was computed from
contingency tables built for each of the pairs in {yt, y2t , bpvt}, depending on whether the causal variable was x1,t (in the
left panel of Table 2) or x2,t (in the right panel of Table 2).

4.2 Model assessment

We �rst estimated the parameters of the quantile regression model in (1), that is, Qτ (yt|Wt−1) =

α0(τ) + β1(τ)yt−1 + β2(τ)yt−2 + δ1(τ)x1,t−1 + δ2(τ)x1,t−2 + λ1(τ)x2,t−1 + λ2(τ)x2,t−2. By replacing

yt by y
2
t (bpvt) and Wt−1 by W2,t−1 (W3,t−1) we also estimated the parameters of Qτ (y2

t |W2,t−1) and

Qτ (bpvt|W3,t−1). After estimating the parameters of these quantile regression models for each of the

subsamples resulting from the rolling window procedure, we computed their respective average values

and standard deviations.

We checked that, on average, the coe�cients' p-values were greater than 0.05, pointing out that

the explanatory variables are not always statistically signi�cant in explaining the conditional quantiles

of yt, y
2
t and bpvt over time. Hence, we report in Table 3 the mean (columns 2�7) and the standard

deviation (columns 8�13) of the coe�cients, conditional on their respective p-values being less than

or equal to 0.05. These average values are denoted as β̄j(τ), δ̄j(τ) and λ̄j(τ), whereas the standard

deviations are denoted as σβj(τ), σδj(τ), σλj(τ), for j = {1, 2}. For simplicity, we display the results

obtained at τ = {0.1, 0.5, 0.9}.

Starting with Qτ (yt|Wt−1)'s estimated parameters, on average, the impact of the explanatory

variables changes according to the τ levels, counter-evidence for the so-called location-shift hypothesis,

which assumes the homogeneous e�ects of the covariates across the conditional quantiles of the response

variable. It is possible to observe a precise trend of the coe�cients' values over τ : negative for β̄j(τ)
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Table 3: Quantile regression output

τ β̄1(τ) β̄2(τ) δ̄1(τ) δ̄2(τ) λ̄1(τ) λ̄2(τ) σβ1(τ) σβ2(τ) σδ1(τ) σδ2(τ) σλ1(τ) σλ2(τ)

Estimates in Qτ (yt|Wt−1) = α0(τ) +
∑2
j=1 βj(τ)yt−j +

∑2
j=1 δj(τ)x1,t−j +

∑2
j=1 λj(τ)x2,t−j

0.1 0.024 17.893 -0.835 -0.040 -0.529 -0.020 19.122 5.997 0.399 0.694 0.207 0.683
0.5 -11.531 -7.864 -0.464 0.291 0.011 0.130 1.613 0.543 0.139 0.332 0.257 0.260
0.9 -16.625 -18.386 0.559 0.829 0.555 0.765 15.213 6.581 0.146 0.414 0.401 0.119

Estimates in Qτ (y2t |W2,t−1) = α0(τ) +
∑2
j=1 βj(τ)y2t−j +

∑2
j=1 δj(τ)x1,t−j +

∑2
j=1 λj(τ)x2,t−j

0.1 0.467 1.027 0.001 -4e-04 -2e-04 -1e-05 0.444 0.903 3e-05 1e-03 2e-05 3e-04
0.5 6.711 7.977 0.009 0.011 0.003 0.005 5.032 2.895 0.004 0.007 0.005 0.003
0.9 67.069 85.650 0.038 0.020 0.050 0.004 27.312 34.422 0.016 0.065 0.031 0.046

Estimates in Qτ (bpvt|W3,t−1) = α0(τ) +
∑2
j=1 βj(τ)bpvt−j +

∑2
j=1 δj(τ)x1,t−j +

∑2
j=1 λj(τ)x2,t−j

0.1 29.679 13.277 0.002 0.005 0.001 0.001 4.512 2.831 0.002 0.002 0.000 0.000
0.5 44.738 25.433 0.004 0.004 0.001 0.001 4.187 6.557 0.001 0.001 0.000 0.001
0.9 78.199 59.270 0.023 0.012 0.006 0.002 21.408 14.328 0.003 0.003 0.003 0.002

The table reports the average values (%), in columns 2�7, and the standard deviations (%), in columns 8�13, computed
for the subsamples determined by the rolling window procedure, of the estimated parameters, conditional on their being
statistically signi�cant at the level of 0.05. The rolling window procedure was applied by using a window size of 500
observations and steps of 5 days ahead.

and positive for δ̄j(τ), λ̄j(τ), j = {1, 2}. On average, the lags of yt have a positive impact on the left

tail of the response variable's conditional distribution; on the other hand, their e�ects become negative

at medium-high τ levels. This was expected as past negative returns lead to an increase in the series

dispersion, and thus moved the 0.1 (0.9) quantile further to the left (right), with an additional e�ect

on the median. On the contrary, positive returns shrink the density toward the median, which then

also moves to the right. We interpret this evidences as a form of asymmetry, where the sign of the

shocks lead to opposite e�ects on the quantiles, and thus on the distribution, of the target variable.

The opposite phenomenon was observed for x1,t−j and x2,t−j , j = {1, 2}; for the uncertainty

indexes, we were expecting these signs. In fact, an increase in uncertainty moves the lower quantiles

to the left and the upper quantiles to the right, with the impact on the median being smaller than

that on other quantiles for j = 1. With the exception of x2,t−j , j = {1, 2}, the coe�cients of the other

explanatory variables are less volatile at the central levels of τ . In Table 4 we report the number of

subsamples in which each coe�cient turns out to be statistically signi�cant at the level of 0.05. It

is possible to see that at τ equal to 0.1, 0.5 and 0.9, x2,t−2, x2,t−1 and yt−1 record, respectively, the

highest number of periods in which their coe�cients are statistically signi�cant.

Moving to the estimation of Qτ (bpvt|W3,t−1)'s parameters, all the predictors have a positive impact

on the estimated quantiles. Also, the magnitude of the coe�cients is almost always a positive function

of τ , mainly in the case of β̄1(τ) and β̄2(τ), which reach considerable levels at medium-high τ values.

As for Qτ (y2
t |W2,t−1), just δ̄2(0.1), λ̄1(0.1) and λ̄2(0.1) are negative; nevertheless these coe�cients

take very low values. With the exception of λ̄2(τ), all the other coe�cients exhibit, on average, an

increasing trend over τ . Interestingly, the coe�cients of Qτ (y2
t |W2,t−1) and of Qτ (bpvt|W3,t−1) follow a

similar trend. The larger impact of the lagged realized volatility and of the squared lagged returns on

the upper quantiles again was expected, signalling that large movements (either positive or negative)

16



lead to a huge increase in the risk.

We report in Table 4 the number of subsamples in which each coe�cient is statistically signi�cant

at the 0.05 level. By way of reminder, the total number of rolled windows is equal to 1430 in the

case of yt and y2
t , and is equal to 334 for bpvt, due to the limited availability of data. The most

relevant evidence in Table 4 is that bpvt−1 almost always turns out to be signi�cant over time, for all

the levels of τ ; secondly, bpvt−2 also reaches high levels of nβ2(τ). Thus, the realized volatility of oil

exhibits relevant persistence in its lags, consistent with the �ndings in Corsi (2009). Another important

variable is x2,t−1 at τ = 0.9, given that it is statistically signi�cant in 186 out of 334 subsamples. As

for yt and y
2
t , at τ = {0.1, 0.9}, yt−1, yt−2 and x1,t−1 record the highest number of periods in which

their coe�cients are statistically signi�cant at the 5% level.

The p-values in Table 4 indicate that EPU and EMU are signi�cant in forecasting oil's returns and

risk in a few cases. This evidence is consistent with the results shown in Figures 2�3, where EPU and

EMU seldom cause the yt's quantiles. In contrast, EPU and EMU almost always cause the variance's

quantiles (Figures 4�7). This di�erence might be due to the fact that we obtained the p-values in

Table 4 by including both x1,t−j and x2,t−j , with j = {1, 2}, in the same quantile regression model,

whereas we implemented the Jeong et al. (2012)'s test by using either x1,t−j or x2,t−j . Hence, we also

estimated the quantile regression models discussed above, including either x1,t−j or x2,t−j . The results

are qualitatively similar to those with both indexes.8 Consequently, from a forecasting perspective,

EMU and EPU might be considered substitutes. A further explanation is that we estimated a linear

quantile regression model, whereas the Jeong et al. (2012)'s test does not have any particular functional

form. Therefore, the di�erent speci�cation of the two approaches can lead to di�erent conclusions when

analyzing the causality implications of EPU and EMU on oil's risk.

Table 4: Persistence of signi�cance over the rolled windows

τ nβ1(τ) nβ2(τ) nδ1(τ) nδ2(τ) nλ1(τ) nλ2(τ)

Estimates in Qτ (yt|Wt−1) = α0(τ) +
∑2
j=1 βj(τ)yt−j +

∑2
j=1 δj(τ)x1,t−j +

∑2
j=1 λj(τ)x2,t−j

0.1 112 37 165 114 54 190
0.5 102 9 30 64 113 35
0.9 322 156 93 47 105 53

Estimates in Qτ (y2t |W2,t−1) = α0(τ) +
∑2
j=1 βj(τ)y2t−j +

∑2
j=1 δj(τ)x1,t−j +

∑2
j=1 λj(τ)x2,t−j

0.1 43 63 50 13 35 24
0.5 142 50 150 57 145 103
0.9 174 27 126 117 69 90

Estimates in Qτ (bpvt|W3,t−1) = α0(τ) +
∑2
j=1 βj(τ)bpvt−j +

∑2
j=1 δj(τ)x1,t−j +

∑2
j=1 λj(τ)x2,t−j

0.1 330 81 33 20 13 10
0.5 310 298 32 26 33 109
0.9 333 176 0 3 186 29

The table reports the number of subsamples, determined by the rolling window procedure, in which each coe�cient turns
out to be statistically signi�cant at a level of 0.05. The rolling window procedure was applied by using a window size of
500 observations and steps of 5 days ahead.

8Results are available upon request.
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Next, we show that the method we used turns out to be very e�ective in obtaining valid estimations

of distributions. For instance, Sub�gure 8(a) shows the conditional distribution of yt, estimated from

the �rst of the rolled windows. We emphasize that the problem of crossing in quantiles vanishes by

applying the quantile bootstrap method proposed by Chernozhukov et al. (2010). Moreover, using

the Epanechnikov kernel method results in obtaining smoother distributions. Sub�gure 8(b) shows

the conditional density of yt, respectively, estimated from the �rst and the last windows of the rolling

window procedure, when applying the Epanechnikov kernel method. Notably, the shape of each density

changes over time, thus supporting the need for a rolling evaluation.9

Figure 8: Conditional distribution and density of yt. Sub�gure (a) displays the conditional distribution
of yt, estimated from the �rst subsample determined through the rolling window procedure. `Original',
`adjusted' and `kernel' stand for the distributions arising directly from Model (1), the one obtained
by adjusting the original estimates through the quantile bootstrap method proposed by Chernozhukov
et al. (2010), and the one built by means of the Epanechnikov kernel, respectively. Sub�gure (b) shows
the conditional density of yt, estimated from the �rst and the last windows determined by the rolling
window procedure, by applying the Epanechnikov kernel method.

4.3 The asymmetric impact of the uncertainty measures

In this section, we present an evaluation of the possible asymmetric e�ects of the uncertainty indexes

on oil movements. In doing so, we �rst centred to zero both x1,t−j and x2,t−j , j = {1, 2}, by subtracting

their respective means; these new variables are denoted by x?1,t−j and x
?
2,t−j , j = {1, 2}, respectively.

Next, we de�ned the indicator functions 1{x?1,t−j<0} and 1{x?2,t−j<0}, j = {1, 2}, which take a value of

1 if the condition in {·} is true and a value of 0 otherwise, and obtained the following model:

Qdτ (yt|Wt−1) = α0(τ) + β1(τ)yt−1 + β2(τ)yt−2 + δd1(τ)x?1,t−1 + δd2(τ)x?1,t−2 + λd1(τ)x?2,t−1

+ λd2(τ)x?2,t−2 + δ?1(τ)1{x?1,t−1<0}x
?
1,t−1 + δ?2(τ)1{x?1,t−2<0}x

?
1,t−2

+ λ?1(τ)1{x?2,t−1<0}x
?
2,t−1 + λ?2(τ)1{x?2,t−2<0}x

?
2,t−2 + εdt (τ), (4)

Similarly, we also estimated the parameters of Qdτ (y2
t |W2,t−1) (Qdτ (bpvt|W3,t−1)) by replacing yt

in (4) with y2
t (bpvt) and Wt−1 with W2,t−1 (W3,t−1). In evaluating the asymmetric e�ects of EPU

9We observed the same phenomenon for y2t and bpvt. The results are available on request.
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(EMU) on oil movements, it is important to notice that the impact of x?1,t−j (x
?
2,t−j), j = {1, 2}, was

quanti�ed by δdj (τ) (λdj (τ)) if x?1,t−j ≥ 0 (x?2,t−j ≥ 0); in contrast, its impact is equal to δdj (τ) + δ?j (τ)

(λdj (τ) + λ?j (τ)) if x?1,t−j < 0 (x?2,t−j < 0). We report the estimates of these new models accounting

for the asymmetric impact of EPU and EMU in Table 5. Here, we display the average values of the

coe�cients over the rolled subsamples (window size of 500 observations and steps of 5 days ahead),

conditional on them being statistically signi�cant at a level of 5%; we also report their standard

deviations. More precisely, for instance, in order to evaluate correctly the asymmetric e�ects of x?1,t−1,

for each window, we considered the cases where all the coe�cients
[
δ̂d1(τ), δ̂??1 (τ) = δ̂d1(τ) + δ̂?1(τ)

]
are

simultaneously signi�cant, and then we computed their average values.

Table 5: The asymmetric impact of uncertainty on oil movements

τ δ̄d1(τ) δ̄??1 (τ) δ̄d2(τ) δ̄??2 (τ) λ̄d1(τ) λ̄??1 (τ) λ̄d2(τ) λ̄??2 (τ)

Estimates of the Qdτ (yt|Wt−1)'s parameters

0.1 -2.44 (1.9) -0.12 (0.4) 2.42 (1.2) -1.16 (0.6) -1.07 (1.0) 0.21 (0.2) -1.74 (0.5) 0.33 (1.1)
0.5 0.95 (0.4) -0.33 (0.2) 0.33 (1.1) -0.38 (0.2) -0.92 (0.8) 0.32 (0.1) -1.53 (0.1) 0.29 (1.1)
0.9 2.20 (1.9) -0.92 (0.8) 1.45 (1.1) -0.50 (0.7) -0.65 (1.9) 0.54 (0.4) -1.00 (0.1) 0.33 (0.1)

Estimates of the Qdτ (y2t |W2,t−1)'s parameters

0.1 1.00 (8.2) -0.10 (2.2) -2.92 (10.2) 0.19 (3.1) 2.23 (2.9) -0.01 (3.2) 0.06 (0.5) -0.02 (0.6)
0.5 2.68 (0.8) -0.30 (1.4) -2.07 (2.6) 0.17 (0.3) 3.13 (1.0) -0.12 (0.2) 1.90 (1.2) -0.09 (1.3)
0.9 14.14 (12.0) -0.52 (3.1) 29.51 (15.2) -2.90 (3.9) 5.56 (3.7) -1.28 (1.8) 4.34 (4.8) -1.89 (2.5)

Estimates of the Qdτ (bpvt|W3,t−1)'s parameters

0.1 0.45 (2.3) -0.11 (3.6) 0.09 (2.2) -0.05 (1.9) 0.02 (4.8) -0.05 (3.9) 0.08 (1.2) -0.01 (3.5)
0.5 1.32 (1.3) -0.38 (2.1) 0.02 (1.4) -0.06 (2.9) 0.05 (3.7) -0.94 (2.5) 1.31 (5.7) -0.03 (2.1)
0.9 3.26 (9.4) -0.78 (8.1) 3.23 (9.4) -1.23 (9.3) 2.2 (8.7) -1.02 (13.6) 2.28 (9.2) -0.73 (8.9)

The table reports the average values (%), computed over the subsamples derived from the rolling window procedure,
of the uncertainty indexes' coe�cients (in brackets we report their standard deviations) estimated for the following
models: Qdτ (yt|Wt−1) = α0(τ) + β1(τ)yt−1 + β2(τ)yt−2 + δd1(τ)x?1,t−1 + δd2(τ)x?1,t−2 + λd1(τ)x?2,t−1 + λd2(τ)x?2,t−2 +
δ?1(τ)1{x?1,t−1<0}x

?
1,t−1 + δ?2(τ)1{x?1,t−2<0}x

?
1,t−2 + λ?1(τ)1{x?2,t−1<0}x

?
2,t−1 + λ?2(τ)1{x?2,t−2<0}x

?
2,t−2, Q

d
τ (y2t |W2,t−1) =

α0(τ) + β1(τ)y2t−1 + β2(τ)y2t−2 + δd1(τ)x?1,t−1 + δd2(τ)x?1,t−2 + λd1(τ)x?2,t−1 + λd2(τ)x?2,t−2 + δ?1(τ)1{x?1,t−1<0}x
?
1,t−1 +

δ?2(τ)1{x?1,t−2<0}x
?
1,t−2 + λ?1(τ)1{x?2,t−1<0}x

?
2,t−1 + λ?2(τ)1{x?2,t−2<0}x

?
2,t−2 and Q

d
τ (bpvt|W3,t−1) = α0(τ) + β1(τ)bpvt−1 +

β2(τ)bpvt−2 + δd1(τ)x?1,t−1 + δd2(τ)x?1,t−2 + λd1(τ)x?2,t−1 + λd2(τ)x?2,t−2 + δ?1(τ)1{x?1,t−1<0}x
?
1,t−1 + δ?2(τ)1{x?1,t−2<0}x

?
1,t−2 +

λ?1(τ)1{x?2,t−1<0}x
?
2,t−1 + λ?2(τ)1{x?2,t−2<0}x

?
2,t−2. We conditioned the estimates on them being statistically signi�cant at

a level of 0.05. The rolling window procedure was applied by using a window size of 500 observations and step of 5 days
ahead. δ̄??j (τ) is the conditional average value of the sums δdj (τ) + δ?j (τ), computed from the windows where the two
coe�cients are simultaneously signi�cant; similarly, λ̄??j (τ) is the conditional average value λdj (τ) + λ?j (τ), j = {1, 2}.

We can see from Table 5 that, on average, both the uncertainty indexes have asymmetric e�ects

on oil movements, and that the impact is stronger in the states where they take high values, i.e. when

x?1,t−j and x
?
2,t−j take positive values. Indeed, the means of δ̂

d
j (τ) and λ̂dj (τ) are almost always greater,

in absolute value, than the means of (δ̂dj (τ) + δ̂?j (τ)) and (λ̂dj (τ) + λ̂?j (τ)), j = {1, 2}, respectively. This

is a somewhat expected result suggesting that increases in uncertainty do have a larger impact on oil

movements compared with decreases in uncertainty.
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4.4 Out-of-sample forecast evaluation of quantile causality

We evaluated the predictive accuracy of the methods discussed in Section 2.2, focusing on the contri-

bution of the two uncertainty indexes (x1,t and x2,t) in forecasting the quantiles and the distributions

of yt, y
2
t and bpvt. The case of yt is displayed in Figure 9. Starting from Berkowitz (2001), we tested

the null hypothesis of correct speci�cation and report in Figure 9(a) the p-values obtained from four

di�erent models: Model 1 includes all the predictors, that is, yt−j , x1,t−j and x2,t−j , with j = {1, 2}.

Model 2 has just yt−j , whereas Model 3 comprises yt−j and x1,t−j . Finally, Model 4 includes yt−j and

x2,t−j , with j = {1, 2}. For all the four models, we can see that there are periods in which the null

hypothesis of correct speci�cation is not rejected at the 0.05 signi�cance level, and others where the

null hypothesis is rejected. Notably, during the years 1999�2002 and 2008, the null hypothesis is not

rejected just for Model 1, highlighting the importance of exploiting the joint predictive power of EPU

and EMU.

(a) The Berkowitz (2001) test (p-values) (b) The Diebold and Mariano (2002) test

(c) The Diks et al. (2011) test (d) The Gneiting and Ranjan (2011) test

Figure 9: Predictive accuracy for the yt conditional distribution and quantiles over the rolled windows.
The tests were applied by placing di�erent weights on the di�erent regions of the conditional distribu-
tion of the response variable. In Sub�gure 9(a), Model 1 includes all the selected predictors, that is,
yt−j , x1,t−j and x2,t−j , with j = {1, 2}. Model 2 has just yt−j , whereas Model 3 comprises yt−j and
x1,t−j . Finally, Model 4 includes yt−j and x2,t−j , with j = {1, 2}. In Sub�gures 9(b)�9(d) the black
horizontal lines represent the 5% con�dence bounds, whereas in Sub�gure 9(a) the black horizontal
line represents the value threshold of 0.05.

The direct comparisons between the restricted (the one including just the lags of yt) and the

unrestricted (which includes also the lags of x1,t and x2,t) models, based on the tests proposed by

Diebold and Mariano (2002), Diks et al. (2011) and Gneiting and Ranjan (2011), were evaluated and

are reported in Figures 9(b)�9(d). Here, the tests statistics change their signs over time, highlighting
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periods in which the unrestricted model works better, followed by others where the best performance is

recorded by the restricted model.10 Nevertheless, the null hypothesis of equal performance is not always

rejected at the 5% level and the periods in which the unrestricted model records the best performance,

statistically signi�cant, are less frequent than the ones in which it is outperformed by the restricted

model. In general, all the tests give evidence of the best performance of the unrestricted model in the

second half of the 2000s and at the end of the 2000s. Besides, the Diks et al. (2011) test detects further

periods, namely in the middle of the 1990s and at the beginning of the 2000s, where the unrestricted

model outperforms the restricted one, mainly when we focus on the center of the distribution.

Here we focus on risk, and for that purpose, we report in the following the case of oil's volatility,

estimated through the realized bipower variation (subplots on the right side), and the case of squared

oil returns (on the left side). In particular, the tests proposed by Berkowitz (2001), Diebold and

Mariano (2002), Diks et al. (2011) and Gneiting and Ranjan (2011) are reported in Figures 10�13,

respectively. We notice that, during the years 2010�2015, i.e. the period in common between the y2
t

and the bpvt series, there is no evidence in favour of the (statistically signi�cant) better performance

of the unrestricted model, highlighting the poor contribution of EPU and EMU in forecasting oil risk's

conditional distribution and quantiles.

As for the years before 2010 where we focus just on y2
t , the Berkowitz (2001) test shows periods in

which the null hypothesis is not rejected just for Model 4, such as the end of the 1980s, and between

the years 2003-2005 and 2009-2010, highlighting the relevant contribution of EMU in the forecasting

exercise. Among the other tests, the Diks et al. (2011) test records the highest number of windows where

the null hypothesis is rejected in favour of the better performance of the unrestricted model, mainly in

the left tail and at the center of the y2
t conditional distribution. The tests developed by Diebold and

Mariano (2002) and Gneiting and Ranjan (2011) show positive evidence at high y2
t quantiles, in the

years 2009-2010.

We now assemble the information from the four tests discussed above to highlight the periods where

EPU and EMU turn out to be crucial in forecasting the yt conditional distribution and quantiles.

Hereafter, we focus just on yt and y
2
t , given the poor evidence observed in the case of bpvt during the

years 2010-2015. For this purpose, we computed, for each of the applied tests�those developed by

Berkowitz (2001), Diebold and Mariano (2002), Diks et al. (2011) and Gneiting and Ranjan (2011)�a

dummy variable denoted Dpred
t taking the value of 1 if the unrestricted model records a (statistically)

better performance at the level of 0.05 than the restricted one at t, and the value of 0 otherwise. In

the case of the Berkowitz (2001) test, Dpred
t takes a value of 1 if the null hypothesis is not rejected

for the unrestricted model (which includes all the available covariates), and for the same window, is

rejected for the restricted one (which includes just the lagged values of yt or y
2
t ) at t. In order to clean

10We emphasize that, for the Diks et al. (2011) test, the unrestricted model outperforms the restricted one if the test
statistic is positive. The opposite holds for the Diebold and Mariano (2002) and Gneiting and Ranjan (2011) tests.
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the series from the periods where the better performance of one of the two models lasts for only a few

day, being negligible, we computed, for each test, the following moving average:

SDpred
t =

1

2Ms + 1

t+Ms∑
t−Ms

Dpred
t . (5)

In our work, we set Ms = 10, hence the moving averages span by 21 days, and identi�ed with more

smoothness the periods where the unrestricted model performed better than those where SDpred
t ≥ 0.5.

(a) Conditional distribution of y2t (b) Conditional distribution of bpvt

Figure 10: The p-values of the Berkowitz (2001) test over the rolled windows. Sub�gure 10(a) and
10(b) refer, respectively, to the forecasts of the distributions of y2

t and bpvt. Model 1 includes all the
selected predictors, that is, y2

t−j (in Sub�gure 10(a)) or of bpvt−j (in Sub�gure 10(b)), x1,t−j and x2,t−j ,

with j = {1, 2}. Model 2 has just the lags of y2
t−j (in Sub�gure 10(a)) or of bpvt−j (in Sub�gure 10(b)).

Model 3 comprises y2
t−j (in Sub�gure 10(a)) or of bpvt−j (in Sub�gure 10(b)) and x1,t−j , whereas Model

4 includes y2
t−j (in Sub�gure 10(a)) or of bpvt−j (in Sub�gure 10(b)) and x2,t−j , with j = {1, 2}. The

black horizontal line represents the threshold value of 0.05.

(a) Conditional distribution of y2t (b) Conditional distribution of bpvt

Figure 11: The Diebold and Mariano (2002) test statistic values over the rolled windows. Sub�gures
11(a) and 11(b) refer, respectively, to the forecasts of the y2

t and the bpvt distributions, where we
compared the restricted (which contain just the lags of y2

t and bpvt) and the unrestricted models
(which include also the lags of x1,t and x2,t). The test was applied for three di�erent τ values: 0.05
(green lines), 0.50 (yellow lines) and 0.95 (blue lines). The black horizontal lines represent the 5%
con�dence bounds.

We display in Figures 14�15 the periods where EPU and EMU are crucial in the forecasting

exercise, with a di�erent colour for each test. From Figure 14, we can see that EPU and EMU

played an important role in forecasting the yt's conditional quantiles and distributions during the years
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(a) Conditional distribution of y2t (b) Conditional distribution of bpvt

Figure 12: The Diks et al. (2011) test statistic values over the rolled windows. Sub�gures 12(a) and
12(b) refer, respectively, to the forecasts of the y2

t and the bpvt distributions, where we compared the
restricted (which contain just the lags of y2

t and bpvt) and the unrestricted models (which include also
the lags of x1,t and x2,t). The test was applied by placing greater emphasis on the center (green lines),
on the right tail (blue lines) and on the left tail (yellow lines) of the conditional distributions. The
black horizontal lines represent the 5% con�dence bounds.

(a) Conditional distribution of y2t (b) Conditional distribution of bpvt

Figure 13: The Gneiting and Ranjan (2011) test statistic values over the rolled windows. Sub�gures
13(a) and 13(b) refer, respectively, to the forecasts of the y2

t and the bpvt distributions, where we
compared the restricted (which contain just the lags of y2

t and bpvt) and the unrestricted models
(which include also the lags of x1,t and x2,t). The test was applied by placing greater emphasis on the
center (green lines), on the right tail (blue lines) and on the left tail (yellow lines) of the conditional
distributions. The black horizontal lines represent the 5% con�dence bounds.

2005�2007 and 2008�2010. These periods are close to two special events: the `2008 oil price bubble',

which spans the years 2007�2008, and the US subprime crisis, marked by the Lehman Brothers'

default in September 2008. As for y2
t (Figure 15), similar to yt, we have evidence of the crucial role of

EPU and EMU during the years 2005�2007 and 2008�2010.

Therefore, EPU and EMU turn out to be crucial variables in forecasting the conditional quantiles

and distributions of oil movements only in some periods. Such evidence supports the use of the

rolling window procedure to capture these dynamics, than carrying out a full sample analysis. As

for bpvt and y
2
t , with which we focus on risk, the results arising from the forecasting exercise provide

similar suggestions in terms of the average behaviour of the coe�cients of both Qτ (y2
t |W2,t−1) and

Qτ (bpvt|W3,t−1). Some similarities are observed also in terms of a predictive accuracy assessment, in

the sense that, during the period in common between the bpvt and the y2
t series, all the implemented
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Figure 14: Evidence of the crucial impact of EPU and EMU in forecasting the yt conditional distribution
and quantiles over time, detected by several tests and linked to the yt (a), x1,t (b), and x2,t (c) series.
The sub�gures display the evidences resulting from the tests proposed by Diks et al. (2011), with
focuses on the right (A) and the center (B) parts of the distribution; Gneiting and Ranjan (2011), with
focus on the right tail of the distribution (C); Diebold and Mariano (2002) with focuses on the 95-th
(D) and the 5-th percentile (E); and Berkowitz (2001) (F).

Figure 15: Evidence of the crucial impact of EPU and EMU in forecasting the y2
t conditional distri-

bution and quantiles over time, detected by several tests and linked to the yt (a), x1,t (b), and x2,t

(c) series. The sub�gures display the evidence resulting from the tests proposed by Diks et al. (2011),
with focuses on the center (A) and the left (B) parts of the distribution; Gneiting and Ranjan (2011),
with focus on the right tail of the distribution (C); Diebold and Mariano (2002), with focus on the
95-th percentile (D); and Berkowitz (2001) (E).

tests suggest poor evidence in favour of signi�cant contributions of EPU and EMU in improving

forecasting precision. As for the causality exercise, the periods in which the two uncertainty indexes
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signi�cantly improve forecasting accuracy are more persistent with respect to the ones recorded in the

case of yt; the reason for this might be the following: with the squared returns of oil, we focused on

the yt volatility, a measure of dispersion (and thus uncertainty) that better �ts the nature of EPU and

EMU, which are themselves uncertainty indicators.

At this stage, it is important to point out that, although robust predictive inference is derived based

on the causality-in-quantiles test, it would also be interesting to estimate the magnitude and direction of

the e�ects of uncertainties on oil market movements at various quantiles. However, in a nonparametric

framework, this is not straightforward. We will need to employ the �rst-order partial derivative.

Estimation of the partial derivatives for nonparametric models can experience complications because

nonparametric methods exhibit slow convergence rates, which can depend on the dimensionality and

smoothness of the underlying conditional expectation function. What one could however do is to

look at a statistic that summarizes the overall e�ect or the global curvature (i.e., the global sign

and magnitude), but not the entire derivative curve. In this regard, a natural measure of the global

curvature is the average derivative (AD). One could use the conditional pivotal quantile, based on

approximation or the coupling approach of Belloni et al. (2017), to estimate the partial ADs. The

pivotal coupling approach additionally can approximate the distribution of AD using Monte Carlo

simulation. Given that in our case, the focus is on predictability of the oil market movements, and not

necessarily on the sign (direction) of the e�ect at this stage, we leave this for future research. However,

even though we cannot draw one-to-one correspondence between standard quantile regressions and

our nonparametric causality-in-quantiles test, preliminary evidence tends to suggest that uncertainties

tends to reduce oil returns and increase its volatility.11

Next, we summarize our results and discuss the economic implications of these for various agents

in the economy. First turning to oil returns, we observe that uncertainty indexes tend to have stronger

e�ects when the economy and the oil market are in turmoil, or where either is in turmoil. This is because

during these periods uncertainty is likely to be higher relative to its average. This line of thinking is

vindicated by the asymmetry analysis we conducted, whereby we showed that higher uncertainty has

a stronger e�ect than lower values of it. This result is in line with the vast literature that tends to

suggest markets move more relative to bad news (i.e., higher uncertainty) than to good news. When

predictability does exist for oil returns in calmer periods of the sub-sample, it is concentrated around

the median of the conditional distribution, i.e., when the oil market is in its normal mode. Lack of

predictability at the lower end of the distribution, could be an indication of possible herding in the

market, while at the upper end�since the market is doing well in any case�investors probably do

not need any information from possible predictors (in our case uncertainty) to make their investment

decisions involving oil, and the market tends to function as a random walk. From an academic's

perspective, these results tend to suggest that the oil market is weakly e�cient relative to measures of

11Complete details of these results are available upon request from the authors.
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uncertainty, when the oil market and the economy, in general, are performing well. During episodes of

turmoil, investors need information on uncertainty to make pro�table investments, by predicting the

future path of oil. In other words, the weak-form of e�ciency in the oil market fails to hold during

tumultuous periods characterized by recessions. When we focus on oil price volatility, we observe

that in general, uncertainty tends to predict volatility consistently, irrespective of the phase of the oil

market, though stronger e�ects again are observed during episodes of economic stress. In this regard,

our results on volatility, in particular, highlight the importance of focusing not only on in-sample,

but also on out of sample predictability. As we show, in-sample results do not necessarily translate

into out-of-sample results�an important observation for the academic. Note that volatility estimates,

when interpreted as uncertainty, are required by investors as a key input for investment decisions and

portfolio choices. Also, volatility is the most important variable in the pricing of derivative securities,

i.e., to price an option, one needs reliable estimates of its volatility. Hence, the information content on

uncertainty indexes, which is shown to a�ect oil market volatility is of immense value to investors. From

a hedging perspective however, the oil market does not seem to be a good hedge against uncertainty, and

hence is not necessarily a strong instrument for diversifying portfolio risks, especially during episodes of

economic distress. As the literature has shown, not only oil returns, but also oil volatility tends to have

tremendous repercussions on the real economy (Elder and Serletis, 2010). Given this, policy makers

should build uncertainty proxies into their forecasting models, since we show that uncertainty indexes

both move oil returns and, in particular, increase oil volatility. And in the process,they should be ready

to undertake appropriate monetary policy action (expansionary policy) in the wake of increased oil

market volatility originating from movements in uncertainty, especially when the uncertainty is higher

than normal. Our results also tend to suggest that economies can move into deeper recessions through

the adverse e�ect of the oil market, in the event where uncertainty increases during such periods,

implying that stronger policy stances would be desired from the policy makers.

4.5 A robustness check against a GARCH model

As a last exercise, we compared the methods described in Section 2 with a competitive approach,

namely a model belonging to the class of the generalized autoregressive conditional heteroskedasticity

(GARCH) models (Bollerslev, 1986). We adopted the model to evaluate the impact of EPU and

EMU on both the mean and the variance of the oil's returns. To avoid the introduction of positivity

constraints on the model parameters, we used the exponential generalized autoregressive conditional

heteroskedasticity (EGARCH) model introduced by Nelson (1991). Notably, the model also allows for

asymmetry.

In particular, we estimated an ARX(2)-EGARCHX(1,1) model for yt that includes, besides the

lags, also x1,t−j and x2,t−j (j = {1, 2}) as external covariates in both the mean and the variance

equations. We estimated the parameters of the model and forecasted the mean (µ̂egarcht+1 ) and the
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standard deviation (σ̂egarcht+1 ) of oil's returns, by means of the same rolling window scheme we used for

the quantile regression (see Section 3). First, we studied the Granger causality of EPU and EMU, by

analyzing the statistical signi�cance of the coe�cients related to x1,t−1, x1,t−2, x2,t−1 and x2,t−2 in the

mean and variance equations. In dealing with possible model misspeci�cation, we �rst estimated the

coe�cients' standard errors in a robust way using the method proposed by White (1982); additionally,

we forecast the quantiles of yt+1 as q̂τ (yegarcht+1 ) = µ̂egarcht+1 + σ̂egarcht+1 · q̂τ (zegarcht ), where q̂τ (zegarcht ) is the

in-sample τ -th quantile of the standardized residuals, with τ ∈ (0, 1). Note that such a choice allowed

us to avoid making a distributional assumption, thus reducing the risk of model misspeci�cation. We

then obtained the density forecast resulting from the EGARCH model, by mimicking the method we

used to forecast the density of oil's returns from the quantile regression output (see Section 2.2).

Table 10 in Appendix D reports the number and the percentage of subsamples determined by the

rolling window procedure where the coe�cients of x1,t−j and of x2,t−j (j = {1, 2}) are statistically

signi�cant at the 0.05 level. Starting from the mean equation, we can see that x1,t−1 and x1,t−2 are

signi�cant in about 70% of the cases, whereas x2,t−1 and x2,t−2 record a percentage of about 60%.

Therefore, we have a stronger evidence of the causality impact of EPU and EMU on the yt's mean

when using the EGARCH model with respect to both the Jeong et al. (2012) test (see the values of

Ĵ∗T in Figures 2�3) and the quantile regression method (see the p-values of the xi,t−j 's coe�cients in

Table 4). The percentages in Table 10 halve when taking into consideration the variance equation.

Hence, the evidence of causality is stronger with the Jeong et al. (2012) test when we focus on oil's

variance (see the values of Ĵ∗T in Figures 4�7). Results are thus mixed, but still point to the presence

of a signi�cant impact of EMU and EPU on dynamic oil returns.

When moving to the density forecast analysis, we directly compared the EGARCH and the quantile

regression methods in terms of out-of-sample accuracy, using the tests of Diebold and Mariano (2002),

Diks et al. (2011) and Gneiting and Ranjan (2011) focusing on di�erent quantile levels or on di�erent

regions of the yt's conditional distribution. Positive (negative) values of the test statistic point to the

best performance of the quantile regression (EGARCH) in Diks et al. (2011). The opposite holds in

Diebold and Mariano (2002) and in Gneiting and Ranjan (2011). We report the results in Figures

16�18 (Appendix D). The density forecasts obtained from a collection of quantile regressions over-

perform the EGARCH-based density forecasts in the majority of cases. The di�erences between the

two methods are often di�erent in a statistically signi�cant way.

5 Concluding remarks

In this work, we checked that the relationships between oil movements and the uncertainty indexes

(EPU and EMU) are a�ected by structural breaks. The conclusions drawn from a full sample analysis,

as in Balcilar et al. (2016a), would be misleading and, therefore, we implemented a rolling window
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procedure to capture the dynamics among the variables involved.

First, we showed that the impact of EPU and EMU in causing�in the Granger (1969) sense�the

quantiles of oil returns changes over time. Indeed, periods characterized by low or inexistent power of

the two uncertainty indexes in causing oil returns are followed by periods of relevant causality evidence.

Nevertheless, despite the changing in regimes over time, the periods in which the uncertainty indexes

are signi�cant in causing oil returns are less persistent than the ones characterized by no causality. In

contrast, when we focused on risk, then considering the oil volatility estimated through the realized

bipower variation (bpvt) and the squared oil returns (y2
t ), we observed stronger causality impacts, as

the periods in which x1,t and x2,t are signi�cant in causing the bpvt and the y2
t quantiles are more

persistent. The reason might be the following: with the squared returns of oil, we focus on the yt

volatility, a measure of dispersion (and thus uncertainty) that better �ts the nature of EPU and EMU,

which themselves are uncertainty indicators. Balcilar et al. (2016a,b,c) used squared returns in their

causality exercise to study causality in the second moment. We went further, by considering also the

causality for the realized bipower variation of oil, comparing the two approaches. We observed that

the causality results for bpvt and y2
t are quite similar for central quantiles; in contrast, at extreme

probability levels, the two approaches lead to di�erent conclusions.

Similar results are observed for the forecasting exercise. First, as for the in-sample estimates,

the coe�cients of the two uncertainty indexes are not always statistically signi�cant, at the 5% level.

Therefore, EPU and EMU are useful predictors only in some periods. Moving to the coe�cients' values,

on average, EPU and EMU have a negative impact on the lower quantiles of oil returns, whereas their

impact becomes positive at the upper quantiles. At the median level, the magnitude of the coe�cients,

in absolute value, is of moderate size, highlighting that EPU and EMU are critical indicators during

particular periods, such as these characterized by large movements in the oil price, with potentially

relevant e�ects in terms of in�ation or de�ation. In contrast, EPU and EMU positively a�ect the

realized volatility and the squared returns series in all the regions of their conditional distribution,

with the magnitude of their impact being a positive function of the quantile level. Again, this was

an expected result, as the greater the uncertainty, the greater the risk in the oil market. Consistent

with the in-sample evidence, the out-of-sample performance of our model was signi�cantly improved

by EPU and EMU only in particular periods, as suggested by suitable tests, namely those proposed

by Berkowitz (2001), Diebold and Mariano (2002), Diks et al. (2011) and Gneiting and Ranjan (2011).

Notably, the di�erent testing procedures provided relevant evidence of the signi�cant improvements

due to the two indexes during the years 2005�2007 and 2008�2010. These periods are close to two

special events: the `2008 oil price bubble', which spans the years 2007-2008, and the US subprime

crisis marked by the Lehman Brothers' default in September 2008. Interestingly, we also observed that

the out-of-sample improvements given by EPU and EMU change over time according to the di�erent

regions of oil returns' and oil risk's conditional distributions.
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In this study, we built the predictive conditional densities of oil's returns and variance from the

quantile regression output (Koenker and Bassett, 1978), focusing on the impact of EPU and EMU, as

evaluated with an extensive empirical analysis. We also compared our approach with an EGARCH

model. We checked that the causality relationships between the two uncertainty indexes (EPU and

EMU) and oil's returns are stronger when using the EGARCH model. In contrast, the causality

relationships become more evident using the quantile regression method when focusing on oil's variance.

Moreover, di�erent testing methods point out that our approach outperforms the EGARCH model in

terms of predictive accuracy. The literature includes a wide set of additional alternative methods

used for building conditional densities�see, e.g., Hyndman and Yao (2002)�and a proper comparison

might reveal interesting �ndings, such as identifying outperforming approaches. Furthermore, we could

also extend the bivariate framework we use here to study Granger causality in quantiles to a larger

dimension. For instance, we could estimate a VAR including autoregressive components as done by

White et al. (2015). Also, our approach, just like that of Nishiyama et al. (2011) and Jeong et al.

(2012) upon which we build our econometric model on, is bivariate. But given the fact that, oil market

movements are likely to be driven by other predictors, besides economic and �nancial uncertainties,

we would ideally need a multivariate model. This, we believe, is also an important area of future

research, which in turn, would require us to validate our results obtained when we control for additional

predictors a�ecting the oil market. Note that, nonlinear causality tests are in general bivariate (see for

example, Hiemstra and Jones (1994), Diks and Panchenko (2005, 2006)), however, in recent papers,

Bai et al. (2010, 2011) have developed a multivariate version of the nonlinear causality test, but the

framework is restricted to a conditional mean-based model and analyses only causality in the �rst-

moment. Finally, in an interesting paper, Barrero et al. (2017) highlights that the impact of short- and

long-run uncertainty is likely to be di�erent on the macroeconomy, hence, the same can be tested in

the oil market by decomposing movements in uncertainty into various frequencies using wavelet. We

include these directions and ideas in our agenda for future research.

To conclude, �rst, we have contributed to the literature by showing that only in particular periods

the Economic Policy and the Market Equity Uncertainty indexes are relevant drivers of oil movements.

This evidence holds for both the in- and the out-of-sample analyses. Second, their impact is di�erent

according to the fact that the focus is placed on oil returns or on oil risk, therefore it is important to

take into account both the e�ects in order to get a complete view of the market behaviour. Finally,

both the causality and the forecasting exercises support the need to go beyond the point estimates,

by analyzing the entire conditional distribution of oil movements, especially the tails. Indeed, the

results depend deeply on the state of the oil market, di�ering as it does between bearish, normal and

bullish conditions. Moreover, extending the analysis to the entire conditional distribution is of relevant

importance in evaluating the uncertainty of the point estimates and forecasts. All of these ingredients

might be of interest to many of decisions makers in several areas of economics and �nance, such as risk
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management, pricing and trading, when the instruments of interest depend on the oil price or risk.
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Appendix

A Evaluation of the predictive accuracy

In what follows, we give the main details on the tests we used to evaluate the predictive accuracy of

the methods described in Section 2.2. Here we focus on the conditional quantiles and distribution of

yt. The same methodology applies to y2
t and bpvt.

We �rst used the Berkowitz test for an absolute assessment of the density forecasts recovered from

(3). Besides, we also implemented the test on a restricted model, which excluded the lags of x1,t and

x2,t to assess the joint contribution of EPU and EMU. We also evaluated the contribution of each

uncertainty index separately, by adding to the restricted model only the lagged values of x1,t when we

focused on EPU, or the lagged values of x2,t, when we considered EMU.

The approach proposed by Berkowitz (2001) evaluates the �tness of a speci�c sequence of den-

sity forecasts, relative to the unknown data-generating process. However, given a certain model, the

Berkowitz test has power only for misspeci�cations of the �rst two moments, but in practice, this model

could be misspeci�ed at higher-order moments. In that case, a valid solution consists in comparing

density forecasts, i.e. performing a relative comparison given a speci�c measure of accuracy. Hence,
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in addition to the approach proposed by Berkowitz (2001), we also considered the tests introduced by

Diebold and Mariano (2002), Diks et al. (2011) and Gneiting and Ranjan (2011).

We implemented the test developed by Diebold and Mariano (2002) on the basis of the losses gen-

erated by the unrestricted and the restricted models, denoted by Lτ,t+1 (yt+1|Wt) and Lτ,t+1 (yt+1|Yt),

respectively. We emphasize that the restricted model does not account for the possible impact of

the uncertainty measures, whereas the unrestricted model includes the uncertainty measures in the

information set Yt. Among the various loss functions adopted in the literature, following Giglio et al.

(2012), we made use of those de�ned as follows:

Lτ,t+1 (yt+1|Wt) =
(
τ − 1{yt+1−Q?τ (yt+1|Wt)<0}

)
[yt+1 −Q?τ (yt+1|Wt)] , (6)

Lτ,t+1 (yt+1|Yt) =
(
τ − 1{yt+1−Q?τ (yt+1|Yt)<0}

)
[yt+1 −Q?τ (yt+1|Yt)] , (7)

where 1{·} is an indicator function taking a vale of 1 if the condition in {·} is true and a value of 0

otherwise. In evaluating the Diebold and Mariano (2002) test statistic, we focused on the quantile

levels τ = {0.05, 0.5, 0.95}.

The following tests focus on the density forecast, thus allowing for a much broader evaluation of

the relevance of the uncertainty indexes. As for the Diks et al. (2011) test we used the score function

of the unrestricted model de�ned as:

Scsl(yt+1|Wt) = wcsl,t(yt+1) log f̂(yt+1|Wt) + (1− wcsl,t(yt+1)) log

[
1−

∫
wcsl,t(s)f̂(s|Wt)ds

]
, (8)

where wcsl,t(·) is a weighting function by which we focus on the density's region of interest, whereas

the second addend in (8) avoids the mistake of attaching comparable scores to density forecasts that

have similar tail shapes but may have completely di�erent tail probabilities (Diks et al., 2011).

Let ȳ1 and ȳ3 be the in-sample �rst and third quartile of yt, respectively, we set wcsl,t(yt+1) =

1{yt+1≤ȳ1} when we focus on the left tail, wcsl,t(yt+1) = 1{ȳ1≤yt+1≤ȳ3} when we place the attention on

the center of the distribution, wcsl,t(yt+1) = 1{yt+1≥ȳ3} when we consider the right tail. We implemented

the Diks et al. (2011) test by comparing (8) with the score function of the restricted model (which

excludes the lags of x1,t and x2,t), that is, S
csl(yt+1|Yt). We then tested the null hypothesis of equal

performance between the unrestricted and the restricted model.

Finally, again focusing on the unrestricted model, the score proposed by Gneiting and Ranjan

(2011) was de�ned as follows:

Sgr(yt+1|Wt) =
1

I − 1

I∑
i=1

w(τi)QSτi

[
F̂−1(τi|Wt), yt+1

]
, (9)
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where τi = i/I and

QSτi

[
F̂−1(τi|Wt), yt+1

]
= 2

[
1{yt+1<F̂−1(τi|Wt)} − τi

]
(F̂−1(τi|Wt)− yt+1). (10)

It is interesting to observe that the quantity de�ned in (10) is similar to the one in (6); nevertheless,

the loss given in (9) is more informative than Lτ,t+1 (yt+1|Wt), as it is equal to the weighted average

of several QSτi

[
F̂−1(τi|Wt), yt+1

]
values computed for a su�ciently large grid of probabilities levels.

As for the weight function, as suggested by Gneiting and Ranjan (2011), we set w(τi) = τi(1− τi),

w(τi) = τ2
i , w(τi) = (1 − τi)2 to assign greater importance to the center, the right tail and the left

tail of the distribution, respectively. Similarly, we denote the score arising from the restricted model

as Sgr(yt+1|Yt); we stress that we obtained the score by replacing Wt by Yt in (10). Again, the test

evaluates the null hypothesis of zero average score di�erentials.

B Data description

We denote by {yt}t∈T the series of oil returns, that is, yt = log(oilt) − log(oilt−1), where oilt is the

spot price of the West Texas Intermediate (WTI) crude oil at day t. {oilt}t∈T is not stationary: both

the augmented Dickey and Fuller (1981) and the Phillips and Perron (1988) tests do not reject the null

hypothesis of unit root with p-values of 0.2623 and 0.2112, respectively; di�erently, the p-values of the

two tests are less than 0.01 for both {yt}t∈T and {y2
t }t∈T .

EPU and EMU are two indexes measuring the US economic policy and equity market uncertainty.

EPU is built from the newspaper archives of the Access World New's NewsBank service, by restricting

the focus on the United States and referencing the number of articles containing at least one of the terms

belonging to three sets. The �rst set is `economic/economy', the second is `uncertain/uncertainty' and

the third set is `legislation/de�cit/regulation/congress/federal reserve/white house'. Using the same

news source, EMU is built from articles containing the terms previously mentioned and one or more of

the following: �equity market/equity price/stock market�. From EPU and EMU we computed their

logarithms, which we denote as {x1,t}t∈T and {x2,t}t∈T respectively; these are not a�ected by unit

root: in both the cases the p-values of the augmented Dickey and Fuller (1981) and the Phillips and

Perron (1988) tests are less than 0.01.

As for the daily oil volatility, we focused on 5-minute data for the WTI crude oil future; we worked

on the continuous series by rolling contracts on the basis of their daily volume. We considered here

the 5 minutes' data recorded from 8:00 a.m. to 3:00 p.m. of each trading day from January 2, 2007 to

April 23, 2015.12, that is the time interval when most of the trading activities take place�see Chang

et al. (2016).

12The time interval for which we estimate the oil volatility is due to the availability of data. The dataset was recovered
from TickData.
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We estimated the oil volatility by means of the realized bipower variation (Barndor�-Nielsen and

Shephard, 2004), de�ned in (11):

bpvt = µ−2
1

M

M − 1

M−1∑
i=2

|oilt,i||oilt,i+1|, (11)

where oilt,i is the i-th intra-day price of oil on day t, M is the number of intra-day intervals into which

the trading day t is divided, µ1 =
√

2/π. The realized bipower variation in (11) is a robust-to-jumps

estimator of the integrated volatility.

We are aware that the volatility of the spot oil might di�er from the volatility of the oil future.

However, given the availability of the oil future high frequency database, we decided to introduce this

additional variable into the analyses to evaluate whether the oil volatility future has an informative

content di�erent from that of the squared oil returns, when pointing at the analysis of the causality in

risk. This corresponds with the use of oil future realized volatility as a proxy for spot oil volatility.

Table 6: Descriptive statistics

Variable Mean St. Deviation Min Max skewness kurtosis JB

yt 1.0396e-04 0.0248 -0.4069 0.1924 -0.7639 18.3329 75632.00 (0.0000)
y2t 6.1412e-04 0.0026 0.0000 0.1655 37.9947 2294.8710 1.675e+09 (0.0000)
x1,t 4.3665 0.6776 1.2185 6.5780 -0.2679 3.2726 115.15 (0.0000)
x2,t 3.8459 1.0575 1.5688 7.8655 0.2718 2.7157 119.87 (0.0000)
bpvt 2.9742e-04 4.1933e-04 0.0000 0.0044 3.9251 22.8180 40883.00 (0.0000)

The table reports some descriptive statistics computed for yt, y
2
t , x1,t, x2,t and bpvt. From left to right we report the

mean, the standard deviation, the minimum and maximum values, the skewness and the kurtosis indexes and the Jarque
and Bera (1987)'s test statistic JB (in brackets we report the corresponding p-values). bpvt has a lower sample size with
respect to the other variables due to the availability of the data.

We report in Table 6 some descriptive statistics computed for the variables described above. yt and

y2
t have average values close to zero, with standard deviations equal to 0.0248 and 0.0026, respectively;

yt ranges from -0.4069 to 0.1924 and its distribution is a�ected by negative skewness and leptokurtosis.

Both y2
t and bpvt have strong positive skewness and leptokurtosis, due to the presence, in their right

tails, of relevant extreme values, mainly those detected in the time interval between the mid-2008

and the mid-2009. The uncertainty indexes, x1,t and x2,t, are centered around 4.366 and 3.8459, with

standard deviations equal to 0.6776 and 1.0575, respectively. Their distributions are slightly skewed,

quite mesokurtic and a�ected by the presence of a few extreme values in the tails. Notably, in the

period between January 2, 2007 and April 23, 2015, bpvt and y
2
t have a linear correlation coe�cient

equal to 0.48. That moderate value might be due to both the di�erences between the volatility of

spot and future, as well as to the fact that the squared returns are a noisy proxy of the true (and

unknown) variance. Finally, the null hypothesis of the Jarque and Bera (1987)'s test is rejected with

low p-values. The statistics analyzed above point out heavy-tailed distributions of the variables of

interest, with the presence of extreme values, mainly yt and y
2
t , suggesting the wisdom of using the
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quantile regression (Koenker and Bassett, 1978) in the forecasting exercise, rather than the ordinary

least squares approach, because the latter does not guarantee robust results in the presence of outliers.

C Structural breaks in quantiles and distributions

The tests proposed by Qu (2008) are subgradient and have good properties also in small samples. The

tables containing the critical values of the DQ and the SQ tests are available in Qu (2008). The output

of the DQ test, applied to the conditional quantiles and distribution of yt is given in the left panel of

Table 7. The number of breaks, detected at the level of 0.01, is equal to 7. The results of the SQ

test are given in the right panel of Table 7; here, we can see that the breaks mainly a�ect the extreme

conditional quantiles of yt, rather than the central ones.

Table 7: Structural breaks in the conditional distribution and quantiles of yt

Structural breaks in the conditional distribution Structural breaks at speci�c quantiles

Dates of breaks DQ SQ (τ = 0.1) SQ (τ = 0.5) SQ (τ = 0.9)

20/03/1987 1.0733 2.7402 *** 1.2612 2.4531 ***
11/05/1989 1.0852 1.6406 ** 1.5053 2.2918 ***
21/09/1990 1.0644 1.2656 1.5886 * 1.7786 **
05/11/1991 1.0826 2.3462 *** 1.2124 2.2366 ***
04/09/2000 1.0522 3.0317 *** 1.2306 2.6934 ***
16/08/2013 1.0598 2.1177 *** 1.4521 2.3642 ***
27/01/2015 1.1041 2.2104 *** 1.4634 1.3431

The table reports the output of the DQ and the SQ tests, introduced by Qu (2008). The former detects the presence
of structural breaks in the conditional distribution of yt at the level of 0.01, whereas the latter detects the presence of
structural breaks at speci�c quantiles, namely at τ = {0.1, 0.5, 0.9}; ∗, ∗∗ and ∗ ∗ ∗ refer, respectively, to the 10%, 5%
and 1% signi�cance level.

Similarly, we show the results of the two tests, arising from the estimation of the bpvt conditional

quantiles and distribution, in Table 8. The number of breaks is equal to 7 and are always present at

τ = 0.5. As regards the left tail (τ = 0.1), two breaks are detected, respectively, in the second half of

2009 and at the beginning of 2015. Di�erently, four breaks are observed at τ = 0.9, and one of them

occurs in the period of the U.S. subprime crisis with high signi�cance.

Table 8: Structural breaks in the conditional distribution and quantiles of bpvt

Structural breaks in the conditional distribution Structural breaks at speci�c quantiles

Dates of breaks DQ SQ (τ = 0.1) SQ (τ = 0.5) SQ (τ = 0.9)

16/10/2007 1.0619 1.5044 1.7023 ** 1.4586
21/01/2009 1.0618 1.3262 1.5846 * 1.8923 ***
05/09/2011 1.0639 1.5819 * 1.5888 * 1.5158 *
10/04/2013 1.0602 1.2237 1.6981 ** 1.6945 **
22/01/2014 1.0868 1.3855 1.9229 *** 1.5740 *
28/07/2014 1.0725 0.9388 1.6247 * 1.2472
19/01/2015 1.1091 2.1645 *** 1.7316 ** 1.3013

The table reports the output of the DQ and the SQ tests, introduced by Qu (2008). The former detects the presence of
structural breaks in the conditional distribution of bpvt at the level of 0.01, whereas the latter detects the presence of
structural breaks at speci�c quantiles, namely at τ = {0.1, 0.5, 0.9}; ∗, ∗∗ and ∗ ∗ ∗ refer, respectively, to the 10%, 5%
and 1% signi�cance level.
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Finally, Table 9 displays the case of y2
t . The number of breaks is equal to 13 and the structural

changes occur mainly at medium-high levels of τ . In the years 2007�2015 (that is, the time period

for which we also computed bpvt) the null hypothesis of the DQ test is rejected three times at the

level of 0.01; it is important to notice that two of those three rejections (the ones detected in the �rst

half of 2009 and at the beginning of 2015) occur almost simultaneously to two of the breaks a�ecting

the conditional distribution and quantiles of bpvt. Therefore, starting from analyzing the presence of

structural changes over time, we can �nd some similarities between bpvt and y
2
t .

Table 9: Structural breaks in the conditional distribution and quantiles of y2
t

Structural breaks in the conditional distribution Structural breaks at speci�c quantiles

Dates of breaks DQ SQ (τ = 0.1) SQ (τ = 0.5) SQ (τ = 0.9)

08/09/1986 1.0669 1.4449 1.7797 ** 1.4096
08/12/1988 1.0630 1.3808 2.0024 *** 1.5430 **
09/10/1989 1.0599 1.2835 1.7168 ** 1.5511 *
26/09/1990 1.1024 0.9704 1.3059 2.1648 ***
03/07/1991 1.0663 0.9263 2.0506 *** 1.9799 ***
27/01/1993 1.1142 0.9083 2.0441 *** 1.4157
16/03/1994 1.0746 1.4506 1.3358 1.7598 **
13/12/1994 1.0769 0.8698 1.8874 *** 0.8569
24/06/1996 1.0593 1.5555 * 1.7563 ** 1.8971 ***
26/03/1999 1.0827 1.2611 1.0853 1.6581 *
18/05/2009 1.0926 1.3832 1.8667 *** 2.6657
04/12/2012 1.1001 0.9915 1.4124 1.4504
24/02/2015 1.0721 1.6582 ** 1.4334 1.5175 *

The table reports the output of the DQ and the SQ tests, introduced by Qu (2008). The former detects the presence
of structural breaks in the conditional distribution of y2t at the level of 0.01, whereas the latter detects the presence of
structural breaks at speci�c quantiles, namely at τ = {0.1, 0.5, 0.9}; ∗, ∗∗ and ∗ ∗ ∗ refer, respectively, to the 10%, 5%
and 1% signi�cance level.

D Additional results

We provide additional results in Table 10 and in Figures 16�18.

Table 10: Statistical signi�cance of EPU and EMU in the EGARCH model

MEAN EQUATION VARIANCE EQUATION

variable num. perc. num. perc.

x1,t−1 950 66.52 487 34.10
x1,t−2 1022 71.57 514 35.99
x2,t−1 874 61.20 459 32.14
x2,t−2 849 59.45 437 30.60

The table reports the number (num.) and the percentages (perc.) of subsamples determined by the rolling window
procedure in which the coe�cients of the variables given in the �rst column are statistically signi�cant at the 0.05 level.
The estimates were obtained from an AR(2)-EGARCH(1,1) model on the oil's returns series which includes as external
regressors x1,t−j and x2,t−j (j={1,2}) in the mean and in the variance equations. The rolling window procedure was
applied by using a window size of 500 observations and step of �ve days ahead.
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Figure 16: The Diebold and Mariano (2002) test statistic values over the the rolled windows. The
test compares the forecasting accuracy of 2 competitive methods, that is, the quantile regression and
the exponential GARCH model. Positive (negative) values of the test statistic point out the best
performance of the EGARCH (quantile regression) model. The test is applied at three di�erent τ
values: 0.05 (green lines), 0.50 (yellow lines) and 0.95 (blue lines). The black horizontal lines point
out the 5% con�dence bounds.

Figure 17: The Diks et al. (2011) test statistic values over the the rolled windows. The test compares the
forecasting accuracy of two competitive methods, that is, the quantile regression and the exponential
GARCH model. Positive (negative) values of the test statistic point out the best performance of
the quantile regression (EGARCH) model. The test was applied by placing greater emphasis on the
center (green lines), on the right tail (blue lines) and on the left tail (yellow lines) of the conditional
distributions. The black horizontal lines point out the 5% con�dence bounds.
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Figure 18: The Gneiting and Ranjan (2011) test statistic values over the the rolled windows. The
test compares the forecasting accuracy of two competitive methods, that is, the quantile regression
and the exponential GARCH model. Positive (negative) values of the test statistic point out the best
performance of the EGARCH (quantile regression) model. The test was applied by placing greater
emphasis on the center (green lines), on the right tail (blue lines) and on the left tail (yellow lines) of
the conditional distributions. The black horizontal lines point out the 5% con�dence bounds.
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