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(is paper proposes a comprehensive methodology to update dynamic models of flexible-link mechanisms (FLMs) modeled
through ordinary differential equations. (e aim is to correct mass, stiffness, and damping matrices of dynamic models, usually
based on nominal and uncertain parameters, to accurately represent the main vibrational modes within the bandwidth of interest.
Indeed, the availability of accurate models is a fundamental step for the synthesis of effective controllers, state observers, and
optimized motion profiles, as those employed in modern control schemes. (e method takes advantage of the system dynamic
model formulated through finite elements and through the representation of the total motion as the sum of a large rigid-body
motion and the elastic deformation. Model updating is not straightforward since the resulting model is nonlinear and its
coordinates cannot be directly measured. Hence, the nonlinear model is linearized about an equilibrium point to compute the
eigenstructure and to compare it with the results of experimental modal analysis. Once consistency between themodel coordinates
and the experimental data is obtained through a suitable transformation, model updating has been performed solving a con-
strained convex optimization problem. Constraints also include results from static tests. Some tools to improve the problem
conditioning are also proposed in the formulation adopted, to handle large dimensional models and achieve reliable results. (e
method has been experimentally applied to a challenging system: a planar six-bar linkage manipulator. (e results prove their
capability to improve the model accuracy in terms of eigenfrequencies and mode shapes.

1. Introduction

(e use of lightweight mechanisms is increasing significantly
in the last years. Indeed, this kind of construction ensures less
material and power consumption that allows for smaller ac-
tuators. On the other hand, the flexibility of the linksmakes the
motion planning and control critical and hence imposes the
use of advanced techniques that account for the flexible system
dynamics [1–6]. (erefore, great attention has been paid to
dynamic modeling of flexible-link mechanisms (FLMs) to
boost the development of effective model-based design or
control techniques or to allow for numerical simulations.

Several modeling approaches are proposed in literature.
A widespread approach is to take advantage of finite element
(FE) methods to discretize the link flexibility through a finite

number of elastic degrees of freedom (dofs) and to represent
the total motion of the system as the superposition of a large
amplitude rigid-body motion and the coupled small-
amplitude elastic deformation [5–9].

(e availability of a correct model formulation is
however not sufficient to predict correctly the dynamic
response. Indeed, these FE models are not effective if the
inertial and elastic properties of the model are not correctly
tuned. (erefore, it is necessary paying attention to the
correct estimation of the model parameters, either through
direct physical measurement, whenever possible, or using
experimental parameter identification techniques. (e latter
process of correcting the FE model parameters to feature
a set of experimental measurements is known in the field of
structural dynamics as model updating.
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Model updating can be performed by following two
different types of approach: noniterative or iterative tech-
niques [10, 11]. Recently, semidirect methods have also been
proposed [12]. Noniterative techniques (also denoted direct
or one-step) provide analytical solutions to model updating
problem through a single step [13]. Nonetheless, such so-
lutions might be without physical meaning and scarcely
robust to measurement noise [10, 11]. Conversely, iterative
techniques (also denoted parametric techniques) preserve
the physical meaning of the updated parameters at the cost
of an increase of the computational complexity due to the
numerical iterations adopted to reduce the mismatch be-
tween experimental and model responses. Basically, iterative
techniques compute the updated parameters through an
objective function that represents the difference between
analytical and experimental results.(erefore, they may lead
to local optimal solutions if the updating problem is for-
mulated as a nonconvex optimization problem. In the last
years, the use of iterative techniques has been boosted by the
advanced techniques and toolboxes for numerical optimi-
zation [13–19]. Recently, stochastic approaches have also
been proposed [20, 21].

Although several model updating techniques have been
developed and implemented in the field of structural me-
chanics, in the multibody field the issue of model updating
has been just marginally addressed. Indeed, most of the
works proposed in the literature on model updating address
structures and often the proposed methods are suitable for
structures with a few degrees of freedom. (e resulting
methods are, therefore, not effective for mechanisms which
have some peculiar features. On the contrary, researches in
the field of multibody systems are more frequently targeted
to the development of efficient model formulations, by as-
suming that exact model parameters are known.

To solve this open issue, this paper introduces a model
updating approach for flexible-link mechanisms based on the
equivalent rigid-link system (ERLS) [8, 9] and formulated
through ordinary differential equations (ODEs), which is
a common method adopted for dynamic modeling. (e main
goal of this paper is to formulate a comprehensive approach
that exploits experimental mode shapes and eigenfrequencies
obtained through modal analysis, in order to identify the
correct values of the model parameters.(e formulation of an
effective approach imposes several steps that are carefully
accounted for in this work. Some preliminary results have
been proposed by the authors in conference paper [22], which
outlines the method idea through a simplified approach. (e
method is here extended to deal with a larger number of
vibrational modes and constraints through an improved
formulation which ensures more precise results and accounts
for more measurements: not only the proposed approach is
capable of exploiting more modal data, but also it takes
advantage of information on the static behaviour of the
mechanism. Additionally, some effective numerical methods
are here proposed to speed up the problem formulation and
solutions even in the presence of large dimensional models
and a larger number of measured vibrational modes.

(e remainder of the paper is organized as follows. In
Section 2, the modeling of FLMs based on the ERLS is briefly

recalled, as well as model linearization. In Section 3, some
arrangements have been discussed to make experimental
data compatible with model coordinates. In Section 4, the
proposed numerical technique is introduced and thoroughly
discussed. In Section 5, the experimental validation of the
method is proposed by applying the method to a lightweight
planar manipulator. Concluding remarks are given in Sec-
tion 6.

2. Model Based on the Equivalent
Rigid-Link System

2.1. Definitions. (e paper deals with FLMs with scleron-
omous and holonomic constraints. (e motion of each link
can be notionally written as the large rigid-body motion of
an equivalent rigid-link system (ERLS) plus the small elastic
displacements with respect to the ERLS itself [8, 9]. Basically,
the ERLS represents a moving reference from which the
elastic displacements are defined. Such an approach allows
for a simple formulation and solution of the nonlinear
differential equations governing the system motion. Indeed,
once the mutual dynamic coupling between the ERLS and
the elastic displacements is correctly accounted for in the
model, the ERLS can be represented by taking advantage of
the kinematics of rigid multibody systems as a function of its
generalized coordinates q. Additionally, if the ERLS is placed
very close to the actual deformed mechanism, then the small
displacement assumption is correct and the classical FEs can
be adopted.

(e absolute position vector bi of the nodes belonging to
the ith FE can be expressed with reference to a global ref-
erence frame as the sum of two contributions:

bi � ri + ui, (1)

where ui is the vector of the nodal elastic displacements of
the ith element expressed with respect to the ERLS, and ri is
the vector of the nodal positions of the ith element of the
ERLS and it is a function of the ERLS generalized co-
ordinates q, that is, it can be computed through the rigid-
body kinematics. A schematic representation of such defi-
nitions is provided in Figure 1.

Let u be the vector collecting the elastic displacement of
all the nodes and b be the vector of the positions of all the
nodes of the FLM, then (1) leads to the following expression
that holds in the case of infinitesimal displacements db, dr,
and du:

db � dr + du � [I S]
du

dq
􏼨 􏼩, (2)

where I is the identity matrix and S is the sensitivity co-
efficient matrix for all the nodes of the ERLS. Matrix I S􏼂 􏼃

is not square since it has nu′ rows and nu′ + nq columns, with
nu′ and nq being the numbers of the elastic dofs and of the
ERLS generalized coordinates, respectively. (is means that
the linear system in (2) is underdetermined. To overcome
this issue, matrix I S􏼂 􏼃 should be made square by forcing to
zero nq elements of u. In this way, the system in (2) is
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determined and hence the position of the ERLS is defined
univocally with respect to the actual deformed mechanism.

2.2./eNonlinearModel. (e final expression of the system
equations of motion is given by the following set of non-
linear ordinary differential equations (ODEs):

Me MeS

STMe STMeS
􏼢 􏼣

€u(t)

€q(t)
􏼨 􏼩 +

2MG + Ce −Me
_S

ST2MG STMe
_S

⎡⎣ ⎤⎦
_u(t)

_q(t)
􏼨 􏼩

+
Ke 0

0 0
􏼢 􏼣

u(t)

q(t)
􏼨 􏼩 �

I

ST
􏼢 􏼣 v(t){ },

(3)

Me � Me(q), Ce � Ce(q), and Ke � Ke(q) are obtained by
assembling the mass, damping, and stiffness matrices of all
the FEs adopted to model the link; MG � MG(q, _q) collects
the link centrifugal and Coriolis effects. Finally, v is the
vector of the nodal external forces and torques. (e off-
diagonal terms in the matrices in (3) represent the coupling
between the ERLS generalized coordinates and the elastic
displacements.

2.3. /e Linearized Model. (e use of linearized models is
very satisfactory in the case of small deformations about
operating points and hence can be successfully used in the
synthesis of control schemes and state observers [23, 24].
Additionally, mode shapes and eigenfrequencies can be
easily computed. As for the use of a minimal set of ODEs for
the model synthesis, despite the large use of differential
algebraic equations (DAEs) for modeling FLMs [25], it is
justified by the possibility to obtain the exact spectrum.
Indeed, models employing DAEs do not allow for the
straightforward use of such a kind of analysis, and the
spectrum of the linearized model is affected by the linear-
ization method [26].

Linearization assumes small displacements about a static
equilibrium configuration, which is set by the equilibrium

configuration of the ERLS qe. (en the following linear
model is obtained:
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(4)

In (4), g is the gravity acceleration vector. Matrices Me,
S, Ke and the derivatives d(STMe)/dq and dST/dq are
computed about the equilibrium configuration. (e product
(dST/dq)⊗ ve denotes the inner product of matrix
[zSi,1/zqj · · · zSi,n/zqj]with vector ve, for all the subscripts i, j
(analogous meaning for (d(STMe)/dq)⊗ g).

Since model updating should be performed by in-
vestigating the system in an asymptotically stable equilib-
rium configuration, gravity should be compensated in the
experimental modal analysis whenever the mechanism lies
in the vertical plane. Indeed, the absence of a stable equi-
librium would make the mechanism diverge from the initial
configuration after the excitations, and therefore, the system
dynamics would not meet the basic assumption beneath the
linearized model. A possible approach is balancing through
external springs that determine asymptotic stability of the
equilibrium point. (e stiffness of these springs should be
included in the stiffness matrix and among the updating
variables. In contrast, the use of brakes, for example, those
employed in the motors, changes the boundary conditions.
(erefore, model updating may lead to less reliable results.

3. Data Consistency between Model and
Experimental Modal Analysis

3.1. Size Compatibility between the Measured Mode Shapes
and theModel. Model updating procedures need one-to-one
correspondence between model coordinates and measured
mode shapes. In practical applications, this requirement is
usually not satisfied because of the physical inaccessibility to
some locations or for difficulties in themeasurement of some
dofs (such as rotational dofs). (is is often denoted as spatial
incompleteness. (erefore, the experimental mode shapes
are usually not compatible with the FE model, and hence, as
a preliminary step, the size of either model or the measured
data should be modified to meet this requirement. Two
strategies are usually adopted to obtain the one-to-one
correspondence: reducing the FE model by removing the
unmeasured dofs or expanding the experimental results by
estimating the displacement of such unmeasured variables.
However, model reductionmight negatively affect the model
accuracy. Hence, to avoid losses of information, the method
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Figure 1: ERLS definitions.
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proposed in this work expands the experimental data
to match the dimension of the FE model by means of
transformation matrices Ti ∈ Rnu×n∗u that maps the
n∗u-dimensional measured eigenvectors into a nu-di-
mensional one that fits the number of model dofs (nu > n∗u):

ηi � Ti η
∗
i , (5)

where η∗i denotes the ith measured eigenvector while ηi

denotes the expanded one.
(e use of curve fitting, by means of the shape functions

of the FEs and a set of redundant measurements of accessible
dofs, is a reliable way to handle experimental data con-
taminated by noise. Alternatively, spline functions can be
adopted for high-frequency modes, even if they are affected
by errors due to measurements or to the mode-extraction
algorithm. Section 5.3 provides a more detailed explanation
on the procedure in the case of the planar mechanism
studied here.

3.2. Mode Shape Transformation from the Physical Reference
Frame to One of the Models. After expansion, the measured
mode shapes should be transformed from the physical
reference frame adopted for experimental measurements to
the fictitious one used in the ERLS-based FE model. Indeed,
sensors employed to perform experimental tests typically
provide measurements with respect to local reference frames
corresponding to the mechanism in its initial static con-
figuration. Conversely, the model elastic displacements
(collected in u) are defined with respect to the ERLS and are
expressed in a global reference frame (Figure 1). Hence,
some of the elastic displacements are forced to zero to make
the ERLS follow the actual elastic mechanism. At the same
time, the ERLS coordinates should be included in the dis-
placement vector and therefore in the eigenvectors.

Let qe be the static equilibrium configuration corre-
sponding to the actual position of the mechanism, adopted
for both the experimental modal analysis and the model
linearization. Let us assume that the mechanism is vibrating
in accordance with the ith mode about the equilibrium
configuration. (e absolute position of the nodes of the
FEM, denoted bi, can be represented both through the ei-
genvector defined in the physical frame adopted for the
experimental analysis, ηi, and through the one defined with
the model coordinates, ηi. If bi is defined in a global frame,
the eigenvector measured in the physical frame should be
rotated onto the global reference frame through the ERLS
kinematic constraint equations:

bi � r qe( 􏼁 + Θ qe( 􏼁ηi, (6)

where r is the vector of the nodal position of the FLM in
the configuration set by qe while Θ is a block transforma-
tion matrix which depends on the rigid-body kinematic
constraints.

If, in contrast, the same configuration is represented
through the eigenvector of the linearized model ηi expressed
with respect to the ERLS at configuration qi � qe + Δq, the
following relation holds:

bi � r qi( 􏼁 + ηi, (7)

where r(qi) is the vector of the nodal position of the ERLS
in the configuration set by qi. (e displacement of the
ERLS-generalized coordinates Δq represents the rotation of
the ERLS, which moves to follow the actual mechanism.
Hence, it is equal to the nq zeroed elements of u discussed in
Section 2.1.

A graphical representation of (6) and (7) is provided in
Figure 2 with reference to a single flexible link.

(e final transformation to make the experimental ei-
genvectors consistent with the model formulation can be
inferred from (6) and (7)

􏽢ηi � r qe( 􏼁− r qi( 􏼁 + Θ qe( 􏼁ηi, (8)

where 􏽢ηi denotes the transformed experimental eigenvector
to be employed in the model updating procedure.

(e result proposed in (8) is the exact relation that
transforms the measured expanded eigenvectors and is an
improvement of the approximated one proposed in [22].

4. The Model Updating Technique

4.1. Formulation of the Mass and Stiffness Matrix Updating.
(e model is updated by firstly correcting the inertial and
elastic parameters through the undamped model. (is
choice simplifies the formulation of the inverse eigenvalue
problem by casting it as a first-order problem. Hence, real
eigenpairs are obtained, thus improving the numerical so-
lution by just handling real numbers. (e identification of
damping matrix can be performed separately, through the
well-established methods proposed in literature [27, 28],
once the inertial and elastic parameters have been updated.
A “two-step” approach, that updates stiffness and the mass
matrices first and then updates damping matrix, is often
adopted in literature since it is usually more reliable [29].
(e negligible internal damping of beams further corrob-
orates this approach.

(e linearized undamped model in (4) is represented
through the mass MO ∈ RN×N and the stiffness
KO ∈ RN×N matrices, which are the initial (nominal)
system matrices based on the nominal inertial and elastic
parameters (N is number of model dofs, including both
rigid and elastic coordinates: N � nq + nu). (e updating
of the model matrices is represented here through ad-
ditive correction matrices, the so-called update matrices
ΔM ∈ RN×N and ΔK ∈ RN×N, which collect the parame-
ters that are affected by uncertainty and hence should be
corrected. (erefore, the mass and stiffness matrices of
the N-dimensional updated model are MO + ΔM and
KO + ΔK. (e topology of the update matrices depends on
the topology of MO and KO.

Following a popular representation, ΔM and ΔK can
be written as the sum of the update matrices related to
each update (unknown) parameter, denoted ΔMh and
ΔKh, that represent the effect of each additive update
parameter:
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ΔM � 􏽘

Nm

h�1
ΔMh,

ΔK � 􏽘

Nk

h�1
ΔKh.

(9)

(e method proposed in this paper updates masses
and stiffnesses simultaneously to address their coupling
effects more effectively and hence obtaining more reliable
results. In contrast, several works in literature proposes
two-step approaches that split mass and stiffness updating
in two sequential steps. (e simultaneous updating im-
poses to tackle the different magnitudes of masses, in-
ertias, and elastic parameters that cause ill-conditioning of
the numerical problem if they are not properly accounted
for. Hence, to improve the problem conditioning, di-
mensionless (normalized) modifications mh and kh are
introduced:

mh �
Δmh

mO
h

,

kh �
Δkh

kO
h

,

(10)

Δmh and Δkh are the corrections on the parameters of the
original model (mO

h and kO
h , resp.) that should be updated:

mh � m
O
h + Δmh,

kh � k
O
h + Δkh.

(11)

For the parameters whose original value is zero, the
reference value might be defined as the upper bound of
their allowed modifications. Nonetheless, other arbitrary
reference numbers can be assumed, though reason-
able. All the variables mj and kh are collected in the
(Nm + Nk)-dimensional vector of the updating param-
eters χ � m1, . . . , mNm

k1, . . . , kNk
􏽮 􏽯

T
, which collects all

the problem unknowns (Nm and Nk denote the number

of parameters that can be updated in the mass and
stiffness matrix, resp.).

Equation (9) can be written in the following form by
introducing the Jacobian matrices Jmh

and Jkh
:

ΔM≃ 􏽘

Nm

h�1
m

O
h Jmh

mj,

ΔK≃ 􏽘

Nk

h�1
k

O
h Jkh

kh,

(12)

where

Jmh
�

zMO

zmO
h

􏼢 􏼣,

Jkh
�

zKO

zkO
h

􏼢 􏼣.

(13)

(e representation in (12) is exact, and Jacobians are
invariant whenever the updating parameters linearly affect
the mass and stiffness matrices, such as in the case of nodal
masses, inertias, or springs, and also in the case of Young’s
modulus, mass density, and sectional area of the beams. If, in
contrast, the Jacobians are not constant (such as in the case
of including the link lengths as the unknown parameters),
iterations should be performed.

(e formulation through the Jacobian matrices allows
for the use of some numerical methods to formulate the
model updating problem, by speeding up the computation
and reducing the need of complicate analytical develop-
ments. More details are provided in Section 5.

4.2. Formulation of the Inverse Eigenproblem. (e formu-
lation of the model updating method is based on the fol-
lowing eigenvalue problem that must hold for any measured
eigenpairs (􏽢ω2

i , 􏽢ηi), i � 1, . . . , n (where n≤N is the number
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Figure 2: Interpretation of the analytical and experimental eigenvectors.
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of measured modes and 􏽢ωi is the natural frequency asso-
ciated to eigenvector 􏽢ηi):

􏽢ω2
i 􏽢ηi

T MO
+ ΔM􏽨 􏽩􏽢ηi − 􏽢ηi

T KO
+ ΔK􏽨 􏽩􏽢ηi � 0. (14)

Any arbitrary normalization of the measured eigen-
vectors can be adopted.

(e formulation of the eigenvalue problem in the form
of (14), rather than the form 􏽢ω2

i [MO + ΔM]􏽢ηi − [KO + ΔK]􏽢ηi

� 0, has the advantage that just one equation is written
for each vibrational modes, thus improving numerical
conditioning.

By introducing the representation of the update matrices
given in (12), the scalar equations in (14) are written as linear
problems in the unknown mj, kh􏽮 􏽯:

􏽢ηT
i 􏽢ω2

i M
O −KO

􏽨 􏽩􏽢ηi + 􏽢ω2
i η

T
i 􏽘

Nm

h�1
m

O
h Jmh

􏽢ηimh

− ηT
i 􏽘

Nk

h�1
k

O
h Jkh

􏽢ηikh � 0.

(15)

Equation (15) can be represented in the typical compact
form of a linear algebraic system through vector ai, which
collects the known coefficients, and scalar
di � −􏽢ηT

i [􏽢ω2
i M

O −KO]􏽢ηi, which is the known-term that
depends on the original model to be updated and on the
experimental data:

ai
Tχ −di � 0. (16)

Since the problem unknowns should be constrained by
a feasible set and the condition in (16) should be simulta-
neously satisfied for all the measured eigenpairs
(i � 1, . . . , n), an exact solution might not exist. In practice,
the measured eigendata are usually not reproduced exactly
by the updated model.

(erefore, it is more reasonable approximating the
updating problem as a least-square minimization:

min
χ

‖W(Aχ −d)‖
2
2, (17)

A ∈ Rn×(Nm+Nk) and d ∈ Rn collect the terms of each ei-
genvalue problem in (16): the rows of matrix A are the
vectors ai, while the entries of d are the scalars di. (e
diagonal matrixW ∈ Rn×n is defined to weigh the residual of
each eigenvalue problem through the positive and scalar
weights wi, with i � 1, . . . , n. W allows giving less impor-
tance to those eigenpairs whose measurements are less re-
liable, as well as to give higher importance to the vibrational
modes that are more observable and controllable.

Regularization can also be adopted to penalize some of
the components of χ and to improve the numerical con-
ditioning. Indeed, some model parameters might be more
uncertain than the others, and therefore, it is more desirable
that the updating procedure modifies them. (erefore, the
Tikhonov’s regularization term λ‖Ωχ‖22 is included in (19).
(e positive scalar λ is named the regularization parameter
and trades-off between the cost of missing the eigenpair
specifications (16) and the cost of using large values of the

unknown variables (i.e., ‖χ‖22). An effective way to select λ is
the use of the L-curve method for the unconstrained
problem, which admits analytical solution and hence the
calculation is straightforward. According to [30], λ is chosen
as the value that corresponds to the point at the “vertex” of
the curve (whose shape recalls the letter “L”), that is, the
point with the largest magnitude curvature.

(e positive-definite real matrix Ω ∈ R(Nm+Nk)×(Nm+Nk)

is the regularization operator and can be adopted to define
the relative weight between the updates of the different
model parameters. (e model updating problem therefore
becomes

min
χ

‖W(Aχ − d)‖
2
2 + λ‖Ωχ‖

2
2􏼐 􏼑. (18)

(e numerical solution of the minimization problem
should be further improved through preconditioning to
handle effectively large dimensional matrices and the si-
multaneous presence of low-frequency and high-frequency
vibrational modes. By using the following preconditioner,
(ATWTWA + λΩ)−1ATWT, the system in (17) is written in
the following equivalent form whose condition number is
one:

min
χ

χ − ATWTWA + λΩ􏼐 􏼑
−1
ATWTWd

�����

�����
2

2
. (19)

A wise selection of λ also ensures that the inverse
(ATWTWA + λΩ)−1 is well conditioned, and hence the
optimization problem in (19) is correctly formulated.
(erefore, more reliable solutions can be achieved compared
to [22] that effectively handle a larger number of vibrational
modes over a larger frequency range.

4.3. Static Equilibrium Constraints. (e knowledge of the
static equilibrium configuration allows for the inclusion of
some additional information that can be handled by means
of the optimization-based formulation proposed in this
work. In such a rest configuration, the mechanism is sub-
jected to the action of gravity forces (whenever it lies on the
vertical plane), friction, elastic forces due to balancing
springs (connecting the mechanism to the ground or linking
more links), and forces exerted by actuators. In the case of
small elastic displacement with respect to the ERLS, which is
the basic assumption that has been adopted in the devel-
opment of such a model and therefore is taken all along the
paper, the effect of the elastic deformation of the links can be
neglected in the computation of the aforementioned forces
[8]. Hence, a rigid-body model can be assumed, and the
mechanism coincides with the ERLS.

(e application of the principle of virtual work for the
rigid-link system leads to the following equation:

δrT
Me + ΔMe( 􏼁g + δrT vspring + vcontrol + vfriction􏼐 􏼑 � 0,

(20)

where δrT is the vector of the virtual displacements of all
the nodes of the ERLS. Vectors vspring, vcontrol, and vfriction
collect, respectively, the spring, control, and friction
nodal forces (i.e., vspring + vcontrol + vfriction � v). ΔMe is the
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nu-dimensional submatrix of matrix ΔM that collects the
modification of Me. For clarity of explanation, the effect of
the external springs has been represented in (20) through
vspring (rather than using stiffness matrix), which also collects
some updating unknowns.

Equation (20) can be transformed into a set of nq in-
dependent equations (i.e., one equation for each ERLS dof),
through the matrix of the sensitivity coefficients:

ST
Me + ΔMe(χ)( 􏼁g + ST vspring(χ) + vcontrol + vfriction􏼐 􏼑 � 0.

(21)

All the matrices are computed at the static equilibrium
configuration adopted for linearization, q � qe.

Equation (21) should be included in model updating as
equality constraints, which are linear functions of the
problem unknown χ:

Hχ � h, (22)

H and h collect the coefficients of the linear system.
(e inclusion of (22) into the minimization problem has

some practical issues since the exact value of friction is
usually unknown. If reasonable upper bounds of friction are
estimated, the friction forces reflected to the ERLS co-
ordinates STvfriction, can be treated as uncertain values that
should be bounded, |STvfriction|≤ ν. (erefore, the nq equality
constraints in (22) can be relaxed as 2nq inequality
constraints:

Hχ ≤hU,

Hχ ≥hL.
(23)

4.4. Constraints on the Updating Parameters. (e correction
of parameters should be bounded to ensure physical
meaning. Hence, lower and upper bounds on each pa-
rameter (denoted as χL and χU, resp.) and on combinations
of more parameters should be defined. (e latter type of
constraint is defined through a convex polyhedron (by
means of a matrix G and a vector γ). (ese two types of
constraint define the following convex feasible set Γ(the
inequalities are element-wise):

Γ � χ χL ≤ χ ≤ χU( 􏼁
􏼌􏼌􏼌􏼌 ∩Gχ ≤ γ􏽮 􏽯. (24)

4.5. Formulation of theModel Updating Problem. (e model
updating problem is finally represented as the following
constrained minimization problem:

min
χ

χ − ATWTWA + λΩ􏼐 􏼑
−1
ATWTWd

�����

�����
2

2
,

such that

Hχ ≤hU,

Hχ ≥hL,

χ ∈ Γ.

⎧⎪⎪⎨

⎪⎪⎩

(25)

Both the objective function and the feasible domain
are convex. Hence, the solution is straightforward since

convexity ensures that the global optimal solution can be
found regardless of the selection of the initial guess.

In the case of medium-scale or large-scale problem,
a convenient formulation is the one based on the quadratic
programming optimization, rather than the least-square
norm minimization in (25), that can be solved through
reflective-trust-region algorithms:

min
χ

χTχ − 2 ATWTWA + λΩ􏼐 􏼑
−1
ATWTWd􏼒 􏼓

T

χ􏼨 􏼩,

such that

Hχ ≤ hU,

Hχ ≥ hL,

χ ∈ Γ.

⎧⎪⎪⎨

⎪⎪⎩

(26)

5. Experimental Application

5.1. Description of the Mechanism. (e model updating
strategy proposed in this paper has been applied to the
manipulator with flexible links shown in Figure 3(a). Such
a manipulator consists of five rods with circular cross sec-
tions made of aluminum anticorodal. (e links are con-
nected to each other by means of revolute joints, created by
means of double ball bearings with negligible clearance and
friction losses, inserted in aluminum housings. A serial-
parallel kinematic topology is obtained. Links 1, 2, and 5 are
driven by three brushless motors. (e mechanism is
equipped with two identical balancing springs, modeled as
a single lumped spring, which has been introduced to
compensate for gravity force.

(e links have been modeled with two-node and six-
degree-of-freedom Euler-Bernoulli’s beam elements to
represent the planar motion of the mechanism. Overall,
nine beam elements have been adopted (Figure 3(b)).
Lumped masses and nodal inertias have been adopted to
represent the joints and the motors. (e resulting model
has 27 elastic dofs, and three ERLS-generalized coordinates
q � q1 q2 q3􏼈 􏼉

T are the joint absolute rotations of the
motors. (e rigid moving reference is then defined by
forcing the ERLS to coincide with the actual flexible
mechanism at the rotation of these three joints. Hence,
three elastic displacements with respect to the ERLS are
forced to zero in the FLM model, in order to place the
moving reference defined by the equivalent rigid mecha-
nism correctly (Section 2).

Model updating has been done by investigating the
mechanism in the stable equilibrium configuration with no
motor torques (i.e.,vcontrol � 0), where gravity forces are
exactly compensated by the balancing force exerted by the
two external springs and by friction, which corresponds
to qe � 1.082 2.635 4.712􏼈 􏼉

T
[rad].

5.2. /e Experimental Modal Analysis. Experimental modal
analysis has been performed through impact tests. A series of
frequency response functions (FRFs) have been measured
through accelerometers, while an instrumented impact
hammer has been adopted to exert the excitation forces.
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(e measurement chain consists in

(i) 5 accelerometers described in Table 1;
(ii) an instrumented impact hammer PCB Modally

Tuned 086C03 with teflon tip;
(iii) a front-end system LMS SCADAS Recorder (max

input ± 10V, ADC 24 bit);
(iv) a modal software LMS Test.Lab Impact Testing 11B,

with the following tools: Geometry, Modal Analysis,
PolyMAX Modal Analysis.

(e impact setup defined for the test is described in
Table 2.

(e number of measurement points has been selected to
provide a reliable representation of the mode shapes in the
frequency range of interest and for the interpolation to
expand the experimental results to fit the model dimension
with adequate smoothing of measurement noise and un-
certainty (Section 5.3). In accordance with these aims,
a manipulator geometry has been created through 22 points
in the software tool LMS Test.Lab Impact Testing 11B Ge-
ometry, as shown in Figure 4.

As far as the frequency range of interest is concerned, it
ranges from 0 to 200Hz. (is interval corresponds, ap-
proximately, to the bandwidth of the motor current loop and
hence to the range of frequencies where active control could
be reasonably achieved. In contrast, the vibrational modes
with higher frequency can neither be controlled nor excited
in the forced motion, and hence they are not of interest for
the model. (erefore, seven vibrational modes have been
adopted to perform model updating. As a representative
example of such FRFs, Figure 5 shows the 7th row of the
matrix of the FRFs, as it was provided by the software.

Measured data have been postprocessed using the Pol-
yMAX of LMS Test.Lab 11B tool, which extracts the mode
shapes through the “pole-residual model” [31]. While ei-
genvalues can be easily identified with negligible uncertainty
[32], the extraction of reliable mode shapes imposes careful
and multiple execution of the test to get rid of measurement
noise or wrong hammer excitations, as well as a wise use of

the stabilization diagrams. A total number of 315 FRFs have
been recorded by averaging four measurements. In such
a way, a more reliable extraction of themodal parameters has
been done and the effect of uncertainties introduced by the
extraction algorithm can be neglected.

5.3. Size Compatibility between the FE Model and the
Measurements. Least-square curve fitting has been
employed to expand the set of measurements by estimating
the unmeasured rotational dofs, denoted as φi and collected
in vector φ. Fitting is based on a redundant set of measured
transverse displacements along the beams (Figure 4) and on
the least-square regression of the measured displacements in
the local frame along the links. (e cubic polynomial in-
terpolation shape functions of the Euler-Bernoulli’s beam
have been adopted, in accordance with the model described
in Sections 2.2 and 5.1, which uses such a finite element.
An undetermined linear system of the type in (27) is written
for each link:

Aφ φ � dφ. (27)

(e size of the unknown vector φ depends on the
number of finite elements adopted in the model for such
a link, while the number of equations (i.e., the number of
lines of matrix of coefficients Aφ and of the known vector
dφ) depends on the number of transverse displacements
measured along the link.

5.4. Statement of theModel Updating Problem. (e vector of
the updating parameters, χ, collects the following uncertain
variables: the equivalent lumped stiffness of the balancing
springs (kbs), the nodal inertias (J), masses (M), the mass
density of the links (ρ), and the Young’s modulus (E). A
different value of E has been assumed for each link to ac-
count for different phenomena that result in local increase
or decrease of the overall stiffness of the link. For example,
local stiffening due to the kinematic joints and their coupling
with the beams, as well as uncertainty on the actual beam

(a)

q3

Li
nk

 5
 

q2

q1

A

B

E

C

D

F

H

Link 4

Link 1

Link 3

Link 2

(b)

Figure 3: (a) Picture of the planar, three-dof manipulator and (b) its FE model.
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parameters. On the contrary, uncertainty on the Young’s
modulus of the beam is also useful to account for the
presence of joint compliance, which reduces the overall
stiffness of the links. As far as the beam mass density is
concerned, it has been included among the uncertain pa-
rameters since the exact value is unknown (only a nominal
value reflecting the chemical composition was available) and
in order to account for the presence of screws and cables. For

this parameter, a unique value for all the links has been
adopted. (e lengths of the links and their cross-sectional
areas are instead assumed as exact values.

Feasible values have been constrained by upper and
lower bounds, which are listed in Table 3 together with the
original and the updated values for each parameter. (e
original values have been taken from nominal data of the
parameters (e.g., nominal value of mass density in accor-
dance with the alloy composition). (e bounds have been
defined as a judicious percentage of the nominal parameters
(e.g., ±5% of the nominal value in the case of ρ). Addi-
tionally, a constraint on the total mass has been included, by
formulating it through (24). (e bounds on friction forces
(hL and hU), for the static equilibrium constraints, have been
estimated by operating the motor in a torque-controlled
mode with increasing torques and by repeating the test many
times (e.g., to account for uncertainty due to friction vari-
ations with temperature and for hysteresis, whose modeling
is not of interest for this work).

(e following notation has been employed for the sub-
scripts in Table 3: numbers from 1 to 5 denote the links
(Figure 3(b)), letters from A to E indicate the joints, H in-
dicates the lumped mass of the balancing spring, and F in-
dicates the one attached to link 5; the number adjacent to the
letter denotes the link which each lumped mass is connected
to. A total number of 29 parameters have been updated.

(e modifications have been weighed in such a way that
the cost of modifying the nodal inertias is lower. Indeed,
their original values have been set to zero in the initial
nominal model and thus are more uncertain:

λΩ � 105
I[22×22] 0[22×7]

0[7×22] 10−3 · I[7×7]

⎡⎣ ⎤⎦. (28)

5.5. Numerical Computation of the Jacobian Matrices. In
order to speed up the implementation, numerical compu-
tation of the Jacobian matrices introduced in (9) can be
exploited. (e need for numerical computation is exacer-
bated in the case under investigation where a medium-
/large-scale model is updated. (e great issue to be handled
is the ill-conditioning of matrices of this kind of systems,
which have both low-frequency and high-frequency vibra-
tional modes. Rather than using the intuitive approach of
finite differences, which imposes subtractions in the nu-
merator that lead to dangerous cancellation errors, this work
proposes the use of the complex step differentiation [33].
Such amethod is based on the Taylor expansion of a complex
function. Let us consider the computation of Jmh

(the ex-
tension for Jkh

is obvious) by representing MO as a complex
function (with j �

���
−1

√
) and then look at its Taylor

expansion:

MO
m

O
h + jε􏼐 􏼑 � MO

+
zMO

zmO
h

􏼢 􏼣jε−
z2MO

zmO2
h

􏼢 􏼣ε2 + o ε3􏼐 􏼑.

(29)

Hence, the computation of the Jacobian is straightfor-
ward by setting ε as an extremely small real number (such as

Table 1: Accelerometers employed.

Manufacturer Model Typology Sensitivity
(mV/g)

Endevco 27AM1-100
10203 ICP 102.4

Dytran 3136A1945 ICP 100
PCB 3741D4HB30G Full-bridge DC 66.7
Brüel & Kjær 4508 ICP 9.78

Brüel & Kjær 4506B triaxial
X-axis ICP
Y-axis ICP
Z-axis ICP

⎧⎪⎨

⎪⎩

93.5
94
98

Table 2: Impact test settings.
Acquisition setting
Sample frequency 2048Hz
Frequency resolution 0.06Hz
Acquisition time 16 s
Triggering
Trigger level 5.72N
Pretrigger 0.01 s
Windowing
Input Uniform
Response Exponential (decay 90%)
Measurement averages 4
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Figure 4: Geometry of the manipulator created in the acquisition
software, LMS Test.Lab 11B.
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Figure 5: 7th row of the experimental frequency response matrix.

Table 3: Updating parameters.

Index Parameter Nominal value Lower bound Upper bound Updated value
1 ρ (kg/m3) 2710 2574.5 2845.5 2742.6
2 E1 (Pa) 69 ·109 65.55 ·109 72.45 ·109 65.55 ·109

3 E2 (Pa) 69 ·109 65.55 ·109 72.45 ·109 65.55 ·109

4 E3 (Pa) 69 ·109 65.55 ·109 72.45 ·109 71.07 ·109

5 E4 (Pa) 69 ·109 65.55 ·109 72.45 ·109 69.69 ·109

6 E5 (Pa) 69 ·109 65.55 ·109 72.45 ·109 66.04 ·109

7 kbs (N/m) 1520 1216 1824 1520
8 MA,1 (kg) 7.644 6.115 9.172 7.645
9 MB,1 (kg) 0.392 0.313 0.470 0.392
10 MA,2 (kg) 9.517 7.613 11.420 9.523
11 MH,2 (kg) 0.400 0.320 0.480 0.400
12 MD,2 (kg) 0.648 0.518 0.777 0.650
13 MB,3 (kg) 0.671 0.536 0.805 0.671
14 MC,3 (kg) 0.383 0.306 0.459 0.383
15 MC,4 (kg) 0.657 0.526 0.789 0.660
16 MD,4 (kg) 0.308 0.246 0.369 0.308
17 ME,4 (kg) 1.844 1.537 2.151 1.844
18 ME,5 (kg) 0.114 0.095 0.133 0.114
19 MF,5 (kg) 0.046 0.036 0.055 0.046
20 JA,1 (kg·m2) 0.0130 0.0104 0.0156 0.0130
21 JA,2 (kg·m2) 0.0229 0.0183 0.0275 0.0229
22 JE,5 (kg·m2) 0.0015 0.0012 0.0018 0.0015
23 JB,1 (kg·m2) 0 0 0.0005 0.0005
24 JB,3 (kg·m2) 0 0 0.0005 4.91e-4
25 JC,3 (kg·m2) 0 0 0.0005 5e-4
26 JC,4 (kg·m2) 0 0 0.0005 4.37e-4
27 JD,4 (kg·m2) 0 0 0.0005 4.03e-4
28 JD,2 (kg·m2) 0 0 0.0005 0.01e-4
29 JE,4 (kg·m2) 0 0 0.0012 0.0012
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Table 4: Comparison of the experimental and analytical modal properties.

Frequency
(experimental)
(Hz)

Frequency
(nominal model)

(Hz)

Frequency
(updated model)

(Hz)

εi (nominal
model) (%)

εi (updated
model) (%)

MAC
(nominal model)

MAC
(updated model)

13.38 13.72 13.27 2.54 −0.82 0.946 0.949
43.56 43.89 43.08 0.76 −1.12 0.986 0.989
64.66 66.96 64.83 3.56 0.26 0.967 0.968
112.99 127.25 120.77 12.62 6.89 0.856 0.872
138.17 147.23 142.30 6.56 2.99 0.830 0.830
154.75 171.95 156.25 11.11 0.97 0.930 0.945
198.57 204.93 198.63 3.20 0.03 0.967 0.972

198.57 Hz 198.63 Hz

7th mode

13.38 Hz 13.27 Hz

1st mode

43.56 Hz 43.08 Hz

2nd mode

64.66 Hz 64.83 Hz

3rd mode

112.99 Hz 120.77 Hz

4th mode

138.15 Hz 142.30 Hz

5th mode

154.75 Hz 156.25 Hz

6th mode

Experimental measurements
Updated_model

Figure 6: Shapes of the seven vibrational modes: experimental (left) and updated (right) modes.
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selecting values approaching the machine precision) as
follows:

Jmj
�
Im MO mO

h + j ε( 􏼁( 􏼁

ε
+ o ε2􏼐 􏼑. (30)

(e resulting Jacobians have negligible approximation
errors, whose magnitude is close to machine precision, and
require small computational effort.

5.6. Experimental Results. (e effectiveness of the updating
has been evaluated by computing the eigenfrequencies and
the eigenvectors of the updated model and by comparing
them with the experimental results by means of the per-
centage frequency error εi:

εi � 100
ωi − 􏽢ωi

􏽢ωi

, (31)

and the modal assurance criterion (MAC):

MAC �
ηT

i 􏽢ηi( 􏼁
2

ηi

����
����
2

􏽢ηi

����
����
2. (32)

(e results provided by the updated model are also
compared with those obtained through the original nominal
model (which is the one synthesized through nominal pa-
rameters of links, like the one in [22]). In (31) and (32), ωi

and ηi are the ith eigenfrequency and eigenvector estimated
through the models (i � 1, . . . , 7), while 􏽢ωi and 􏽢ηi are the
measured ones.

(e comparison proposed in Table 4 shows that model
updating has improved the model coherence with the ex-
perimental measurements. (e greatest improvement is
obtained in the estimation of the eigenfrequencies whose
values are significantly missed in the nominal model. (e
overall absolute error (i.e., 􏽐

7
i�1|ωi − ω̂i|) decreases from

49.85Hz in the original model, to just 14.23Hz after
updating. Indeed, the percentage frequency error for the
updated model is smaller than 1% in four modes, while the
average value of such an index is equal to 1.31% (compared
to the 5.76% in the original model). As for the MAC, a less
relevant improvement has been obtained since the mode
shape specifications are accurately met also by the original
model. Nonetheless, the averageMAC increases from 0.92 to
0.93 after model updating. Both these parameters are highly
satisfactory also in the light of the typical correlation criteria
set by military and aerospace standards which typically
require 0.8–0.9 for the MAC and 3–5% for the frequency
error [34]. Additionally, compared with the results of pre-
liminary studies in [22], this new formulation ensures better
results in terms of both the frequency error and the MAC
despite the presence of a larger number of vibrational modes
that make model updating more challenging because of the
larger number of requirements and of the increase of the
matrix dimensions.

(e correctness of the mode shapes is even more evident
by Figure 6, which compares the experimental mode shapes
(depicted on the left side of each subplot, as provided by the
LMS software) with those computed through the updated

model (on the right). (e excellent agreement is evident,
thus demonstrating the correctness of the model and the
effectiveness of the comprehensive approach developed in
this paper.

A further proof of such a good correlation is given by
Figure 7, which represents the orthogonality (defined
through the canonical scalar product I) between different
eigenvectors by means of the MAC matrix. Indeed, the
diagonal terms are blue since they approach 1, while the off-
diagonal ones are almost zero (the average value of the off-
diagonal term is 0.052).

Finally, it should be noted that the updated model does
not generate spurious modes. (is is a further proof of the
correctness of the approach and of the results obtained.

5.7. Updating of the Rayleigh Coefficients of the Damping
Model. A Rayleigh damping model (modal damping model)
has been assumed since it is a popular and effective approach
to represent damping [27, 28, 35, 36]. Hence, damping
matrix Ce is a linear combination of mass and stiffness
matrices through the Rayleigh coefficients α and β:

Ce � αMe + βKe. (33)

Table 5: Comparison of the experimental and analytical modal
properties.

Frequency (Hz)
Modal damping
coefficient ξ

(experimental)

Modal damping
coefficient ξ

(updated model)
13.39 0.007 0.007
43.57 0.012 0.013
64.65 0.017 0.018
112.99 0.036 0.035
138.15 0.043 0.040
154.73 0.039 0.044
198.56 0.048 0.055
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Figure 7: MAC matrix between the experimental modes and the
updated model modes.
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(e two values have been computed through least-
squares fitting of the damping of the seven modes under
investigations, by taking advantage of the relation between
natural frequency and modal damping of each mode:

ξi �
1
2ωi

α +
ωi

2
β. (34)

Writing (34) for each mode leads to the following so-
lution (“†” denotes the pseudoinverse matrix):

α

β

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

1
2ω1

ω1

2

⋮ ⋮

1
2ω7

ω7

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

†

ξ1

⋮

ξ7

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (35)

(e following values have been identified: α � 0.57 and
β � 8.8e− 5, that lead to the results summarized in Table 5.
An effective estimation is therefore provided by the damping
model assumed.

6. Conclusions

A strategy for updating models of flexible-link mechanisms
has been proposed and validated in this paper. (e proposed
formulation leads to a constrained inverse eigenvalue
problem, which makes the approach suitable for updating
these complicated models. Indeed, it has the following
advantages:

(i) It can handle an arbitrary number of eigenpairs and
updating parameters.

(ii) Mass and stiffness matrices are simultaneously
updated, to obtain more reliable results.

(iii) (e experimental eigenvectors can have any arbi-
trary normalization.

(iv) (e method handles several kinds of constraints to
assure physical meaning of the updating.

(v) (e formulation handles the numerical issues by
providing several solutions to improve numerical
conditioning and hence boosting the achievement
of reliable results.

(e method has been applied to a very challenging test:
the model of a planar, six-bar linkage mechanism with five
flexible links. (e model is updated to improve the repre-
sentation of the 7 lowest frequency modes, that is, those
within the range from 0 to 200Hz corresponding to the
bandwidth of interest. (e experimental results obtained are
highly satisfactory, given the complexity of the system in-
vestigated, the simultaneous presence of more eigenpairs to
be matched, the unavoidable uncertainty in performing
accurate measurements in a mechanism (which has “rigid-
body” motion), and the presence of constraints bounding
the parameter updating. Overall, a meaningful improvement
in the eigenvector and eigenfrequency estimation has been
obtained.
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